平凸透镜

仪器信息网平凸透镜专题为您提供2024年最新平凸透镜价格报价、厂家品牌的相关信息, 包括平凸透镜参数、型号等,不管是国产,还是进口品牌的平凸透镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合平凸透镜相关的耗材配件、试剂标物,还有平凸透镜相关的最新资讯、资料,以及平凸透镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

平凸透镜相关的厂商

  • 福州光华光电公司位于福建福州。公司的工程师和骨干员工都有至少10年以上的精密光学元件生产,镀膜经验;产品涉及平面,球面,晶体等。主要产品:完整的各种波片生产供应能力,包括消色差,双波长等特殊品类;PBS分光镜,各种棱镜:屋脊,道威,直角,斜方棱镜等,特殊棱镜最小规格可以到0.6mm.透镜类:各种规格的C-Lens具备稳定批量生产能力;可提供各种球面透镜:平凹,平凸,双凹,双凸,弯月,消色差透镜等。例如用于高功率激光器件的平凸透镜稳定供货给国外厂商。晶体类:YVO4,LiNbO3,YAG等晶体
    留言咨询
  • 深圳平治光学有限公司致力于光学镀膜业的发展,专业从事订制透红外亚克力(红色,黑色,茶色)、UV镜、镜头滤镜、CPL偏振片、镀膜加工(单层增透膜、多层增膜、分光膜、高反膜、透面镜加工、平面球、滤光片、滤色片、高反镜、分光镜、增透镜、棱镜、红、蓝、绿、黄、宝石蓝等彩膜;防水膜、防指纹膜、超硬膜、导电膜、非导电膜等功能膜)。产品广泛用于:光学器件及手机,树脂镜片。可以UV镜、手机镜头、手提电脑镜头、各类VGA摄像,高像素镜头、玻璃镜片、玻璃工艺品等进行专业的镀膜;AB彩、七彩、幻彩、幻蓝及各类颜色镀膜。   公司本着技术领先、质量第一、客户至上的原则为广大用户提供满意的服务。无论从内部管理到生产工艺,从市场营销至客户服务都力求精益求精。同时,在经营策略上引进世界最先进的生产设备与检测设备以及最领先的光学理论,使企业不断的推出适合用户需求的新产品。也使企业充满了生机和活力,从而实现品牌的有效扩张、有效管理。
    留言咨询
  • 青岛徕奥光电技术有限公司位于青岛高新区,专注于光学加工(平面、球面)和光学镀膜,为客户提供各类高精度定制光学元件和镀膜服务。主要产品:光学平面加工:平片,窗口片,棱镜,反射镜,分光镜,滤光片,锥体,六面体光学球面加工:透镜,平凸,平凹,双凸,双凹,弯月,胶合,三胶合,柱面镜,球透镜光学镀膜:增透膜,反射膜,分光膜,偏振膜,消偏振膜,滤光片,介质膜,金属膜光学镜头:工业相机用线扫描镜头
    留言咨询

平凸透镜相关的仪器

  • 平凸透镜 400-628-5299
    透镜(Lens): 透镜主要是进行光的汇聚或者发散用的光学元件,主要分为:凸透镜、凹透镜、消色差透镜、非球面透镜等。关于平凸/凹透镜和双凸/凹透镜的选择: 球面平凸/ 凹透镜被用于无限远共轭时,具有较小的球差。所以,当需要把平行光汇聚,或者把点光源变成平行光时,选择球面平凸/ 凹透镜较好。在用于有限远共轭时,双凸/ 凹透镜具有较小的球差,当需要汇聚点光源发出来的光或者光学系统图像传递时,选择双凸/ 凹透镜为佳。凸透镜: 根据形状分为:平凸和双凸,根据材料分为K9 玻璃( 或BK7) 与石英;K9玻璃,平凸透镜相关参数: 材料:K9光学玻璃 直径误差:+0.0/-0.1mm 中心厚度误差:±0.2mm 焦距误差(EFL): ±2% 镀膜:无选型表: OLB系列,K9平凸透镜型号尺寸及参数(mm) 型号尺寸及参数(mm) OLB12.7-25.4 ?2.7,f25.4 OLB25-1000 ?5,f1000 OLB12.7-38.1 ?2.7,f38.1 OLB25.4-050 ?5.4,f50 OLB20-050 ?0,f50 OLB25.4-075 ?5.4,f75 OLB25-050 ?5,f50 OLB25.4-100 ?5.4,f100 OLB25-080 ?5,f80 OLB25.4-150 ?5.4,f150 OLB25-100 ?5,f100 OLB38.1-075 ?8.1,f75 OLB25-125 ?5,f125 OLB50-100 ?0,f100 OLB25-200 ?5,f200 OLB50-160 ?0,f160 OLB25-250 ?5,f250 OLB50-250 ?0,f250 OLB25-300 ?5,f300 OLB50-500 ?0,f500 OLB25-400 ?5,f400 OLB50.8-100 ?0.8,f100 OLB25-500 ?5,f500 OLB50.8-400 ?0.8,f400 注:还有不同尺寸、焦距的同类产品,选购时请咨询我们。石英,平凸透镜相关参数: 材料:紫外熔融石英 直径误差:+0.0/-0.1mm 中心厚度误差:±0.2mm 焦距误差(EFL): ±2% 镀膜:无OLB系列选型表: 注:还有不同尺寸、焦距的同类产品,选购时请咨询我们。
    留言咨询
  • 日本SIGMA KOKI柱面平凸透镜圆柱面平凸透镜(柱面平凸透镜)是在垂直方向具有凸透镜的曲率,在水平方向没有曲率的透镜。用于将激光聚光成细线形状的实验中,或用于流体测量等需要的较宽的线状光束。 有从可见光到近红外用的BK7材料的透镜,和可用于350nm以下紫外光的高激光损伤阈值的合成石英透镜这两种类型。 BK7材料的透镜中,备有可见光近红外红外三种类型的防反射膜的透镜。 光学系统中使用柱面透镜时,可以改变光束形状或照明光的纵横比。柱面平凸透镜共同指标注意:?柱面平凸透镜有色差,焦距随波长变化。各波长的焦距请参考网页上的“焦距随波长变化特性数据”确认。?射入柱面平凸透镜的光线有方向性。请务必从凸面一侧射入平行光。否则球差会变大,聚光线条会变宽。?由于无镀膜透镜的正面和反面都存在反射损失,所以透过率为90%左右。功能说明图柱面平凸透镜外形图 柱面平凸透镜透过率波长特性(参考数据)
    留言咨询
  • 1. 凸透镜(含平凸与双凸),按材料分为K9玻璃与石英。 A. K9玻璃,平凸透镜相关参数: 1.材料:K9光学玻璃 2.设计波长:587.6nm 3.直径误差:+0.0/-0.1mm 4.中心厚度误差:± 0.2mm 焦距误差(EFL): ± 2% 5.倒边:0.2mm× 45° 6.镀膜:无OLB系列,K9平凸透镜选型表:型号尺寸及参数(mm)型号尺寸及参数(mm)OLB12.7-25.4&Phi 12.7,f25.4OLB25.4-100&Phi 25.4,f100OLB12.7-38.1&Phi 12.7,f38.1OLB25.4-150&Phi 25.4,f150OLB12.7-50.8&Phi 12.7,f50.8OLB25.4-175&Phi 25.4,f175OLB20-040&Phi 20,f40OLB30-060&Phi 30,f60OLB20-050&Phi 20,f50OLB30-100&Phi 30,f100OLB20-060&Phi 20,f60OLB30-150&Phi 30,f150OLB20-080&Phi 20,f80OLB38.1-075&Phi 38.1,f75OLB20-100&Phi 20,f100OLB38.1-125&Phi 38.1,f125OLB25-025&Phi 25,f25.4OLB38.1-200&Phi 38.1,f200OLB25-050&Phi 25,f50OLB38.1-300&Phi 38.1,f300OLB25-080&Phi 25,f80OLB50-100&Phi 50,f100OLB25-100&Phi 25,f100OLB50-160&Phi 50,f160OLB25-125&Phi 25,f125OLB50-250&Phi 50,f250OLB25-175&Phi 25,f175OLB50-500&Phi 50,f500OLB25-200&Phi 25,f200OLB50.8-100&Phi 50.8,f100OLB25-250&Phi 25,f250OLB50.8-150&Phi 50.8,f150OLB25-400&Phi 25,f400OLB50.8-250&Phi 50.8,f250OLB25-500&Phi 25,f500OLB50.8-400&Phi 50.8,f400OLB25-630&Phi 25,f630OLB76.2-175&Phi 76.2,f175OLB25-1000&Phi 25,f1000OLB76.2-300&Phi 76.2,f300OLB25-2000&Phi 25,f2000OLB76.2-500&Phi 76.2,f500OLB25.4-050&Phi 25.4,f50OLB76.2-700&Phi 76.2,f700OLB25.4-075&Phi 25.4,f75OLB76.2-1000&Phi 76.2,f1000B.石英,平凸透镜OLBQ系列,石英,平凸透镜选型表:型号尺寸与参数(mm)型号尺寸与参数(mm)OLBQ12.7-025&Phi 12.7,f25OLBQ25.4-100&Phi 25.4,f100OLBQ12.7-030&Phi 12.7,f30OLBQ25.4-150&Phi 25.4,f150OLBQ12.7-040&Phi 12.7,f40OLBQ25.4-175&Phi 25.4,f175OLBQ12.7-050&Phi 12.7,f50OLBQ25.4-200&Phi 25.4,f200OLBQ12.7-100&Phi 12.7,f100OLBQ25.4-250&Phi 25.4,f250OLBQ25.4-050&Phi 25.4,f50OLBQ25.4-400&Phi 25.4,f400OLBQ25.4-075&Phi 25.4,f75 相关参数:1.材料:紫外熔融石英2.设计波长:587.6nm3.直径误差:+0.0/-0.1mm4.中心厚度误差:± 0.2mm5.焦距误差(EFL): ± 2%6.倒边:0.2mm× 45° 7.镀膜:无C.K9平凸柱面透镜(Plano-Convex Cylindrical Lenses) 1)OLBC系列平凸柱面透镜 命名规则:OLBC尺寸1尺寸2-焦距示意图: 相关参数:OLBC系列,K9玻璃,平凸柱面选型表:型号名称尺寸X× Y(mm)焦距(mm)边沿厚(mm)OLBC2020-50K9平凸柱面透镜20× 20502OLBC2020-75K9平凸柱面透镜20× 20752OLBC2020-100K9平凸柱面透镜20× 201003OLBC2020-150K9平凸柱面透镜20× 201503OLBC2020-200K9平凸柱面透镜20× 202003OLBC2020-250K9平凸柱面透镜20× 202503OLBC2020-300K9平凸柱面透镜20× 203003OLBC2020-500K9平凸柱面透镜20× 205003OLBC2020-1000K9平凸柱面透镜20× 20100032)其他规格平凸柱面透镜(进口)示意图: 相关参数:选型表(部分):D. K9玻璃双凸透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLA12.7-025&Phi 12.7,f25OLA30-070 &Phi 30,f70OLA12.7-038&Phi 12.7,f38OLA30-087 &Phi 30,f87OLA20-040&Phi 20,f40OLA30-120&Phi 30,f120OLA20-055 &Phi 20,f55OLA30-180&Phi 30,f180OLA20-060&Phi 20,f60OLA30-250&Phi 30,f250OLA20-075&Phi 20,f75OLA30-300&Phi 30,f300OLA25.4-050&Phi 25.4,f50OLA38.1-075&Phi 38.1,f75OLA25.4-100&Phi 25.4,f100OLA38.1-125&Phi 38.1,f125OLA25.4-150&Phi 25.4,f150OLA38.1-200&Phi 38.1,f200OLA25.4-175&Phi 25.4,f175OLA38.1-300&Phi 38.1,f300OLA25-025&Phi 25,f25OLA50.8-150&Phi 50.8,f150OLA25-046 &Phi 25,f46OLA50.8-250&Phi 50.8,f250OLA30-060 &Phi 30,f60OLA50.8-400&Phi 50.8,f400E. 石英,双凸透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLAQ25.4-025&Phi 25.4,f25OLAQ25.4-080&Phi 25.4,f80OLAQ25.4-030&Phi 25.4,f30OLAQ25.4-100&Phi 25.4,f100OLAQ25.4-060&Phi 25.4,f60OLAQ25.4-300&Phi 25.4,f300OLAQ25.4-075&Phi 25.4,f75OLAQ25.4-500&Phi 25.4,f500
    留言咨询

平凸透镜相关的资讯

  • Scientific Report 文章解读:双高斯凸透镜DBR光学微腔
    导 | 读 近期,瑞士IBM苏黎世研发中心的Colin博士和Swisslitho公司的Martin博士利用热扫描探针(T-SPL)纳米加工技术,配合干法蚀刻解决方案实现了相互作用微腔(两个相邻的光学微腔),并对微腔距离进行了控制,实现了两个微腔光场的相互作用。相关工作发表在Nature子刊 Scientific Report。 T-SPL纳米加工技术 热扫描探针(T-SPL)纳米加工技术是一种灰度刻蚀技术。与传统意义上的3D打印技术相比,3D模型以灰度图的形式呈现和加工,技术难度要比3D打印技术要小得多;而且,灰度刻蚀与标准微电子加工工艺,如沉积和蚀刻等直接兼容,因此具有广泛的应用前景。例如,在光学/光子学方面,它可以用来制造任意光学曲面、多模光波导,光子晶体以及高Q值的光学微腔。在量子光子学中,高Q因子意味着光损失小,单位模式中有更多的光量子。在电子光学上,可以用螺旋结构来将轨道角动量传递给自由电子。相比平面结构,三维结构具备更多的功能和更好的性能。 图1 T-SPL的原理 纳米加工技术对比 传统纳米加工技术中,电子束蚀刻(EBL)是目前先进的直写技术,也能够进行这种灰度的光刻。然而,当结构小于1微米时,电子束在光刻胶内的弛豫散射要计算,需要进行三维距离校正。聚焦离子束(FIB)同样可以用于灰度光刻。然而,由入射离子引起的表面注入,深度延伸可以超过数百纳米,并且需要进行复杂的计算实现临近校正。此外,由于事故的电离造成的损害,FIB加工过的表面对进一步处理非常敏感。此时,T-SPL技术的优势就突显出来了。 T-SPL纳米加工技术的应用 Colin博士利用T-SPL技术,制备了正旋波图形(图2a, b),螺旋相位板(图2c, d),凹透镜(图2e, f),16方格棋盘(图2g, h)。图形结果和设计匹配,棋盘实验中,台阶的高度仅为1.5nm。得益于闭环的直写算法,将每一次直写后探测的深度信息反馈并修正下一行的直写, T-SPL技术实现了纳米高精度的3D直写。图2 利用T-SPL技术制备各种微结构,图形结果和设计匹配 光子分子—双高斯凸透镜DBR光学微腔 Colin博士进一步设计了光子分子——双高斯凸透镜DBR光学微腔(图3)。在SiO2上刻蚀两个相邻的凹高斯透镜结构,并以此为模板制作了TaO5/SiO2布拉格反射镜(DBR);利用发光染料作为增益介质制备在DBR中间形成法布里-珀罗(Fabry–Pérot)光学微腔,发光燃料层在结构部分形成高斯凸透镜,相邻两个凸透镜各自约束一路光场在DBR中形成谐振。 图3 光子分子的设计,制备和表征 通过加工多种不同间距的凸透镜对,Colin博士研究了不同距离下,两个谐振光场的耦合作用,以期实现基于交互强度控制的类腔阵列量子计算技术。T-SPL高精度3D纳米加工技术必将推动量子计算的研究向一个关键里程碑迈进。 参考文献:Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. Swisslitho公司荣获“瑞士产品奖” 2017年11月13日,Swisslitho公司因NanoFrazor 3D纳米直写设备(采用热扫描探针纳米加工技术)的研发和特优势获得“瑞士产品奖”。该奖项主要奖授予“具有特、高技术、高质量的、的产品创新能力,具有高价值,强大潜力的公司”。 图为Swisslitho公司团队于苏黎世市中心举行的颁奖典礼 相关产品及链接:1、NanoFrazor 3D纳米结构高速直写机:http://www.instrument.com.cn/netshow/SH100980/C226568.htm2、小型台式无掩膜光刻系统:http://www.instrument.com.cn/netshow/SH100980/C197112.htm
  • 了解球差校正透射电镜,从这里开始
    p  作者:Mix + CCL br//pp strong前言:/strong/pp  球差校正透射电镜(Spherical Aberration Corrected Transmission Electron Microscope: ACTEM)随着纳米材料的兴起而进入普通研究者的视野。超高分辨率配合诸多分析组件使ACTEM成为深入研究纳米世界不可或缺的利器。本期我们将给大家介绍何为球差,ACTEM的种类,球差的优势,何时才需要ACTEM、以及如何为ACTEM准备你的样品。最后我们会介绍一下透射电镜的最前沿,球差色差校正透射电镜。/pp  strong什么是球差:/strong/pp  100 kV的电子束的波长为0.037埃,而普通TEM的点分辨率仅为0.8纳米。这主要是由TEM中磁透镜的像差造成的。球差即为球面像差,是透镜像差中的一种。其他的三种主要像差为:像散、彗形像差和色差。透镜系统,无论是光学透镜还是电磁透镜,都无法做到绝对完美。对于凸透镜,透镜边缘的会聚能力比透镜中心更强,从而导致所有的光线(电子)无法会聚到一个焦点从而影响成像能力。在光学镜组中,凸透镜和凹透镜的组合能有效减少球差,然而电磁透镜却只有凸透镜而没有凹透镜,因此球差成为影响TEM分辨率最主要和最难校正的因素。此外,色差是由于能量不均一的电子束经过磁透镜后无法聚焦在同一个焦点而造成的,它是仅次于球差的影响TEM分辨率的因素。/pp style="text-align: center"img style="width: 450px height: 246px " src="http://img1.17img.cn/17img/images/201803/insimg/565984ed-0352-4b62-8539-a16db18b6f6b.jpg" title="1.jpg" height="246" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong图1:球差和色差示意图/strong/pp自TEM发明后,科学家一直致力于提高其分辨率。1992年德国的三名科学家Harald Rose (UUlm)、Knut Urban(FZJ)以及Maximilian Haider(EMBL)研发使用多极子校正装置(图3)调节和控制电磁透镜的聚焦中心从而实现对球差的校正(图4),最终实现了亚埃级的分辨率。被称为ACTEM三巨头的他们也获得了2011年的沃尔夫奖。多极子校正装置通过多组可调节磁场的磁镜组对电子束的洛伦茨力作用逐步调节TEM的球差,从而实现亚埃级的分辨率。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/2080a2cf-4ab3-41ab-b731-7719f0c32d28.jpg" title="2.jpg"//pp style="text-align: center " strong 图2 三种多极子校正装置示意图/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/090bb4c0-aeea-4ab4-8601-79bcf74b7c8e.jpg" title="3.jpg"//pp style="text-align: center "strong图3 球差校正光路示意图/strong/pp  strongACTEM的种类:/strong/pp  我们在前期TEM相关内容已经介绍了透镜相关内容,TEM中包含多个磁透镜:聚光镜、物镜、中间镜和投影镜等。球差是由于磁镜的构造不完美造成的,那么这些磁镜组都会产生球差。当我们矫正不同的磁透镜就有了不同种类的ACTEM。回想一下STEM的原理,当我们使用STEM模式时,聚光镜会聚电子束扫描样品成像,此时聚光镜球差是影响分辨率的主要原因。因此,以做STEM为主的TEM,球差校正装置会安装在聚光镜位置,即为AC-STEM。而当我们使用image模式时,影响成像分辨率的主要是物镜的球差,此种校正器安装在物镜位置的即为AC-TEM。当然也有在一台TEM上安装两个校正器的,就是所谓的双球差校正TEM。此外,由于校正器有电压限制,因此不同的型号的ACTEM有其对应的加速电压,如FEI TITAN 80-300就是在80-300 kV电压下运行,也有专门为低电压配置的低压ACTEM。/pp  strong球差校正电镜的优势:/strong/pp  ACTEM或者ACSTEM的最大优势在于球差校正削减了像差,从而提高了分辨率。传统的TEM或者STEM的分辨率在纳米级、亚纳米级,而ACTEM的分辨率能达到埃级,甚至亚埃级别。分辨率的提高意味着能够更“深入”的了解材料。例如:最近单原子催化很火,我们公众号也介绍了大量相关工作。为什么单原子能火,一个很大的原因是电镜分辨率的提高,使得对单原子的观察成为可能。浏览这些单原子催化相关文献,几乎无一例外都用到了ACTEM或者ACSTEM。这些文献所谓的“单原子催化剂”,可能早就有人发现,但是因为受限于当时电镜分辨率不够,所以没能发现关键的催化活性中心。正是因为球差校正的引入,提高了分辨率,才真正揭示了这一系列催化剂的活性中心。/pp  strong何时才需要用球差校正电镜呢?/strong/pp  虽然现在ACTEM和ACSTEM正在“大众化”,但是并非一定要用这么高大上的装备。如果你想观察你的样品的原子级结构并希望知道原子的元素种类(例如纳米晶体催化剂等),ACSTEM将会是比较好的选择。如果你想观察样品的形貌和电子衍射图案或者样品在TEM中的原位反应,那么物镜校正的ACTEM将会是更好的选择。就纳米晶的合成而言,球差校正电镜常用来揭示纳米材料的细微结构信息。比如合成一种纳米核壳材料,其中壳层仅有几个原子层厚度,这个时候普通电镜下很难观察到,而球差电镜则可以拍到这一细微的结构信息(请参见夏幼男教授的SCIENCE,349,412)。/pp  strong如何为ACTEM准备你的样品:/strong/pp  首先如果没有合作的实验室的帮助,ACTEM的测试费用将会是非常昂贵的。因此非常有必要在这里介绍如何准备样品。在测试之前最好尽量了解样品的性质,并将这些信息准确地告知测试者。其中我认为先用普通的高分辨TEM观察样品是必须的,通过高分辨TEM的预观察,你需要知道并记录以下几点:一、样品的浓度是否合适,目标位点数量是否足量 二、确定样品在测试电压下是否稳定并确定测试电压,许多样品在电子束照射下会出现积累电荷(导电性差)、结构变化(电子束的knock-on作用)等等 三、观察测试目标性状,比如你希望测试复合结构中的纳米颗粒的原子结构,那么必须观察这些纳米颗粒是否有其他物质包覆等,洁净的样品是实现高分辨率的基础 四、确定样品预处理的方式,明确样品测试前是否需要加热等预处理。五、拍摄足量的高分辨照片,并标注需要进一步观察的特征位点。在ACTEM测试中,与测试人员的交流非常重要,多说多问。/pp  strong球差色差校正透射电镜:/strong/pp  球差校正器经过多年的发展,在最新的五重球差校正器的帮助下,人类成功地将球差对分辨率的影响校正到小于色差。只有校正色差才能进一步提高分辨率,于是球差色差校正透射电镜就诞生了。我们欣赏一下放置在德国Ernst Ruska-Centre的Titan G3 50-300 PICO双球差物镜色差校正TEM (300 kV分辨小于0.5埃)以及德国乌尔姆大学的TitanG3 20-80 SALVE 低电压物镜球差色差校正TEM (20 kV 分辨率小于1.4埃)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/04b96c4d-c6fe-40d2-85c0-b86ce091e6e8.jpg" title="4.jpg"//pp style="text-align: center "strong图4 Titan G3 50-300 PICO、TitanG3 20-80 SALVE及其矫正器/strong/p
  • 神奇“光学扳手”让显微镜镜头更轻薄
    未来的显微镜、望远镜甚至相机镜头,或许不再需要复杂、笨重的镜头组,仅通过纳米级厚度的平面薄膜,便可完成光的聚焦、偏转等控制。 记者日前从中科院光电技术研究所(以下简称光电所)获悉,在国家973项目“波的衍射极限关键科学问题”课题支持下,该所微细加工光学技术国家重点实验室在国际上首次研究证实:利用光子自旋—轨道角动量相互作用的物理原理,“悬链线”可以对光产生稳定、可控的“扳手”作用。就是说用“悬链线”结构制造的光学器件,可不借助任何凹凸透镜,仅在“二维”平面上便可实现光的折射、反射,甚至让光旋转成任意姿态。 悬链线与抛物线、月牙线或者半圆线不同,是一条两端固定的链条在重力作用下弯曲形成的曲线。它在生活中随处可见,桥梁悬索、架空电缆、街道护栏铁链等都是悬链线结构。 科学家们发现,在诸多形式的悬链线中有一种“等强度悬链线”可以保持结构在不同位置受力一致。那么,它施加到光上的“力”是否也一致呢?在这种奇特的力学特性启发下,光电所团队用粒子束在厚度仅百纳米的平面金属薄膜表面,刻下纳米尺寸的“亚波长悬链线”连续结构,并证实了刻有这种悬链线“花瓣”的金属膜,在光束照射后,可产生稳定可控的折射、反射等光学现象。 该团队负责人杨磊磊介绍说,传统意义上光的折射、反射等相位变化,是由于透镜不同厚度产生,而厚度均匀的平面透镜不会产生光的相位变化。此次科学新发现,意味着利用“悬链线”构成的超薄纳米结构,能够在二维平面内实现对光的连续调控。 “如果把光比喻成行进的列车,过去的凹凸透镜如同依靠弯曲的轨道调整列车运行,而现在仅需扳动悬链线这个铁道岔口的‘扳手’,便可改变列车的前进方向。”杨磊磊介绍说,为进一步确认悬链线的“光学扳手”作用,研究团队还在平面金属薄膜上尝试刻制出不同形状的悬链线“版画”,并通过一种“花瓣状”的圆形排列阵列,产生了携带完美轨道角动量,呈螺旋式前进的“光漩涡”。而此前研究中,科学家们还曾将月牙形、抛物线形结构刻制在平面上观察光的折射、反射,结果证实仅有“等强度悬链线结构”具有稳定的光学相位变化。 “传统光学元件其厚度远大于波长,这就是为何天文望远镜、相机镜头需要不同大小的镜头组。但悬链线光学器件,可通过操作纳米级超薄结构的平移、缩放、旋转等,实现光的相位变化,其厚度远小于波长。”杨磊磊介绍说,未来基于悬链线构建的新型光学元器件,具有轻薄的特点,可广泛应用于飞行器、卫星等空间探测领域,手机、相机镜头等成像领域。 而这个受自然现象启迪的美妙光学发现,在电磁学、光通讯领域也让人充满遐想。杨磊磊说,按照光子自旋—轨道角动量相互作用的原理,悬链线还可拓展到包括微波、太赫兹、红外、可见光在内的大部分频谱范围,广泛用于各种电磁器件;而采用悬链线结构的光通信器件,可在同一波长上传输多路信号,提高光通信的频谱利用率,大大增加光通信的信息传输量。 上述研究成果在美国科学促进会创办的最新期刊《科学进步》上发表后,受到了国际光学界的广泛关注。《中国科学》对其点评认为,这一发现的证实,“证明了纳米悬链线可用于构建超薄、轻量化的光学器件,有望成为下一代集成光子学的核心”。

平凸透镜相关的方案

平凸透镜相关的资料

平凸透镜相关的试剂

平凸透镜相关的论坛

  • 金相显微镜中,凸透镜的五种成象规律

    1. 在金相显微镜中,当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象;   2. 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象; 这种成像对金相显微镜的光路尤为重要。  3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象;   4. 当物体位于透镜物方焦点上时,则象方不能成象;这同样是影响金相显微镜成像的重要因素。  5.当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象。

平凸透镜相关的耗材

  • 平凸透镜
    Felles公司进口平凸透镜,双凸透镜,平凹透镜,双凹透镜,月牙透镜---最大的进口精密光学器件提供商!一.平凸透镜 Plano-Convex Lenses 平凸透镜是一种具有正焦距的透镜,一侧是平面镜,一侧是球面镜。平凸透镜主要用于聚焦光束,平凸透镜应用于望远镜,准直器,冷凝器以及光收发器等产品中。我们提供的平凸透镜在欧洲设计生产的PCX透镜,最大直径可达500mm, 而且还提供各种镀膜。 Email: optikschina@gmail.com 或 info@felles-photonic.com Tel: 022-27056775, 4006-118-227 平凸透镜询问服务:请参照“平凸透镜参数和规格”填写如下问询栏,复制后Email给我们,您会收到及时的报价服务MaterialDimensionsmmFocal lengthmmAR coatingsWavelengthnmCenter ThicknessmmQuantity平凸透镜参数和规格 Standard SpecificationsDiameter Tolerance+0.0, -0.15mmFocal Length Tolerance+/- 3%Centration90%Surface Figureλ/4@632.8nmSurface Quality40-20 scratch & digDesign Wavelength632.8 nmAR coatingsNone. Please refer to theProperties (Diameter D, Focal length L)D, mmD, InchesL Minimal, mmL Maximal, mm12,70.52510.00025,413010.00038,11.55010.00050,828010.00076,2310010.000二.双凸透镜 Double-Convex Lenses 双凸透镜是一种具有两侧对称的曲率半径的透镜。双凸透镜常用于放大器,物镜,冷凝器等产品中。双凸透镜询问服务: 请参照“双凸透镜参数和规格”如下询问栏,复制后email给我们,您会收到及时的报价回复:MaterialDimensionsmmFocal lengthmmAR coatingsWavelengthnmCenter ThicknessmmQuantity双凸透镜参数和规格Standard SpecificationsDiameter Tolerance+0.0, -0.15mmFocal Length±3%Centration90%Surface Figureλ/4@632.8nmSurface Quality40-20 scratch & digDesign wavelength632.8 nmAR coatingsNone. Please refer to theProperties (Diameter D, Focal length L)D, mmD, InchesL Minimal, mmL Maximal, mm12,70.51210.00025,412510.00038,11.54010.00050,825010.00076,237510.000三. 平凹透镜 Plano-Concave Lenses平凹透镜一侧是平面,一侧是凹面的透镜,焦距为负。平凹透镜常常用于扩散光束或增加焦距。我们提供的平凹透镜产自欧洲,具有一流的加工能力,最大的直径可达500mm.平凹透镜参数Standard SpecificationsDiameter Tolerance+0.0, -0.15mmFocal Length±3%Centration90%Surface Figureλ/4@632.8nmSurface Quality40-20 scratch & digDesign wavelength632.8 nmAR coatingsNone. Please refer to the Coatings sectionProperties (Diameter D, Focal length L) CD, mmD, InchesL Minimal, mmL Maximal, mm12,70.5-25-10.00025,41-30-10.00038,11.5-50-10.00050,82-80-10.00076,23-100-10.000四. 双凹透镜 Double-Concave Lenses 双凹透镜参数Standard SpecificationsDiameter Tolerance+0.0, -0.15mmFocal Length±3%Centration90%Surface Figureλ/4@632.8nmSurface Quality40-20 scratch & digDesign wavelength632.8 nmAR coatingsNone. Please refer to theProperties (Diameter D, Focal length L)D, mmD, InchesL Minimal, mmL Maximal, mm12,70.5-12-10.00025,41-25-10.00038,11.5-40-10.00050,82-50-10.00076,23-75-10.000五. 月牙透镜 Meniscus Lenses Standard SpecificationsMaterialBK7, FS, UVFS, CaF2, ZnSe, Si, GeDiameter Tolerance+0.0, -0.15 mmThickness Tolerance+/-1.0 mmFocal Length Tolerance+/- 3%Centration90%Chamfer0.25 mm @ 45oSurface FigureL/4@632.8 nmSurface Quality40-20 scratch & digDesign wavelength632.8 nmAR coatingsNone. Please refer to the Coatings section.Properties (Diameter D, Focal length L)D, mmD, InchesL Minimal, mmL Maximal, mm12,70.5+/- 25+/- 10.00025,41+/- 30+/- 10.00038,11.5+/- 50+/- 10.00050,82+/- 80+/- 10.00076,23
  • 双凸透镜
    双凸透镜:应用于常规的1:1成像、扩束和光束中继传输。正凸透镜能对真实物体的虚拟成像以及0.2至5良好的正共轭图像比(取决于波长)。双凸透镜也可用于较低f值的对焦应用,当以单位共轭比使用时,其表现为最佳形式的单重透镜。覆盖波长从193nm到1550nm,透镜材料是N-BK7或熔融石英。有高面形精度(λ/10)和表面质量(10-5)。双凸透镜支持定制焦距、尺寸和各类型的增透膜。
  • 双凸透镜
    双凸透镜双凸透镜有两个凸出且相等曲率的表面,一个正的焦距,并且比较适合应用在1:1成像和多元件系统中,所有直径是以毫米为单位。常用规格涂层:Uncoated表面质量:40-20直径容差 (mm):+0.0/-0.025Power (P-V) @ 632.8nm:1.5λIrregularity (P-V) @ 632.8nm:λ/4中心厚度容差 (mm):±0.1技术数据订购信息直径 (mm)后焦距 BFL (mm)有效焦距 EFL (mm)基底Stock Number32.213N-SF5#32-02333.784.5N-BK7#32-02235.376N-BK7#45-12938.469N-BK7#45-1314.53.74.5N-LASF44#45-1764.58.169N-BK7#45-18554.195N-SF5#63-53059.3110N-BK7#63-531514.3315N-BK7#63-532519.520N-BK7#63-533524.525N-BK7#63-53465.196N-SF5#32-02168.229N-BK7#32-020611.1812N-BK7#32-964617.2618N-BK7#32-966623.1324N-BK7#32-867629.2330N-BK7#45-133635.3336N-BK7#45-29097.99N-SF5#32-018912.5613.5N-BK7#32-016917.1218N-BK7#32-968926.0827N-BK7#45-155935.1536N-BK7#45-157944.1745N-BK7#45-292108.8910N-SF5#63-5351013.815N-BK7#63-5361019.1620N-BK7#63-5371024.1625N-BK7#63-5381029.1730N-BK7#63-5391039.1640N-BK7#63-5401049.1750N-BK7#63-5411099.17100N-BK7#63-5421210.7912N-SF5#32-0141216.8118N-BK7#32-0121222.6524N-BK7#33-3881228.7530N-BK7#45-0871234.936N-BK7#32-8691247.0948N-BK7#45-1591271.0772N-BK7#32-8711513.6815N-SF11#45-0991518.9920N-SF11#63-5431521.2922.5N-SF11#45-1011523.8225N-BK7#63-5441528.8230N-BK7#32-705154950N-BK7#32-938154445N-BK7#63-545155960N-BK7#63-5461816.6918N-SF11#63-5471825.2527N-BK7#32-7071834.5936N-BK7#32-7092018.5520N-SF11#63-5502023.8625N-SF11#63-5512028.230N-BK7#45-2942038.4440N-BK7#32-7112048.8450N-BK7#63-5522058.6760N-BK7#63-5532078.6780N-BK7#63-5542522.4725N-SF5#32-4892528.3130N-SF5#63-5552532.8135N-BK7#45-1612538.2140N-BK7#45-2962548.2950N-BK7#32-6242573.8475N-BK7#32-6262598.95100N-BK7#32-71725123.84125N-BK7#32-87325148.88150N-BK7#32-87525173.94175N-BK7#32-87725198.35200N-BK7#33-3943028.1230N-SF11#63-5563047.8250N-BK7#45-1633058.3360N-BK7#63-5573073.3575N-BK7#45-1653098.34100N-BK7#63-55830118.34120N-BK7#63-5593567.4870N-BK7#32-8794037.5440N-SF11#63-5604057.160N-BK7#45-1674077.3280N-BK7#33-4194097.33100N-BK7#33-40640197.35200N-BK7#33-41240117.67120N-BK7#63-5615045.350N-SF11#32-9785096.65100N-BK7#32-98050147150N-BK7#32-98250198.33200N-BK7#45-16950248.37250N-BK7#45-1713mm Dia. x 3mm FL Uncoated, Double-Convex Lens库存 #32-023直径(mm):3有效焦距ELF(mm)3后焦距BFL(mm):2.21涂层:Uncoated基质:N-SF5表面质量:40-20直径公差(mm):+ 0.0/-0.025功率(P-V)@ 632.8nm:1.5λ不规则(P-V)@ 632.8nm:λ/ 4居中(arcmin):斜角需要保护中心厚CT(mm)2.3边缘厚度ET(mm):1.64半径R1(mm):3.5透孔CA(mm):2.7F/#:1数值孔径NA0.5焦距容差(%)±1焦距规格波长(nm):587.6类型:双凸透镜波长范围(nm):380-2500RoHS指令:符合标准5mm Dia. x 25mm FL, Uncoated, Double-Convex Lens库存 #63-534直径(mm):5有效焦距ELF(mm)25后焦距BFL(mm):24.5涂层:Uncoated基质:N-BK7表面质量:40-20直径公差(mm):+ 0.0/-0.025功率(P-V)@ 632.8nm:1.5λ不规则(P-V)@ 632.8nm:λ/ 4中心厚度容差±0.1居中(arcmin):斜角需要保护中心厚CT(mm)1.5边缘厚度ET(mm):1.2+半径R1(mm):25.58透孔CA(mm):4.5F/#:5数值孔径NA0.1焦距容差(%)±1焦距规格波长(nm):587.6类型:双凸透镜波长范围(nm):380-2500RoHS指令:符合标准9mm Dia. x 18mm FL Uncoated, Double-Convex Lens库存 #32-968直径(mm):9有效焦距ELF(mm)18后焦距BFL(mm):17.12涂层:Uncoated基质:N-BK7表面质量:40-20直径公差(mm):+ 0.0/-0.025功率(P-V)@ 632.8nm:1.5λ不规则(P-V)@ 632.8nm:λ/ 4中心厚度容差±0.1居中(arcmin):斜角需要保护中心厚CT(mm)2.6边缘厚度ET(mm):1.47半径R1(mm):18.15透孔CA(mm):8.1F/#:2数值孔径NA0.25焦距容差(%)±1焦距规格波长(nm):587.6类型:双凸透镜波长范围(nm):380-2500RoHS指令:符合标准
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制