当前位置: 仪器信息网 > 行业主题 > >

燃料油仪

仪器信息网燃料油仪专题为您提供2024年最新燃料油仪价格报价、厂家品牌的相关信息, 包括燃料油仪参数、型号等,不管是国产,还是进口品牌的燃料油仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合燃料油仪相关的耗材配件、试剂标物,还有燃料油仪相关的最新资讯、资料,以及燃料油仪相关的解决方案。

燃料油仪相关的论坛

  • 成品油之燃料油

    [color=#2f2f2f]1、燃料油(Fuel Oil)基本概念[/color][color=#2f2f2f]石油的炼制工艺大致分为常压分馏、减压分馏、催化、裂化,不管哪种工艺,石油中的轻质组分都最先分离出来,如首先分离的是石油气、其次是汽油、煤油和柴油,最后剩下的是重质组分,如燃料油、胶质、沥青质和其它,因此燃料油是炼油工艺过程中的最后一种产品,是成品油的一种,是石油加工过程中在汽、煤、柴油之后从原油中分离出来的较重的剩余产物。[/color][color=#2f2f2f][/color][color=#2f2f2f]2、燃料油的用途[/color][color=#2f2f2f][/color][color=#2f2f2f] 燃料油(Fuel Oil)是成品油的一种,是石油加工过程中产生的较重的剩余产物,广泛用于船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。燃料油主要由石油的裂化残渣油和直馏残渣油制成的,其特点是粘度大,含非烃化合物、胶质、沥青质多。[/color][color=#2f2f2f][/color]

  • 燃料油基本知识

    (1)什么是燃料油?绝大部分石油产品均可用作燃料,但燃料油在不同的地区却有不同的解释。欧洲对燃料油的概念一般是指原油经蒸馏而留下的黑色粘稠残余物,或它与较轻组分的惨合物,主要用作蒸汽炉及各种加热炉的燃料或作为大型慢速柴油燃料及作为各种工业燃料。但在美国则指任何闪点不低于37.8°C的可燃烧的液态或可液化的石油产品,它既可以是残渣燃料油(Residual Fuel 011,亦称Heavy Fuel 011)也可是馏分燃料油(Healing 011)。馏分燃料油不仅可直接由蒸馏原油得到(即直馏馏分),也可由其它加工过程如裂化等再经蒸馏得到。燃料油的性质主要取决于原油本性以及加工方式,而决定燃料油品质的主要规格指标包括粘度(Viscosity),硫含量(Sulfur Content),倾点(Pour Point)等供发电厂等使用的燃料油还对钒(Vanadium)、钠(Sodium)含量作有规定.1、 燃料油的自然属性燃料油是成品油的一种,广泛用于电厂发电、船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。燃料油主要由石油的裂化残渣油和直馏残渣油制成的,其特点是粘度大,含非烃化合物、胶质、沥青质多。(1) 粘度粘度是燃料油最重要的性能指标,是划分燃料油等级的主要依据。它是对流动性阻抗能力的度量,它的大小表示燃料油的易流性、易泵送性和易雾化性能的好坏。对于高粘度的燃料油,一般需经预热,使粘度降至一定水平,然后进入燃烧器以使在喷嘴处易于喷散雾化。粘度的测定方法,表示方法很多。在英国常用雷氏粘度(Redwood Viscosity),美国惯用赛氏粘度(Saybolt Viscosity),欧洲大陆则往往使用恩氏粘度(Engler Viscosity),但各国正逐步更广泛地采用运动粘度(Kinemetic Viscosity),因其测定的准确度较上述诸法均高,且样品用量少,测定迅速。各种粘度间的换算通常可通过已预先制好的转换表查得近似值。目前国内较常用的是40°C运动粘度(馏分型燃料油)和100°C运动粘度(残渣型燃料油)。我国过去的燃料油行业标准用恩氏粘度(80°C、100°C)作为质量控制指标,用80°C运动粘度来划分牌号。油品运动粘度是油品的动力粘度和密度的比值。运动粘度的单位是Stokes,即斯托克斯,简称斯。当流体的动力粘度为1泊,密度为1g/cm3时的运动粘度为1斯托克斯。CST是Centistokes的缩写,意思是厘斯,即1斯托克斯的百分之一。(2) 含硫量燃料油中的硫含量过高会引起金属设备腐蚀的和环境污染。根据含硫量的高低,燃料油可以划分为高硫、中硫、低硫燃料油。在石油的组分中除碳、氢外,硫是第三个主要组分,虽然在含量上远低于前两者,但是其含量仍然是很重要的一个指标。按含硫量的多少,燃料油一般又有低硫(LSFO)与高硫(HSFO)之分,前者含硫在1%以下,后者通常高达3.5%甚至4.5%或以上。另外还有低蜡油(Low Sulfur Waxy Residual缩写LSWR),含蜡量高有高倾点(如40至50°C)。在上海期货交易所交易的是高硫燃料油(HSFO)。(3) 密度为油品的质量(Mass)与具体积的比值。常用单位——克/立方厘米、千克/立方米或公砘/立方米等。由于体积随温度的变化而变化,故密度不能脱离温度而独立存在。为便于比较,西方规定以15°C下之密度作为石油的标准密度。(4) 闪点是油品安全性的指标。油品在特定的标准条件下加热至某一温度,令由其表面逸出的蒸气刚够与周围的空气形成一可燃性混合物,当以一标准测试火源与该混合物接触时即会引致瞬时的闪火,此时油品的温度即定义为其闪点。其特点是火焰一闪即灭,达到闪点温度的油品尚未能提供足够的可燃蒸气以维持持续的燃烧,仅当其再行受热而达到另一更高的温度时,一旦与火源相遇方构成持续燃烧,此时的温度称燃点或着火点(Fire Point或Ignition Point)。虽然如此,但闪点已足以表征一油品着火燃烧的危险程度,习惯上也正是根据闪点对危险品进行分级。显然闪点愈低愈危险,愈高愈安全。(5) 水分水分的存在会影响燃料油的凝点,随着含水量的增加,燃料油的凝点逐渐上升。此外,水分还会影响燃料机械的燃烧性能,可能会造成炉膛熄火、停炉等事故。(6) 灰分灰分是燃烧后剩余不能燃烧的部分,特别是催化裂化循环油和油浆渗入燃料油后,硅铝催化剂粉末会使泵、阀磨损加速。另外,灰分还会覆盖在锅炉受热面上,使传热性变坏。(7) 机械杂质机械杂质会堵塞过滤网,造成抽油泵磨损和喷油嘴堵塞,影响正常燃烧。2、 燃料油的分类燃料油作为炼油工艺过程中的最后一种产品,产品质量控制有着较强的特殊性,最终燃料油产品形成受到原油品种、加工工艺、加工深度等许多因素的制约。根据不同的标准,燃料油可以进行以下分类:(1) 根据出厂时是否形成商品,燃料油可以分为商品燃料油和自用燃料油。商品燃料油指在出厂环节形成商品的燃料油;自用燃料油指用于炼厂生产的原料或燃料而未在出厂环节形成商品的燃料油。(2) 根据加工工艺流程,燃料油可以分为常压重油、减压重油、催化重油和混合重油。常压重油指炼厂催化、裂化装置分馏出的重油(俗称油浆);混合重油一般指减压重油和催化重油的混合。(3) 根据用途,燃料油分为船用内燃机燃料油和炉用燃料油两大类。前者是由直馏重油和一定比例的柴油混合而成,用于大型低速船用柴油机(转速小于150转/分)。后者又称为重油,主要是减压渣油、或裂化残油或二者的混合物,或调入适量裂化轻油制成的重质石油燃料油,供各种工业炉或锅炉作为燃料。船用内燃机燃料油是大型低速柴油机的燃料油,其主要使用性能是要求燃料能够喷油雾化良好,以便燃烧完全,降低耗油量,减少积炭和发动机的磨损,因而要求燃料油具有一定的黏度,以保证在预热温度下能达到高压油泵和喷油嘴所需要的黏度(约为21-27厘斯),通常使用较多的是38°C。雷氏1号黏度为1000和1500秒的两种。由于燃料油在使用时必须预热以降低黏度,为了确保使用安全预热温度必须比燃料油的闪点低约20°C,燃料油的闪点一般在70-150°C之间。重油主要作为各种锅炉和工业用炉的燃料油。各种工业炉燃料系统的工作过程大体相同,即抽油泵把重油从储油罐中抽出,经粗、细分离器除去机械杂质,再经预热器预热到70-120°C,预热后的重油黏度降低,再经过调节阀在8-20天大气压下,由喷油嘴喷入炉膛,雾状的重油与空气混合后燃烧,燃烧废气通过烟囱排入大气。

  • 国产燃料油的种类

    [color=#2f2f2f]200号重油、250号重油、180号重油、7号燃料油、工业燃料油、催化油浆、蜡油浆、混合重油、沥青[/color][color=#2f2f2f][/color][color=#2f2f2f]进口燃料油种类 :[/color][color=#2f2f2f][/color][color=#2f2f2f]复炼乳化油、奥里乳化油、180号低硫燃料油、380号低硫燃料油、180号高硫燃料油M100 M300[/color][color=#2f2f2f][/color]

  • 斯派超科技“燃料油元素分析仪”专用检测程序选择

    当今,燃料油覆盖一个很宽广的范围,从作为汽车燃料的汽油和柴油到在世界范围内用于船用发动机的残留燃料油。燃料油中的铅、钾、钠、锰、镍、钒、铁、铝、硅、镁等元素,不但保证燃料油保持发动机废气排放最佳化,而且能检测燃料油污染,预防设备腐蚀。据此,斯派超科技研油料光谱仪专门开发出燃料油检测程序,不需要前处理(石脑油除外),30秒钟能检测出15种元素含量。为了使检测结果更精准,又根据燃料油种类和应用不同,分成了三个程序(轻质燃料油程序,重质燃料油程序和低检测限燃料油),下表为不同程序的检测范围和应用范围。

  • 燃料油的主要规格

    [color=#2f2f2f](1)粘度[/color][color=#2f2f2f][/color][color=#2f2f2f]粘度是燃料油最重要的性能指标,是划分燃料油等级的主要依据。它是对流动性阻抗能力的度量,它的大小表示燃料油的易流性、易泵送性和易雾化性能的好坏。[/color][color=#2f2f2f][/color][color=#2f2f2f](2) 含硫量[/color][color=#2f2f2f][/color][color=#2f2f2f] 燃料油中的硫含量过高会引起金属设备腐蚀的和 环境污染。根据含硫量的高低,燃料油可以划分为高硫、中硫、低硫燃料油。[/color][color=#2f2f2f][/color][color=#2f2f2f](3) 密度:为油品的质量(Mass)与具体积的比值。常用单位——克/立方厘米、千克/立方米或公砘/立方米等。[/color][color=#2f2f2f][/color][color=#2f2f2f](4) 闪点:是油品安全性的指标。油品在特定的标准条件下加热至某一温度,令由其表面逸出的蒸气刚够与周围的空气形成一可燃性混合[/color][color=#2f2f2f][/color][color=#2f2f2f] 物,当以一标准测试火源与该混合物接触时即会引致瞬时的闪火,此时油品的温度即定义为其闪点。[/color][color=#2f2f2f][/color][color=#2f2f2f](5) 水分:水分的存在会影响燃料油的凝点,随着含水量的增加,燃料油的凝点逐渐上升。[/color][color=#2f2f2f][/color][color=#2f2f2f](6) 灰分:灰分是燃烧后剩余不能燃烧的部分,特别是催化裂化循环油和 油浆 渗入燃料油后,硅铝催化剂粉末会使泵、阀磨损加速。[/color][color=#2f2f2f][/color][color=#2f2f2f](7) 机械杂质:机械杂质会堵塞过滤网,造成抽油泵磨损和喷油嘴堵塞,影响正常燃烧。[/color][color=#2f2f2f][/color]

  • 船用燃料油分类和质量标准

    我国船用燃料油国家标准GB/T17411-2015是按照国际标准ISO8217执行的,是强制性国家标准。根据我国国家标准规定,船用燃料油分为两类产品,一是馏分型船用燃料,二是残渣型船用燃料。馏分型燃料包括DMX(相当-10#轻柴油)、DMA(相当0#普通柴油)、DMZ、DMB等,主要在高速柴油机及中速柴油机中使用,主要是为短距离航行的中小型船舶提供动力,例如在长江、运河航行的运沙土船、渔船、干散货船等等,或用于船舶的辅机发电使用等。馏分型燃料油的称谓上还有MGO和MDO等不同的说法,都是柴油馏分,粘度不同,MGO(MarineGasOil)是轻柴油,适用于高速柴油机使用。MDO(MarineDieselOil)是重柴油,适用于中速柴油机。残渣型燃料包括船用残渣燃料油RMD80、RME180、RMG380等。主要用于低速柴油机,或者与馏分型燃料混合后用于低速柴油机。船用燃料油根据50℃时运动粘度的差异,通常分为180CST、380CST、500CST等,主要用在国际运输船舶,以及在沿海、沿江运输的较大船型上,发动机马力大的要求的粘度高,最高可达到700CST。目前180CST、380CST是市场上的主流品种。1980年,ISO设立了ISO/TC28/SC4/WG6(石油关系技术委员会/分类、标准分技术委员会/船用燃料油的分类、规程标准工作小组),在1979年,英国标准协会拟定了船用燃料油规格标准的草案,ISO以此参考对船用燃料油的标准进行了探讨。ISO于1982年举办的第五次工作会议上,将船用燃料油标准的原案,提交技术标准委员会报批,在1987年形成了ISO8217标准稿。此标准针对当时船用燃料油的劣质趋向,对相关指标提出了标准化的规定,同时对未来的油品指标特性做出了限制[8]。国际船用燃料油规格标准(初版)与1987年制定,1996年经过修订,颁布第二版,为ISO8217-1996。由于燃料油的粘度并不是唯一可靠的质量指标,所以在ISO8217-1996标准中,对船用燃料油的质量特性评价包括了粘度、密度、灰分、倾点、残炭、硫含量、钒含量等多项参数。ISO8217系列发布之后,有效的控制了船用燃料油品质的劣质化情况。标准经过不断修订于2012年颁布了ISO8217-2012,见表2-1和2-2,这是ISO船用燃料油标准第五版,替代ISO8217-2010[2] 。2015年12月31日中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会颁布船用燃料油标准最新版本GB 17411-2015, 替代GB/T 17411-2012

  • 航空燃料油傾点的测定介绍

    燃料油随着温度的降低,流动性会越来越差,甚至达到某一温度时它就会凝固而失去流动性。通常讲,燃料油在低温度下的流动性有两个影响因素:一个燃料油的粘度随温度下降会增高;另外一个是燃料油中原来呈液态的石蜡在温度下降到一定程度后会以固体的结晶形式出现。所以我们平时说的倾点有时也称之为“含蜡倾点”。根据定义描述我们可以看出,倾点越高,自然温度下该燃料油的流动性就越差。我们在实际中也可以通过添加适量的倾点下降剂来改善燃料油倾点。由于燃料油很多都是要经过长途运送才能达到目的地,所以说倾点也是燃料油检测非常重要的一个技术指标。

  • 燃料油热值检测仪日常维护和检查

    燃料油热值检测仪日常维护和检查燃料油热值检测仪是目前国内使用zui为普遍的专用液体燃料热值检测仪器,我公司专业开发研究液体、固体、石油等可燃性固体或粘稠液体物质的热值发热量为主的企业。用于测定液体油料、重油、原油、轻质油、煤油、蜡油、汽油柴油、醇基燃料、合成油料、生物油料、地沟油燃料油、勾兑油料等液体燃料的发热量。每天试验结束后应经常进行下述检查和维护,可使仪器经常保持良好工作状态而且能延长使用寿命。1、氧弹:除每次试验后对氧弹进行清洗和干燥外,对以下几点也应该注意和检查:① 氧弹只能用手拧动,当手感到有阻力即应停止,切忌用工具硬拧。每天试验完毕后,应进行一次清洗。② 弹帽和阀座,用完后应冲洗干净并擦干。③ 弹杯冲洗干净,擦洗螺纹,并检查弹杯上有否机械损伤,注意不许将弹杯倒置。④ 检查密封圈是否磨损和燃烧时的损伤,如密封不严有漏气现象,则应更换。⑤ 检查绝缘垫和绝缘套是否良好,有无破损,可定期作绝缘性能检查。⑥ 定期对氧弹进行20.0Mpa水压试验,每次水压试验后,氧弹的使用时间不得超过一年2、量热筒:试验结束后应将筒中水排放到外筒,擦干并保持清洁。3、试验用水:使用纯净水,并且要定期更换,确保试验可靠性和成功率。注意:为了安全使用该系统,计算机设备必须可靠接地。

  • 油品(汽柴油、燃料油)化验:寻求帮助!!!

    我们准备筹建一座高品质油品化验中心(检测油品包括汽油、柴油、燃料油和部分醇、酮化工品),目前需要从哪里着手才好呢,http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif希望专业人士给提点建议。谢谢!

  • 火焰原子吸收法测定燃料油中金属钙铁镁含量

    1 前言   回炼用燃料油中含有大量的钙、铁、镁等金属元素,燃料油在使用过程中金属元素对设备有一定的腐蚀,并且易形成大量盐类物质沉积在设备上,影响设备的使用效率和使用寿命,严重时将导致事故的发生。燃料油的采购途径比较广,各个厂家提供的燃料油中的金属含量各不相同,为了严格控制进入回炼装置的燃料油中金属含量,保证设备的正常使用,杜绝事故的发生,关键得保证采购的燃料油质量符合生产要求。因此,在燃料油进厂时金属元素的分析成了必测项目。   目前,燃料油中金属元素含量分析一般采用灰化法进行样品预处理,然后用四硼酸二锂、氟化锂熔解残留物,再酸化定容,用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法或电感耦合等离子电感发射光谱测定。由于对进厂燃料油样品主要控制钙、铁和镁等常见金属元素,且这三类金属元素均易溶解于盐酸,因此样品预处理直接用盐酸溶解,省去添加助溶剂,使得样品预处理速度加快,并且样品溶解完全,对分析结果没有影响。如按传统的处理方法,方法复杂,分析时间长,无法满足日常生产分析要求。为了能够满足日常生产分析要求,且能够准确、快速的测定出燃料油中金属元素含量,燃料油样品灰化后直接用1:1的盐酸溶液溶解,定容进行分析。并对灰化温度和灰化时间进行了大量的实验,摸索出燃料油灰化的最佳分析条件,利用加标回收实验表明此方法准确可靠。   2 实验部分   2.1 仪器设备   PE-AA700[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪   数显电热板   数显恒温烘箱   马弗炉   100ml石英烧杯、石英表面皿   2000ml玻璃烧杯   100ml玻璃容量瓶   玻璃移液管   电子天平   2.2 仪器参数   2.3 试剂   钙单元素标准溶液:1000ug/ml   铁单元素标准溶液:1000ug/ml   镁单元素标准溶液:1000ug/ml   盐酸(GR):1+1   二级水   2.4 燃料油性质   2.5 样品预处理   2.5.1 将100ml石英烧杯和石英表面皿放于2000ml玻璃烧杯中,加入1000ml1+1盐酸溶液放置于电热板上加热至微沸约30分钟,除去附着在石英烧杯内壁的金属物质。待冷却后用二级水冲洗干净放入恒温干燥箱中(105℃),烘干备用。   2.5.2 不同厂家的燃料油水分含量不一致,对于水分大的燃料油样品首先进行脱水处理,否则在燃烧过程中由于水分沸点较燃料油低,受热最先逸出,导致油品溅出,使得测量结果不准确。   2.5.3 称量约20g处理好的燃料油样品于100ml石英烧杯中,准确称量至0.0001g。每个样品称量两个做平行样,同时做空白实验,空白实验除了不加燃料油,其他操作同燃料油样品实验完全相同。将定量无灰滤纸对折两次呈扇形,撕去尖端滤纸,把撕下的滤纸放于石英烧杯中,将滤纸打开至漏斗形状倒扣在石英烧杯中,把石英烧杯置于电热板上,待油完全浸透滤纸后将滤纸引燃,使样品进行燃烧,燃烧过程中无需加热,待样品燃烧至不能再继续被点燃时打开电热板至400℃对样品进行加热,直至石英烧杯不再冒烟,灰化完全为止。将灰化完全的石英烧杯,放入升到一定温度的马弗炉门口边缘,直至石英烧杯不冒黑烟时盖上石英表面皿缓慢推至马弗炉加热区进行加热。加热至灰化完全时将石英烧杯取出,冷却,沿壁加入1+1的盐酸15ml,盖上石英表面皿,放置于电热板上加热,使石英烧杯内残留的灰分完全溶解,待石英烧杯内的液体蒸发至2-3ml时停止加热,将石英烧杯取下,用二级水冲洗石英表面皿,洗液收集在石英烧杯内,用二级水冲洗石英烧杯内壁,转移至100ml容量瓶中,定容至刻线。摇匀,待分析。具体的加热温度和加热时间由2.6中的实验给出。   2.6 灰化温度和灰化时间的选择   根据燃料油的性质将灰化温度设定为500℃、550℃、600℃、700℃、800℃进行试验,由于温度的不同样品灰化至完全需要的时间不同,对此进行了一系列实验,根据实验数据得出灰化温度设定为500℃时,灰化时间过长,影响分析速度。灰化温度为600℃时,灰化时间为2h,对于上述性质的燃料油,在此条件下样品中的金属元素分析数据稳定,分析速度快,能够满足生产分析要求。灰化温度设定为700℃以上时灰化至完全的时间缩短至1.5h,可以达到灰化完全的要求,但是由于在高温状态下, 样品极易产生元素损失, 且会形成酸不溶性混合物, 产生滞留损失。因此,对于此类燃料油选择600℃加热可满足分析要求,且不造成待测金属元素含量损失。   确定了最佳灰化温度,对灰化时间进行实验验证。在600℃条件下,对同一个燃料油样品进行2h、8h和16h的加热实验,测定结果一致,从而证明了延长加热时间对分析结果没有影响,因此,只要保证燃料油样品灰化完全,分析时间越短分析效率越高。通过实验验证,对比表2中燃料油的性质,综合考虑设定燃料油样品灰化加热温度为600℃、灰化加热时间为2h,即可满足分析要求。   2.7 火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析步骤   2.7.1 样品准备   将2.5.3中预处理的燃料油样品定容至100ml,摇匀,待分析。   2.7.2 开机准备   打开PE-AA700火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],点击图标进入工作站,进行联机,打开通风设备后打开空气、乙炔。   2.7.3 标准工作曲线的绘制   用1000ug/ml的钙、铁、镁标准溶液进行稀释,根据样品中待测金属元素含量配制成不同浓度的标准溶液,进行标准工作曲线的绘制。钙标准工作曲线浓度:1.0ug/ml、2.0ug/ml、3.0ug/ml、4.0ug/ml、5.0ug/ml,铁标准工作曲线浓度:1.0ug/ml、2.0ug/ml、3.0ug/ml、4.0ug/ml、5.0ug/ml,镁标准工作曲线浓度:0.1ug/ml、0.2ug/ml、0.3ug/ml、0.4ug/ml、0.5ug/ml。将配制好的标准工作溶液吸入火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]中进行标准工作曲线的绘制。曲线的线性相关系数达到0.999以上,否则因为标准工作曲线线性低,影响分析结果的准确性,在燃料油样品分析过程中如果样品中待测金属元素含量超出标准工作曲线范围,则应对2.5.3中预处理好的样品进行稀释后再测定。保证样品测定值在标准工作曲线的线性范围内。   2.7.4 样品测定   将2.5.3中预处理的样品摇匀用2.7.3绘制的标准工作曲线进行样品测定,测定数据如下表3:   2.8 加标回收实验   为了验证燃料油样品在600℃加热2h灰化的过程中没有样品损失、未引入待测金属元素,对燃料油样品进行了加入标准溶液的回收实验,将一定体积的1000ug/ml标准溶液用移液管加入样品中,用相同的分析条件进行燃烧灰化,并用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]进行样品测试,其中镁含量的加标回收定容至1000ml,为了防止测定值超出标准工作曲线范围。测试结果如表4:   通过加标回收实验得出样品加标回收率均高达98%以上,有效验证了本实验方法的稳定性和准确性。由于实验中采用的是石英烧杯,石英表面皿,其性质稳定,实验过程中仪器本身不引入待测金属元素误差,样品损失量小。   3 结论   采用定温灰化法预处理样品,灰化温度为600℃、加热时间为2h,用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定燃料油中金属元素钙、铁、镁,通过加标回收实验证明方法稳定性好,准确度高,适合分析燃料油中金属元素,可以满足日常生产分析要求。   4 注意   4.1 样品量控制在约20g左右,因为样品量太少不具有代表性,引入样品不均匀性的误差,样品量太大引起灰化困难或时间太长,势必引入新的误差并且增加了工作量;   4.2 由于瓷坩埚在高温下长期加热易损耗且易带入分析误差,本实验使用石英烧杯和石英表面皿,避免了传统烧灰使用瓷坩埚带入的误差;   4.3 样品在马弗炉内灰化时在石英烧杯上盖上石英表面皿,以免马弗炉顶部和内壁的灰尘掉进石英烧杯内,影响分析结果的准确性;   4.4 预灰化的石英烧杯放入马弗炉的中心加热区,因为靠近门口的位置达不到预设加热温度,使得在2h内灰化不完全,影响实验完成;   4.5 样品在用高温马弗炉灰化以前, 必须先在电热板上低温炭化至无烟( 预灰化);   4.6 如果样品发生变化,比如样品为蒽油或者液化重油,则在分析温度不变的情况下必须延长加热时间,否则灰化不完全,无法进行样品溶解进而进行下一步分析。   5 结束语   在日常分析工作中面对的样品具有复杂多样性,分析要求特殊性。因此,分析方法的改进与开发显得尤为重要,我们要在工作中不停的去发现、去创造新的分析方法,以满足日常的分析工作要求。

  • 国标SH/T0175馏分燃料油氧化安定性测定法

    [b]适用标准及适用范围SH0175馏分燃料油氧化安定性测定仪是根据中华人民共和国行业标准的SH/T0175《馏分燃料油氧化安定性测定法(加速法)》所规定的要求设计制造的。适用于按SH/T0175标准规定的方法,用加速氧化法测定中间馏分燃料油的固有安定性能。二、主要性能馏分燃料油氧化安定性测定仪,结构上为水浴,,我公司可以根据用户要求按照需求定做。该仪器数显控温,自动计时,报时,并 配有暗箱。三、主要技术指标1、工作电源:AC220V50Hz,功耗:≤2400W。2、控温方式:数显控温表自动控温。3、控温范围:室温~200℃,4、控温精度:设定温度±0.2℃。5、测温元件:热电阻。6、试样数量:4路,同时可以作4个试样。[/b][align=center] [/align]

  • X射线荧光光谱技术在燃料油检测中的应用研究

    本文研究了X射线荧光光谱法直接测定燃料油中铝、硅、钒、硫含量,成功地将X射线荧光光谱分析技术应用于燃料油多元素分析,避免了传统法灰化过程中,由于燃烧不完全等原因造成分析元素的损失,解决了传统法操作步骤繁多,分析时间长,准确度低等问题,拓宽了X射线荧光光谱分析技术在国内的应用领域,为液体燃料元素分析引入了一种新的快速检测技术。本文分析了X射线荧光光谱法在燃料油分析中出现的一些特殊问题,如液体杯支撑膜对测量的影响及支撑膜的选择依据,油品标准样品的配制和稳定,油品样品的基体效应及校正方法等,进行了仔细的试验和较深入的分析。试验了5种液体杯支撑膜对X射线荧光分析油品的各种影响,针对不同的油品种类和分析要求,选择相应的支撑膜。提出了2种改善油品标准样品在配制和保存过程中的稳定性的方法:通过加入稳定剂来改善油品标准样品的长期稳定性和通过提高溶剂粘度的方法来改善油品标准样品的短期稳定性,初步解决了油品标准样品和分析样的稳定性问题。试验了元素内标、变化的理论α系数等校正方法的校正效果。内标元素可以校正基体组成变化很大的样品的基体效应;变化的理论α系数可以很好地校正基体已知样品的基体效应。结果表明,本方法简便、快速、准确度、精密度较好,所得结果与传统法结果一致,具有较高的应用价值

  • 船用燃料油相关国际法规及标准的分析

    船用燃油质量管理对船舶柴油机及相关系统的维护 是至关重要的。近年的故障统计资料表明 :由于燃油质 量低劣、燃油牌号不合适或燃油预处理不当引起的船舶 柴油机故障的次数不断增加。近年来新生效或即将生效 的一些与船用燃油相关的法规或标准 ,必将对船用燃油 的质量管理带来重要的影响。 1 MARPOL 73Π78 防污公约附则 Ⅵ 附则 Ⅵ的名称是“防止船舶造成空气污染规则”。该 规则已于 2005 年 5 月 19 日生效。该规则的适用范围是 : 400 总吨或以上的船舶以及所有固定式和移动式的钻井 平台或其他平台。 附则 Ⅵ第 14 条对燃油的硫含量有如下规定 : ①船上 使用的任何燃油的硫含量不应超过 4. 5 % (质量分数) 。 ②当船舶位于 SECA(硫氧化物排放控制区) 时 ,如果未采 用获得认可的废气净化系统将硫氧化物的排放总量减少 到 6. 0 gΠ( kWh) ,船上使用的燃油的硫含量应不超过 1. 5 %(质量分数) 。波罗的海作为第一个 SECA ,已于 2006 年 5 月 19 日开始执行本规定 北海作为第二个 SE2 CA ,预计将于 2007 年 11 月 21 日开始执行本规定。 附则 Ⅵ第 18 条对燃油的质量规定如下 : ①燃油不得 含有无机酸。②燃油不得含有下列任何添加物和化学废 物 :使船舶安全遭受危险或对机械性能有不利影响 对人 员造成伤害 从总体上增加空气污染。 2 新修订的 ISOΠDIS 8217 ISO 8217 (1996) 已修改 ,并已于 2005 年 6 月生效。 其主要变化有 : ①以 50 ℃取代原来的 100 ℃作为燃油的 基准黏度。例如 :原 RME25 将改为 RME180 ,RMG35 则 改为 RMG380。②RMC10 不再存在。③RMA30、RMB30 和 RMD80 允许的最大密度值降低。④含水量 :燃料油的v 允许含水量最大值由 1. 0 %(体积分数) 降为 0. 5 %(体积 分数) 。⑤含灰量(灰分) :允许灰分最大值为 0. 10 % (质 量分数) 的燃料油没有变化 ,但原允许灰分最大值为 0. 20 %(质量分数) 的燃料油 ,新标准为 0. 15 % (质量分 数) 。⑥含硫量 :过去重质燃料油的含硫量允许最大值为 5. 0 %(质量分数) ,新标准为 4. 5 %(质量分数) 。 (1) 对废弃润滑油的限定 (ULO) 。燃油中本不应该 含废机油。如果燃油中钙、锌和磷的含量中一项或多项 低于规定标准 ,则可认为该燃油中不含废机油。若 3 项 均超过标准 ,就认为该燃油中含有废机油。标准为 :钙 30 mgΠkg ,锌 15 mgΠkg ,磷 15 mgΠkg。 (2) 环 境 保 护 方 面 对 燃 油 含 硫 量 的 要 求。根 据 MARPOL 73Π78 公约规定 ,在得到不少于 15 个国家批准 且其商船合计吨位不少于全球商船吨位 50 %时 ,自符合 上述条件之日起的 12 个月后附则 Ⅵ自动生效。截至 2004 年 5 月 18 日 ,已有西班牙、德国、巴拿马、希腊、瑞 典、新加坡、马绍尔群岛、利比里亚、挪威、巴哈马群岛、丹 麦、孟加拉、瓦努阿图和萨摩亚群岛等 15 国批准且其商 船合计吨位占全球商船吨位的 54. 57 %。因此 ,MARPOL 73Π78 公约附则 Ⅵ的生效日期为 2005 年 5 月 19 日。 MARPOL 73Π78 公约附则 Ⅵ要求 : ①全球范围内船 用燃油含硫量限制 ,最大值 4. 5 % (质量分数) (全球范围 内控制的年均值) ②设立波罗的海、北海和英吉利海峡 为特别保护区 ,保护区内船用燃油含硫量最大值为 1. 5 % (质量分数) 。 波罗的海 :自附则 Ⅵ生效起到强制执行燃油含硫低 于 1. 5 %前 ,波罗的海保护区有 12 个月的时间来适应 SE2 CAs 的规定 ,因此 ,2006 年 5 月 19 日后进入波罗的海区 域的船舶必须使用含硫量低于 1. 5 %的燃油。v北海和英吉利海峡 : MARPOL 73Π78 公约附则 Ⅵ生 效后 ,该区域将作为一个 SECA ,但要强制执行燃油含硫 量低于 1. 5 %的规定大约在 2007 年下半年。 在进入 SECA 前 ,那些为遵守 SECA 含硫量限制规定 而使用不同燃油的船舶应该留有足够时间让日用燃油系 统中含硫量超过 1. 5 %的燃油被完全冲刷掉 ,在每次换油 操作时每一个油舱中低硫 (小于或等于 1. 5 %) 燃油的存 油量、日期、时间以及所在位置都要按要求记录在航海日志中。根据 MARPOL 73Π78 公约附则 Ⅵ第 18 条规定 ,燃油 供应商应证明其所供燃油符合第 18 条的要求。 以燃烧为目的并用于船上的燃油应该在燃油供应通 知单(bunker delivery note) 中详细记录 ,且至少应包括如 下内容 : ①受油船名称和 IMO 呼号 ( IMO number) ②港 口 ③供油日期 ④船用油供应商名称、地址和电话 ⑤产 品名称 ⑥供应数量 (公吨) ⑦15 ℃时的密度 (根据 ISO 3675 测试) ⑧含硫量 ( %质量分数) (根据 ISO 3675 测 试) ⑨燃油供应商代表签字认可的声明 ,确保其供应的 燃油符合 MARPOL 73Π78 公约附则 Ⅵ第 14 (1) 或(4) 和第 18 (1) 的内容。 同时 ,附则 Ⅵ第 18 条还规定 : ①燃油供应通知单应 依照 IMO 制定的导则附有一份所供燃油的代表样品。该 样品要由供应商代表和船长或负责加油操作的高级船员 在完成加油后加封并签字 ,由船舶负责保存至燃油基本 用完 ,但无论如何不能少于供货后的 12 个月。②供应商 应将燃油供应通知单的一个副本保存至少 3 年 ,以备港 口国在必要时检查和核实。 3 欧盟液体燃料含硫量标准(SL FD) 欧盟液体燃料含硫量标准 ( SL FD) 草稿修正案是 2004 年 7 月 ,在欧盟议会对标准进行第二次解释之前由 欧盟委员会达成的政治协议。 自 2000 年 7 月 1 日起 ,欧盟 15 国水域船舶使用燃油 含硫量限制标准为最大值 0. 2 %(质量分数) ,计划自 2008 年 1 月 1 日起实行含硫量最大值标准为 0. 1 % (质量分 数) 。欧盟液体燃料含硫量标准 ( SL FD) (草案) 规定 :自 2010 年 1 月 1 日起 ,共同体内水域船用燃料允许最大含v 硫量为 0. 1 %。适用于欧共体内码头靠泊和内陆水域航 行的船舶。但不适用于 : ①在码头靠泊少于 2 h 的船舶 ②具有 1974 年国际海上人命安全公约证书的航行于内 陆水域的船舶 ③2012 年之前航行于希腊领域的特定船 舶。欧盟要求成员国确保含硫量超过 1. 5 %的船用 MDO 从 2006 年 5 月 19 日起 ,或者至少在欧盟标准生效 12 个 月后不再出现在该国市场上 ,还应确保含硫量超过 0. 1 % 的船用 MGO 从 2010 年 1 月 1 日起不再出现在其市场 上。SECA :在波罗的海、北海和英吉利海峡水域限制燃料 油含硫量最大值为 1. 5 % (质量分数) 。强制日期为 : ①2006年 5 月 19 日或欧盟标准生效 12 个月后 ②本 SE2 CA 规定生效 12 个月后或欧盟标准生效 12 个月后。 对于来自或去往欧共体任一港口的客船 (不论悬挂 何种船旗) ,其在欧盟成员国海域 (专属经济区和污染控 制区除外) 的燃料油的含硫量最大值为 1. 5 % (质量分 数) 。实施日期为 2006 年 5 月 19 日或欧盟标准生效 12 个 月后。从 2006 年 5 月 19 日起或欧盟标准生效 12 个月 后 : (1) 包括换油操作的完整的航海日志记录将成为船 舶进入欧共体港口的条件。 (2) 所有成员国领土内销售的船用燃油其含硫量都 应被供应商在燃油供应单中证明符合要求 ,同时提供一 份密封的油样。 (3) 成员国应采取一切必要措施来检查燃油的含硫 量 : ①船用油样品应符合 IMO 规定和含硫量分析 ②燃油 样品和含硫量分析应在船上适当位置取样并在船上密 封 ③航海日志和燃油供应通知单的核查 ④样品应表明 日期 ,并指出在该日期业已生效的燃油含硫量最大限制。 (4) 成员国应在规定的条件下 ,允许本国船舶或在本 国领海水域中航行的船舶进行有关排放物消除技术的实 验。(5) 作为使用低硫船用燃油的替代方法 ,成员国应在 规定的条件下允许船只使用业已被认可的排放物消除技 术。

  • 赛时检验7月份实施乙二醇、盐酸、燃料油能力验证计划

    赛时检验7月份实施乙二醇、盐酸、燃料油能力验证计划

    [font=&][size=16px]青岛赛时检验有限公司是中国合格评定国家认可委员会(CNAS)认可的能力验证提供者(认可证书注册号:CNAS PT0051)。[/size][/font][font=&][size=16px] 7月份将实施乙二醇、盐酸、燃料油、聚阴离子纤维素(PAC-LV)能力验证计划![/size][/font][font=&][size=16px][img=,690,241]https://ng1.17img.cn/bbsfiles/images/2021/07/202107071320230610_4056_3122054_3.png!w690x241.jpg[/img][img=,690,224]https://ng1.17img.cn/bbsfiles/images/2021/07/202107071320368027_2342_3122054_3.jpg!w690x224.jpg[/img][/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制