当前位置: 仪器信息网 > 行业主题 > >

人工飞机

仪器信息网人工飞机专题为您提供2024年最新人工飞机价格报价、厂家品牌的相关信息, 包括人工飞机参数、型号等,不管是国产,还是进口品牌的人工飞机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合人工飞机相关的耗材配件、试剂标物,还有人工飞机相关的最新资讯、资料,以及人工飞机相关的解决方案。

人工飞机相关的资讯

  • 我国首个国产自研飞机金属材料检测实验室在疆投运
    2月4日,我国首个国产自研飞机金属材料检测实验室在位于乌鲁木齐市的南航技术分公司新疆基地正式投运。这不仅是民航业内首次在该领域使用国产自研高精尖检测仪器,同时也打破西方长期以来技术垄断,提升航班运行安全。  该实验室采用国产第三代国仪钨灯丝扫描电镜设备,在不拆解核心机械部件情况下,可以把飞机内部微小颗粒和碎屑进行30万倍电子放大,快速了解飞机健康状况。工程师正在操作仪器检查金属微粒。张洁 摄  南航技术分公司新疆基地技术培训室工程师吕首杰介绍:“该实验室通过对飞机‘血液’内细微金属颗粒尺寸、形状及表面特征形貌进行分析,从而确定磨损、剪切、断裂等成因,并使用能谱仪分析合金各类金属组成比例,判断碎屑具体来源,综合检测结果,快速了解飞机健康状况”。  实验室建立之前,飞机金属碎屑要运送到广州、北京等地进行检测,整个过程耗时2天,不仅耗时长,而且也限制着航班正常运行。随着实验室投运,工程师在3个小时内就能获取详细检测报告,旅客出行更加便捷可靠。  除了金属检测实验室,针对飞机健康监控,南航还有多种“黑科技”。比如基于大数据的南航“天瞳”系统,工程师在地面就可以对飞机进行实时跟踪,获得各系统状态多种参数,针对不同参数给出方案,提高维护效率,并通过大量历史数据进行分析预判,找出关键部件的发展趋势,提前发现问题,进行预防性维护。再比如运用AI人工智能设备,维护人员定期对飞机进行孔探检查,使用内窥镜探测飞机内部结构,判断内部扇叶等结构是否存在问题,并借助人工智能设备自动判断测量损伤,减少人工孔探的误差。
  • 大型飞机装配中的高精度测量技术研究进展
    新一代飞机向着大型、重载、长寿等方向发展,对其装配质量、精度等提出更高的要求。装配中几何尺寸、物理损伤等的高精度测量是调控飞机装配工艺、保证装配指标的基础和关键,对飞机服役性能有着重要的影响。本文围绕新一代飞机结构尺寸大幅增加、承力结构复材化发展下的需求,论述了大型飞机装配中高精度测量技术的研究进展,具体从大空间点位高精度测量方法、大型结构外形高精度测量方法、复合材料结构装配缺陷高精度检测技术等方面对国内外理论研究和技术应用进行了梳理和总结,并指明相关技术的未来发展趋势和前景。1 飞机装配那些事儿 飞机装配是飞机制造的关键环节,装配过程中涉及的学科范围广、技术标准要求高,属于典型的高端装备制造技术。飞机装配是将各种零、组、部件按照规定的技术条件和质量要求进行配合与连接,并进行检验与试验的工艺过程,装配的质量直接决定了飞机产品的外形精度、制造质量和服役性能等。 新一代飞机向着大型、重载、长寿等方向发展,其制造也向着高精度、低成本、柔性化、智能化等方向转变,对装配的精度、效率与质量均提出了更高的要求。此外,以纤维增强型复合材料为代表的轻质高强材料也逐渐由次承力结构升级为主承力结构。对此,开展大型飞机的大空间高精度测量、复合材料损伤的高精度检测方向的研究,是新一代飞机高效、高质装配的强有力支撑。图1高精度测量技术在飞机装配现场的应用2 飞机装配大空间测量场高精度测量方法 传统大空间测量场多使用单台或者单种测量设备进行构建,为满足大尺寸部件的高精度测量需求,组合式测量系统应运而生。通过组合多个测量设备或不同测量系统,往往可以达到一个较好的效果。 由于大空间测量场的特点,需要对其进行坐标配准,即将测量点坐标转换到全局坐标系下,并将数据进行融合。坐标配准、环境等因素往往会影响测量场的精度,所以还需要对测量场进行不确定度评估,并对误差进行补偿。因此,测量场配置优化、坐标系配准和不确定性评估等三个方面的内容是影响大空间测量场测量精度和效率的关键技术。图2 组合式大尺寸测量3 飞机大部件装配外形数字化高精度测量方法 飞机装配是保证飞机外形精度的重要环节,提高飞机部件装配外形检测水平对于提升飞机制造质量具有重要意义。飞机装配部件外形尺寸大、曲面形状复杂、型面测量数据量大,传统单一测量设备测量精度和效率之间的矛盾突出。随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。本章将具体针对数字化测量技术在飞机外形轮廓及蒙皮表面质量检测过程中的应用以及大规模点云数据的处理方法展开介绍。3.1 飞机大尺寸外形轮廓高精度检测航空产品中的大部件装配曲面外形准确度决定着飞机的气动/隐身性能,采用合理的方式对飞机大部件装配外形进行检测尤为重要。飞机曲面外形具有尺寸大、形状复杂、测量数据量大的特点,通常采用数字化测量方法实现大部件外形的高精度测量。早期数字化测量多采用接触式测量方法,以三坐标测量机为代表,常应用于整体叶片型面、中间整流罩的检测过程中。接触式测量具有测量精度高的优点,但缺点是效率低、易划伤目标表面且无法实现自动化测量。激光扫描法、结构光法、激光雷达法、摄影测量法等非接触式测量方法的出现提升了测量范围和测量效率,而且可开发性和自动化程度高的特点使它们在飞机大部件外形自动化测量方面展现出优势。表1列举了几种数字化测量系统并对其主要参数及优缺点进行了分析对比。表 1. 外形数字化测量系统对比但随着测量要求的进一步提高,单一设备无法兼顾测量精度和测量效率的矛盾愈发明显,近年来许多学者通过构建数字化组合测量系统,使设备性能互补,从而提高测量精度与效率。将关节臂测量仪、激光跟踪仪以及摄影测量组合,在飞机内襟翼上翼面外形精度测量上进行应用与验证,在保证外形测量精度的同时进一步提高了测量效率。此外,结合结构光重建和摄影测量技术也可实现高精度、高效率、非接触的大尺寸飞机结构外形的三维重建,精度可达到亚毫米量级(0.16 mm以下)。如图6所示。图 3 基于后方摄像机视觉定位的全局三维重建原理图为了进一步提升飞机大部件曲面外形的测量精度,需要对数字化测量系统进行站位规划与测量轨迹规划。测量仪器的站位规划是数字化测量的前提,站位的合理性直接影响着测量效率和精度。早期测量站位主要由操作者的经验决定,往往需要反复调整才能满足测量要求,测量效率低,难以满足现代飞机高效的测量需求。针对激光雷达测量飞机大部件外形测量需求,采用基于区域生长算法的站位规划方法得到初始站位,之后引入测量不确定度对其进行优化,该方法相比于经验法和聚类算法更具可行性和有效性。而对于飞机大型蒙皮柔性测量系统,效率优化的扫描站位规划被提出,提升了扫描效率和完整性。此外,规划轨迹可以使测量设备在满足测量条件的情况下充分发挥性能,最大程度上降低系统误差,提高扫描数据的精确度,从而提升测量精度与测量效率。对于包含激光跟踪仪和工业机器人的自动化扫描系统中的测量轨迹规划问题,首先在CATIA中按照结构特征类别进行轨迹的初始规划,之后对测量误差进行分析,建立系统误差预测模型并通过粒子群算法对测量轨迹做进一步优化,可达到快速找到满足扫描约束的同时系统误差最小的姿态的目的,从而提高曲面扫描的测量精度。为了提升结构光的检测精度,一种以改进贪心算法为基础的覆盖路径规划方法被提出,降低了视点数目,提升了结构光检测精度,从而提升了曲面外形测量精度,如图4所示。图 4 测量不确定度对比图。(a)文献方法;(b)目标采样法3.2 飞机部件外形表面质量高精度检测高精度数字化测量技术也广泛应用于飞机外形表面质量检测过程中,包括蒙皮对缝检测以及铆钉平齐度检测等。飞机蒙皮主要通过铆钉固定在机翼骨架外围,其作用是维持飞机的气动外形,必须承担一定的局部气动力,装配时要保证蒙皮对缝的间隙及阶差在允许范围内。此外,蒙皮表面铆钉平齐度对飞机的隐身性能及气动性能也有着比较重要的影响,随着新一代战机对隐身性能及气动外形的要求越来越高,相应地对飞机蒙皮铆接质量提出了更高要求。传统的蒙皮对缝检测采用塞尺测量,对人工操作要求高、效率低、误差较大,且不能有效采集和处理测量数据。随着数字化测量技术的不断发展,为了提高缝隙测量的精度和效率,国内外学者以线结构光视觉测量和激光扫描为代表的非接触测量方法应用于对缝检测中,如图8所示,相关的数字化检测设备,包括美国Origin Technologies公司的Laser Gauge系列产品、德国8Tree公司的Gap Check相关产品等均采用非接触测量方法快速测量蒙皮阶差和间隙。线结构光视觉传感器可以实现对蒙皮对缝阶差与间隙的尺寸测量,阶差和间隙的重复测量精度分别达到了0.04 mm和0.05 mm以下。针对二维激光对缝检测多次测量重复精度不高的问题,基于三维激光扫描的蒙皮对缝检测方法被提出,其间隙和阶差测量精度可分别达到0.04 mm和0.02 mm。此外,有学者利用机器视觉的方法,提出了一种基于改进优化算法的飞机蒙皮对缝视觉测量方法,达到精确测量蒙皮对缝间隙的目的,测量精度达到了0.02 mm以下。图 5 基于线结构光的阶差与间隙测量模型对于铆钉齐平度的检测,传统的检测靠人工抽检来实现,即采用传统卡尺或指针式三脚千分表手动检测,测量误差大且有较大局限性。非接触式数字化测量技术在铆钉平齐度检测方面同样展现出优势,构建双目多线结构光测量系统对铆钉齐平度进行测量,可实现对蒙皮表面铆钉头部凸台或凹坑特征的精准测量,精度可达到0.03 mm以下,但该系统无法同时测量多个铆钉。而基于3D激光扫描仪的图像采集系统,利用深度学习算法分析处理采集到的图像,可以同时检测多个结果,效率高,重复检测精度达到0.015 mm,精度相比人工抽检提高较大。此外,针对铆钉逐一检测任务量大且检测可靠度低的不足,基于面结构光的铆钉平齐度检测方法先提出了一种图像噪声轮廓分割方法,之后基于图像-点云映射策略实现了快速且稳定的分割铆钉点云,铆钉平齐度测量偏差达到了0.006 mm以下。如图6所示。图 6 铆钉标准件及平齐度测量结果。(a)标准件;(b)测量结果随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。4 面向复合材料装配缺陷的高精度检测技术 航空复合材料具有重量轻、比刚度大等优点,既能减轻飞机重量,也提高了飞机的整体互换性,方便维护,在飞机制造领域得到了广泛的应用。但此类复合材料由于装配时的应力变化会产生脱粘、分层、夹杂等装配缺陷,对产品的安全使用及长时间服役造成严重威胁,因此需要对复合材料装配过程中产生的缺陷进行高精度检测。 针对不断装机应用的各种新的航空复合材料、新的复合材料成型工艺、新的复合材料结构和新的检测与缺陷评估要求,从检测方法分类上,主要体现在:激光检测、超声检测、X射线检测和太赫兹检测技术等。近几年,随着众多学者对信号处理、图像处理和三维信号重构等技术的研究,使得检测精度和缺陷数据后处理能力逐步提升,面向复合材料装配缺陷高精度检测方法及技术逐步趋于智能化、自动化、可视化。图4 复合材料缺陷三维可视化[1]5 飞机装配测量为我国飞机制造保驾护航 大尺寸高精度测量技术已经成为但广泛应用中的核心关键技术尚处在积累阶段,需要不断的应用验证。数字化测量系统正朝着便携、网络、高效、精密方向发展,飞机装配大尺寸高精度测量技术也已从单一技术走向多传感器技术的融合。 对于飞机装配大空间测量场高精度测量,传统方法多基于单台或单种测量设备,导致精度及效率不足,通过测量场配置优化、坐标系优化、精度评估与补偿等技术来提升测量场的构建效率及精度是当前及未来的提升方向。而对于飞机大部件装配外形数字化高精度测量,飞机部件装配外形尺寸大、曲面形状复杂,型面测量数据量大,单一设备测量精度和效率之间矛盾突出。通过优化测量轨迹、提高视觉检测精度、大规模点云数据融合等技术手段充分发挥各测量设备的优点,来保证飞机大尺寸外形轮廓和飞机外形表面质量检测应用过程中的效率及精度。 因此,组合式数字化测量系统及多技术的融合研究是未来发展和提升的重要方向。在保持高检测精度的前提下,智能化、可视化、自动化的无损检测是未来的发展方向。 在数字化工厂和智能制造的背景下,根据目前大型飞机装配中的高精度测量技术及系统的特点,未来应立足于具体型号及实际应用场景,深入开展高精度测量技术及系统的应用和研究,并形成相应技术体系,充分发挥数字化高精度测量技术的优势。未来,多数字化测量系统协同工作,大空间数字化测量场构建,部件装配外形数字化及装配缺陷检测,这对提高我国飞机制造的水平和核心竞争力具有十分重要的意义。参考文献:[1] Qin L, Zhang S, Song Y, et al. 3D ultrasonic imaging based on synthetic aperture focusing technique and space-dependent threshold for detecting submillimetre flaws in strongly scattering metallic materials[J]. NDT & E International. 2021, 124: 102523.原文下载:张开富, 史越, 骆彬, 童长鑫, 潘婷, 乔木. 大型飞机装配中的高精度测量技术研究进展.pdf通讯作者介绍 张开富,西北工业大学教授、博士生导师,教育部“长江学者”特聘教授、冯如航空科技精英奖获得者,飞行器高性能装配工业和信息化部重点实验室负责人,兼任中国图学学常务理事、中国机械工程学会生产工程分会技术委员会委员。长期从事航空航天制造领域先进装配与连接、结构损伤及疲劳等研究工作,主持国家自然科学基金、国家重点研发计划、重大型号攻关计划等项目近20项,发表高水平学术论文70余篇、授权中国发明专利27件,主持制定航空行业标准2项,以第一完成人获国家科学技术进步二等奖、陕西省自然科学奖一等奖、陕西省科学技术一等奖各1项。课题组介绍 西北工业大学航空宇航装配团队依托于工业和信息化部重点实验室、西北工业大学航空宇航科学与技术学科(A+学科、双一流学科),获批陕西省科技创新团队、国防科技创新团队,长期从事航空航天领域装配建模与优化、先进装配与连接工艺、复材结构设计制造、智能测试技术与工艺等方向研究。团队拥有正高级职称人员6人(其中国家级人才3人)、副高级职称人员6人,硕博士研究生80余人。近年来,团队承担国家级科研项目30余项,授权国家发明专利50余项,在Composite Science and Technology、IEEE Transactions on Robotics、Additive Manufacturing、Composites Part B、航空学报、复合材料学报、机械工程学报等期刊发表学术论文百余篇,参与制定行业标准/型号研制规范10余项,研究成果在运20、C919、ARJ21等我国航空航天重大型号得到持续工程应用,先后获国家科学技术进步二等奖1项、省部级一等奖2项、其他省部级奖励5项。
  • FLIR A700热像仪+载人飞机,光伏缺陷检测成本可降低 80%!
    太阳能是目前使用比较多的可持续清洁能源之一,在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,也是最受瞩目的项目之一。但维修和监控太阳能电池板的成本有时高得令人望而却步。今天,小菲就来给大家说一个德国政府选用FLIR热像仪,验证空中高效检查电池板的有效性和商业可行性的真实案例!Teledyne FLIR在德国的高级合作伙伴——TOPA GmbH,率先采用空中检查电池板的创新检测方法。TOPA GmbH是一家专业的高质量测量技术和热成像行业集成商。作为FLIR和EXTECH产品的主要分销商,它专门提供FLIR技术,用于各种具有挑战性的应用。本次它与专门从事有人驾驶和无人驾驶飞机中使用安全关键技术的工程公司AID GmbH合作开发一个基于人工智能的系统,该系统将确保无人机飞行中捕获的图像完全具有地理参考性,可自动检测和分类太阳能电池板上的缺陷。具体是如何操作的呢?一起来瞧瞧~集成FLIR热像仪,实现快速检测在政府资助的支持下,AID和TOPA正在使用FLIR热成像技术来降低大规模检测太阳能电池板的成本和时间限制。手动地面检查可能需要数月时间来排查太阳能发电场,而无人机检查只需要数周时间,但效率仍然较低。因此,在高速飞行的飞机上进行空中检查效率更高,但准确检查将成为一项挑战。那么该如何解决这个问题呢?设计一套具有完全自主的人工智能解释和地理参考功能,以及实时缺陷检测功能的系统就变得很重要。在试验中,一架在300米高空飞行的载人飞机与FLIR A700配对,来高速捕捉太阳能电池板的精确热读数。然而,以30m/s的速度行驶会面临图像模糊和失真的问题,因为热像仪需要8-10毫秒才能捕捉图像。为了解决这一问题,并确保图像清晰且数据可用,AID用几何原理设计了一个巧妙的解决方案,从而确保图像清晰,数据可用且信息丰富。FLIR A700FLIR A700固定安装式红外热像仪具有精确检测和识别制造和工业等过程中热问题所需的强大监控能力。其能提供多视场角镜头选项、同时查看多个图像流、电动调焦控制,可选通过 Wi-Fi 传输压缩辐射测量图像流。A700机身小巧,符合GigE Vision和GenICam标准,能简化与现有监控系统的集成。这种正在开发的高速检测方法每小时可覆盖2平方公里,使其能够在短短几个小时内获得大规模太阳能发电场的准确读数。高效率的检测,可以让电力公司节省了80%的成本!精准定位故障单元,帮助企业节约成本TOPA和AID开发系统中的AI通过FLIR A700获取读数,然后通过监测记录的温度和检测结果来分析计算哪些面板过热或有过热的危险。有故障的单元比正常运行的单元件的温度高得多,因为热量无法消散并继续在故障面板内积聚。更糟糕的是,这可能会导致周围设备接连老化。因此,及早找到有故障的太阳能电池板对于保护资产和最大限度地减少进一步损害至关重要。系统内的人工智能会整理所有检测的热成像数据,并为每张图像绘制出一个具备地理参考的位置,从而可以从源头上尽快根除有故障的设备,最大限度地减少人工和维护成本。AID Innovation董事总经理Alexander Prendinger表示:“我们很高兴能够开发一个旨在提高太阳能电池板效率的系统,为全球应对气候变化做出贡献。FLIR A700是此次试验的完美搭档。它是高性价比和功能性强的完美结合,既能提供富有洞察力的热图像,又足够轻,可以与万向节设置完美配合。我们对Teledyne FLIR的产品和服务都非常满意,这是我们选择与他们长久合作的主要原因之一。”FLIR A700在内的Axxx系列热像仪可灵活搭配监控、检测方案快速准确地识别出设备故障点便于您预防故障的发生营造更安全、更高效的工作环境
  • 中国气象局长否认人工增雪会污染环境
    全国两会召开前夕,全国政协委员、中国气象局局长郑国光接受记者专访时,否认中国的人工增雨(雪)会污染环境和既不安全又不划算的说法,称中国人工增雨(雪)投入产出比最高可达1∶50。  3月干旱可能性较大  谈到当前粮食主产区旱情时,郑国光指出,冷空气活动频繁,副热带高压异常偏弱,水汽难以输送到华北、黄淮,造成北方冬麦区长期干旱。  郑国光介绍,上周末降水偏南,安徽北部旱情缓解,河南、山东、山西大部旱情缓和,仅剩山东北部和华北中东部旱情持续。预计3月有弱降水,考虑到气温上升、蒸发加大,干旱持续可能性较大。  旱情不会影响夏粮产量  外界猜测,干旱持续,冬小麦长势会不会出问题?夏粮产量会不会受影响?  “我想给大家一颗‘定心丸’。”郑国光回应称,2月25日前冬麦区深层墒情尚好,2月25日—27日“喜雨”,表层墒情改善,干旱影响还不明显。通过监测,华北南部和西北东部及其以南地区土壤解冻,除河南中西部、山东中北部、安徽北部等墒情较差外,冬麦区其余大部解冻区墒情适宜。  增雨催化剂安全值得放心  不少人担心人工增雨(雪)会有“后遗症”,会污染环境,另外还有人称既不安全也不划算。  对于上述担心,郑国光强调,中国人工增雨(雪)主要采用干冰、液氮、碘化银等催化剂,具有很高的成冰能力。干冰、液氮汽化后成为二氧化碳和氮气,这些都是空气组成部分,不会造成污染。碘化银用量极小,也不会污染环境。因此,可以完全放心。  未来几月将继续增雨(雪)  郑国光说,我国人工增雨(雪)所用飞机大都租用,增雨火箭弹型号每枚价格为1200—2500元不等,每次每个火箭作业点一般使用3—15枚。据统计,我国人工影响天气的投入产出比为1∶30—1∶50。另外,通过加强管理和培训,增雨(雪)安全事故可能性降到最低。最后,郑国光透露,未来几月,气象部门将继续组织安排人工增雨(雪)。  ■ 对话  “北京连续阴霾与增雪无关”  中国气象局官员称兔年年初增雪只有净化空气作用  针对北京年初的人工增雪问题,中国气象局人工影响天气中心副主任王广河称,2月连续4天出现阴霾,与人工增雪无关。  北京增雪效果约16%  记者:人工增雨(雪)需要什么条件?  王广河:人工增雨(雪)作业仅是锦上添花,做不到无中生有。所以,作业必须要有云和降水形成的天气条件,没有云无法作业。只有当天空有云,云里有小水滴或小雪晶时,人工增雨(雪)才能促使雪晶长大,并克服浮力成雪花降落。  记者:北京的增雪效果如何?  王广河:初步评估,2011年2月9—10日的降水过程中,北京降水总量逾3000万吨,人影作业增加降水量达500万吨,平均增雨(雪)效果约16%。  增雪可冲刷空气中污染物  记者:2月9日—13日,北京连续进行人工增雪作业。2月20日到23日,北京连续4天出现雾霾天气,有人怀疑这与人工增雪有关,他们认为增雪污染了空气。  王广河:人工增雨(雪)作业对空气只有净化作用,不会污染,因为降了雨雪,可以将污染物冲刷下来。  记者:增雨(雪)会否对人体和环境造成污染?  王广河:北京兔年初雪,人工增雪燃烧了1200多个碘化银烟条,每根烟条约含碘化银11克,共13公斤。此次作业区面积约1万平方公里,每平方公里仅有 1.3克,属微量,仪器都很难检测出来。因此,不存在长期或大量接触银的问题,不会对环境和人体造成伤害,这一点在一些国际和国内的监测数据均得到证实。  增雪对下游降水影响有限  记者:天气系统一般经过好多地方,人工增雨(雪)会不会导致上游抢下游水?  王广河:天气系统移动中不断有水汽补充,人工增雨(雪)增水量十分有限,因此对下游降水影响十分有限。而且,现在的人工增雨只会小范围影响雨水资源在空中的分布。目前还没有找到证据证明,大规模的人工增雨(雪)能大范围、跨区域影响天气。  ■ 数据  飞机增雨(雪)163万平方公里  本报讯 (记者林文龙)昨天下午,中国气象局举行3月新闻发布会,通报了2010年10月1日至2011年2月28日我国北方冬麦区气象旱情,称共增雨(雪)4428次。  中国气象局应急减灾与公共服务司司长、新闻发言人陈振林介绍,从河北、山西、山东、河南、江苏和安徽6省的平均降水量等分析,此次干旱程度和范围列1961年以来历史同期第4位,是二十一世纪以来历史同期最严重气象干旱。  陈振林介绍,截至2月28日7时,气象部门共实施飞机人工增雨(雪)作业132架次,飞机累计飞行作业逾258小时,飞机累计作业飞行面积逾163万平方公里,作业4428次。其中,2月25至27日,增雨(雪)效果显著。
  • 航空无损检测:大飞机下线 看动态图学习飞机飞行原理
    p  国产大飞机C919就要总装下线在即,央视即将进行全程直播。航空无损检测作为无损检测中的一个另类分支,大家有必要对飞机知识进行一个大致的了解。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/insimg/ac8cc983-0976-44de-a13a-5a9c389692cb.jpg" title="1458-15110211332G11.gif"/  /pp style="text-align: center "升力的产生--气流流过的压力差产生了升力/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201511/insimg/9dd836cd-a46f-4a0f-80ae-51054fe4e767.jpg" title="1458-1511021133512a.gif"//pp style="text-align: center "飞行的根本飞机运动的三轴简化,俯仰、滚转、偏航滚转是副翼控制/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201511/insimg/278f5dc6-c06a-481e-97de-1bbeeb0d1dce.jpg" title="1458-151102113412594.gif"//pp style="text-align: center "br//pp style="text-align: center "俯仰运动靠升降舵控制 /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/insimg/83b8906e-1ca5-4588-88a8-bfa73a227068.jpg" title="1458-151102113433T7.gif" width="504" height="403" border="0" hspace="0" vspace="0" style="width: 504px height: 403px "/ /pp style="text-align: center "偏航运动靠方向舵控制/ppbr//pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201511/insimg/1527bb5b-b848-4d92-a86b-d2228d3a606f.jpg" title="1458-15110211345JZ.gif"//ppbr//pp style="text-align: center "  航空发动机--飞机前进的动力提供/pp  /pp 涡轮风扇发动机,大型运输机的发动机。涡扇气路两条,外边这条提供基本70-80%的推力,里边这条仅提供20-30%的推力。/pp  /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/insimg/8bb6d19c-0d21-4773-b33e-a13074d06c77.jpg" title="1458-15110211351T18.gif"//pp style="text-align: center "  涡轮喷气发动机,喷气就靠喷来推动了/pp  /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/insimg/ece48506-16e7-45f4-a38e-f78d5492efd9.jpg" title="1458-151102113541912.gif"//pp style="text-align: center "  涡轮螺旋桨发动机/pp  /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/insimg/f95132ea-2eab-40f3-b375-afee54e31b64.jpg" title="1458-151102113603S4.gif"//pp style="text-align: center "  活塞发动机/pp  /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/insimg/b0321f45-50f0-4786-b835-fa60c29d4893.jpg" title="1458-15110211362J58.gif"//pp style="text-align: center "  无形的公路在慢镜下显现出来!/pp  /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/insimg/7f6cc47c-39ef-4be3-b518-565581a9ca7e.jpg" title="1458-15110211364Y03.gif"//pp  很多旅客在等飞机时候不耐烦,对于天气原因,真是谁都无能为力,建议还是心平气和的等待,享受下旅行的过程,这么危险的事情还是不要冒险,即使飞行员不要命飞了,你也跟着去另一个世界吗?/ppbr//pp(来源:中国检测网)/pp  /ppbr//pp  /p
  • 检查飞机是否进“水”的利器—热成像仪
    p style="line-height: 1.75em " FLIR公司研制了一种新型热成像仪,或可改观飞机中复合材料湿气检测问题。/pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/a06fa3cb-1eeb-45d6-b8aa-6e236e7fbf77.jpg" title="1-9-2.jpg" width="450" height="268" border="0" hspace="0" vspace="0" style="width: 450px height: 268px "//pp style="line-height: 1.75em " 对于一架飞机来说,由于质量和强度要求,其机身结构大多使用碳纤维等复合材料。使用这些复合材料的飞机结构基本都保持了一种“蜂窝”状,一旦水蒸气等湿气进入这种结构,飞机将变得十分危险,但这种情况又是难以避免的。当飞机飞行到一定高度时,遇到高空中的冷空气,这些湿气会凝结成冰。这样一来,材料会被张裂,原本稳定的“蜂窝”结构变得脆弱。而如果这个过程反复的发生,材料结构遭到破坏,会严重影响飞机飞行的稳定性。/pp style="line-height: 1.75em " 由于湿气的危害,检查飞机中的湿气就变得尤为重要。众所周知,热成像仪是检查飞机结构是否进入湿气的一个重要的工具。通常,进行这项检测最好的时间段是飞机降落后的一小时以内,因为在这个时间段中,飞机部件材料与冷冻液之间的温度差达到最大值,会在成像仪中形成足够明显的对比度。但当一架飞机停放在机场几天之后,没有办法得到完美的成像效果时,又该如何进行检查呢?答案是:FLIR公司研制的新型热成像仪。/pp style="line-height: 1.75em " strong 热成像仪检查的优势/strong/pp style="line-height: 1.75em " Thermografisch Adviesbureau BV是一家在检测湿气是否进入飞机结构方面具有多年经验的公司。这家公司的老板Ralf Grispen表示:“热成像仪进行检测是一种高效快速的检测方式,而传统的检测方法,例如通过锤子敲击材料表面,通过听声音的差别进行检测等与之相比准确度较差且受时间影响。此外,热成像仪可以通过温度差来展示飞机结构的全貌,并且可以清晰的展示出水分的分布。最重要的是,热成像仪可以报告、分析并且解释可能隐藏的大量湿气”。/pp style="line-height: 1.75em " strong 热量差的挑战/strong/pp style="line-height: 1.75em " Ralf Grispen先生接下来补充道:“使用热成像仪来检测的最佳时间是飞机降落后的一个小时之内,这是你可以得到复合材料和湿气之间差别效果最好的热量图像”。/pp style="line-height: 1.75em " 由于湿气和复合材料具有不同的热性能。当加热或冷却达到热平衡后,可以观察到湿气和材料之间的不同。通过热成像仪,可以清晰的观察到材料表面热量分布。然而,要想一直得到好的热分析效果仍然是困难的。在2015年,Thermografisch Adviesbureau BV的团队受邀来到波音公司进行一家飞机机翼的检测,这架飞机在几天前已经停放在飞机库中。/pp style="line-height: 1.75em " “在这种情况下,由于飞机库的密闭环境,湿气和飞机结构材料之间的热量差并不明显。因此在飞机降落后检测才是最佳的。我们想挑战这个热量差的难题,于是我们通过各种方法来增加热量差,一种方法是进行加热让被检测的材料达到一个恒定的温度,这种方法通常也叫做加热热成像。但其缺点是通过加热后会发生短暂的热传导效应而使图像不稳定。尽管加热热成像是一种精确度高的检测方法,但是实际情况下却应用较少。因为为了得到这样一个热量成像图是非常消耗时间的,而且性价比比较低,所以这并不是一个很好的选择。Ralf Grispen先生向我们讲述了他们的主要思路。/pp style="line-height: 1.75em " strong热成像仪的成功/strong/pp style="line-height: 1.75em " 为了满足热量差的需求,Thermografisch Adviesbureau BV的团队需要进一步的探究。他们首先决定在飞机库中使用移动冷库以及干冰直接冷却机翼,通过这种方法来尽可能模拟飞机的飞行环境和飞机降落后的热量差。此外,通过操纵起重机来移动机翼保证了每个结构可以得到仔细的检查。/pp style="line-height: 1.75em " “我们希望可以向客户也同时向自己证明研发的热成像仪的效果。我们准备了一个小的测试样本,该样本具有和波音客机上机翼相同的材料,向其中注入水分,之后进行下一步的检测。通过FLIR P660型热成像仪我们成功的进行飞机复合材料的进水检测,通过所得到的热成像图和原图进行比对,清晰的发现了这些水分的存在“。Ralf Grispen先生补充道。/pp style="line-height: 1.75em " strong 保证检测的质量/strong/pp style="line-height: 1.75em " 针对上述情况,Ralf Grispen先生推荐了一款FLIR P660型的热成像仪。“通过多年的使用证明FLIR P660型的热成像仪是一台可靠的热成像仪,可以提供清晰度较高的分析图片以及详细的数据。”/pp style="line-height: 1.75em " 最后他表达了自己对于热分析仪的看法,“未来热成像仪在飞机工业上会扮演更为重要的角色,尤其是随着越来越多的复合材料在飞机上得到应用,这种重要性会进一步放大。热成像仪作为飞机进水检测的主要方法,拥有着其他方法无法比拟的性价比,对于保证飞机结构和乘客安全,选择热分析仪是必须的”。/ppbr//p
  • 日本川崎重工将在中国设立机器人工厂
    据日本媒体报道,日本川崎重工于12月24日发布消息称将在中国设立产业用机器人生产工厂,投资总额达数十亿日元,于2015财年前竣工,并投入生产。随着经济的高速发展人事费飙升,以汽车工厂为主积极引进机器人代替人力的背景下,川崎重工业计划在中国成立产业机器人工厂以满足需求。  目前,川崎重工业的产业用机器人是在在明石工场(兵库县明石市)生产的,此次是首次在海外设立工厂。  拥有油压机器生产基地的苏州是川崎在华建设工厂的首选地。不过,中日两国特殊的政治关系可能会随时引发反日活动等风险,因此可能难以从中国当地企业募集资金来筹建新厂。  据悉,川崎重工业在华新工厂将主要生产用来组装汽车、搬运、溶接及涂装等的机器人,提供给日本、欧美及中国制造商。川崎重工业2011财年机器人业务的销售额约为350亿日元(约合4.1308亿美元)。川崎重工业欲通过强化中国业务进一步扩大销售规模。  此外,日本机器人工业会调查显示,由于日企放缓对设备翻新等投资,预计2012年日本国内机器人出货额将比2011年减少10%以上。在日本空洞化趋势向众多行业蔓延,国内需求难以有所突破的背景下,当务之急是开拓海外市场以提高销售额。日本产业机器人业界龙头安川电机已经着手在江苏省常州市投资约18亿日元(约合0.2124亿美元)建设产业机器人工厂。预计川崎重工业在华工厂竣工后将成为日系制造商在华第二大生产基地。  关于日本川崎重工  川崎重工业株式会社(TYO:7012),乃日本的重工业公司,川崎重工起家于在明治维新时代,并以重工业为主要业务,与JFE钢铁(原川崎制铁)及川崎汽船有历史渊源。主要制造航空宇宙、铁路车辆、建设重机、电自行车、船舶、机械设备等。  川崎重工株式会社目前注册资本1043.28亿日元,销售额为8899.63亿日元,集团员工30653人,川崎重工集团下辖主要有车辆公司、航空宇宙公司、燃气轮机、机械公司、通用机公司、船舶公司等部门,产品涵盖海陆空各个领域,对军工订货的依赖程度低于10%,但航空航天部门主要依赖军工订货才得以维持。目前川崎重工是日本军工产业的重要成员,仅次于三菱重工,是日本自卫队飞机和潜艇的主要生产商。
  • 美国首次试飞使用藻类植物作燃料飞机
    据美国媒体报道,美国大陆航空公司6日一架以生物燃料作为部分燃料的飞机进行了试飞。大陆航空公司称这是首次以取自藻类等植物的燃料作为飞机燃料。  据公司称,该飞机也首次尝试使用了双引擎。其中一个引擎使用了一半生物燃料、一半普通燃料。另一个引擎则完全使用普通飞机燃料。  藻类等植物因为环保的特点,被看作第二代生物燃料。预计会在未来广泛应用。
  • 北京等地也检测出极微量人工放射性核素
    3月29日,环境保护部(国家核安全局)有关负责人就环境辐射监测情况回答了记者关心的问题。  这位负责人介绍说,继黑龙江省、江苏省、上海市、浙江省、安徽省、广东省、广 视频:华东西南西北华北等监测到微量放射性碘  西壮族自治区之后,环保部门又在山东省、天津市、北京市、河北省、河南省、山西省和宁夏回族自治区的监测点气溶胶取样中检测到了极微量的人工放射性核素碘-131,浓度均在10-4贝克/立方米量级及以下 此外,在安徽省、广东省、广西壮族自治区和宁夏回族自治区的监测点气溶胶取样中还检测到了极微量的人工放射性核素铯-137和铯-134,其浓度均在10-5贝克/立方米量级及以下。  由于各地检测出的人工放射性核素所带来的附加辐射剂量极其微弱,小于岩石、土壤、建筑物、食物、太阳等自然辐射源形成的天然本底辐射剂量的十万分之一,仅相当于一人乘坐两千公里飞机所受辐射剂量的千分之一,仍在当地本底辐射水平正常涨落范围之内,因此不会对环境和公众健康造成影响,不需要采取任何防护措施。  另据报道,美国(至少十五个州)、冰岛、芬兰、法国、瑞典、瑞士、俄罗斯、韩国、菲律宾、越南等国都宣布检测到了日本福岛核事故释放出来的人工放射性核素,但数量都极其微小,由此给公众带来的附加辐射剂量很低,最高者(韩国)也只有天然本底辐射剂量的几千分之一,远远低于对环境和公众健康造成伤害的水平。  目前环保部门设在全国其他地区的气溶胶取样监测点尚未确认检测到人工放射性核素。
  • 大飞机的研发为仪器仪表等相关行业带来发展机遇
    自主研制的第一款发动机将于2016年完成研制,带动产业链同步发展。大飞机的研发制造会带动整个产业链的同步大发展,为原材料、机械装备、电子及仪器仪表、金融服务、航空物流等相关产业带来发展机遇,其技术扩散率高达60%。  中国大飞机滑到了起跑线  1月14日至17日,国家主席胡锦涛在上海考察期间,视察了承担大型客机总装任务的中国商飞上海飞机制造有限公司,勉励企业员工发扬科学求实精神,让中国人自主研制的大型客机早日飞上蓝天。  中国首款大飞机计划于2014年首飞,2016年适航取证,今年已开始接受预订业务。  大飞机一定要有“中国心”  “如果把飞机制造比喻为工业皇冠,那么发动机的研制就是皇冠上的明珠 它的研制难度非常大,几乎不亚于再造一架飞机。”中国工程院院士、中国著名航空动力学专家刘大响说。  刘大响说,大飞机工程能否成功的关键之一是动力问题,必须要立足于国内,自主研制。目前中国航空工业还存在重型号轻基础等问题。动力是装备的心脏,最终飞机一定要有“中国心”。  中国大型客机发动机项目主体中航商用飞机发动机有限责任公司总经理张建表示,中国自主研制的第一款发动机计划于2016年完成研制,“争取让国产发动机能和国产大飞机一起飞上蓝天”。  去年11月3日,可匹配未来“国字号”大飞机C919的首款国产发动机模型,在上海2009中国国际工业博览会上亮相,这预示着中国正在迈出大飞机心脏国产化研制的重要步伐。该发动机型号SF-A,是一款推力范围为12000至13000公斤力的大涵道比涡扇发动机。  我国大型客机发动机项目责任主体和总承制单位中航商用飞机发动机有限责任公司(以下简称中航商发)1月4日在沪宣布,国产大飞机发动机总装试车用地落户在上海浦东临港地区,届时临港基地的功能将包含装配中国航空工业集团公司与CFM国际公司合作装配生产的LEAP-X1C飞机发动机。  中航商发在积极参与国际合作的同时将致力为国产大飞机打造“中国心”。即将在绵阳市小枧镇建立的航空城,为今后发动机真正国产化打造一个自主创新的技术平台。中航商发研发基地近日在上海市闵行区开工,预计将于2013年完成各项功能建设。1月21日与上海交大签订的战略合作框架协议,双方将就包括国产大飞机发动机技术研发等项目展开战略合作。  大飞机研发有序推进  在第十三届北京国际航空展览会新闻发布会上,首款国产大飞机揭开神秘面纱。中国商飞市场营销部部长陈进透露,首款大飞机正式命名为C919,标配168个座位,计划于2014年首飞,2016年适航取证。在20年内,达到年产大客机150架、年产新支线飞机50架的目标。  所谓大飞机一般指起飞总重超过100吨的运输类飞机,包括军用、民用大型运输机,包括150座以上的干线客机。目前世界上只有美国、欧洲4国和俄罗斯有制造大飞机的能力,而占领国际市场的只有美国波音和欧洲空客公司。  大飞机的研发制造会带动整个产业链的同步大发展,为原材料、机械装备、电子及仪器仪表、金融服务、航空物流等相关产业带来发展机遇,其技术扩散率高达60%。  我国航空工业已经具备发展大型飞机的技术和物质基础。2007年2月,国务院原则批准大型飞机研制重大科技专项正式立项,同意组建大型客机股份公司。大飞机项目立项以来,到2009年3月,相关部门已初步完成大飞机研制“初步总体技术方案”。  国际航空市场将形成新格局  中国商用飞机有限责任公司副总经理、大型客机总设计师吴光辉说,Airbus(空客)和Boeing(波音)分别以A和B开头,我国的首款大飞机C919以C开头,寓意就是我们立志要跻身国际大型客机市场,在国际大型客机制造业中形成ABC并立的格局。  中国已成为美国以外全球最大的民用飞机市场,在“十一五”航空客运量激增95%。至2015年,中国对客机的总需求将达到2000架以上。中国商用飞机公司销售经理陈进说:“国产大飞机与同类机型相比具有非常明显的竞争优势。”他说,在燃油消耗方面C919将比目前所有机型减少12%-15%。  吴光辉则表示,今年国产大飞机已开始接受预订业务。估计未来20年,中国大飞机有2000多架的市场份额。
  • 速看!政府工作报告中有关人工智能要点
    十四届全国人大二次会议3月5日上午在北京人民大会堂开幕,国务院总理李强作政府工作报告。李强在政府工作报告中介绍今年政府工作任务时提出,大力推进现代化产业体系建设,加快发展新质生产力。充分发挥创新主导作用,以科技创新推动产业创新,加快推进新型工业化,提高全要素生产率,不断塑造发展新动能新优势,促进社会生产力实现新的跃升。深入推进数字经济创新发展。制定支持数字经济高质量发展政策,积极推进数字产业化、产业数字化,促进数字技术和实体经济深度融合。深化大数据、人工智能等研发应用,开展“人工智能+”行动,打造具有国际竞争力的数字产业集群。实施制造业数字化转型行动,加快工业互联网规模化应用,推进服务业数字化,建设智慧城市、数字乡村。深入开展中小企业数字化赋能专项行动。支持平台企业在促进创新、增加就业、国际竞争中大显身手。健全数据基础制度,大力推动数据开发开放和流通使用。适度超前建设数字基础设施,加快形成全国一体化算力体系。我们要以广泛深刻的数字变革,赋能经济发展、丰富人民生活、提升社会治理现代化水平。十四届全国人大二次会议开幕会结束后,在人民大会堂北大厅举行十四届全国人大二次会议首场“部长通道”集中采访活动,科学技术部部长阴和俊介绍,从投入看,2023年全年全国研发经费投入超过3.3万亿元,比2022年增长8.1%,研发投入强度达到2.64%。从成效看,在量子技术、集成电路、人工智能、生物医药、新能源等领域取得一批重大原创成果。全球首座第四代核电站正式投产,C919大飞机实现商业运营,新能源汽车、锂电池、光伏组件,“新三样”去年出口增速喜人。迅猛发展的人工智能成为今年两会的热点话题之一,由仪器信息网主办的第十七届科学仪器发展年会(ACCSI2024,苏州,2024年4月17-19日)也特别开设“人工智能赋能光谱仪器新产业”专题论坛,本次论坛将邀请行业知名专家及企业代表现场分享,欢迎各位领导、专家学者、用户、仪器企业管理及研发负责人、投融资机构代表等共聚一堂,为产业发展献计献策。详细内容【请点击】。
  • 国产飞机已来临 国产仪表行业该往何处发展
    11月2日,在历经8年的潜心研发,中国大飞机C919大型客机总装下线,代表着国产中程干线科技技术的突破,是大型客机国产化的一大飞跃。笔者在为大飞机兴奋的同时,也不免想到我们仪表行业。作为工业基础,又是重中之重的行业,国产化问题已经阻碍了我们太久太久。7年研发大飞机,我们的仪表行业自动化也该往何处发展呢?  C919自问世以来,对于其到底是不是属于国产化的问题纷争不断。其实,关于C919最核心的航电、飞控和发动机都由中航工业参与其中 机身和气动布局近乎由中航工业和商飞完成等等。从这一点上看,我国掌握者此次研发的核心技术,是我国发展的一大突破。我们再来看仪表,进口的仪表如果在国内形成了垄断地位,通常售价会高达几百万,但如果当同类国产仪表问世时,进口的仪表就会将价格直接降成一二十万,这种明显的价格差体现出了我国掌握核心技术的重要性。我国仪表行业通过科技创新,自主研发,就能使进口仪表的价格呈现指数下降,这对于国产仪表借鉴国外技术和对比国产仪表的劣势中提供了众多机会。因此,仪表企业在面临这价格上的变动时,必须要抓准机会,学习国外先进技术。  那么,C919是否是纯国产呢?通过C919主要研发单位我们可以发现,发动机使用的是美国GE的发动机,辅助动力APU使用的是美国霍尼韦尔生产的,燃油系统是由美国派克宇航生产,防火监测系统是由英国凯德生产等等。这一点上看,我国在国产大飞机研发中要走的路还很长。仪表方面同是如此,虽然我国仪器仪表行业面临着贸易方面的冲击,进口仪表免各种税收的压力,进口仪表价格的冲击,但我国的仪表行业已经开始在一些通用领域中得到了技术突破。此次,第26届重庆多国展中,多个国产仪表厂商都呈现出了他们的高科技产品,其技术国际上也是处于领先地位,虽然在研发中参考了国外的技术,但也是仪表国产化的一大助力。  作为仪表行业,为什么要多研发国产化仪表,或者说到底国产化仪表能带给国内仪表企业哪些好处。也许,我们也可以从C919中学到一些。C919作为国产的大型客机,首先在中国明航领域,打破了原先波音747、空客的垄断 同时通过大型客机的研发,能成功带动大量的上下游行业领域,比如说仪表领域,大型客机设计的高端仪表和控制系统都能使仪表行业增加收入机会,提升科学技术 最后,能锻炼出一批真正的才能之人。同理,仪表行业国产化能带来:  首先是打破国外仪表行业的垄断,加快自身仪表技术的研发,从以进口为主,慢慢向出口靠拢,争取能使仪表行业在进出口中能保持平衡,不会出现巨大的贸易逆差。这将对于国内仪表销往国外也提供了机会,加快了技术的整合和转型升级。  其次仪表行业的国产化,能带来同行业和上下游的升级,比如说大型客机仪表技术的研发成功,使其能顺利运用在工业和生活中,使得民用仪表更加准确,工用仪表在提升效率中得到提升,带动了同行业和上下行业的发展。  最后,仪表行业国产化,将会为国家提供大量的仪表行业人才,这些人才的培养能提升仪表行业的研发和设计能力。这是国产仪表行业想在国际上占据地位的必备条件,也是我国想要突破仪表发展,提升整体水平的第一基础。
  • 一瞬而过的飞机,温度最高的部位在这里......
    明天就是冬至啦“数九寒冬”的日子即将来临小伙伴们都做好准备了吗?一定要做好保暖哦~01“首先用FLIR热像仪整体浏览下房屋建筑的隔热问题,是否存在隔热层缺失的现象,及时发现问题,做好防寒保暖的准备,这样即使有冷空气的来袭也不怕啦~”02“同一阳光照耀的环境下,不同颜色的衣服温度确实会有差异,最大温差有35.9℉,约为2.2℃,那么长时间在户外活动的小伙伴可以选择暗色系的衣服,更能保暖哦~03“太阳能作为新能源,一直广泛用来发电,对臭氧层的保护非常重要。红外热像仪是太阳能电池板常规检测的有效非接触方法,它能及时发现潜在故障,避免造成更大的事故。”04“想知道飞机的引擎在哪里吗?通过FLIR高速红外热像仪拍摄的画面可清楚发现温度最高的部位,那里是不是飞机的发动机呢?”05“顶漏水难确定具体位置?那就用红外热像仪扫描一下吧,虽然肉眼看不见,但是通过FLIR红外热像仪一扫就能精准定位漏水点哦~"06"圣诞节马上要到了,小伙伴们的圣诞树装好了吗?简单布置下自己温馨的小窝,让生活更有仪式感哦~快来看我的圣诞树和“迷你小鹿”吧~"07“如何开拓学生们的视野,红外热像仪就是不错的选择,通过小实验让学生们观察红外世界中各个物品的更多状态,可以不断挖掘孩子们的潜能呀~”FLIR红外热像仪让菲粉们的生活更加多姿多彩既可以娱乐生活,还能协助检测工作
  • 飞机发动机被抛进硬币 奥林巴斯内窥镜助力安全
    这真的不是段子。。。据南航通报,6月27日,上海浦东至广州的航班在登机时,有乘客往发动机里扔硬币祈福,导致航班延误,所有乘客下飞机,重新检查飞机。。。这事儿到底有多大???对发动机开了一枪《航空知识》主编王亚南称,硬币虽小,但对飞机的影响是非常巨大的,比一般的硬物和飞鸟还要危险。这是因为硬币是钢芯镀镍的,是耐磨损的钢材,一旦进入发动机,在高速运转时会打坏很多旋转部件,气流从前往后吸入,硬币会进一步打坏风扇,甚至进入叶片燃烧区,一个硬币会造成一连串的危害,甚至会导致发动机的整体报废。王亚南说,进入检修程序后,不仅要去除硬币,还要看硬币有没有击伤零部件,即使叶片的表面涂层划伤也需要检修,因为叶片要耐高温耐腐蚀,如果划伤,其使用寿命会受到影响。奥林巴斯工业内窥镜检查发动机以卓越技术制造 筑生命安全堡垒为确保飞行安全,南航维修部门对飞机发动机进行了全面检查,共发现9枚硬币。在此次检查中,南航工作人员用到了奥林巴斯工业内窥镜iplex系列产品。在检测时,能准确观察到内部的状况,不与目标对象发生接触,不造成任何破坏或损伤,圆满完成检测任务。奥林巴斯内窥镜是目视检测专家的专业选择。注:文中部分文字来自新华社及凤凰网
  • “大飞机”工程将促进我国高端仪器仪表发展
    目前,ARJ21使用的机载设备和系统还主要依赖进口,因为我国国产航空电子系统还仅限于军用。”周济生12日说,由于军机的寿命只是民用飞机的十分之一,因此民机机载电子设备的标准与军机也不太一样,而且民机的机载设备都需要通过适航标准,以保证更大的安全性。 相关专家介绍,近年来,我国的电子工业已经取得了很大的进步,但从电子行业全局看,中国还是充当了一个组装加工厂的角色,利润非常薄。同时,大多数中国企业设备陈旧、工艺落后,新品开发能力不足等问题还制约着我国电子元器件产业的生存与发展。 因此,核心元器件基本上依赖进口。我国的电子行业始终处于低水平、高成本、小规模、分散经营的状况之中。技术含量低、搞配套的企业多,搞高科技成套设备的企业少;依赖于国外基础材料和设备进行简单再生产的企业多,具有自主知识产权出口创汇的企业少。 目前,中国一航旗下已经拥有一些生产机载设备的公司,不过也主要是与军机配套。相关民航业内专家指出,如果发展民机项目,市场需求可能会带动这些公司发展民机电子设备,而大飞机就为航空电子工业的“军转民”提供了契机。 另外,大飞机还需要大量的仪器|仪表仪表设备。而目前,国产仪器仪表由于产品可靠性较差,平均无故障工作时间要比外国产品低1~2个数量级,我国对仪器仪表产品市场需求总量的52.87%需要进口,中档产品以及许多关键零部件国外企业占了60%以上的市场份额,而大型、高精度的仪器仪表几乎全部依赖进口。 目前,我国航空体系内企业能生产一部分航空仪器仪表,大量的仪器仪表是靠航空体系外企业生产。 据了解,我国不是没有研制航空仪器仪表的能力,但由于仪器仪表属于高科技行业,研制活动需要大量资金而且风险高,而大飞机项目的开展,将为国内仪器仪表企业发展高端产品提供动力。
  • 烟气分析仪从飞机上掉落,会发生什么?
    p 这家公司把产品生产出来之后,居然摔着玩儿??/pp 一架飞机带着烟气分析仪爬升到100英尺的空中,然后把仪器甩出飞机,分析箱摔得稀碎,一片狼藉。你以为仪器也坏了?图样图森破,它居然开机正常运行了。向大神送上膝盖!/pp 这款神器究竟是啥?/pp ECOM烟气分析仪专注于燃烧节能控制、烟气排放检测,通过德国TUV认证(符合德国BlmSchV烟气法规),通过中国计量器具型式批准PA认证。烟气分析箱和手操器结合使用,移动手操器带无线数据传输,远程操作。大功率采样气泵带可视流量显示,高效帕尔帖冷却器及蠕动泵排放冷凝水,免维护的高速热敏打印机。传感器更换简单,大容量MMC数据存储卡,即插即用,在线测量时,测量数据实时采集并生成Excel。/pp 摔不坏的烟气分析仪,你值得拥有~/pscript src="https://p.bokecc.com/player?vid=49540E1A63CCF0949C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/scriptpbr//p
  • 多地检测从日归国人员核辐射 飞机超标可用水冲
    青岛检验检疫局对日本入境航班人员、行李及货物的放射性检测     用于对受辐射严重者进行检查的检测门     对受辐射严重者进行消毒的淋消床  核辐射检测程序要过两道关 专家称赴日归来不一定非要进行检测  广东检验检疫局表示,15日已启动对日本飞往广州白云机场的飞行器、旅客以及行李货物进行核辐射的监测。不过,截止记者发稿,有关部门并未检出核辐射超标情况。  从3月14日凌晨起,共有五名赴日归来的居民到广东省职业病防治院进行检测,结果均为正常。该院公布了“核辐射咨询预约热线”020-84186919。  人员 5名检测者为赴日游客记者  昨天凌晨,两名刚从日本回国的女士赶到省职业病防治院,要求进行放射性核素污染检测。据工作人员介绍,这两人近日曾到大阪等地游玩。听到东京核辐射超标的消息后,两人结伴前来进行检测。结果显示一切正常,让她俩长舒一口气。昨天下午,三名在日本灾区采访的本地媒体从业者也进行了放射性核素污染检测,也未发现受到放射性核素污染。  核能专家冯毅介绍,在离日之前如果飞机已进行了核辐射的监测,飞机又没有在污染区上空飞过,那么旅客抵达后不一定非要再进行检测。  食品 日本进口食品目前检测正常  对来自日本的食品,广东检验检疫局表示,将按照国家技术规范的强制性要求进行检验。对于日本发生核泄漏后会否污染日本进口食品,广东检验检疫局表示,一直以来,进出口食品中的放射性监测工作都受重视,自2009年以来共开展放射性监测200多批,监测食品包括食品添加剂、中药材、调味品、保健食品和乳制品等。监测没发现问题。  飞机 核辐射检查未超标 一旦超标用水冲  南航有关人士向记者证实,已对日前从日本飞回的南航飞机和机组人员进行放射性物质防辐射方面的检查,结果显示人机正常,市民无需对此恐慌。  如果发现飞机机体核辐射超标将如何处理?专家表示:“其实也很简单,因为可能残留的放射性物质已经很少,通过洗消的方式,也就是用水冲刷机体表面就可以。”  新闻链接  杭州机场开启便携式放射性检测仪  浙江出入境检验检疫局说,3月13日开始,他们开始使用便携式放射性检测仪,对来自日本的航班、船舶等内外进行监测。昨日,香港机场还启动旅客自愿核辐射检测。  台湾原子能委员会宣布3月15日起在岛内各大机场设置检测站。其中,台北桃园国际机场在机场第二航站楼(T2)发烧筛检站旁,加装“辐射检测门”。  揭秘  核辐射检测要过两道关  核辐射检测地点位于省职业病防治院大院一个单独的房间,受测者要过两道关。第一关即“门式伽马射线检测仪”,门框上装有四个探头,与一侧的伽马射线计数器相连接。据工作人员介绍,受测者要在检测门下站两秒钟。探头测得数据后,与计数器存储的基线值进行对比,如果超出基线值5%,就会发出警报,提示受测者“疑似受核污染或者带有放射源”,需要进入下一关。  第二关即“便携式表面污染仪”检测。表面污染仪底部装有探测窗,上面有数值显示屏。检测时,要把探测窗的保护盖打开,沿着受测者全身缓慢移动。“这个仪器可确定人体哪些部位受到核污染。”  “抗放射性浴波”可洗白白  确认受到核污染后,受测者可到检测室一旁的洗浴间进行彻底清洗。记者发现,浴室地板十分光滑,是采用特制的地板胶制成,便于拖洗清污。而浴室内放有特制“抗放射性特种浴波”,气味清香,外包装上显示成分为“椰子油脂肪醇酰胺、甘油、琥珀酸酯、特种洗消液”。考虑到核辐射事件中可能有重病号无法自行洗浴,该院还设置有淋浴床。
  • 晶泰科技荣获世界人工智能大会最高奖项SAIL大奖
    7月6-8日,2023世界人工智能大会(WAIC 2023)在上海举办。开幕式上,大会最高奖项“卓越人工智能引领者” SAIL奖揭开面纱。作为世界人工智能大会的最高奖项,SAIL 奖(卓越人工智能引领者奖)坚持“追求卓越、引领未来”理念,在全球范围发掘人工智能领域具有高度认可和美誉、具有提升人类福祉意义的项目。凭借在前沿科技领域的探索和实践,以及科学智能应用的先锋表现,晶泰科技智能化自动化药物研发平台获得SAIL大奖,与中国商飞上海飞机设计研究院三维超临界机翼流体仿真重器“东方.翼风”,华为云计算技术有限公司华为云天筹AI求解器,高通无线通信技术(中国)有限公司第二代骁龙8移动平台的人工智能引擎,以及张云蔚论文《机器学习结合阻抗谱技术预测锂电池老化》共享殊荣。SAIL诠释AI,AI改变未来。SAIL寓意丰富,“S”即“Superior”,代表了“超越”,表明了奖项在行业内的卓越引领地位;“A”即“Applicative”,代表了“赋能”,彰显了奖项注重人工智能技术对经济社会应用赋能的极高期许;“I”即“Innovative”,代表了“创新”,突显了奖项评选对项目理论与技术层面的创新要求;“L”即“Leading”,代表了“引领”,展现了奖项对标的是全球人工智能领域内最具引领性的开路先锋。晶泰科技智能化自动化药物研发平台让药物研发更智能,让生物创新触手可及晶泰科技开创了智能算法、自动化实验与专家经验相结合的智能化自动化药物研发平台(晶泰智药),包括小分子药物发现ID4Inno&trade 和抗体药物发现XupremAb&trade 两大特色技术平台,以量子物理、人工智能、云计算及大规模实验机器人集群等前沿技术与能力,助力药物研发走向“计算密集型”“自动化密集型”,让药物研发更智能,让生物创新触手可及。晶泰科技智能化自动化药物研发平台已服务众多跨国药企、国内知名药企和先锋Biotech企业,如辉瑞、礼来、正大天晴、长江生命科技等,参与创新药管线超180条。在全球首款获 FDA 批准上市的新冠小分子口服药 PAXLOVID 的研发过程中,晶泰科技团队与辉瑞科学家联手,仅用6周时间就确认了药物优势晶型,显著缩短研发周期,加速药物上市。近期,晶泰科技与礼来就某个未披露的创新靶点展开 AI 小分子新药发现合作,利用晶泰智药小分子药物发现平台 ID4Inno&trade 研发原创新药,填补未满足的临床用药需求,该合作预付款及里程碑总收益可达 2.5 亿美元。晶泰科技智能化自动化药物研发平台陆续获得新华社、人民网、光明日报、中新社、解放日报/上观新闻、澎湃新闻、界面新闻等媒体报道。人民网报道中新社报道解放日报/上观新闻报道澎湃新闻报道界面新闻报道
  • 厉害了,我的C919!蓝天梦圆,【欧波同】助力中国大飞机翱翔蓝天
    5月5日下午2点, 中国首款国际主流水准的干线客机C919在上海浦东国际机场首飞。在历经10年后,C919终于破茧化蝶,实现了国产客机领域的突破,中国人历经半世纪的航空梦终于实现。 从2007年大型飞机研制重大科技专项正式立项,到2015年C919飞机首架机在中国商飞总装制造中心总装下线,再到今天,国产大飞机即将从蓝图到在蓝天下翱翔首飞,历时10年。在此期间,科研人员针对先进的气动布局、结构材料和机载系统等,共规划了102项关键技术攻关。C919的总设计师吴光辉在接受媒体采访时曾表示,新材料的应用是C919的一大亮点。 “一代材料,一代飞机”,先进材料首次在国产民机大规模应用,第三代铝锂合金材料、先进复合材料在C919机体结构用量分别达到8.8%和12%。在对材料的研发与检测上,欧波同有限公司提供的蔡司材料及电子显微镜发挥了至关重要的作用,中国商飞理化实验中心里,用于C919研制实验的一些关键材料:例如碳纤维复合材料、有色金属材料(如钛合金、铝合金、镍合金)、黑色金属(如不锈钢)、标准件(如螺栓、铆钉)等均需在蔡司倒置显微镜Obserber Z1m的“法眼”下接受检查,只有组织结构符合要求的材料才能被允许用于C919的机身上面。 除了对C919的原材料保驾护航之外,在C919的一些关键部件研发上面欧波同提供的光学及电子显微镜更加的功不可没,为C919提供飞机首架风扇进气入口构件的供应商,使用蔡司金相显微镜和蔡司场发射电子显微镜仅用4个月的时间就先后攻克了钛合金大型薄壁件常见的应力开裂和型面变形等问题,保证了C919在2016年底顺利完成了点火试验。 据悉,C919“机壳”中铝合金材料约占材料总重量的70%。为了减轻自重、降低油耗,飞机的重量会精确到克,C919实现比B737、A320等同类机型轻5%~10%的目标,这得益于铝锂合金。除了铝锂合金,飞机上使用的复合材料主要是碳纤维增强树脂基复合材料,具有高耐腐蚀、质量轻等特点,但价格大约是常规铝合金材料的几十倍,所以在机体结构用量只占到了12%。能为国产大飞机“瘦身”及提升商用价值做出贡献,欧波同人深感荣幸。 雄关漫道真如铁,而今迈步从头越。对于C919来说,未来道阻且长。正式下线的C919距离量产和迈向全球市场还有较长的一段路要走,想要在国外乘坐国产的大飞机还要等上不短的一段时间。 但,它是一个标志。从此,中国的万里长空,现代喷气客机不再是波音和空客清一色的天下,中国人自己研发制造的喷气飞机终于叩开了天宫大门。 万众企盼,蓝天梦圆。中国大飞机进入创新发展的新阶段。欧波同向大飞机逐梦者们致敬!
  • 可视化音速风洞气流变化,FLIR T1K高清热像仪监控飞机试验过程!
    如果让你想象未来的飞机长什么样?你的脑海中会浮现出什么样的画面?肯定会有科幻电影中造型古怪的各种飞行器也许不久的将来这样的飞行器就会出现在天空中飞机的研发过程是一项严谨的工作今天小菲就来带大家瞧瞧FLIR热像仪是如何助力飞机研发过程!✦ 飞机研发中温控的重要性✦ 一家总部位于英国的空气动力学研究机构——飞机研究协会(ARA),致力于为世界主要商用飞机和国防制造商提供创新项目。它最近开始测试一种长期理论,随着各国迈向净零排放,该理论可能会使长途航班更有效率。ARA在测试过程中使用FLIR红外热像仪证明了其理论的正确性,这项研究将对提高未来飞机设计的飞行效率产生直接影响。✦ 使用热像仪可视化气流✦ ARA希望测试其混合层流控制理论,该理论提出,在飞机机翼前部创建多孔部分将控制气流的过渡点,以减少湍流的影响并提高燃料消耗。ARA运营着一个大型跨音速风洞,本质上是一个高速风洞,速度高达1.4马赫(1000英里/小时),用于测试飞机模型。由于空气在如此高的速度下会产生湍流,气流的过渡点变化不到1℃,因此需要非常精确的热测量。此前,它使用的是热膜测量仪,然而这些测量仪只能测量到温度下降,却看不见温度状况,而且它们是通过粘合会干扰机翼表面。幸好,FLIR高清红外热像仪使ARA能够在不影响空气动力学的情况下清晰观察气流的变化,它确保了在测试和识别过渡点时具有更高的准确性。为了实现这项技术并进行测试,ARA需要一个集成合作伙伴。它选择了Teledyne FLIR的英国集成商合作伙伴Thermal Vision Research,后者将FLIR T1K热像仪借给ARA进行研究。ARA已经在风洞中使用了两台FLIR A655C红外热像仪来测试温度变化,当有机会使用更先进的热像仪来开发测试,以查看结果有何不同时,这似乎是更完美的选择。ARA光学测量系统部的Neil Stokes说:“我们与Thermal Vision Research的Matthew Clavey的关系可以追溯到很久以前。我们一直在研究整个站点的热成像技术。我看过几家公司的演示,但很多都是基于经验和对特定分销商或供应商的信任。Matthew真的很乐于助人,所以他把热像仪借给我们尝试了一周。每当我们有问题时,他都会给出正确的技术答案”。✦ T1K热像仪:提升准确性✦ 在完成测试之前,ARA进行了试验,以确保将FLIR T1K热像仪安装在隧道中,可以远程控制。ARA团队需要在大约30米外控制热像仪,以便他们可以在计算机上实时检索图像,从而能够看到气流的变化。当隧道运行时,它会引起振动,可能导致热像仪失焦,因此能够实时查看图像意味着他们可以纠正任何类似的问题。使用FLIR T1K热像仪可在测试过程中提高精度,并提升识别过渡点的准确性。FLIR T1K高清红外热像仪FLIR T1K配有1024x768像素的非制冷红外探测器,其灵敏度是非制冷传感器行业标准的2倍,所生成的图像质量非常出众。搭配尖端技术——UltraMax高清图像增强技术和FLIR MSX多波段动态成像专利技术(专利号:201380073584.9),能生成最高达310万像素的明亮清晰的热图像。其配备的FLIR OSX红外镜头系统还具有连续自动对焦功能,即使从较远距离处也能获得良好的测量值,因此任何时候都能让您的检测更轻松、随心、便捷。FLIR T1K高清红外热像仪使ARA能够证明混合层流控制理论在安全和受控的环境中是正确的。它现在能够将安装在风洞中的T1K作为一个概念提供给客户,以改进机翼设计获得更好的空气动力学性能。FLIR T1K拥有专家为用户量身定制的创新功能与用户界面如此出色的高清红外热像仪在各行业的检修和研发过程中都能帮您精准看透其中的温度变化
  • 贝斯特科技亮相第十届商用飞机复合材料应用国际论坛
    2016年(第十届)商用飞机复合材料应用国际论坛于9月8-9日在中国商飞上海飞机设计研究院会议中心举行。本次论坛集中展示中国科技人员在商业大飞机复合材料领域前沿技术。论坛的亮点是突出商用飞机用复合材料结构的安全性和经济性,美国波音商用飞机公司,澳大利亚PTY 公司,意大利阿莱尼亚宇航公司等国际知名企业和机构的复合材料专家受邀出席并作大会报告。 贝斯特科技作为材料疲劳测试的专业品牌,携带动态疲劳试验机、热机械疲劳试验机、双轴疲劳试验系统等方面的最新技术进展与成果,积极的参与了此次盛会,吸引了众多参会者的眼球。贝斯特科技BISS产品不仅服务于航空材料,更是针对了不同应用领域: ? 金属和复合材料的应力 - 应变特性要求的设计,质量保证和认证的目的? 金属和复合材料在不同负载和环境条件下的耐久性、强度和断裂测试? 橡胶、聚合物和高分子材料制成的产品的动态性能和弹性性能测试? 悬架组件的性能和耐久性测试,如减震器、支柱,空气垫和静音托架? 铆接机身面板的残余裂纹疲劳和扩展寿命? 热电厂管道材料的蠕变疲劳和蠕变裂纹扩展性能? 组织工程、生物材料和再生医学领域的用户提供解决方案
  • “国之重器”C919首飞成功!朗铎科技为国产大飞机保驾护航!
    5月5日下午2点,中国首款国际主流水准的干线客机C919在上海浦东国际机场首飞,半个世纪的航空梦终于实现,国人沸腾,万众瞩目。C919从立项到研制成功历经10年, 2007年2月,国务院批复大型客机研制重大科技专项正式立项。2015年11月2日,C919首架机总装下线。2017年3月和4月,C919首架机已先后通过专家技术评审和放飞评审。5月,C919终于破茧化蝶,圆满首飞成功。C919大型客机,其中C是China的首字母,也是商飞英文缩写COMAC的首字母,第一个“9”的寓意是天长地久,“19”代表的是中国首型中型客机最大载客量为190座。C919中型客机是建设创新型国家的标志性工程,具有完全自主知识产权,新材料的首次大规模应用是C919的一大亮点,包括第三代铝锂合金材料、钛合金材料、先进复合材料等。来源:央视新闻来源:人民日报“一代材料,一代飞机”,新型飞机既要求合金材料具有高强度,又要高韧性,还要求抗疲劳、耐损伤、耐腐蚀,这是一个非常复杂的矛盾统一,要同时满足强度、韧度和耐腐蚀的要求,并让材料保持稳定,这就需要不断在合金材料的研发与检测上下苦工。合金材料的检测离不开现代的检测仪器,赛默飞世尔尼通手持式光谱仪是目前最先进的合金材料检测仪器,为C919大飞机生产和研发过程中的来料检测和质量控制层层把关。赛默飞世尔尼通XL系列手持合金分析仪具有小巧轻便、检测高效、结果精确、适应恶劣环境等特点,在合金材料鉴别 (PMI) 方面应用广泛。朗铎科技是赛默飞世尔尼通手持式光谱仪在合金/地矿行业的中国区总经销商,同时也是尼通中国区售后服务及技术支持唯一授权服务商,朗铎科技将与赛默飞携手,共同助力中国国产飞机质量检测事业,为国产大飞机保驾护航。
  • 如何解决飞机座舱盖/驾驶舱风挡玻璃的光畸变
    可脉检测(南京)有限公司实验手记 关键词: 抛光磨料:DePowder氧化铝抛光粉3μm、1μm、0.3μm 抛光织物:DuraCloth抛光布、MicroMet抛光布、ChemoCloth抛光布分别配合3μm、1μm、0.3μm的氧化铝抛光粉调制的抛光液 一、飞机座舱盖/驾驶舱风挡玻璃的材质 目前,飞机座舱盖/驾驶舱风挡玻璃的主流材料是两层丙烯酸酯类材料(PMMA)中间夹一层聚碳酸酯类材料(PC)的复合结构有机玻璃。 丙烯酸酯类材料的优点是质轻而比强度高,透光性好,抗环境作用能力突出。 丙烯酸脂类材料的缺点是抗冲击性和耐温性差。 聚碳酸酯类材料的优点刚好是韧性好,强度大,抗冲击,耐热。 聚碳酸酯类材料的缺点是加工工艺难度大,耐磨性较差,易溶于有机溶剂,价格昂贵。 所以,将聚碳酸酯类材料夹在丙烯酸酯类材料中间的三明治工艺成为高质量座舱盖/风挡玻璃的优化解决方案。两者的优势性能被充分利用起来。 二、飞机座舱盖/驾驶舱风挡玻璃加工过程中的工艺缺陷 无论是入厂的平板原料,还是成型后的弧形半成品,其两个表面层都有典型的工艺缺陷: &bull 包装物痕迹 &bull 局部表面凸凹导致光畸变 &bull 表面划伤 &bull 砂纸打磨痕迹 所有这些表面缺陷必须消除,尤其是光畸变。 同时,工厂还必须考虑为了消除这些缺陷的投入、成本和效率问题: &bull 不规则弧形凹凸正反面如何设计研磨抛光工艺? &bull 研磨和抛光选择什么磨具、磨料、承载磨料的织物? &bull 双面厚度各减薄0.2mm所需的研磨、抛光时间需要多久? &bull 达到验收标准时,抛光布的使用寿命/消耗量是多少? 三、飞机座舱盖/驾驶舱风挡玻璃取样 四、飞机座舱盖/驾驶舱风挡玻璃样品的研磨与抛光实验 1. 研磨阶段 用QMAXIS(可脉)CarbiPaper碳化硅金相砂纸+水冷却研磨。 起步的砂纸粒径视材料表面划痕深度、宽度、数量而定——严重的划痕,从G280 [P320]粒径(约46μm)起步;而表面仅仅留有包装印迹和轻微划痕,甚至可以选择G1200 [P4000]粒径(约5μm)的砂纸一道完成研磨。 中间步骤,同样是看材料的原始表面状态来选择步骤数,亦即选择CarbiPaper砂纸的粒径。 最后一步研磨则是G1200 [P4000]粒径(约5μm)的CarbiPaper砂纸。 研磨阶段,即使到最后一步,工件表面有明显的砂纸划痕。 2. 抛光阶段 分为三个抛光步骤——3μm、1μm、0.3μm 金相抛光布:依次为QMAXIS(可脉)的DuraCloth、MicroMet、ChemoCloth 抛光液:QMAXIS(可脉)的DePowder氧化铝抛光粉用蒸馏水调制成抛光液 2.1. 用QMAXIS(可脉)DuraCloth抛光布+DePowder 3μm氧化铝抛光粉调制的抛光液作为第一道抛光步骤,宏观上已经可以透明地看到后面的设备,但是显微观察时还有轻微划痕。 2.2. 用QMAXIS(可脉)MicroMet抛光布+DePowder 1μm氧化铝抛光粉调制的抛光液作为第二道抛光步骤,已经完全透明,无划痕。 2.3. 用QMAXIS(可脉)ChemoCloth抛光布+DePowder 0.3μm氧化铝抛光粉调制的抛光液作为最后一道抛光步骤,完全透明,可以透过样品清晰地阅读后面设备铭牌的小号字体。 五、飞机座舱盖/驾驶舱风挡玻璃样品抛光后的显微图像 以下显微照片使用的是Leica DVM 6拍摄。图1 3微米抛光后,50X 图2 3微米抛光后,500X 图3 1微米抛光后,50X 图4 1微米抛光后,500X 图5 0.3微米抛光后,50X 图6 0.3微米抛光后,500X 六、飞机座舱盖/驾驶舱风挡玻璃研磨抛光建议 1. 抛光工具 1.1. 弧形的非规则凸凹两面研磨和抛光,因光学检测质量为绝对性验收标准,所以,优选机器人抛光。 机器人既可以自动扫描工件,记忆轨迹,也可以通过示教器编程。自动化程度高,受外界影响因素少,因此,抛光的效果有保障。 1.2. 由于飞机座舱盖/驾驶舱风挡玻璃的产量/用量有限,如果用机器人抛光,投入——产出不理想,因此,以机械臂代替机器人更可取。 2. 抛光液 2.1. 液体的运输成本高,应该购买QMAXIS(可脉)的DePowder氧化铝抛光粉,现场调试,混配成合适浓度的液体使用。 2.2. 从实验结果证明,QMAXIS(可脉)的CarbiPaper砂纸,G1200 [P4000],约5μm,质量突出,已经取得了精磨的效果。因此可以跳过3μm的步骤,直接进入1μm的抛光步骤;同时,我们在显微图像中可以看到,1μm的DePowder氧化铝抛光粉质量确实出众,完全达到了抛光效果,消除了有机玻璃样品的光畸变,因此,最后的0.3μm步骤也可以取消。 3. 抛光布 3.1. 只保留1μm的抛光步骤,所以,只选择QMAXIS(可脉)的MicroMet抛光布即可。这是一款加工精湛的植绒布,配合3μm及以下的金刚石抛光液、各种氧化物抛光液,应用于所有材料的精抛。其100X的微观结构如下: 3.2. MicroMet抛光布的尺寸可以定制,以适应机器人或机械臂的工装夹具,可直接提供带自粘结构和适配器的成品。适应客户的各种使用需求和使用习惯。可脉检测(南京)有限公司电话:400-860-5168转4479
  • 商飞/成飞/航材院/中科院/中国飞机强度研究所等航空大咖确认赴蓉出席2021航空计量检测国际论坛
    Date:2021.11.11-122021航空计量检测国际论坛International Aviation Measurement & Test Summit 20212021年11月11-12日November 11-12, 2021四川,成都Chengdu, Sichuan, China联合主办单位:士研咨询士研民航研究院《航空工程进展》支持单位:成都市航空航天产业联盟士研民航研究院,《航空工程进展》联合成都市航空航天产业联盟将于2021年11月11-12日在成都召开2021航空计量检测国际论坛。关于本次航空计量检测国际论坛的参会事宜/商务合作/展台赞助/奖项申请,请联系组委会(86 21) 6095 7203,邢先生。【组委会】【已确认发言嘉宾】谭久彬,院士,中国工程院王建华,副总工程师兼ARJ21型号总工艺师,中国商飞上海飞机制造有限公司郭广平,副总工程师,中国航发北京航空材料研究院周维虎,研究员、博导、光电技术研发中心主任,中国科学院微电子所李正强,试验验证中心主任,中国商飞上海飞机设计研究院吴敬涛,副总师,中国飞机强度研究所吴英建,总工程师,航空工业上海航空测控技术研究所杨扬,无损检测技术高级工程师,研究员,航空工业集团质量工程技术专家,航空工业成都飞机工业(集团)有限责任公司张定华,航空宇航制造工程国家重点学科负责人,西北工业大学李国龙,科技质量部副部长兼计量校准实验室副主任 ,北京航空工业精密机械研究所更多发言嘉宾持续更新中.....【发言嘉宾简介】嘉宾简介PROFILE谭久彬院士中国工程院演讲主题:关于航空发动机智能装配测量的现状与发展趋势● 谭久彬,1955年生于哈尔滨,中国工程院院士,哈尔滨工业大学精密仪器工程研究院院长,兼任国家计量战略专家咨询委员会副主任,中国仪器仪表学会副理事长,国际测量与仪器委员会(ICMI)常务委员等。他一直致力于高端装备制造中的超精密测量技术与仪器工程研究;突破超精密测量仪器设计方法、超精密运动基准技术、甚多轴位置和运动精度快速超精密测量技术、高性能光学/超声显微测量技术、超精密快速驱动控制技术等系列核心技术;研制成功4种国家级计量标准装置和21种大型超精密测量仪器与超大型超精密专用测试仪器,形成系统的超精密测量技术体系,精度水平处于国际前列;解决了我国战略武器装备、航空发动机、高性能卫星相机等36个重大型号高端装备研制生产中的超精密测量难题,推动了该类装备性能的提升;建成国内第一个超精密仪器研发基地和产业化基地,推动了我国超精密仪器技术与产业的发展;以第一获奖人获国家技术发明奖一等奖1项、二等奖2项。嘉宾简介PROFILE王建华副总工程师兼ARJ21型号总工艺师中国商飞上海飞机制造有限公司演讲主题:飞机总装中的燃油密封测试技术● 1982年7月本科毕业于南京航空学院飞机制造专业,获学士学位。1982年8月份进入西安飞机制造公司工作,历任车间工艺员、转包生产项目经理、型架分厂技术厂长、技术装备总厂总工程师、西飞公司副总工艺师。1999年,被评聘为研究员级高级工程师。1993年4月至1996年3月在北京航空航天大学读工业外贸专业研究生,获硕士学位。2003年9月至2008年8月,在上海航空特种车辆有限责任公司任总工程师、总工艺师。2008年9月至今,中国商飞上海飞机制造有限公司工作,历任工装部部长、型号总工艺师、公司副总工程师兼ARJ21型号总工艺师。具有40多年的飞机制造事业生涯,从实践中积累了丰富的飞机整机制造经验,其中具有军机制造20年的经验,民机制造20年的经验,对飞机制造已经达到心领神会、融会贯通的境界,成为国内不可多得的知名的飞机制造方面的专家。嘉宾简介PROFILE郭广平副总工程师中国航发北京航空材料研究院演讲主题:完善航空无损检测标准体系,保障航空安全● 郭广平,博士,研究员。中国航发北京航空材料研究院副总工程师。中国机械工程学会无损检测分会副主任委员,全国无损检测标准化技术委员会副主任委员。工作领域包括航空材料与结构的无损检测、航空材料力学性能测试与表征等,围绕航空用精密复杂铸件、复合材料制件等对象,在超声C扫描、激光散斑、红外热像、工业CT、中子照相等无损检测技术方面均有较深入研究工作。机械工业出版社《无损检测手册》(第二版,2012)副主编,《无损检测》、《材料工程》和《实验力学》等杂志编委。发表学术论文60余篇,获得集团及省部级科技奖励6项。嘉宾简介PROFILE周维虎研究员、博导、光电技术研发中心主任中国科学院微电子所演讲主题:精密测量仪器及服务助力先进飞机研制● 周维虎,中国科学院微电子研究所,光电中心主任,研究员,博士生导师。1983年本科毕业于合肥工业大学精密仪器系;2000年于合肥工业大学精密仪器系获工学博士学位;2001年-2003年,在美国Wisconsin- Milwaukee大学做博士后,2003年-2004年美国Oakland 大学做博士后,2001年-2004年担任美国Automated Precision Inc.(Maryland,USA)公司高级研究员。主持完成50余项课题研究,获得省部级科技奖励7项,发表论文150余篇,申请专利40余项,编写教材1部,起草国家计量检定规程和规范4部。主要研究方向为光电精密测量技术与仪器、集成电路光学检测技术与装备、飞秒激光测量技术、大尺寸几何量计量测试技术、先进制造激光在线测量等。近年来获得国务院特殊津贴、中国机械工业科学技术发明特等奖、中科院朱李月华优秀教师奖等。目前担任科技部重大仪器专项总体组专家、科技部制造基础与关件部件专项总体组专家、装备发展部强基工程指南编写组专家、全国光电测量标准化技术委员会副主任委员、中国计量测试学会计量仪器专业委员会副主任委员、中国仪器仪表学会光谱仪器专业委员会副主任委员。华中科技大学等十余所高校兼职教授和博士生导师,《Optical Engineering》等十余份国外期刊审稿人,多次在国际会议做特邀报告,担任国际会议分会场主席。嘉宾简介PROFILE李正强试验验证中心主任中国商飞上海飞机设计研究院演讲主题:民用飞机地面试验测试技术发展● 2006年西北工业大学与柏林工业大学联合培养博士毕业,专业研究方向为飞行器控制工程和系统工程,其后进入西北工业大学博士后工作站,主要研究方向是综合技术与控制工程;2013年进入民用飞机模拟飞行国家重点实验室,主要从事国家重点实验室建设工作;2018年任职上海飞机设计研究科技发展部部长,现担任上海飞机设计研究院试验验证中心主任。嘉宾简介PROFILE吴敬涛副总师中国飞机强度研究所演讲主题:航空结构强度试验的发展及新模式● 吴敬涛,高级工程师,航空工业强度研究所综合强度与气候适应性专业副总师,飞机气候环境适应性研究室主任。他带领团队攻克了全机气候环境实验室设计建设和气候环境试验技术的多项难题,凝练20余项国内首创关键技术。建立了全机气候试验质量管理体系和气候试验标准体系,并在两型飞机的气候试验中得到应用验证,填补了我国整机实验室气候环境试验领域的空白。先后主持和参与民机专项科研、两机专项、航空科学基金、集团创新基金、空装专用技术等多项研究课题,攻克了大尺寸多环境因素气流组织分析、内外场环境的等效性分析等关键技术。发表学术论文20余篇,参与编写专著3本,申请国家发明专利10余项。先后获得国防科技进步奖二等奖2项、中航工业集团科学技术进步奖多项。荣获航空工业研究院“新锐青年”、陕西国防科技工业“十大创新标兵”等荣誉称号。嘉宾简介PROFILE杨扬无损检测技术高级工程师,研究员,航空工业集团质量工程技术专家航空工业成都飞机工业(集团)有限责任公司演讲主题:无损检测新技术在航空制造领域中的应用及展望● 杨扬,成都飞机工业(集团)有限责任公司无损检测技术高级工程师师,研究员,航空工业集团质量工程技术专家,中国航空材料工程分会委员,中国材料与试验团体标准委员会委员,全国无损检测综合技术标准委员会委员,航空/航发无损检测人员资格鉴定委员会委员,无损检测RT/CT/DR3级,主编/参编多项国标、行标及集团标准。嘉宾简介PROFILE张定华航空宇航制造工程国家重点学科负责人西北工业大学演讲主题:涡轮叶片无损检测与质量评估精铸全流程● 张定华,男,汉族,生于1958年11月,四川成都人,教授,博士生导师,首批“新世纪百千万人才工程国家级人选,陕西省三秦学者,西北工业大学航空宇航制造工程国家重点学科负责人。现任航空发动机及燃气轮机重大科技专项基础研究委员会制造工艺专业组副组长,中国航空发动机集团公司科技委委员,西安三航动力科技有限公司董事长。工作经历:1981年获得西北工业大学工学学士学位,1984年获得西北工业大学工学硕士学位,1989年毕业于西北工业大学航空宇航制造工程系,获航空宇航制造工程博士学位,1991年由讲师破格晋升教授,1996-1999年先后在美国Cornell大学和Rochester大学做高级访问学者,2001年在法国国立理工大学做访问学者。2000-2002年担任西北工业大学飞行器制造工程系系主任,2000-2019年担任现代设计与集成制造技术教育部重点实验室主任。2002-2011年任西北工业大学机电学院院长。【会议议程】1.11月11日 上午航空计量检测技术标准和应用发展2.11月11日 下午计量检测赋能飞机研发设计3.11月12日计量检测助力飞机制造维修【关键议题】计量测试技术在航空制造业的应用和发展方向完善航空无损检测标准体系,保障航空安全精密测量仪器及服务助力先进飞机研制未来飞机设计测试系统及技术航空发动机研制过程中的若干计量测试问题航空机载设备测试及先进技术微小几何量检测技术及在飞机制造中的应用发展飞机装配数字化测量系统的若干问题航空测试仿真赋能飞机制造创新飞机复合材料修理超声相控阵无损检测技术研究解决航空制造瓶颈问题,发力先进航空检测实验室建设
  • 最轻陶瓷吸波材料现身 可为隐形飞机减负
    p style="text-indent: 2em "对电磁有吸收能力的吸波材料在防止电磁污染、电磁反射等方面有重要作用。记者14日获悉,哈尔滨工业大学(威海)张涛教授研究团队近期发现一种轻质、耐高温吸波新材料,其密度仅为每立方厘米15毫克,是已知陶瓷材料中最轻的。该研究发表在《碳材料》期刊上。/pp style="text-indent: 2em "据该成果的第一作者、哈尔滨工业大学(威海)材料科学与工程学院张涛教授介绍,这种新吸波材料可以大大为飞行器、船舰减负,“以美军U-2飞机为例,其吸波剂为羰基铁粉,占到涂层重量的50%以上。如果将此次发现的新材料用于隐身和屏蔽,其占涂层重量的比例将降至10%以下。”/pp style="text-indent: 2em "这种材料是通过先驱体分子设计合成的六方BCN三元化合物陶瓷,独特的微纳结构和成分可设计性使其在不同电磁波段(S、K等波段)具有优异的吸波性能。其吸波频段具有可调节特性。除此之外,这种具有微纳孔结构的三元化合物材料具有超疏水特性,不需借助任何外形设计即可漂浮在水面上。/pp style="text-indent: 2em "这种新型三元材料可以极好地满足现代吸波材料“薄、轻、宽、强”的要求,其发现对新一代耐高温、全天候、超轻吸波材料的发展和应用具有重要指导价值。未来,它将被用作高马赫数隐身飞行器的涂层材料、高压输变站和大功率服务器的涂层材料等,防止电磁污染和信号干扰。/p
  • "地沟油"让飞机上了天 而且飞跃了太平洋
    p  22日凌晨,加注了我国自主研发生物航空煤油的一架航班,在美国芝加哥平稳降落。让人意外的是,这架航班加注的生物航煤是以餐饮废油,也就是我们所说的地沟油为原料的!/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201711/noimg/680ede32-056c-4fb3-9f9f-b43a32cda199.jpg" title="图1.jpg"//pp style="text-align: center "  我国生物航煤首次跨洋商业载客飞行/pp  这是我国生物航煤首次跨洋商业载客飞行。/pp  加注了中国石化1号生物航煤的海南航空787客机,于北京时间21日14:15从首都机场起飞。搭载了186名乘客和15名机组人员,经过11小时41分钟,于22日凌晨北京时间2:11,平稳降落在美国芝加哥奥黑尔国际机场。/pp  机长 孙剑锋:/pp  整个飞行过程非常平稳顺利。最大飞行高度已达到41000英尺。发动机状态良好。燃油状态良好。完全达到了这次验证飞行的目。/pp  能有效减少碳排放量/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201711/noimg/8389fde0-db7c-4564-accc-99de3e7733ee.jpg" title="图2.jpg"//pp  生物航空煤油以可再生资源为原料,主要包括椰子油、棕榈油等,甚至包括动物脂肪、餐桌上的废弃油脂,也就是我们常说的“地沟油”。/pp  此次用于跨洋商业载客飞行的中石化1号生物航煤,就是以餐饮废油为原料,并以15:85比例与常规航煤调合而成的。/pp  使用生物航煤,可以使飞机在保证原先飞行安全和效率下,有效减少碳排放量。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201711/noimg/d0e42741-e0d3-4f6a-865a-67a2c0fd8468.jpg" title="图3.jpg"//pp  减排大户:相当于一年植树3亿棵/pp  统计显示,1吨传统航煤燃烧后将排放3.2吨二氧化碳,我国目前的航煤消费量约3000万吨,如全部以生物航煤替代,每吨生物航煤至少减排30%来计算,一年可减排约3300万吨二氧化碳,相当于植树近3亿棵、近2000万辆经济型轿车停开一年。/pp  民航局发展计划司副司长吉原介绍,民航要想在生产不断扩大的同时,又能达到减排的目标的话,生物燃油是一个非常有效的手段。/pp  “地沟油” 突破航空业发展瓶颈/pp  在2014联合国气候峰会上,中国承诺在2020年碳减排40%-45%,其中民航业是减排的一个重点目标。/pp  民航局发展计划司副司长 吉原:/pp  国际民航组织现在的目标是,2020年以后碳中性增长。即2020年以后,虽然生产量还在增长,但是碳排放不再增长。所以说哪个国家发展速度快,哪个国家的压力必然就大。/pp  生物燃料排放的二氧化碳可以被植物吸收,以此循环,二氧化碳排放可以减少35%以上,甚至超过50%。同时,还可以降低地沟油流向餐桌的可能性。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201711/noimg/b0a184bf-8660-4a98-8173-106f2960bc3a.jpg" title="图4.jpg"//pp  全球仅四个国家拥有这项技术/pp  我国是从2006年开始立项研制生物航煤,目前,已经成为继美国、法国、芬兰之后第四个拥有生物航煤自主研发生产技术的国家。/pp  2011年,中国石化镇海炼化在其生产基地建成了亚洲第一套生物航煤工业示范装置,每年生产生物航煤的能力是10万吨,足够北京飞纽约200-300次。/p
  • 有我护航 自由飞翔 | 奥林巴斯携工业内窥镜重磅亮相第11届民用飞机工业论坛
    每一次愉快飞行的旅程背后都伴随着质检员无数次的安全监测高效排障 助力飞机平稳安全地翱翔蓝天是民航的职责 也是奥林巴斯的初心民航工业的发展离不开科技的支撑此次奥林巴斯携多款精密高效的工业内窥镜亮相第11届民用飞机工业国际论坛以先进科技及优越产品赢得了在场的专业人士和航空爱好者的青睐跟着小奥一起探秘CAIIF见识更多民航工业黑科技自2005年起,中国民用航空运输总量已连续多年位列世界第二,这也意味着中国航空产业正迎来大发展的历史良机。为推动民用飞机工业快速发展,以创新科技为产业赋能,第11届民用飞机工业国际论坛(CAIIF)于5月20日至21日在中国辽宁省沈阳市举行。奥林巴斯携三款工业内窥镜IPLEX NX、IPLEX GX/GT和IPLEX G Lite亮相本届CAIIF,产品的优越性能与广泛的适用性吸引了在场的专业人士和航空爱好者的目光。(第11届民用飞机工业国际论坛开幕)在航空工业中,为保障飞行安全、降低运维成本、提升检修效率,飞机的无损检测是不可或缺的重要手段。工业视频内窥镜作为最直观的无损检测工具,广泛应用于飞机涡轮、叶片、发动机、焊缝表面、燃烧腔体等部位的定期检查。随着民航工业的快速发展,业内对工业内窥镜的要求越来越高,因此在工业内窥镜领域拥有先进技术与产品的奥林巴斯备受关注。在本届CAIIF现场,奥林巴斯重点展出了其工业内窥镜的旗舰产品——IPLEX NX视频内窥镜。(IPLEX NX视频内窥镜)这是一台便携的一体式设备,拥有高清触摸屏显示器和明亮先进的二极管Laser Diode光源,具备超广角立体测量功能与全面升级的光学系统和算法。即使在昏暗光线下或反射强烈的区域,它都可以将清晰、鲜明的图像传送到8.4英寸的触摸屏上显示,便于检测广阔区域中细微的缺陷。得益于自身可更换的插入管单元和TrueFeel插入管准确导向设计,IPLEX NX实现了激光3D阵列扫描测量,可以立即确认被测量物体,并立体显示检测物的整个形貌。同时,立体显示的检测物可以在触控屏上放大缩小或旋转,便于在3D形貌上准确确定缺陷的位置与状态。另外,它在任何的测量区域上都能设定参考线,可提升深度测量的效率。同样令人惊喜的是IPLEX NX独特的多点物距测量功能,能实时显示从内窥镜前端到检查表面上多个点之间的距离,在提供表面信息的同时不会暂停或中断检查,从而保障检测准确有效。另外,它的触摸屏是可分离式设计,可从主机上轻松卸下放到便于操作的位置,能有效减少操作人员的工作强度。IPLEX NX选配的便携遥控手柄,将检测设备的手持式分量减少至0.2公斤(0.4磅),可以有效减少手腕疲劳,便于快速清除外来物碎片。不仅如此,IPLEX NX自带多种内置机械手,可帮助操作者在不同场景下夹取异物。在此次CAIIF上,奥林巴斯一同展出的IPLEX GX/GT与IPLEX G Lite,也是广受市场欢迎的IPLEX系列工业视频内窥镜。(IPLEX GX/GT视频内窥镜)IPLEX GX/GT具备高性能成像能力,拥有亮度高、帧率快的特点,在录制移动对象时,可轻松获得无拖影无锯齿边缘的清晰视频。它配备的可更换插入管,最长可达10米,并且其光源也能在白光、红外线光、黑光之间自由切换。IPLEX GX/GT也是一台全电动导向控制的工业内窥镜,在移动范围有限的环境中,操作者可利用其8英寸触摸屏进行检测操作,无需握持控制手柄。同时,它可以通过无线适配器进行实时视频流传输,便于远程控制。另外,它符合包括IP65和MIL-STD*1等标准在内的严格要求,即使在恶劣环境也能够进行准确、高效的检测。(IPLEX G Lite工业视频内窥镜)IPLEX G Lite工业视频内窥镜小巧轻便,重量仅为1.15kg左右。TrueFeel 导向关节设计,让IPLEX G Lite的导向操纵杆更灵敏,轻触即可获得响应。操作人员可以通过灵敏的4.3英寸高清触摸屏,或通过快速访问热键,灵活操作工业内窥镜所有功能。同样,它具备无线传输功能,可以发送实时的检测图像到智能手机或者平板电脑,便于远程视频检测。(奥林巴斯展台前工作人员进行讲解)百年光学企业奥林巴斯,将光学技术积累充分应用于工业内窥镜的研发中,持续为民用航空工业提供精密、专业的产品与解决方案,不断以先进的产品与优质的服务助力中国航空工业高质量发展。- END -
  • 为飞机发动机检查身体的“医生”——记珠海摩天宇无损检测工程师郭平
    p style="text-indent: 2em "相信大家在乘坐飞机出行时最不愿意听到的是:飞机因机械故障无法按时起飞或需要返航!发动机是飞机的“心脏”,在飞机运行中起着至关重要的作用,因此,发动机零部件的维修检测也就尤为重要。珠海摩天宇公司无损检测工程师郭平就是一名为飞机发动机进行“身体检查”的医生。/pp style="text-indent: 2em "被优美的环境吸引而来/pp style="text-indent: 2em "2002年底,38岁的郭平被珠海优美的城市环境吸引从西安来到珠海,“第一眼就被珠海整洁的街道、清新的空气和海滨城市的特有风貌所吸引”。加入珠海摩天宇工作后,郭平负责航空发动机零部件维修的清洗和无损检测专业工作。/pp style="text-indent: 2em "“什么是无损检测?”刚上大学时,专业老师第一课就把这个问题抛向郭平,“当时我回答不知道,老师说等你上完4年大学就知道了。”/pp style="text-indent: 2em "“类似于到医院检查身体,我们的工作通过各种检测设备和方法对航空发动机零部件进行检测,为发动机维修提供检测报告。”郭平解释说。/pp style="text-indent: 2em "把大事做细把小事做透/pp style="text-indent: 2em "作为一名车间工程师,郭平经常要身兼数职:不仅承担车间多种型号发动机零部件清洗工卡的编制、修订及更新任务,还负责清洗车间及无损检测车间的技术文件的编制、修订及清洗车间和无损检测生产现场技术问题的处理工作。/pp style="text-indent: 2em "在摩天宇公司工作的16年中,郭平结合生产实际先后主持、参与、研发了多项创新项目,都应用到生产实际中并发挥着作用。其中《发动机维修荧光渗透检验中的静电喷涂工艺》项目获得了国家实用新型专利,该项目彻底解决了带有内腔类零件在进行荧光渗透检验时内表面目视可达性问题,使公司维修水平上有一个质的飞跃,提升了核心竞争力。/pp style="text-indent: 2em "“在工作中,我要求自己把大事做细,把小事做透,因为无损检测工作牵涉航空安全问题,我们一点不能松懈。”郭平说,近期美国发生了一起飞机发动机事故,引起整个民航界的高度关注,为吸取事故教训,公司对航空发动机检测维修工艺规范进行改进,严格执行每一个细节的检测,特别是对风扇叶片的检测。/pp style="text-indent: 2em "在工作中体现自身价值/pp style="text-indent: 2em "当今社会发展日新月异,新技术、新工艺层出不穷,航空发动机作为现代高科技工业的典型代表,其制造及维修工艺也在不断发展。/pp style="text-indent: 2em "郭平曾先后3次前往德国摩天宇总部参加培训。“我第一次和第三次走进MTU公司厂房相隔10年,看到一台台高精尖的维修检测设备时,我非常震撼,内心受到的冲击非常大,德国的培训使我受益终生。”在德国培训期间,郭平争取到基层一线,学习掌握每一个细节,每一个具体零部件的检测方法,不断充实自己,把德国先进的、好的东西学成带回国,并运作到自己的日常工作当中。/pp style="text-indent: 2em "2015年,珠海摩天宇公司引进了一台新的检测设备,在运行中发生故障,联系厂家修理需要3个月。为了不耽误生产,郭平查找了相关操作说明书,经过钻研,最终找到了故障根源,同时大胆对该系统的某些部件的设计进行了更新改造,当他们把检查及改造结果告知厂家时,得到了满意答复,同时,也满足了公司生产要求。/pp style="text-indent: 2em "“作为一名服务于基层的技术人员,只有不断刻苦钻研,才能不断地提高自己,工作中也更能体现出我们的价值。”工作中,郭平常常与同事分享一些发动机零部件检测过程中出现的各种缺陷的形貌和特征,也时常和同事们一起探索现场遇到的一些技术问题,以此促进车间乃至整个公司的技术水平提升。/pp style="text-indent: 2em "推动珠海无损检测事业/pp style="text-indent: 2em "从大学毕业开始算起,郭平从事无损检测工作已有30年,先后从事过国产发动机及进口民用航空发动机的无损检测工作,获得国内外无损检测人员的资格证书。2010年,郭平被聘为中国民航无损检测委员会培训教员。“其实,作为检测人员,很多经验都是从一线工作中总结而来的,作为培训教员,我比较喜欢和大家分享自己在工作实践中碰到的非典型故障案例,这样可以帮助大家更好地判断那些非典型故障。”郭平说。/pp style="text-indent: 2em "其实,无损检测的应用非常广泛,航空、航海、桥梁、汽车等领域需要无损检测专业。2016年10月,由珠海各企业无损检测技术人员组织成立的珠海市无损检测学会正式成立,郭平兼任理事长。他希望通过学会加强珠海各行业的无损检测技术人员之间的技术分享、交流合作,从而推动珠海无损检测事业的整体水平提升,为珠海航空产业发展提供有力的技术支持。/p
  • 科普:拍一次X光片的辐射 跟坐一次飞机差不多
    11月8日是国际放射日,1895年11月8日,伦琴发现了“X射线”,这一神奇的射线使人类对疾病诊断、治疗模式发生了改变。为了纪念伦琴,而将这天定为“国际放射日”。但是关于X线、CT等放射性检查,很多人却因其“辐射”望而却步。东南大学附属中大医院放射科主任居胜红主任医师表示,放射检查其实被大家“妖魔化”了。  疑 问  放射科的三类检查 都有辐射?  居胜红介绍说,放射科检查主要包括三大类:X线、CT、核磁(MR)。平时老百姓常见的X线、钼靶是属于X线的,CT主要的检查项目有CT平扫、 CT增强、CT 介入,MR则主要有MR平扫、MR增强、MR造影。其中X线和CT是有辐射的,CT的辐射剂量大于X线,但是核磁检查是没有辐射的。  一次放射性检查 辐射有多大?  居胜红具体介绍说,因为不同种类的辐射能量各不相同,而且不同身体组织吸收辐射的量也各不相同,为了便于量化,人们就定义了一个叫做希沃特(Sv) 的单位。医学上一般采用毫西弗(mSv)来衡量危害性,1Sv = 1000mSv。一般来说,一个人正常生活的话,一年接受的辐射量在3个毫西弗左右。而一次低剂量螺旋CT检查的辐射量才0.1毫西弗。由于设备的日益先进,检查所用时间更短,所受的辐射也就越来越小。  “即使是比较复杂的冠脉CT造影,由于先进的设备,已不是之前回顾性的扫描,辐射量已下降82%,每次检查的辐射也控制在1毫西弗左右。而拍一张X光片的辐射就更小,跟坐一次飞机差不多,只有零点零零几个毫西弗。”这样的辐射剂量,安全性是可以得到保障的。  误区 1、孕妇做放射检查致胎儿畸形?  对于放射性检查,很多准妈妈都是敬而远之的,总是担忧会不会造成胎儿的畸形、智障甚至流产。特别是有些准妈妈,在不知道怀孕的情况,拍了次胸片后,担心会对孩子造成影响,就将孩子流掉。对于这些大家“约定俗成”的看法,居胜红要为放射检查“讨个说法”。  专家介绍道,对于孕妇在危及生命安全,必须要做CT等检查时,医生才建议进行检查。医疗上也还会考虑对特殊人群特殊照顾,孕妇和儿童应当尽可能减少辐射。对孕妇儿童群体需要暴露于有射线的检查时,会在腹部等敏感部位放置铅板等防护措施。另外,目前先进的仪器也有自动降低辐照量的功能。  2、新生儿不适合做放射性检查?  除了孕妇,对于孩子是否能进行放射性检查,很多家长也是存在一定的顾虑,总觉得放射性检查的辐射会影响孩子的生长发育。  居胜红解释道,一些病还必须用放射性检查。如小儿支气管异物,X光片是检查该病的唯一方法,如果不做,医生则不知道患儿支气管里有异物,从消炎角度给患儿输液,无法解决问题。对于比较疑难的疾病,医生是建议进行CT检查的,比如先天性心脏病,如果是大血管畸形,只有通过CTA 检查才能发现。  3、片子拍多了 癌症几率增加?  “拍一次胸片,就有几率患上癌症”。很多人以为进了放射科就像是进了一个遍布辐射的“危险区”。居胜红指出,这属于一种过于保守或过于敏感的认识。虽然X线对生物细胞有一定的杀伤破坏作用,但由于在检查室中的玻璃及墙体都是隔离辐射的,并且一定时间段内,也有专业人士监测室内的辐射量,其辐射量微乎其微。  提醒  孕妇和儿童  需格外关注  居胜红特别强调,当疾病危及生命时,只有通过放射性检查来判断疾病时,检查的益处远远大于微乎其微的辐射所造成的影响。  “当然,如果是已经怀孕,准备要进行X线等相关检查时,务必要告诉放射科检查技师。”居胜红特别提醒。儿童及育龄女性等特殊人群也要特别注意保护。专家指出,育龄妇女进行腹部或骨盆部位检查前,应首先问明是否怀孕,严格控制对孕妇的医疗照射,特别是在孕早期时,非急需不应实施腹部尤其是骨盆部位的医疗照射。胎龄越小,对辐射就越敏感,可能造成的影响就会越大。而且,孕妇不适合做增强CT,因为造影剂可能会渗透到胎盘,不利于胎儿。同样儿童也不适合进行使用造影剂的增强CT和磁共振的检查。
  • 第66期中国科技论坛:人工智能与医疗健康技术前沿论坛会议议程
    p  人工智能技术应用于医疗健康一直被认为是人工智能发展的重要方向和应用领域。由中国科学技术协会主办,中国仪器仪表学会承办,人工智能产业技术创新战略联盟、博奥生物集团有限公司、中国仪器仪表学会医疗仪器分会、中关村医疗器械产业技术创新联盟、生物谷协办的“第66期中国科技论坛——人工智能与医疗健康技术前沿论坛”将聚焦医学影像智能判读、辅助诊断、病例检索、手术机器人、康复智能设备相关技术发展。/pp  现将论坛有关事项通知如下:/ppstrong  一、组织机构/strong/pp  大会主席:程 京 中国工程院院士 清华大学医学院教授/pp  大会组织委员会(产、学、研、政领域召集人):/pp  李仁涵 上海大学战略研究院院长、中国工程院三局原局长/pp  张建伟 德国汉堡科学院院士、多模态技术研究所所长/pp  康熙雄 北京天坛医院主任、教授/pp  崔彤哲 海纳医信(北京)软件科技有限责任公司CEO/ppstrong  二、大会秘书长:/strong/pp  张 莉、黄铁军、王 东/ppstrong  三、会议安排:/strong/pp style="TEXT-ALIGN: center"strong主会场/strong/ppstrong  时间:2017年11月24日8:50-11:50/strong/ppstrong  地 点:北京中国科技会堂B105/strong/ppstrong  论坛主席:程 京院士/strong/ppstrong  论坛主持:李仁涵院长 /strong/pp style="TEXT-ALIGN: center"img title="QQ截图20171107145355.jpg" src="http://img1.17img.cn/17img/images/201711/noimg/a8834ca3-267a-4de4-a36c-be86d26cf9b9.jpg"//pp style="TEXT-ALIGN: center"  strong第一分会场:人工智能医学应用前沿/strong/ppstrong  时间:2017年11月24日分会场13:30-18:00/strong/ppstrong  地点:北京中国科技会堂B105/strong/ppstrong  论坛主持:康熙雄、廖洪恩/strong/ptable uetable="null" width="600" border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td colspan="3" width="661"p style="TEXT-ALIGN: center"strong会议议程/strongstrong /strong/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"strong时间/strongstrong /strong/p/tdtd width="208"p style="TEXT-ALIGN: center"strong报告题目/strongstrong /strong/p/tdtd width="350"p style="TEXT-ALIGN: center"strong报告专家/strongstrong /strong/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"strong13:00-13:30/strong/p/tdtd colspan="2" width="558"p style="TEXT-ALIGN: center"strong签到/strongstrong /strong/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"13:30-13:55/p/tdtd width="208"p待定/p/tdtd width="350"p彭绍亮(国家超级计算机长沙中心/国防科技大学教授、博导)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"13:55-14:20/p/tdtd width="208"p《IBM认知计算在医疗领域里的应用》/p/tdtd width="350"p孙吉让(IBM大中华区WATSON HEALTH 高级专家)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"14:20-14:45/p/tdtd width="208"p《& ldquo 未来医学影像& rdquo ——助力智能精准诊疗》/p/tdtd width="350"p廖洪恩(清华大学医学院教授)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"14:45-15:10/p/tdtd width="208"p《中国医疗人工智能产业图谱》/p/tdtd width="350"p杨红飞(火石创造创始人& CEO)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"strong15:10-15:20/strong/p/tdtd colspan="2" width="558"p style="TEXT-ALIGN: center"strong中场休息/strongstrong /strong/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"15:20-15:45/p/tdtd width="208"p《人工智能与诊断学》/p/tdtd width="350"p style="TEXT-ALIGN: left"康熙雄(北京天坛医院主任、教授)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"15:45-16:10/p/tdtd width="208"p《服务机器人行业发展的标准化需求》/p/tdtd width="350"p王大宁(国家特种机器人标准化工作组副主任委员、国家机器人标准化总体组副组长)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"16:10-16:35/p/tdtd width="208"p《基于机器人技术的医工结合研究》/p/tdtd width="350"p谢少荣(上海大学教授)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"16:35-17:00/p/tdtd width="208"p《慢性病的医疗管理——人工智能应用的重要方向》/p/tdtd width="350"p曹志新(北京朝阳医院副主任医师)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"17:00-17:25/p/tdtd width="208"p《手术机器人》/p/tdtd width="350"p张送根(北京天智航医疗科技股份有限公司董事长)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"strong17:25-18:00/strong/p/tdtd colspan="2" width="558"p style="TEXT-ALIGN: center"strong总结讨论/strongstrong /strong/p/td/tr/tbody/tablep style="TEXT-ALIGN: center"strong第二分会场:人工智能影像分析与新技术/strong/ppstrong  时间:2017年11月24日分会场13:30-17:30/strong/ppstrong  地点:北京中国科技会堂B106/strong/ppstrong  论坛主持:黄铁军、崔彤哲/strong/ptable uetable="null" width="600" border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td colspan="3" width="661"p style="TEXT-ALIGN: center"strong会议议程/strongstrong /strong/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"strong时间/strongstrong /strong/p/tdtd width="208"p style="TEXT-ALIGN: center"strong报告题目/strongstrong /strong/p/tdtd width="350"p style="TEXT-ALIGN: center"strong报告专家/strongstrong /strong/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"strong13:00-13:30/strong/p/tdtd colspan="2" width="558"p style="TEXT-ALIGN: center"strong签到/strongstrong /strong/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"13:30-13:55/p/tdtd width="208"p待定/p/tdtd width="350"p彭绍亮(国家超级计算机长沙中心/国防科技大学教授、博导)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"13:55-14:20/p/tdtd width="208"p《IBM认知计算在医疗领域里的应用》/p/tdtd width="350"p孙吉让(IBM大中华区WATSON HEALTH 高级专家)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"14:20-14:45/p/tdtd width="208"p《& ldquo 未来医学影像& rdquo ——助力智能精准诊疗》/p/tdtd width="350"p廖洪恩(清华大学医学院教授)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"14:45-15:10/p/tdtd width="208"p《中国医疗人工智能产业图谱》/p/tdtd width="350"p杨红飞(火石创造创始人& CEO)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"strong15:10-15:20/strong/p/tdtd colspan="2" width="558"p style="TEXT-ALIGN: center"strong中场休息/strongstrong /strong/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"15:20-15:45/p/tdtd width="208"p《人工智能与诊断学》/p/tdtd width="350"p style="TEXT-ALIGN: left"康熙雄(北京天坛医院主任、教授)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"15:45-16:10/p/tdtd width="208"p《服务机器人行业发展的标准化需求》/p/tdtd width="350"p王大宁(国家特种机器人标准化工作组副主任委员、国家机器人标准化总体组副组长)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"16:10-16:35/p/tdtd width="208"p《基于机器人技术的医工结合研究》/p/tdtd width="350"p谢少荣(上海大学教授)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"16:35-17:00/p/tdtd width="208"p《慢性病的医疗管理——人工智能应用的重要方向》/p/tdtd width="350"p曹志新(北京朝阳医院副主任医师)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"17:00-17:25/p/tdtd width="208"p《手术机器人》/p/tdtd width="350"p张送根(北京天智航医疗科技股份有限公司董事长)/p/td/trtrtd width="104"p style="TEXT-ALIGN: center"strong17:25-18:00/strong/p/tdtd colspan="2" width="558"p style="TEXT-ALIGN: center"strong总结讨论/strongstrong /strong/p/td/tr/tbody/tablep /ppstrong  四、征文要求:/strong/pp  1、征文范围:围绕人工智能医学诊断应用前沿,包括在以下几个方面的应用:/pp  医学影像、病理诊断、超声诊断、中医诊断、可穿戴设备、多数据源诊断、政策监管、药物筛选、新技术新产品等。/pp  2、征文格式:按《Frontiers of Information Technology & Electronic Engineering》《Frontiers of Information Technology & Electronic Engineering》(《信息与电子工程前沿(英文)》或《仪器仪表学报》要求 /pp  3、征文截止时间:2017年11月15日。/pp strong 五、论坛时间:/strong2017年11月24日,23日报到,24日全天会议/pp strong 六、论坛地点:/strong中国科技会堂B105(北京市海淀区复兴路3号)/pp strong 七、论坛报到:/strong/pp  1. 时间:2017年11月23日全天/pp  地点:中国科技会堂大堂/pp  2. 时间:2017年11月24日上午 08:00—08:50/pp  地点:中国科技会堂B105门口/ppstrong  八、论坛费用:/strong/pp  1.论坛免收会议费 /pp  2.参会代表自行购买返程飞机票或火车票,会议不安排接送站。/pp  strong九、推荐住宿酒店:/strong中国科技会堂(北京市海淀区复兴路3号)/pp  标间/大床房 498元/天(不含早)/pp  订房请联系:王丽梅18610051988王丽梅186-1005-1988/pp  strong十、请填写《参会回执》并于2017年11月10日前通过电子邮件发送到david@futurexpo.cn,以便安排会务工作。/strong/pp strong 十一、论坛联系人和联系方式:/strong/pp  报名参会、回执:王见伟/pp  010-57297898,15501053722 david@futurexpo.cn/pp  论文征集:王璐/pp  18510056847 luwang@capitalbio.com/pp  产品展示与互动:秦永清/pp  13910326187/pp  中国仪器仪表学会: 杨娟/pp  18611606738 yangj@cis.org.cn/ppstrong  附件: 参会回执/strong/pp strong 十二、会议支持媒体:/strong/pp  医仪荟、仪器信息网、分析测试百科网、高创汇、艾兰博曼医学网、火石创造、医械信息网、测序中国/pp  中国仪器仪表学会/pp  2017年11月3日/pp  附件:/pp style="TEXT-ALIGN: center"strong第66期中国科技论坛——人工智能与医疗健康技术前沿论坛参会回执/strong/ptable uetable="null" width="600" border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td width="123"p姓 名/p/tdtd colspan="2" width="307"p /p/tdtd width="62"p性别/p/tdtd width="123"p /p/td/trtrtd width="123"p工作单位/p/tdtd colspan="2" width="307"p /p/tdtd width="62"p职务/职称/p/tdtd width="123"p /p/td/trtrtd width="123"p手 机/p/tdtd width="189"p /p/tdtd width="118"p电子邮箱/p/tdtd colspan="2" width="185"p /p/td/trtrtd width="123"p备注/p/tdtd colspan="4" width="492"p /p/td/tr/tbody/tablep  注:参会回执于2017年11月10日前通过电子邮件发送到david@futurexpo.cn,以便安排会务工作。/pp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制