当前位置: 仪器信息网 > 行业主题 > >

三单色仪

仪器信息网三单色仪专题为您提供2024年最新三单色仪价格报价、厂家品牌的相关信息, 包括三单色仪参数、型号等,不管是国产,还是进口品牌的三单色仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三单色仪相关的耗材配件、试剂标物,还有三单色仪相关的最新资讯、资料,以及三单色仪相关的解决方案。

三单色仪相关的方案

  • 溶菌酶的温度相关CD和荧光光谱测量
    本申请说明说明了使用J-1500 CD光谱仪、FMO-522发射单色仪附件和温度/波长扫描测量程序同时获得的溶菌酶的温度相关CD和荧光测量结果。关键词:J-1500,FMO-522发射单色仪,圆二色性,荧光,二级结构,三级结构,热稳定性,生物化学
  • UV-1100紫外可见分光光度计中的单色器结构
    UV-1100紫外可见分光光度计中的单色器结构UV-1100紫外可见分光光度计中的单色器结构UV-1100紫外可见分光光度计中的单色器结构
  • 100g_L乙酸铜溶液中金属元素的分析
    1、采用专利的HDD检测器,可进行全谱采集。 2、具备恒定的高分辨率 1)2400 g/mm全息光栅:光学分辨率5 pm(120-320 nm),10 pm(320-800 nm); 2)4343 g/mm与2400 g/mm背靠背双光栅系统(可选):光学分辨率6 pm(120-450 nm),10 pm(450-800 nm)。 3、采用全球顶尖的离子刻蚀全息光栅:110×110 mm,具有极低的杂散光(1×10-7)。 4、配备CZERNY-TURNER单色仪,具备目前市面上最长的焦距(1m)。 5、采用特有的垂直矩管、侧向观测方法,可实现全等离子体观测,能够获得无可比拟的灵敏度和稳定性,尤其适用于一些复杂样品。 6、光谱范围为160-800nm,并且连续波长覆盖。
  • 采用ICP-AES分析地质学样品
    1、采用专利的HDD检测器,可进行全谱采集。 2、具备恒定的高分辨率 1)2400 g/mm全息光栅:光学分辨率5 pm(120-320 nm),10 pm(320-800 nm); 2)4343 g/mm与2400 g/mm背靠背双光栅系统(可选):光学分辨率6 pm(120-450 nm),10 pm(450-800 nm)。 3、采用全球顶尖的离子刻蚀全息光栅:110×110 mm,具有极低的杂散光(1×10-7)。 4、配备CZERNY-TURNER单色仪,具备目前市面上最长的焦距(1m)。 5、采用特有的垂直矩管、侧向观测方法,可实现全等离子体观测,能够获得无可比拟的灵敏度和稳定性,尤其适用于一些复杂样品。 6、光谱范围为160-800nm,并且连续波长覆盖。
  • Tempro系统在荧光寿命分析中的应用
    HORIBA Scientific提供的TemPro系统,采用功能强大的时域技术,可以测量宽范围荧光寿命(皮秒至秒范围),满足荧光和磷光寿命的测定。TemPro具有光源易替换的特点,脉冲激光二管覆盖宽范围波长(255nm至近红外区);可升级发射单色仪,实现时间分辨发射谱(TRES)的测量;配合偏振器,测定荧光各向异性。
  • ICP-AES定量分析土壤浸提液
    1、采用专利的HDD检测器,可进行全谱采集。 2、具备恒定的高分辨率 1)2400 g/mm全息光栅:光学分辨率5 pm(120-320 nm),10 pm(320-800 nm); 2)4343 g/mm与2400 g/mm背靠背双光栅系统(可选):光学分辨率6 pm(120-450 nm),10 pm(450-800 nm)。 3、采用全球顶尖的离子刻蚀全息光栅:110×110 mm,具有极低的杂散光(1×10-7)。 4、配备CZERNY-TURNER单色仪,具备目前市面上最长的焦距(1m)。 5、采用特有的垂直矩管、侧向观测方法,可实现全等离子体观测,能够获得无可比拟的灵敏度和稳定性,尤其适用于一些复杂样品。 6、光谱范围为160-800nm,并且连续波长覆盖。
  • 30g_L硝酸钡溶液中金属元素的分析
    1、采用专利的HDD检测器,可进行全谱采集。 2、具备恒定的高分辨率 1)2400 g/mm全息光栅:光学分辨率5 pm(120-320 nm),10 pm(320-800 nm); 2)4343 g/mm与2400 g/mm背靠背双光栅系统(可选):光学分辨率6 pm(120-450 nm),10 pm(450-800 nm)。 3、采用全球顶尖的离子刻蚀全息光栅:110×110 mm,具有极低的杂散光(1×10-7)。 4、配备CZERNY-TURNER单色仪,具备目前市面上最长的焦距(1m)。 5、采用特有的垂直矩管、侧向观测方法,可实现全等离子体观测,能够获得无可比拟的灵敏度和稳定性,尤其适用于一些复杂样品。 6、光谱范围为160-800nm,并且连续波长覆盖。
  • 使用自动圆二色谱法(CD)和荧光光谱法评估曲妥珠单抗和利妥昔单抗的稳定性
    圆二色谱法(CD)和荧光光谱法都是研究溶液状态蛋白质构象变化的简单而灵敏的技术。CD光谱测量左旋和右旋圆偏振光吸收的差异。本征荧光光谱法是研究蛋白质结构的一种补充技术。传统上,CD和荧光光谱是使用两种不同的仪器获得的。为了应对这些挑战,我们开发了一种CD和荧光光谱的自动测量系统。该系统由J-1500 CD光谱仪和HTCD-Plus自动CD测量单元以及荧光单色仪组成。使用该系统,我们通过改变尿素浓度和pH值,对曲妥珠单抗(赫赛汀)和利妥昔单抗(RIABNITM)进行了全面的稳定性评估。我们认为,该新系统对候选治疗性抗体的早期筛选特别有用。
  • LAMBDA 465 测量荧光材 料漫反射率
    用配备积分球(测量漫射材料反射率的最常见附件)的常规紫外- 可见分光光度计测量反射率时,荧光材料带来的挑战格外显著。因为球体内部的检测器能检测到反射光和荧光。由于样品和检测器之间没有单色仪,仪器无法区分反射和荧光波长,因而出现荧光激发波长处反射率虚高的错误记录。光电二极管阵列(PDA)分光光度计让这个问题迎刃而解。样品同时被全波长的光(白光)照射,然后反射方向得到的光被分解成其组分波长,分散到二极管阵列检测器像素上。采用LAMBDA 465 时,将以每1 nm 一个数据点(这款光度计采用1024 像元阵列检测器,覆盖范围达190~1100 nm)呈现。在这种情况下,光谱真实再现了样品特征,因为记录了荧光波长而不是激发光波长。
  • CMOS传感器的光谱响应和量子效率测试解决方案+CMOS传感器+光谱响应和量子效率测试
    客户在其消费电子产品中大量使用传感器。传感器的初始性能表征和选择适当的器件集成到其产品中,对其产品的性能,可靠性和品牌至关重要。该公司寻求Labsphere(蓝菲光学)来设计,建造和交付一个全自动光谱辐射计光源,用来提供均匀的光谱辐照度。校准系统由稳定的紫外-可见-红外光源、单色仪、带中性滤光片和空白档位的滤光轮(用于暗校正)、监控探测器、积分球、控制有效f数的开孔、参考光电二极管和信号调节电路。该系统采用实时,可溯源的探测器来监控在传感器光敏面的光谱辐照度,同时客户还可以自定义视场角(FOV)。
  • 超连续白光——荧光光谱仪光源新概念
    荧光光谱仪主要用于测试光致发光的样品的各种发光性质。基本组成是光源、激发单色器、样品仓、发射单色器和检测器。下图为爱丁堡仪器公司的系列稳态瞬态荧光光谱仪产品,从模块化到一体化设计,配置灵活,而且与第三方光源和检测器的兼容性十分强大。
  • 单色LED分选参数应用方案
    发光二极管(light-emitting diode,简称LED)是一种能将电能转化为光能的半导体电子元件,被称为第四代光源,现已广泛地应用于显示器、电视机采光装饰和照明。LED由含镓、砷、磷、氮等的化合物制成,包括多电子的电子对N区以及缺电子的空穴P区,当给发光二极管加正向电压后,电子从N区注入到P区,空穴从P区注入到N区,在两区PN结附近数微米内分别与N区的电子和P区的空穴符合,产生自发辐射的荧光。
  • 高速精确实现在体诊断——新型双色受激拉曼散射成像技术
    在外科手术中,对肿瘤边界进行快速病理成像被认为是精准切除的关键。受激拉曼散射(SRS)成像作为一种无须标记的新型显微术,避免了传统染色处理对组织的破坏,从而有望实现在体诊断。与单色SRS相比,双色SRS由于利用组织中两种成分的化学衬度叠加成像,从而可获得与H&E标准染色类似的诊断结果。然而,当前双色SRS较低的成像速度严重制约了其在实时组织学成像中的应用。基于以上背景,复旦大学应用表面物理国家重点实验室的季敏标教授等人对双色SRS显微镜光路进行了重新设计,开发出了一种速度显著提高的光路装置,并成功实现了多种组织的实时成像。
  • 安捷伦 4100 微波等离子体原子发射光谱测定土壤中的金属元素
    众所周知,环境中金属元素(例如,砷、铬、铜、铅、镍和锌)含量的升高会严重影响人类健康,以及农业、畜牧业和水产行业。而某些金属(如铜和锌)也是 生物和人类健康必不可少的元素,因此对于金属元素的缺乏或毒性判定均有一个有效的阈值。环境中这些污染物的存在大多是由于中小企业废水排放、车辆尾气排放、农村生活污水排放、不加区别地使用化肥和含金属的农药,以及在无保护的场所处理固态垃圾。这些不同的污染源有可能污染农业和城市用地,并且污染用于农业和饮用的地表水和地下水。因此,监测土壤中的金属污染物显然对于环境监测和金属元素对人类健康影响的判定非常重要。本应用简报介绍了使用新颖、简单和相对经济实惠的微波等离子体原子发射光谱仪(MP-AES)对于土壤中金属元素测定的分析方法。安捷伦 4100 微波等离子体原子发射光谱仪,使用氮气和为 MP-AES 专门设计的炬管,可产生一种自持的常压微波等离子体(MP)。使用同心雾化器和旋流雾化室,样品气动式导入微波等离子体。仪器采用 CzernyTurner 单色仪和电荷耦合器件(CCD)检测器实现发射谱线的分离和全谱检测。4100MP-AES 微波等离子体原子发射光谱仪,可轻松应对无机或有机样品气溶胶,对无机和有机溶剂以及环境空气的耐受性明显高于其他分析等离子体。
  • 细菌中光密度测定检测方案(紫外分光光度计)
    背景细菌培养基的光密度( OD) 测定是微生物学中使用的一种常见技术。 研究人员主要依靠分光光度计来进行这些测定, 然而实际上这个测定是基于培养基的光散射量而不是光吸收量。 在其标准配置中, 分光光度计并未对光散射测定进行优化, 这通常会导致仪器间所测得吸光度上的差异。方法该研究调查了不同的分光光度计光学配置对在分批培养基中生长的大肠杆菌JM109光密度测定的影响。分光光度计检测包括了使用阵列检测的反向光学系统、 基于单色器的传统系统以及一种配备积分球配件( ISA) 的单色器系统。 在每个仪器上测定OD600生长曲线, 同时, 对McFarland进行CFU/mL计数来进一步对每个光学系统进行鉴定。结果来自相同光学配置类别的分光光度计其OD数据是相当的。 用反向光学系统测定较高OD时数据变化更大,这是由较低杂散光所导致。 基于单色器的系统测试较高OD时准确度较高, 主要是因为与来自反向光学系统的多色光相比, 单色光具有更好的杂散光去除能力。然而, 反向光学系统测定OD时却有具有良好的动态范围。 使用ISA产生出的数据与用其它系统产生出的数据不同, 这是因为其具有捕捉几乎所有前向散射光的能力。 而对McFarland标准品的测定确认了这些现象。结论分光光度计进行可靠的光散射测定的能力在很大程度上取决于其光学配置; 因此, 具有不同光学配置的分光光度计会呈现出不同的OD测定值。 理想状态下, 高度散射样品( 如细胞培养基) 的吸光度是使用ISA进行测定的, 目的是为了捕捉几乎所有的散射光。 培养基生长可使用OD600测定, 然而每当改变分光光度计时, 就应该计算和应用一个换算因数。
  • 岛津高能Ag靶在GaN半导体材料表征中的应用
    岛津高能单色Ag靶与单色Al靶共用一个单色器,成本较低,且具备多个靶点,并处于同一靶面,因此仅通过软件即可实现切换,操作简单。可达600 W高功率的X射线源能够很大程度补偿高能靶引起的信号降低问题,对于采用高能靶的测试提供了有力保障。
  • 奥龙集团:Y-2000型X射线衍射仪测定钛铁矿中金红石含量的一种方法
    99.5%),配制成一定比便的混合样品,使加入的纯金红石型二氧化钛在混合样品中所占一定的比例R′。3 试验条件本试验使用的钛铁矿样品为广西某矿。试验在国产X射线衍射仪上进行,试验参数:扫描方式:连续扫描 波长:1.54178KX滤光片:Ni 驱动方式:双轴联动扫描速度:0.01度/秒 单色器:石墨弯晶单色器 X光管:Cu靶 发散狭缝:1° 探测器:正比探测器 管电压:30KV 防散射狭缝:1° 起始角度:22° 管电流:20mA 接收狭缝:0.2° 终止角度:30°4 试验结果 本试验所配的混合样品R′为2%,对钛矿粉和混和样品分别有X射线衍射仪进行检测,得出X射线衍射图谱。由峰型处理软件得出IR,I R′,代入公式中,计算出钛矿中的金红石含量,结果如下:R′IRI R′金红石含量(R)2%1 9501 9551.9%2%1 9231 9401.9%2%1 9641 9731.9%5 结论 随着钛白行业的日益发展,钛铁矿资源日趋紧张,矿的质量也参差不齐,结生产带来了不稳定因素,尤其是某些矿中含量不定的少量金红石,对生产的收率和操作难度都带来了较大的影响。 本方法是作者从事质检工作的过程中发现的,试验在丹东射线仪器有限责任公司生产的Y-2000型X射线衍射仪上进行,虽然检测的为微含量物质,系统误差影响较大,但本试验采用净积分强度计算的方法,有效地降低了杂峰的影响,使测定的准确度有了进一步的提高,并且结果且有较高的可信度,在我厂的生产实践中也证明了这一点。目前,已用这种方法进行了多次检测,取得了较好的效果。
  • USPRO测色仪的带宽,解析度和报告间隔
    众所周知,分光测色仪是将反射或透射光在可见光范围内分成单色光并积分算出颜色数据的仪器,是目前最流行的仪器。但是仪器的光源是否长寿命,模拟D65是否出色,积分球是否稳定,是不是光纤传输,监测器有多少,监测精度高不高,校正板是否是国际标准传递板,您都知道吗?本文介绍最高级别仪器UltraScan PRO的带宽,解析度和报告间隔,了解此仪器的大不同。。
  • 使用Cary 系列高端紫外对亚纳米窄带滤光片进行表征
    带通滤光片可以做为光栅单色器的廉价替代品,用于分离窄波长区域。许多商用的带通滤光片的最大半峰宽为10nm。本文主要使用安捷伦Cary系列高端分光光度计对亚纳米带通滤光片的半峰宽进行了表征。测试的三个样品中,其中一个样品的半峰宽为3.1埃,而另外两个样品的半峰宽仅为1.2埃。即使在极限的操作条件下,安捷伦Cary系列高端紫外依然能获得准确的测试结果。
  • 汽柴油微量硫含量分析
    单波长色散X射线荧光光谱法》是检测汽柴油中硫含量的方法标准,单波长X射线荧光光谱是一种灵敏度高的XRF类型,通过对硫的单色化聚焦激发,达到0.2mg/kg检出限,能够轻松应对国V和国VI汽柴油硫含量(限值为10mg/kg)测定,同时分析含量范围可到百分含量,能够完成从原油、过程控制到产品各个阶段硫含量分析。
  • 哈希应用案例---HDXRF方法应用于土壤中铅元素监测
    全球范围对土壤修复和治理的需求日益增长,因此推动了准确、快速、简易现场测试方法的需求。高精度能量色散X射线荧光(简称HDXRF)光谱通过采用多个单色光束对样品激发,实现高精度分析。 ASTM D8064-16标准测试法批准使用高精度X射线荧光(HDXRF) 光谱测定法来进行土壤和固体废物中重金属元素的量化分析, HDXRF适用于各种土壤基质对于铅的测定。更多实际应用案例以及精彩内容请下载后查看。
  • 哈希应用案例---HDXRF方法应用于土壤中砷元素监测
    全球范围对土壤修复和治理的需求日益增长,因此推动了准确、快速、简易现场测试方法的需求。高精度能量色散X射线荧光(简称HDXRF)光谱通过采用多个单色光束对样品激发,实现高精度分析。 ASTM D8064-16标准测试法批准使用高精度X射线荧光(HDXRF) 光谱测定法来进行土壤和固体废物中重金属元素的量化分析, HDXRF适用于各种土壤基质对于砷的测定。更多实际应用案例以及精彩内容请下载后查看。
  • 哈希应用案例---HDXRF方法应用于土壤中铬元素监测
    全球范围对土壤修复和治理的需求日益增长,因此推动了准确、快速、简易现场测试方法的需求。高精度能量色散X射线荧光(简称HDXRF)光谱通过采用多个单色光束对样品激发,实现高精度分析。 ASTM D8064-16标准测试法批准使用高精度X射线荧光(HDXRF) 光谱测定法来进行土壤和固体废物中重金属元素的量化分析, HDXRF适用于各种土壤基质对于铬的测定。更多实际应用案例以及精彩内容请下载后查看。
  • 哈希应用案例---HDXRF方法应用于土壤中重金属元素监测
    全球范围对土壤修复和治理的需求日益增长,因此推动了准确、快速、简易现场测试方法的需求。高精度能量色散X射线荧光(简称HDXRF)光谱通过采用多个单色光束对样品激发,实现高精度分析。 ASTM D8064-16标准测试法批准使用高精度X射线荧光(HDXRF) 光谱测定法来进行土壤和固体废物中重金属元素的量化分析, HDXRF适用于各种土壤基质对于铬、镍、砷、镉、汞和铅的测定。更多实际应用案例以及精彩内容请下载后查看。
  • 如何使用酶标仪和Tune技术自动优化扫描荧光蛋白分子的最佳波长-Molecular Devices SpectraMax Paradigm
    Molecular Devices公司基于SpectraMax ® Paradigm® 多功能微孔板检测平台的基础上推出了一款使用滤光片作为其单色器,但又可随意调节其检测波长的Tune卡盒,这种最新的检测技术融合了滤光片的高灵敏度和波长扫描的高灵活性等特点。Tune检测卡盒克服了传统光栅型单色器的缺陷,可以方便研究人员在更广的波长范围内优化各种试验所需的最佳波长,且检测灵敏度也较光栅型系统提高了10倍以上。
  • 单波长XRF在锂电池SiO与PVDF材料分析中的应用
    常用测试Si-O元素含量方法极其复杂,传统的XRF分析超轻元素(C-F)灵敏度与稳定性不足;我司应用全聚焦型双曲面弯晶核心技术的单波长X射线荧光光谱仪,消除入射射线散射线背景,针对超轻元素的单色化聚焦入射技术,可以稳定与高灵敏分析超轻元素(C、N、O、F 等),样品处理简单,分析精度高,是锂电池负极材料SiO和PVDF粘结剂评价的高效测量方法。
  • 单波长XRF在铝电解质元素与分子比测定的应用
    铝电解质分子比的分析是电解铝行业的难点,需要准确定量电解质中O、F、Na、Mg、Al、Si、K、Ca、Fe、Li等元素含量,对XRF轻元素灵敏度与稳定性有极大的挑战。单波长激发-能量色散X射线荧光光谱仪(HS XRF)采用双曲面弯晶单色化聚焦激发技术,大幅提升轻元素检测灵敏度,结合快速基本参数法(Fast FP)精确计算元素间吸收-增强效应等,开创性改变铝电解质分析难点,为电解铝行业提供高效可行的分析方法。
  • 活细胞钙离子浓度荧光显微镜检测系统的研制和应用
    采用钙离子荧光探针对细胞内钙离子等信使物质进行定量测定是研究细胞分泌活动的重要技术手段。其基本原理是 : 用荧光探针标记样本中的钙离子,根据样本中的荧光探针特性单色光源发出单色光,诱发出荧光。然后根据传感器检测到的荧光特性即可分析样本中的钙离子浓度。
  • 哈希应用案例---HDXRF方法应用于土壤中镉元素监测
    全球范围对土壤修复和治理的需求日益增长,因此推动了准确、快速、简易现场测试方法的需求。高精度能量色散X射线荧光(简称HDXRF)光谱通过采用多个单色光束对样品激发,实现高精度分析。 ASTM D8064-16标准测试法批准使用高精度X射线荧光(HDXRF) 光谱测定法来进行土壤和固体废物中重金属元素的量化分析, HDXRF适用于各种土壤基质对于镉的测定。更多实际应用案例以及精彩内容请下载后查看。
  • 哈希应用案例---HDXRF方法应用于土壤中汞元素监测
    全球范围对土壤修复和治理的需求日益增长,因此推动了准确、快速、简易现场测试方法的需求。高精度能量色散X射线荧光(简称HDXRF)光谱通过采用多个单色光束对样品激发,实现高精度分析。 ASTM D8064-16标准测试法批准使用高精度X射线荧光(HDXRF) 光谱测定法来进行土壤和固体废物中重金属元素的量化分析, HDXRF适用于各种土壤基质对于汞的测定。更多实际应用案例以及精彩内容请下载后查看。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制