当前位置: 仪器信息网 > 行业主题 > >

感应加热仪

仪器信息网感应加热仪专题为您提供2024年最新感应加热仪价格报价、厂家品牌的相关信息, 包括感应加热仪参数、型号等,不管是国产,还是进口品牌的感应加热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合感应加热仪相关的耗材配件、试剂标物,还有感应加热仪相关的最新资讯、资料,以及感应加热仪相关的解决方案。

感应加热仪相关的论坛

  • 几篇感应加热的文献资料

    【序号】: 1【作者】: 张洪亮【题名】:直缝焊管中频感应加热过程有限元模拟 【期刊】: 燕山大学硕士论文【年、卷、期、起止页码】: 2010【全文链接】:http://epub.cnki.net/grid2008/detail.aspx?QueryID=154&CurRec=1 【序号】: 2【作者】: 孙冰心; 庞永俊; 柏永清; 赵芳【题名】:给水大口径钢管内涂塑加工工艺中温度自动控制研究 【期刊】: 煤矿机械 【年、卷、期、起止页码】: 2010年 06期【全文链接】:http://epub.cnki.net/grid2008/detail.aspx?QueryID=307&CurRec=1 【序号】: 3【作者】: 张居勤; 严雪荣【题名】:感应加热技术在钢管热处理工艺中的应用 【期刊】: 钢管 【年、卷、期、起止页码】: 2010年 02期【全文链接】:http://epub.cnki.net/grid2008/detail.aspx?QueryID=453&CurRec=1【序号】: 4【作者】: 何继龙; 李德昌【题名】:温度闭环在3PE管道中频感应加热中的应用 【期刊】: 全面腐蚀控制 【年、卷、期、起止页码】: 2009年 11期【全文链接】:http://epub.cnki.net/grid2008/detail.aspx?QueryID=527&CurRec=1

  • 【已应助】穿透感应加热方面的一本书

    [size=4][color=#ff0000]【序号】: 1【作者】: [苏联]c.E.赖斯金;黄富万【题名】: 穿透感应加热在工业中的应用【期刊】: 国防工业出版社【年、卷、期、起止页码】: 1982.11【全文链接】: [/color][/size]

  • 【资料】感应炉系列加热炉特点

    感应炉系列加热炉特点electric furnace 引利用电热效应供热的工业炉。电炉分为工业电炉和家用电炉两种,工业电炉又分为电阻炉、感应炉两种,随着现代工业技术的发展感应炉成为电炉中最为节能的电转换加热方式,广泛应用家庭、医药、化工、冶金、等多个领域。  感应炉加热炉特点:1、感应加热炉加热均匀,芯表温差极小,温控精度高。2、由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,所以加热速度快、生产效率高、氧化脱炭少、节省材料与锻模成本。3、感应加热炉与煤炉相比,工作环境优越、提高工人劳动环境和公司形象、无污染、低耗能。 工业上应用的感应熔化炉有坩埚炉(无芯感应炉)和熔沟炉(有芯感应炉)。坩埚用o制成,容量从几公斤到几十吨。其熔炼特点是坩埚中熔体受电动力作用,迫使熔池液面凸起,熔体自液面中心流向四周而引起循环流动。这种现象称为电动效应,可使熔体成分均匀。熔沟炉的感应器由铁芯、感应圈和熔沟炉衬组成,熔沟为一条或两条带状环形沟,其中充满与熔池相联通的熔体。在原理上,可以把熔沟炉看作是次级只有一匝线圈而且短路的铁芯变压器。感应电流在熔沟熔体中流动,而实现电热转变。

  • 【已应助】二篇感应加热的文献

    [color=#000000][size=4]【序号】: 1【作者】:[/size][/color][url=http://search.cnki.com.cn/Search.aspx?q=author:%E5%88%98%E6%99%93%E5%85%89][color=#000000][size=4]刘晓光[/size][/color][/url][color=#000000][size=4] 【题名】: 感应透热温度场仿真技术的研究【期刊】: 浙江工业大学硕士论文【年、卷、期、起止页码】: 【全文链接】: [url]http://cdmd.cnki.com.cn/Article/CDMD-10337-2009202035.htm[/url]【序号】: 2【作者】:[url=http://www.cqvip.com/asp/vipsearch.asp?Query=%B8%B5%D5%FD%B2%A9&Type=A&SUID=34295E0C1BE4895CD583D75E27068955]傅正博[/url] [size=4] 【题名】: 感应透热的温度均匀性【期刊】: 工业加热【年、卷、期、起止页码】:[url=http://www.cqvip.com/qk/93207A/199101/index.shtml?SUID=34295E0C1BE4895CD583D75E27068955]1991年第1期[/url],17-20 【全文链接】:[/size][/size][/color]

  • 【求助】(还剩5)几篇感应加热方面的硕士论文

    [color=#ff0000][/color][size=5][color=red][font=Arial][/font][/color][/size][font=Arial][color=red][font=宋体]【序号】:[/font][/color][color=red][font=Arial] 1[/font][/color][/font][color=red][size=4][font=宋体]【作者】:[/font][/size][/color][color=#000000][size=4][font=宋体]吴迪[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【题名】:[/font][/size][/color][size=4][font=宋体][b][color=#10619f]感应淬火数值模拟研究[/color][/b][/font][/size][size=4][font=Arial] [color=red][/color][/font][/size][color=red][size=4][font=宋体]【期刊】:[/font][/size][/color][color=#000000][size=4][font=宋体]天津大学[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【年、卷、期、起止页码】:[/font][/size][/color][color=red][size=4][font=Arial]2005[/font][/size][/color][color=red][size=4][font=宋体]【全文链接】:[/font][/size][/color][color=red][size=4][font=Arial]http://epub.cnki.net/grid2008/detail.aspx?QueryID=819&CurRec=1[/font][/size][/color][color=red][size=4][font=宋体]【序号】:[/font][/size][/color][color=red][size=4][font=Arial] 2[/font][/size][/color][color=red][size=4][font=宋体]【作者】:[/font][/size][/color][color=#000000][size=4][font=宋体]赵敏[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【题名】:[/font][/size][/color][b][color=#10619f][size=4][font=Arial]45[/font][/size][size=4][font=宋体]钢坯锻前感应加热的有限元模拟分析[/font][/size][/color][/b][size=4][font=Arial] [color=red][/color][/font][/size][color=red][size=4][font=宋体]【期刊】:[/font][/size][/color][color=#000000][size=4][font=宋体]浙江大学[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【年、卷、期、起止页码】:[/font][/size][/color][color=red][size=4][font=Arial]2006[/font][/size][/color][color=red][size=4][font=宋体]【全文链接】:[/font][/size][/color][color=red][size=4][font=Arial]http://epub.cnki.net/grid2008/detail.aspx?QueryID=617&CurRec=1[/font][/size][/color][color=red][size=4][font=宋体]【序号】:[/font][/size][/color][color=red][size=4][font=Arial] 3[/font][/size][/color][color=red][size=4][font=宋体]【作者】:[/font][/size][/color][color=#000000][size=4][font=宋体]张月红[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【题名】:[/font][/size][/color][size=4][font=宋体][b][color=#10619f]感应加热温度场的数值模拟[/color][/b][/font][/size][size=4][font=Arial] [color=red][/color][/font][/size][color=red][size=4][font=宋体]【期刊】:[/font][/size][/color][color=#000000][size=4][font=宋体]江南大学[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【年、卷、期、起止页码】:[/font][/size][/color][color=red][size=4][font=Arial]2008[/font][/size][/color][color=red][size=4][font=宋体]【全文链接】:[/font][/size][/color][color=red][size=4][font=Arial]http://epub.cnki.net/grid2008/detail.aspx?QueryID=684&CurRec=1[/font][/size][/color][color=red][size=4][font=宋体]【序号】:[/font][/size][/color][color=red][size=4][font=Arial] 4[/font][/size][/color][color=red][size=4][font=宋体]【作者】:[/font][/size][/color][color=red][size=4][font=Arial] [/font][/size][/color][color=#000000][size=4][font=宋体]刘晓光[/font][/size][size=4] [color=red][/color][/size][/color][color=red][size=4][font=宋体]【题名】:[/font][/size][/color][size=4][font=宋体][b][color=#10619f]感应透热温度场仿真技术的研究[/color][/b][/font][/size][size=4][font=Arial] [color=red][/color][/font][/size][color=red][size=4][font=宋体]【期刊】:[/font][/size][/color][color=#000000][size=4][font=宋体]浙江大学[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【年、卷、期、起止页码】:[/font][/size][/color][color=red][size=4][font=Arial]2009[/font][/size][/color][color=red][size=4][font=宋体]【全文链接】:[/font][/size][/color][color=red][size=4][font=Arial]http://epub.cnki.net/grid2008/detail.aspx?QueryID=886&CurRec=1[/font][/size][/color][color=red][size=4][font=宋体]【序号】:[/font][/size][/color][color=red][size=4][font=Arial] 5[/font][/size][/color][color=red][size=4][font=宋体]【作者】:[/font][/size][/color][color=#000000][size=4][font=宋体]杨晨光[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【题名】:[/font][/size][/color][b][color=#10619f][size=4][font=Arial]42CrMo[/font][/size][size=4][font=宋体]钢轴类件变功率感应加热数值模拟研[/font][/size][color=red][font=Arial][/font][/color][/color][/b][color=red][size=4][font=宋体]【期刊】:[/font][/size][/color][color=#000000][size=4][font=宋体]燕山大学[/font][/size][color=red][font=Arial][/font][/color][/color][color=red][size=4][font=宋体]【年、卷、期、起止页码】:[/font][/size][/color][color=red][size=4][font=Arial]2010[/font][/size][/color][color=red][size=4][font=宋体]【全文链接】:[/font][/size][/color][color=red][size=4][font=Arial]http://epub.cnki.net/grid2008/detail.aspx?QueryID=552&CurRec=1[/font][/size][/color]

  • 【求助】(已应助)求助加热炉的几篇文献

    求助加热炉的几篇文献1.感应加热温度的模糊—前馈复合控制方法, 《有色设备》2007年01期 2.大规格铜锭步进式加热炉设计探讨,2004年 第33卷 第04期 3.大功率、大口径铜棒工频感应加热炉,2003年 第02期

  • 微电脑轴承加热器

    注意事项  1:该机自动检测探头,若无探头则无法启动;  2:严禁无加热轴而启动主机;  3:加热工件应尽量选择较大的加热轴,以提高工作效率;  4:轴承最高温度不得超过120℃;  5:取走工件注意高温,以防烫伤;  6:请不要将探头长时间置工件上在,以延长探头的使用寿用途:  轴承加热器,主要用于对轴承、齿轮、衬套、轴套、直径环、滑轮、收缩环、连接器等多种类型的金属件进行加热,通过加热使之膨胀,达到过盈装配的需要。微电脑轴承感应加热器结构:  轴承感应加热器由主机及控制箱组合一体安装在一手车上,移动式结构,便于现场施工灵活应用,可拆装的轭铁是直接用来穿套轴承或其它加热工件之用。扁平吊带,中空扳手

  • 马弗炉加热方式对比

    马弗炉加热方式对比

    [b]加热方式比较[/b][color=#444444]实验室当中,大多数都需要加热,关于加热方式,都有哪几种呢?每种的优缺点是什么,今天我来跟大家科普一下,有问题欢迎留言[/color][color=#444444]实验室加热方式有微波加热,电阻丝加热,感应加热,硅钼(碳)棒加热,石墨加热,红外线加热等等。不同的实验,用到的加热方式也是不同的。 [/color][color=#444444] 先说微波加热,是对物质里面的水分子进行加热,较多用于食物加热,这种加热不会破坏食物。实验室当中比如说mopecvd(微波气象沉积技术)也用到微波[/color][color=#444444],这种技术应用在cvd当中前景挺不错的。[/color][color=#444444] 电阻丝加热,利用电阻发热,通过控制加热的功率来改变加热温度。这种方式成本低,电阻丝比较廉价。但是温度最高达到1200度,但是国外最高可以到达1400度,瑞士进口电阻丝。瑞士的电阻丝类似国内的40cr.[/color][color=#444444] 感应加热,利用法拉第电磁感应定律,交变电流产生交变磁场,通过交变磁场产生涡流加热。加热速度极其快,通过改变频率,几秒时间能够加热到千度。金属热处理中应用广泛。但是不是所有的金属都可以用的到,导电的不一定可以导磁,导磁的一定导电,像铝可以导电,但是不能导磁。[/color][color=#444444] 硅钼(碳)棒是马弗炉常用的加热元件,可以加热到1700度。可以在空气当中自然冷却,初期使用可能会出现冒泡现象,这属于正常现象比如说。高频感应加热炉。[/color][color=#444444] 最后是红外线灯管加热,它的应用十分广泛。可以消毒,杀菌,还可用在马弗炉上面,比如说rtp,快速退火炉,这种使用的就是红外灯管加热,速度也是非常快,一般加热粉末或者其它式样。20s左右就可以达到理想的温度。[/color][color=#444444][color=#444444] 我是马弗炉工程师,欢迎一起探讨实验室问题。如有马弗炉需要,可以给我留言。[/color][/color][img=红外灯管,710,413]https://ng1.17img.cn/bbsfiles/images/2019/03/201903290939474530_3128_3860607_3.png!w710x413.jpg[/img]

  • 【已应助】钢管感应加热的一篇英文文献

    [color=#ff0000]【序号】: 1【作者】: Valery Rudnev Don Loveless John LaMonte Demidovich Victor Demidovich John Powell【题名】: [color=#000000]A balanced approach to [/color][color=red]induction[/color][color=#000000] tube and pipe [/color][color=red]heating[/color]【期刊】: [color=#000000]Industrial [/color][color=red]Heating[/color]【年、卷、期、起止页码】: [color=#000000]1998(6),53-57[/color]【全文链接】:[url]http://beta.nstl.gov.cn/NSTL/facade/search/toFullView.do[/url][/color]

  • 【原创大赛】CrMo钢感应调质热处理研究

    【原创大赛】CrMo钢感应调质热处理研究

    对于普通碳钢及合金钢,调质处理可以改善钢的综合性能,调质工艺(高温淬火+高温回火)已应用多年,工艺也比较成熟。调质工艺中的淬火过程是加热钢使其完全奥氏体化后快速冷却,使得碳和合金元素完全固溶到铁素体基体中而形成一种过饱和铁素体而形成马氏体,这种马氏体的强度很高,在随后的高温回火过程中使得碳化物析出,起到析出强化作用,改善钢的性能。通过控制回火处理的温度及时间来调配钢的强韧性。 CrMo钢主要应用于伴有腐蚀环境的油气田中,高钢级CrMo钢需要在保持高强度的同时满足抗腐蚀的条件,这就需要对钢管进行相应的处理,如细化晶粒、改善碳化物构成等。大量研究表明,使用感应热处理的方式可以明显的改善钢管的性能[sup][/sup]。感应热处理方式具有低成本、高效率的特点,并且在钢管制造中可以超越常规热处理,在提高晶粒度、改善析出相构成,降低位错密度等多方面有优良的表现。快速的加热淬火可以使晶粒度同比提高2级以上,快速的加热回火可以抑制析出相(碳化物)长大,使其更加细小、均匀、弥散分布于基体组织,有益于提高钢管的综合性能。采用中频感应加热的方式对CrMo钢进行调质处理,通过细化试验钢的晶粒及调整回火过程中析出相的形态和分布,使感应热处理后的试验钢力学性能相对常规热处理有了较大的提高。[b]1 试验材料和方法[/b] 试验中采用CrMo作为试验钢,样管规格为88.9mm*6.45mm。试验钢经EAF电弧炉冶炼、LF炉精炼后使用VD炉真空脱气,采用连铸的方式制成管坯,,使用PQF三辊连轧机制成无缝钢管。采用中频感应炉对样管进行感应淬火和感应回火处理,从调质处理后的管材上切取样品,对所切取的样品进行粗磨、细磨、抛光、浸蚀(浸蚀剂采用4%HNO[sub]3[/sub]+96%C[sub]2[/sub]H[sub]5[/sub]OH,浸蚀时间为5~10秒),然后在金相显微镜上进行显微组织观察。为了进一步观察回火索氏体中碳化物的形态,用扫描电子显微镜进行显微组织观察,采用X衍射仪进行X射线衍射试验并采用透射电镜确定析出相种类。 为了研究感应热处理过程中试验钢在感应淬火和感应回火两个不同阶段的变化以及方便和传统电阻炉加热热处理进行对比,我们采用以下热处理方式进行试验,分别为:I、中频感应炉淬火+电阻炉回火;II、电阻炉淬火+电阻炉回火;III、电阻炉淬火+中频感应炉回火;IV、中频感应炉淬火+中频感应炉回火。感应热处理过程中的加热时间,采用5~10分钟,短时间内的感应热处理加热方式可以避免试验钢的晶粒长大,保证试验钢通过热处理试验得到更好的宏观力学性能。[b]2 试验结果及讨论2.1 感应淬火对试验钢的性能影响[/b] 使用中频感应炉和电阻加热炉对CrMo钢进行了感应淬火与常规淬火的比较试验,分别使用热处理方式I和II,结果如表一所示:表一 不同热处理淬火方式下试验钢的力学性能[table=565][tr][td] [align=center]试样号[/align] [/td][td] [align=center]热处理制度[/align] [/td][td] [align=center]屈服强度[/align] [align=center](Mpa)[/align] [/td][td] [align=center]抗拉强度(Mpa)[/align] [/td][td] [align=center]延伸率[/align] [align=center](%)[/align] [/td][td] [align=center]冲击功[/align] [align=center](J)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center][i]950°C×10min[/i][/align][i] [/i][align=center]+670°C×60min[/align] [/td][td] [align=center]917[/align] [/td][td] [align=center]957[/align] [/td][td] [align=center]17.5[/align] [/td][td] [align=center]76[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center][i]950°C× 5min[/i][/align][i] [/i][align=center]+670°C×60min[/align] [/td][td] [align=center]934.5[/align] [/td][td] [align=center]965[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]70[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×60min[/align] [/td][td] [align=center]830[/align] [/td][td] [align=center]847[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]75[/align] [/td][/tr][/table] 表一采用了三种热处理制度,前两种都采用热处理方式I,不同的是淬火前的感应加热时间不同,1#试样采用10分钟的加热时间,2#试样采用5分钟的加热时间,用于比较在不同淬火加热时间情况下试验钢的力学性能变化。3#试样采用热处理方式II进行调质处理,主要用于和1#试样比较不同淬火热处理方式下试样钢的力学性能变化。通过比较可以发现,经过感应热处理淬火的1#试样在保持近似冲击功性能的同时,屈服强度比常规热处理淬火的3#试样提高近90Mpa,达到125ksi钢级,这主要是因为感应热处理淬火保温时间较短,奥氏体晶粒形核后长大时间相对较短,使淬火后的试验钢晶粒细化。[img=,674,300]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020914_01_2984502_3.png[/img] 图1是1#和3#两种试样的原奥氏体晶粒图。从图1中可以看出,经过感应热处理淬火的试样相对常规热处理的试样,晶粒细化程度明显。为了准确评价试样的晶粒度级别,我们采用比较法对试验钢进行奥氏体晶粒度的评级,因为标准中没有9级以上的晶粒度评级,因此采用200倍金相评级+2的方法,得到1#试样的晶粒度为10级,3#试样的晶粒度为8.5级。 晶粒度细化是提高钢管性能的主要因素,因此经过感应热处理的试样力学性能相对常规热处理有所提高。[img=,554,388]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020914_02_2984502_3.png[/img] 图2是2#试样在200X显微镜下的晶粒度图,晶粒度为11级,通过对比1#和2#试样的感应热处理制度和晶粒度级别可见,随着感应淬火加热时间的减少,晶粒度呈细化的趋势。 通过对比1#和2#试样的力学性能发现,在同样的感应淬火热处理中,缩短加热时间虽然可以使晶粒度进一步细化,但这种晶粒度的细化无法同时提高试样钢的屈服强度和冲击功。从表一中可以看出,随着缩短感应淬火加热时间,试样钢的屈服强度有所提高,但冲击功性能相对降低,因此,试样钢要得到满意的力学性能需要合理的制定感应淬火加热时间。同时我们也可以看出,在感应热处理中通过灵活的调整感应淬火加热时间,可以控制试验钢力学性能的配比。[b]2.2 感应回火对试验钢的性能影响[/b] 感应淬火热处理可以通过细化晶粒提高试验钢的力学性能,感应回火热处理则通过改变析出相的形态和位错密度来改善试验钢的性能。试验中同样使用中频感应炉和电阻加热炉对抗腐蚀无缝钢管27CrMo27Vs进行了感应回火与常规回火的比较试验,分别使用热处理方式III和II。在感应热处理回火前,三种样品都采用常规热处理淬火的方式,热处理制度为950°C×40min,不同回火制度的试验结果如表二所示:表二 不同热处理回火方式下试验钢的力学性能[table=565][tr][td] [align=center]试样号[/align] [/td][td] [align=center]热处理制度[/align] [/td][td] [align=center]屈服强度[/align] [align=center](Mpa)[/align] [/td][td] [align=center]抗拉强度(Mpa)[/align] [/td][td] [align=center]延伸率[/align] [align=center](%)[/align] [/td][td] [align=center]冲击功[/align] [align=center](J)[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×5min [/align] [/td][td] [align=center]902[/align] [/td][td] [align=center]949[/align] [/td][td] [align=center]18.0[/align] [/td][td] [align=center]73[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×3min [/align] [/td][td] [align=center]922[/align] [/td][td] [align=center]968[/align] [/td][td] [align=center]18.0[/align] [/td][td] [align=center]70[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×60min[/align] [/td][td] [align=center]830[/align] [/td][td] [align=center]847[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]75[/align] [/td][/tr][/table] 表二采用了三种热处理制度,前两种都采用热处理方式III,不同的感应回火热处理的加热时间不同,4#试样采用5分钟的加热时间,5#试样采用3分钟的加热时间,用于比较在不同回火加热时间情况下试验钢的力学性能变化。3#试样采用热处理方式II进行调质处理,主要用于和4#、5#试样比较不同回火热处理方式下试样钢的力学性能变化。通过比较可以发现,经过感应热处理回火的4#、5#试样在保持近似冲击功性能的同时,屈服强度比常规热处理回火的3#试样提高70Mpa以上,达到125ksi钢级。在感应热处理回火过程中,不同于传统热处理。传统热处理需要较长的时间使在淬火过程中固溶的碳及合金元素充分析出,从而满足冲击性能,而感应热处理方式可以在短时间内提供试验钢较高的能量,造成短时间内就可以满足析出相的充分析出。图3是使用扫描电镜得到的3#和4#试验钢的析出相形貌照片,照片中3#试样的析出相形态以棒状和带有尖端的条状为主,球状及椭圆状析出相很少,而4#试样的析出相形态以球状和椭圆状为主,很少出现棒状和带有尖端的条状形态,这是因为传统热处理是一个渐变的过程,满足性能必然要提高加热时间,提高加热时间伴随着析出相的长大和偏聚,形成棒状或带有尖端的条状,增加材料的脆性;而感应热处理的回火过程时间很短,析出相来不及长大,形成分布均匀,偏重于球形或椭圆形的形态,使试验钢减少由于析出相的偏聚而带来的性能下降,从而达到提高力学性能的目的。[img=,690,309]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020915_01_2984502_3.png[/img][b]2.3 感应热处理对试验钢的影响[/b] 通过以上的分析,我们可以看出感应热处理淬火和回火都可以利用不同的微观机理达到提高试验钢力学性能的目的。表三中的6#试样是采用IV热处理方式的力学性能结果,与3#试验钢对比发现两种热处理方式下冲击功变化较小。采用感应调质热处理(淬火和回火)后的试验钢相对传统调质处理,屈服强度可以提高超过100Mpa。表三 不同方式调质处理后试验钢的力学性能[table=553][tr][td] [align=center]试样号[/align] [/td][td] [align=center]热处理制度[/align] [/td][td] [align=center]屈服强度[/align] [align=center](Mpa)[/align] [/td][td] [align=center]抗拉强度(Mpa)[/align] [/td][td] [align=center]延伸率[/align] [align=center](%)[/align] [/td][td] [align=center]冲击功[/align] [align=center](J)[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]950°C×10min[/align] [align=center]+670°C×5min [/align] [/td][td] [align=center]945[/align] [/td][td] [align=center]998[/align] [/td][td] [align=center]18.5[/align] [/td][td] [align=center]74[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×60min[/align] [/td][td] [align=center]830[/align] [/td][td] [align=center]847[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]75[/align] [/td][/tr][/table][img=,690,299]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020916_01_2984502_3.png[/img] 使用感应热处理的方式对抗腐蚀无缝钢管进行热处理不仅仅可以提高材料的力学性能,同时需要值得注意的是感应加热这种热处理方式带来的析出相及位错密度的改变。图4是3#试样和4#试样的透射电镜图象,通过图4可知,经过感应回火热处理的4#试样具有更低的位错密度。27CrMo27Vs钢主要以抗H[sub]2[/sub]S为目的,在腐蚀过程中H离子往往存在于材料的位错位置,位错密度高会引起H离子的聚集并形成氢分子,随着氢气团的增大使材料产生氢致开裂,在使用中会出现材料失效的现象,因此更低的位错密度有利于提高油井管的抗腐蚀能力。图4 3#和4#试样的析出相的TEM图[b]3 结论[/b] 通过以上研究,可以看到感应热处理方式可以提高CrMo钢性能、改善微观析出相的形态、降低材料位错密度。感应热处理的特点使CrMo钢在感应淬火后得到晶粒的细化,在感应回火过程中得到更为适合抗腐蚀性能的析出相形态,有利于提高材料的抗腐蚀性能。 本论文从试验的角度比较了感应热处理方法与常规热处理方法在材料力学性能、微观析出相、微观位错形态等方面的不同,并提出了感应热处理的优势,在机理性研究和最终产品的抗腐蚀试验性能方面仍需进一步的研究。 CrMo钢的感应热处理试验结果为油井管的生产提供了很好的借鉴,推动了同类产品的工艺进步。对油井管感应热处理的深入研究,系统的掌握感应热处理工艺的相关规律,可以提高产品性能以能使CrMo钢得到更好的应用。

  • 【已应助】一篇英文感应加热方面的论文

    【序号】: 1【作者】: Aniserowicz, K.; Skorek, A.; Cossette, C.; Zaremba, M.B.; 【题名】: A new concept for finite element simulation of induction heating of steel cylinders【期刊】: IEEE Transactions on Industry Applications,【年、卷、期、起止页码】: 1997 ,33(4),893-897【全文链接】: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=605729

  • 一本经典的英文版感应加热手册

    【序号】:1【作者】:V.Rudnev, D.Loveless, R.Cook, M.Black【题名】:Handbook of Induction Heating【期刊】:Marcel Dekker Inc.,New York【年、卷、期、起止页码】:2003【全文链接】:

  • 一台感应调压器高压侧10kV绕组相间短路故降的处理

    若一台感应调压器高压侧10kV绕组相间短路出故降如何处理呢?某厂一台感应调压器,额定电压为低压侧三相380V、高压侧三相I0kv.。1000kVA.调压器为一台T频感应加热炉提供高压电源。 一天,调压器开关突然跳闸。跳闸后,经用2500V兆欧表测量,调压器绕组对地绝缘电阻正常。判定无接地故障,重新试送电,再次跳闸,判定有短路故障。将高压侧的电缆拆去,首次送入380v电压。.但将调压器旋转较小角度,输出较低电压,结果测得输出电压为30V、 50v、 90V。再次输入电流为2A.、5A、 7A三相电压和三相电流都严重不平衡。由此可以判断,调压器绕组间有相间短路故障。 吊芯检查:调压器定子绕组上端头两相绕组间绝缘有明显击穿痕迹,由于高压绝缘击穿,导致高压闪络放电造成相相间短路,开关跳闸。 处理:用远红外线板对短路的两绕组进行局部加热,取出槽楔,趁热将两个饶组的上层线棒取,清理干净端部故障点的绝缘。因导线并没有明显烧伤,故只对故障处重新处理绝缘:在匝间用黄蜡绸包扎,层间垫以青壳纸,外面又用黄蜡绸包14层,再用绸带外包一层,最后进行绕组整形,重新将两个绕组的上层线棒放入槽内,打进槽楔。用2500V兆欧表测量绝缘正常。之后,用红外线板烘干12b,再以25kv高压进行耐压试验1min,正常.,重新组装后,运行正常.

  • 【求助】钢管感应加热方面的一篇基础英文文献

    [color=#ff0000]【序号】: 1【作者】: John Powell【题名】: Induction Heating Prior to Coating for Value-Added Pipe[/color][color=#ff0000]【期刊】: [/color][color=#ff0000]Tube and Pipe Technology【年、卷、期、起止页码】: [/color][color=#000000]1997(1)[/color][color=#ff0000]【全文链接】:找了好久也没有找到,请求帮助。[/color]

  • 制冷加热系统运行方式与原理说明

    制冷加热系统是利用电能转化为热能的设备,工作范围比较广,为制药、化工、生物等行业的设备提供恒温的冷源和热源,那么无锡冠亚制冷加热系统怎么运行的呢?  制冷加热系统在被加热物体内部直接生热,因而热效率高,升温速度快,并可根据加热的工艺要求,实现整体均匀加热或局部加(包括表面加热),容易实现真空加热和控制气氛加热。在制冷加热过程中,产生的废气、残余物和烟尘少,可保持被加热物体的洁净,不污染环境。因此,制冷加热广泛用于生产、科研和试验等领域中。制冷加热系统装置是对金属材料加热效率较高、速度较快,低耗节能环保型的感应加热设备。  制冷加热系统能够提供冷源和热源的循环装置,工作范围宽广,制冷加热系统用于制药、化工、生物等行业,为反应釜、槽等提供热源和冷源,也可用于其他设备的加热和冷却,温度控制范围宽,全程不需更换导热介质,导热介质消耗少。全封闭循环系统,高温时导热流体不易挥发和氧化,低温下不易吸入空气中的水分,可延长导热流体的使用寿命,高温冷却、制冷功能,可以从高温直接降温。  制冷加热系统采用多功能报警系统和安全功能、板式换热器、管道式加热器提高加热和制冷速率,这样一来,运行更加平稳安全。

  • 瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    [size=16px][color=#cc0000][b]摘要:为准确测量航天复合材料快速加热过程中的热膨胀系数,本文介绍了热膨胀系数测试过程中加热速率、加热形式和位移测量形式对被测样品内外温度和热膨胀测量方向上温度梯度的影响,以及这些温度梯度与热膨胀系数测试结果之间的变化规律。在这些初步研究基础上,本文提出了高速加热过程中热膨胀系数测量装置的初步设计方案,即采用聚光辐射或电磁感应技术进行非接触快速高温加热,采用激光扫描或光学投影技术进行非接触应变测量。[/b][/color][/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px][color=#cc0000]1. 问题的提出[/color][/size][/b][size=16px] 比较典型的航天复合材料如碳碳和石墨复合材料、各种酚醛树脂基复合材料等,其热膨胀系数普遍还是采用加热速率较慢的各种热膨胀仪进行测试,而这种常规测试过程中的较低加热速率与航天复合材料的实际使用环境下的快速升温速率严重不符,低速加热时的热膨胀系数测试结果几乎对复合材料结构的热设计毫无用途,从而造成现有的热结构设计太过保守。为此,本文针对快速加热条件下的航天复合材料热膨胀系数测试,开展初步的测试技术研究,通过典型材料重点了解快速加热条件下的以下两方面的问题:[/size][size=16px] (1)快速加热条件下,样品或材料的内外内外温差对热膨胀系数的影响。[/size][size=16px] (2)快速加热条件下,样品或材料热膨胀测试方向上的温度均匀性影响。[/size][size=18px][color=#cc0000][b]2. 样品内外温差影响[/b][/color][/size][size=16px] 对于航天复合材料而言,由于其结构和热物理性能的不同,特别是热导率有着数量级上的差别,由此会在实际应用和取样测试过程中有时会存在严重的内外温差。热膨胀测试中,加热速率的不同会对测量结果产生明显的影响。[/size][size=16px] 为了直观了解这种内外温差对热膨胀系数测量的影响,我们选择了具有中等热导率(常温时约14W/mK)的不锈钢材料进行取样测试,测量温度范围为室温30~700℃,测试得到的平均热膨胀系数结果如图1所示。[/size][align=center][size=16px][color=#cc0000][b][img=不锈钢样品不同加速速率下的平均线性热膨胀系数测试结果,660,482]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111012258135_6561_3221506_3.jpg!w690x504.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图1 不同加速速率下的不锈钢样品热膨胀系数测试结果[/b][/color][/size][/align][size=16px] 从图1所示的测量结果可以看出,在较低加热速率(5℃/min)下的热膨胀系数测试结果相差不大,只是随加热速率的升高热膨胀系数整体有很小的降低。而在加热速率超过10℃/min时,测试结果发生明显的偏差,热膨胀系数明显的偏低,特别是在低温范围内这种现象更为明显。[/size][size=16px] 由此可见,对于热导率较低的材料,较快的加热速率会在样品内外产生明显的温差,从而对热膨胀系数产生严重的影响,使得热膨胀系数测试结果严重偏低。具体应用到航天复合材料中,由于碳碳和石墨复合材料的热导率普遍较高,相关的测试研究表明石墨材料在1600℃温度以下的范围内测试时,加热速率几乎没有影响,对于碳碳复合材料,这个不受加热速率影响的温度范围可以扩展到1700℃。[/size][size=16px] 对于热导率普遍较低的酚醛树脂复合材料,其热膨胀对加热速率则非常敏感,且膨胀过程非常复杂。有测试观察到当碳酚醛或二氧化硅酚醛层压材料被缓慢加热时,在190℃左右发生一些快速膨胀,然后材料开始收缩,从膨胀到收缩的变化对应于热降解的开始。而在高加热速率下,热膨胀系数的急剧增加发生在与低速率下开始收缩时的大致相同温度区域。据信,在高加热速率下,树脂开始软化,然后发生气体的快速释放。这些气体不容易逸出,并在材料中产生压力,导致快速膨胀和裂缝的张开。除了热膨胀之外,因材料的结构受到影响,其他性能也会受到加热速率的影响。[/size][size=18px][color=#cc0000][b]3. 样品表面温度均匀性影响[/b][/color][/size][size=16px] 在快速加热形式的热膨胀测试设备中,往往还存在以下两方面的因素会给样品表面温度的均匀性带来影响,由此会给热膨胀系数测量带来误差:[/size][size=16px] (1)加热方式:热膨胀测试中的快速加热一般会采用聚光辐射加热、感应加热和直接通电三种形式,其中辐射加热适用于非导电材料样品,而感应加热和通电加热则适用于导电类材料样品。但不论采用哪一种加热方式,发光灯管和感应线圈都会是有限长度,从而使得样品轴向方向上的温度并不是均匀分布。特别是直接通电加热方式中的电极与被测样品直接接触,样品上的热量会通过电极散失而造成较严重的样品温度不均匀性。[/size][size=16px] (2)变形测量方式:热膨胀系数的测量一般会采用顶杆法和光学投影法,在顶杆法测试中,与样品接触的顶杆同样会对样品起到散热作用而影响样品的温度均匀性,而非接触形式的光学投影法则不存在样品散热问题,对样品的温度均匀性影响较小。[/size][size=16px] 为了研究样品表面温度不均匀性对快速加热过程中热膨胀系数测量的影响,有研究人员采用了感应加热式顶杆法热膨胀仪,如图2所示,对42CrMo超高强度钢进行了不同升温速率下的测试。样品被夹在两根熔融石英顶杆之间,其中一根顶杆固定,另一根连接到一个差动变压器(LVDT)进行样品的变形量测量。样品被放置在感应线圈的中心可实现高速加热,样品上焊接了两只S型热电偶,中心位置的热电偶用于控制样品温度,边缘位置热电偶用来测量温度均匀性。[/size][align=center][size=16px][color=#cc0000][b][img=02.感应加热式顶杆法热膨胀仪结构,500,344]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014018059_9517_3221506_3.jpg!w690x476.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图2 感应加热式顶杆法热膨胀仪结构[/b][/color][/size][/align][size=16px] 如图3所示为样品和感应线圈结构和尺寸示意图,样品为壁厚为0.5mm的薄壁圆柱,样品长度为10mm,熔融石英棒顶杆的外径和内径分别为2mm和1mm。[/size][align=center][size=16px][color=#cc0000][b][img=03.快速加热热膨胀测试中使用的样品和感应线圈几何形状,660,222]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014201830_7644_3221506_3.jpg!w690x233.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图3 快速加热线膨胀测试中使用的样品和感应线圈几何形状[/b][/color][/size][/align][size=16px] 对上述样品,在1℃/s~1200℃/s范围内一系列不同的速率下对样品进行了加热,不同加热速率下样品中心与边缘之间的温度差测试结果如图4所示,相应的应变测试结果如图5所示。[/size][align=center][size=16px][color=#cc0000][b][img=04.不同加热速率下的样品中部和边缘的实测温差,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014398184_2549_3221506_3.jpg!w690x557.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图4 不同加热速率下样品中部和边缘的实测温差[/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b][img=05.不同加热速率下的样品应变量-温度测试结果,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014595694_4159_3221506_3.jpg!w690x556.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图5 不同加热速率下样品应变量-温度测试结果[/b][/color][/size][/align][size=16px] 从图4所示的温差曲线可以看出,对于低于10℃/s的加热速率,样品中心和边缘之间的温差不会超过10℃。对于所有其他加热速率,温差随着中心温度快速增加,并在达到某一温度时开始变缓。从该温度开始,中心与边缘之间的温差随着样品中间温度变化几乎呈线性增加。对于最高加热速率1200℃/s,温差达到最大值160℃,边缘温度相当于中心温度的大约70%。[/size][size=16px] 如图5所示,比较不同加热速率下测得的应变-温度曲线,可以观察到加热速率越高,测得的应变越低,这也与图1所示的规律一致,但这也部分可能与加热速率增加时膨胀方向上的温度梯度的增加有关。从图5可以看出,最小和最大升温速率下应变测量值的相对偏差约为20 %。[/size][size=16px] 显然,在非常高的加热速率下使用变形信号对发生相变的动力学过程的研究将导致严重的误差,因为应变信号中的误差将通过不确定的传播影响描述相变动力学的所需参数的计算,同时,还取决于所应用的动力学模型的数学性质,最终误差甚至可能大于这里测量的应变的20%误差。[/size][size=16px] 另外,样品轴向上的温度梯度是由于样品和棒之间的接触带来的热损失,这导致靠近样品边缘的温度降低。在低加热速率下,从中心到边缘的热传导几乎使整个样品的温度相等,导致小的温度梯度,但随着加热速率的增加,由于热传导使得样品中心的温度上升较快,这导致轴向温度差的增加。[/size][size=16px] 造成温度梯度的另一个因素是样品与线圈磁场的相互作用,感应热在整个样品长度上并不是均匀和恒定的,对于膨胀计的感应线圈的规则螺旋状几何形状,沿着轴向方向上存在强烈的感应温度梯度。[/size][size=18px][color=#cc0000][b]4. 总结[/b][/color][/size][size=16px] 通过上述高加热速率条件下进行的金属材料热膨胀系数测试,可以明显看到加热速率对样品内外和样品轴向温度差的严重影响,因此在今后的各种高加热速率条件下的热膨胀测试,需要特别注意以下几个内容:[/size][size=16px] (1)测试前,首先要确定具体测试的是哪一种热膨胀系数,稳态热膨胀系数测试则选用低加热速率,瞬态热膨胀系数测试则根据实际应用场景选择相应的高加热速率,这在材料的相变过程研究中非常重要。[/size][size=16px] (2)对于稳态热膨胀的测试,需要在样品内外温度一致后进行测量,这是就需要尽可能采用尽可能低的加热速率才能保证相应的测量准确性,甚至可以采用台阶式温升方式,使样品在不同温度下恒定一段时间后再进行变形测量。[/size][size=16px] (3)由于材料固有的导热性能,对于符合实际变温速率应用场景的高加热速率下的热膨胀测试,样品内外的温差更能符合材料的实际温度环境,但在热膨胀系数的具体测试中需要尽可能避免样品轴向温度差带来的测量误差。具体采取的措施是分别采用非接触形式的加热技术和位移测量技术,使被测样品不与其他物体接触或最小接触,如采用均温场更长的聚光辐射加热装置或能提供更均匀温度场的异型感应线圈对样品进行非接触式快速加热,如采用激光线扫描或投影法光学变形测试技术非接触测量样品的长度。[/size][size=16px] 总之,通过对高速加热过程中热膨胀系数测试技术的初步研究,确定了非接触快速加热和非接触位移测量的总体技术方案,为后续航天复合材料高速热膨胀系数测试研究工作的开展奠定了基础。[/size][size=16px][color=#cc0000][b][/b][/color][/size][align=center][size=16px][b][color=#cc0000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 【求助】(已应助)求助感应电路的知识文献

    1.感应电炉的原理、构造和筑炉、修炉方法--《现代铸铁》2005年02期 2.Ajax感应电炉的结构与应用,电工材料 有色设备 1997年4期 3.300kg三相工频有心感应熔铜炉单相保温供电电炉论文,【作者】:林光宇 【来源】: 知识词典【期刊名称】:电炉(DianLu)4.浅议工频有芯感应电炉铜液渗漏死炉的特征,2001年 第21卷 第03期 5. 2.5t工频有心感应熔铜炉组的设计与实践,铸造及工艺 工业加热 1996年4期 6.感应电炉的原理、构造和筑炉、修炉方法 ,材料科学 现代铸铁 2005年25卷2期

  • 仪器仪表电磁阀与高频机

    高频焊接方式,因其高效快捷,焊接质量高.现各行各业越来越多地从传统焊接方式上转变了过来.在电磁阀、压力表、阀门及压力开关等生产中,得到了越来越多地应用.电磁阀的端盖一般使用黄铜材料,而与其焊接的阀杆套管的材料则是不锈钢.它们不但材料不同,形状不同,而且厚度也不同.因此在焊接时,一定要设计制作好专用的感应圈.设计制作感应圈时应注意以下几个方面:铜的感应加热速度因其电阻率低(铜在20℃时的电阻率1.75×10-8 )而远慢干铁(铁在20℃时的电阻率9.78×10-8 ):铜传热散热速度明显比钢铁快;材料厚度大的,比材料厚度小的感应加热速度慢;感应加热区域应尽可能地限定在焊接处;等.高频焊接方式优点很多,不过在实际应用时,一定要根据具体的被焊工件的材料,形状,尺寸等差异,选择好高频机的频率,功率,设计制作性能优良的感应圈.感应圈的设计重点与综合考虑的因素是直接关连的,了解和掌握了这些,感应圈才能做的合适,做的理想.应用范围广高频机、高频焊机在很多领域都得到广泛地应用。例如:车刀、铣刀、钻头、钜片等焊接,普通刀头、钨钢、合金钢及其它硬质合金刀头均可;各种规格的铁件、铜件、铝件、不锈钢件等焊接;银触点、波纹管、电磁阀、管接头、钢带等焊接;[

  • 高频机及高频机的选与用

    高频机及高频机的选与用

    http://ng1.17img.cn/bbsfiles/images/2013/02/201302241205_426757_1259808_3.jpg 高频机技术 吕健(总工程师) 高频机及感应加热技术目前对金属材料加热效率最高、速度最快,且低耗环保。它已经广泛应用于各行各业对金属材料的热加工、热处理、热装配及焊接、熔炼等工艺中。它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可只对其表面、表层集中加热;不但可对金属材料直接加热,也可对非金属材料进行间接式加热。等等。因此,感应加热技术得到在各行各业中越来越广泛的应用。 用感应电流使工件局部加热的表面热处理工艺。这种热处理工艺常用于表面淬火,也可用于局部退火或回火,有时也用于整体淬火和回火。20世纪30年代初,美国、苏联先后开始应用感应加热方法对零件进行表面淬火。随着工业的发展,感应加热热处理技术不断改进,应用范围也不断扩大。  基本原理将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生交变磁场。交变磁场的电磁感应作用使工件内产生封闭的感应电流──涡流。感应电流在工件截面上的分布很不均匀,工件表层电流密度很高,向内逐渐减小, 这种现象称为集肤效应。工件表层高密度电流的电能转变为热能,使表层的温度升高,即实现表面加热。电流频率越高,工件表层与内部的电流密度差则越大,加热层越薄。在加热层温度超过钢的临界点温度后迅速冷却,即可实现表面淬火。  分类根据交变电流的频率高低,可将感应加热热处理分为超高频、高频、超音频、中频、工频 5类。①超高频感应加热热处理所用的电流频率高达27兆赫,加热层极薄,仅约0.15毫米,可用于圆盘锯等形状复杂工件的薄层表面淬火。②高频感应加热热处理所用的电流频率通常为200~300千赫,加热层深度为0.5~2毫米,可用于齿轮、汽缸套、凸轮、轴等零件的表面淬火。③超音频感应加热热处理所用的电流频率一般为20~30千赫,用超音频感应电流对小模数齿轮加热,加热层大致沿齿廓分布,粹火后使用性能较好。④中频感应加热热处理所用的电流频率一般为2.5~10千赫,加热层深度为2~8毫米,多用于大模数齿轮、直径较大的轴类和冷轧辊等工件的表面淬火。⑤工频感应加热热处理所用的电流频率为50~60赫,加热层深度为10~15毫米,可用于大型工件的表面淬火。  特点和应用[/

  • 微波加热的优点

    (1)加热速度快 常规加热(如火焰、热风、电热、蒸汽等)都是利用热传导、对流、热辐射将热量首先传递给被加热物的表面,再通过热传导逐步使中心温度升高(既常称的外部加热)。它要使中心部位达到所需的温度,需要一定的热传导时间,而对热传导率差的物体所需的时间就更长。微波加热则属内部加热方式,电磁能直接作用于介质分子转换成热,且透射使介质内外同时受热,不需要热传导,故可在短时间内达到均匀加热。(2)均匀加热 用外部加热方式加热时,为提高加热速度,就需升高外部温度,加大温差梯度。然而随之就容易产生外焦内生现象。微波加热时不论形状如何,微波都能均匀渗透,产生热量,因此均匀性大大改善。(3)节能高效 不同物料对微波有不同吸收率,含有水份的物质容易吸收微波能。玻璃、陶瓷、聚丙烯、聚乙烯、氟塑料等则很少吸收微波,金属将反射电波,这些物质都不能被微波加热。微波加热时,被加热物料一般都是放在用金属制成的加热室内,加热室对电磁波来说是个封闭的腔体,电磁波不能外泄,只能被加热物体吸收,加热室内的空气与相应的容器都不会被加热,所以热效率高。同时工作场所的环境温度也不会因此而升高,生产环境明显改善。(4)易于控制 微波功率的控制是由开关、旋钮调节,即开既用,无热惯性,功率连续可调,易于自动化。 (5)清洁卫生 对食品、药品等加工干燥时,微波热效应与生物效应能在较低的温度下迅速杀虫灭均,能最大限度的保持营养成分和原色泽,所以微波加热在食品工业中得到广泛的应用。(6)选择性加热 不同性质的物料对微波的吸收损耗不同,既选择性加热的特点,这对干燥过程有利。因为水分子对微波的吸收损耗最大,所以含水量高的部位,吸收微波功率多于含水量较低的部位,从而干燥速率趋一致。但有些物质呈负温度系数,温度愈高,εr和tgδ将增大,吸收愈好,造成正反馈使这一部分的温度急剧上升。对这类物质进行微波加热就要注意合理制定加工工艺。(7)安全无害 通常微波能是在金属制成的封闭加热室、波道管内传输。公司集多年加工经验和技术装备,采用先进设计,使进出料口、观察窗、炉门等处的微波泄漏严格控制在国家安全标准指标内,大大低于国家制定的安全标准。而且微波不属于放射性射线、又无有害气体排放,是一种十分安全的加热技术。微波加热干燥方法与通常加热方法(如热空气、火焰、电热器、煤气炉、红外线、高频感应加热等)相比,具有许多特点。主要是:不需热量由表及里的传递,直接加热物体内部,且热常场温度分布均匀;温度可瞬时控制,准确控制加热时间;所需加热时间短;产品质量、产量及劳动生产率得到提高;适合生产过程自动化;无公害、污染问题。

  • 自夹持高温引伸计

    用于高温炉和感应加热系统。采用爱普森独有的自我夹持设计。可提供适合多种试验要求的可选件。适用于在高温炉和感应加热系统产生的高温下测量金属、陶瓷和复合材料的变形。比其它高温引伸计更便于使用,性能更加优良。用很轻的柔性陶瓷纤维线将引伸计固定在试样上。这样引伸计就自我夹持在试样上。不需要高温炉安装支架。大多数侧面开口的材料试验用高温炉很容易安装这种引伸计。对感应加热系统,陶瓷线的不同放置可令引伸计轻易穿过感应圈。由于辐射热防护罩和对流冷却散热片的作用,可允许引伸计用于试样温度达1200℃的环境中,并且无需冷却。可选配的小风扇可提高引伸计在最高温度时的稳定性,所以推荐在要求高精度和小延伸率试验时使用。风扇有磁性底座,可放在靠近引伸计的方便位置。感应加热系统无需风扇冷却。使用高纯度的矾土(最小99.7%)陶瓷棒。可根据高温炉的要求选择合适的长度。拉伸、压缩和循环试验(低周疲劳)应变测量可用一个引伸计来完成。对真空炉来说,可提供水冷却引伸计。也可提供辐射热传递冷却型引伸计。这要求引伸计模块被水槽包住,在水槽前面给陶瓷杆留个缺口。

  • 高频机基础知识

    http://ng1.17img.cn/bbsfiles/images/2013/02/201302230929_426683_1259808_3.gif 高频机基础知识 吕健(总工) 您能想象的到,一根铁棒放到一只铜圈中,能瞬间烧红吗?此时铜圈却不热。如果你把手放到铜圈里是不会被烧的。但是,你如果把任何金属放到铜圈中,都又会被马上烧红,甚至熔化。 这就是人类目前能够做到和掌握的最快捷的对金属材料直接加热的方法——高中频感应加热技术——“中发高频机”。  “中发高频机”无论是对铁、铜、铝,还是对金、银、铅,就是金属材料中熔点最高的钨(熔点3410度),也可以将其瞬间加热到你所需要的任何温度,包括熔点。 通常人们对物体的加热,一是利用煤、油、气等能源的燃烧产生热量;二是利用电炉等用电器将电能转换成热量。这些热量只有通过热传递的方式(热传导、热对流、热辐射),才能传递到需要加热的物体上,也才能达到加热物体的目的。由于这些加热方式,被加热的物体是通过吸收外部热量实现升温的。因此,它们都属于间接加热方式。 我们知道,热量的自然传递规律是:热量只能从高温区向低温区,高温体向低温体,高温部分向低温部分自然的传递。因此,只有当外部的热量、温度明显多于、高于被加热物体时,才能将其有效地加热。这就需要用很多的能量来建立一个比被加热物体所需要的热量多的多、温度高的多的高温区。如炉,烘箱等。这样,不但这些热量中只有少部分能够传递到被加热体上,造成很大的能源浪费。而且加热时间长,在燃烧、加热的过程中,还会产生大量的有害性物质和气体。它们既会对被加热体造成腐蚀性的损害,又会对大气造成污染。即便是使用电炉等电能加热方式,虽然无污染,但仍然存在着效率低、成本高、加热速度慢等缺点。 科学的进步与发展,使我们今天无论是对金属物体加热还是对非金属物体加热,都可以采用高效、快速,且十分节能和环保的方式加热.这就是直接加热方式。 对于非金属材料,可采用工作频率约240MHZ及以上,能使其内部分子、原子每秒振动、磨擦上亿次之多的微波加热。对于金属材料,则可采用工作频率在几千赫兹(KHZ)至几百千赫兹、兆赫兹(MHZ)以上的中频、超音频、高频、超高频感应加热。也可以采用低频感应加热,如工频50HZ等。 中频、超音频、高频感应加热,是将工频(50HZ)交流电转换成频率一般为1KHZ至上百KHZ,甚至频率更高的交流电.利用电磁感应原理,通过电感线圈转换成相同频率的磁场后,作用于处在该磁场中的金属物体上。 利用涡流效应,在金属物体中生成与磁场强度成正比的感生旋转电流(即涡流)。由旋转电流借助金属物体内的电阻,将其转换成热能。同时还有磁滞效应、趋肤效应、边缘效应等,也能生成一定的热量,它们共同使金属物体的温度急速升高,实现快速加热的目的。 高频电流的趋肤效应,可以使金属物体中的涡流随频率的升高,而集中在金属表层环流。这样就可以通过控制工作电流的频率,实现对金属物体加热深度的控制。既能提高加工工艺的质量,又可以保证能量被充分地利用。当用于红冲、热煅及工件整体退火等工艺时,由于工件需要的加热深度大,甚至需要透热.这时可以将感应加热设备的工作频率降低(如中频、超音频);当用于表面淬火、焊接等工艺时,它们需要的加热深度小,这时则可以将工作频率升高(如高频)。另一方面,对于体积较小的工件或管材、板材,选用高频加热方式,对于体积较大的工件,选用中频、超音频加热方式。 由于感应加热时间短、速度快,并且还是非接触式(加热物体不需要与感应圈接触)的加热。所以,比其它的加热方式氧化和脱碳现象都比较轻微,一般不需要做气体保护处理,确实有需要时也比较容易于进行气体保护。 电子技术的飞速发展,使电子元器件无论是质量方面、效能方面, 还是可靠性方面,都有了很大的进步.在体积方面也更为小型化、微型化。这为感应加热技术提供了更好的发展条件与空间。在小信号生成与处理,控制与保护,调节与显示等方面,都更多地运用了可靠性更高、稳定性更好、抗干扰能力更强的数字电路。在功率元件上,更是从耗能大、效率低、工作电压高、辐射量较大的电子管,一代代地经晶闸管、场效应管(MOSFET),发展到了IGBT(绝缘栅双极晶体管)。 整机的电源利用率已经提高到百分之九十五以上(电子管电源利用率只有约百分之六十),冷却水比电子管产品节约了约百分之六十。并且可以实现24小时不间断的连续工作。这样不但可以在白天正常使用,还可以在用电低峰电费折扣期的夜间工作。 由于感应式加热,具有耗能少,用电省,加热速度快,无污染、无噪声、无需预热、不易氧化、便于气体保护、可自动控制、具备多项智能保护、安全可靠、易于操作,可不间断地连续工作等优点。越来越多的厂家、客户,从煤炭加热,柴油加热,液化气加热,以及电炉、电烘箱加热,转换到了高中频感应式加热上来!无论是国企、民营,还是私营、外企,凡是金属热处理、金属热加工、金属焊接和金属熔炼、提炼等行业,都越来越多地采用了高中频感应加热设备。因此,市场十分广阔! “中发高频机”的主要用途: [size=14pt

  • 浅谈成都产的某品牌高频熔样机的缺点

    高频熔样机基于高频感应加热设备改进而来,感应加热设备多用于金属锻造,淬火,熔炼等行业,重工业中大多数应用了功率非常大的感应加热设备。而实验室玻璃片的制样设备则用小功率成本极低的加热电源然后配上对铂黄金坩埚搅拌机构拼装而成的。总体质量参差不齐,这主要在于高频熔样机生产厂家设计理念。 首先感应加热电源是成熟的产品,这个基本不再需要过多改进,那么主要问题集中在,机械结构方面了,不合理的设计会对用户有些怎么样的影响呢? 第一:操作界面,用户不能直接输入想要的温度,只能输入加热电流,这对新手用户相当难理解。 第二:测温点非常不固定,用户对温度一脸懵,虽然厂家的显示屏上面有温度显示,但一点也不准确。看似安装了一个红外测温装置,其实在熔样过程中并不能实时监控温度,直接影响样品的重现性。 第三:坩埚支撑装置调节经常会出现螺钉打滑,外盘螺纹卡死的现象,一旦卡死就必须更换。 第四:升降机构,旋转机构维护相当困难,如:冷却水管老化漏水,用户本可以自行更换即可,但由于设计缺陷,维修需要先拆卸一大堆其他部件才能处理到问题,这让一个非专业人士根本无从下手。 第五:技术实力薄弱,无论是安装培训,售后处理等技术支持基本是由一个老年的工程师完成,对问题判断力不准确,很难第一时间确定故障点,试问厂家是无人可用了吗? 以上是从一个用户的切身体验总结出来的一些问题,主要是想高频熔样机在熔化速度快,对实验室温度影响小等优势的情况下能做的更加完美而提出的,希望有更具实力的厂家生产出更精良的设备。

  • 热封(塑料软包装)过程的讲述

    热封过程是利用外界条件(电加热、高频加热、电磁感应加热、超声波等)使塑料薄膜的封口部分变成熔融的流动状态,并借助热封时外界的压力,使两薄膜彼此融合为一体,冷却后保持一定的强度。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制