当前位置: 仪器信息网 > 行业主题 > >

钙吸油定仪

仪器信息网钙吸油定仪专题为您提供2024年最新钙吸油定仪价格报价、厂家品牌的相关信息, 包括钙吸油定仪参数、型号等,不管是国产,还是进口品牌的钙吸油定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钙吸油定仪相关的耗材配件、试剂标物,还有钙吸油定仪相关的最新资讯、资料,以及钙吸油定仪相关的解决方案。

钙吸油定仪相关的资讯

  • 能谱测油仪:HJ 1077-2019 固定污染源废气 油烟和油雾的测定
    警告:实验中所使用的萃取溶剂对人体健康有害,样品前处理过程应在通风橱中进行, 并按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定固定污染源废气中油烟和油雾的红外分光光度法。 本标准适用于固定污染源废气中油烟和油雾的测定。 当采样体积为 250 L(标准状态),萃取液体积为 25 ml,使用 4 cm 石英比色皿时,本方法油烟和油雾的检出限均为 0.1 mg/m3,测定下限均为 0.4 mg/m3。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 18483 饮食业油烟排放标准(试行) GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 397 固定源废气监测技术规范3 术语和定义 下列术语和定义适用于本标准。3.1油烟 oil fume 指食物烹饪、加工过程中挥发的油脂、有机质及其加热分解或裂解产物。3.2 油雾 oil mist 指工业生产过程(如机械加工、金属材料热处理等工艺)中挥发产生的矿物油及其加热分解或裂解产物。4 方法原理 固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法OIL3000B 红外测油仪测定。油烟和油雾含量由波数分别为 2930 cm-1(CH2 基团中 C—H 键的伸缩振动)、2960 cm-1(CH3 基团中C—H 键的伸缩振动)和 3030 cm-1(芳香环中 C—H 键的伸缩振动) 谱带处的吸光度 A2930、A2960 和 A3030 进行计算。5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。5.1 正十六烷(C16H34)。5.2 异辛烷(C8H18)。5.3 苯(C6H6)。5.4 四氯乙烯(C2Cl4)。 用 4 cm 比色皿,空气池做参比,在波数 2930 cm-1、2960 cm-1 和 3030 cm-1 处吸光度应分别不超过 0.34、0.07 和 0。5.5 无水硫酸钠(Na2SO4)。 在 500 ℃下加热 4 h,冷却后装入磨口玻璃瓶中,置于干燥器内保存。5.6 正十六烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 正十六烷(5.1),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算正十六烷标准贮备液准确浓度。5.7 正十六烷标准使用液:ρ=1.00×103 mg/L。 移取适量的正十六烷标准贮备液(5.6)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容, 混匀。5.8 异辛烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 异辛烷(5.2),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算异辛烷标准贮备液准确浓度。5.9 异辛烷标准使用液:ρ=1.00×1 03 mg/L。 移取适量的异辛烷标准贮备液(5.8)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。5.10 苯标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 苯(5.3),再次称重(准确至1 mg),加四氯乙烯(5.4)定容,混匀,计算苯标准贮备液准确浓度。5.11 苯标准使用液:ρ=1.00×10 3 mg/L。 移取适量的苯标准贮备液(5.10)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。 注:可直接购买市售有证标准溶液。5.12 油烟标准油。 在 500 ml 双颈蒸馏瓶中加入 300 ml 花生油,侧口插入量程为 500℃的温度计,在 120℃ 温度下敞口加热 30 min,然后在上口安装空气冷凝管,升温至 300℃,回流 2 h,即得标准油,放冷后取适量放入带聚四氟乙烯衬垫螺旋盖的 500 ml 样品瓶中。5.13 油烟标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油烟标准油(5.12),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油烟标准油贮备液准确浓度。5.14 油烟标准油使用液:ρ=100 mg/L。 移取适量的油烟标准油贮备液(5.13)于 250 ml 容量瓶中,用四氯乙烯(5.4)稀释至标线。5.15 油雾标准油。 分别用刻度移液管吸取 6.5 ml 正十六烷(5.1)、2.5 ml 异辛烷(5.2)和 1.0 ml 苯(5.3)移入 10 ml 容量瓶,立即塞紧混匀。5.16 油雾标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油雾标准油(5.15),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油雾标准油贮备液准确浓度。5.17 油雾标准油使用液:ρ=100 mg/L。 移取适量的油雾标准油贮备液(5.16)于 250 ml 容量瓶中,用四氯乙烯(5.4)定容。 注:可直接购买市售有证油烟、油雾标准溶液。5.18 金属采样滤筒及聚四氟乙烯套筒。 金属滤筒材质:316 不锈钢,内部充填毛面玻璃微珠或 316 不锈钢纤维,滤筒清洗后用无油清洁空气吹干置于套筒内保存。当油烟或油雾浓度在 10 mg/m3 以上时,油烟和油雾采集效率应≥95%。5.19 玻璃纤维滤筒。 Φ28×70 mm ,对粒径 0.5 μm 粒子捕集效率不低于 99.9%,失重≤0.2%。经 400℃灼烧 1 h,冷却后进行检查,未变形或破碎的玻璃纤维滤筒放入带盖聚四氟乙烯柱形套筒密封待用。6 仪器和设备 6.1 能谱OIL3000B 红外测油仪。 配有 4 cm 带盖石英比色皿,仪器扫描范围:3400 cm-1 至 2400 cm-1。6.2 烟尘测试仪。 符合HJ/T 48 的要求。6.3 玻璃纤维滤筒采样管。符合HJ/T 48 的要求。6.4 金属滤筒采样管及配套滤筒。6.5 一般实验室常用仪器和设备。7 样品7.1 样品采集 采样布点、频次、采样工况按照 GB 18483、GB/T 16157、HJ/T 397 和其他相关标准要求进行。 选择合适的采样器,安装采样嘴及滤筒。采集油雾时选择玻璃纤维滤筒采样管(6.3) 或金属滤筒采样管(6.4),采集油烟时选择金属滤筒采样管(6.4)。采样前检查系统的气密性。连续采样 10 min,将采样后滤筒放入套筒内。7.2 样品的保存 样品采集后应尽快测定。样品若不能在 24 h 内测定,可冷藏(≤4℃)保存 7 d。7.3 试样的制备7.3.1 油烟的试样制备 在采样后的套筒中加入四氯乙烯(5.4)溶剂 12 ml,旋紧套筒盖,将套筒置于超声波清洗器,超声清洗 10 min,萃取液转移至 25 ml 比色管,再加入 6 ml 四氯乙烯(5.4)超声清洗 5 min,将萃取液转移至上述 25 ml 比色管。用少许四氯乙烯(5.4)清洗滤筒及聚四氟乙烯套筒二次,清洗液一并转移至上述 25 ml 比色管,加入四氯乙烯(5.4)至刻度标线,密封待测。7.3.2 油雾的试样制备7.3.2.1 若采用纤维滤筒采样,将采样后的滤筒剪碎后置于 50 ml 烧杯中,用 25 ml 四氯乙烯(5.4)在超声波清洗器中超声萃取 10 min,萃取液转移至 25 ml 比色管,密封待测。7.3.2.2 采用金属滤筒采样,参照 7.3.1 饮食业油烟的试样制备方法。7.4 空白试样的制备 用空白滤筒,按照试样的制备步骤(7.3)制备空白试样。 8 分析步骤8.1 校准8.1.1 校正系数的确定 分别量取 2.00 ml 正十六烷标准使用液(5.7)、2.00 ml 异辛烷标准使用液(5.9)和 10.00ml苯标准使用液(5.11)于 3 个 100 ml 容量瓶中,用四氯乙烯(5.4)定容至标线,混匀。正十六烷、异辛烷和苯标准溶液的浓度分别为 20.0 mg/L、20.0 mg/L 和 100 mg/L。用四氯乙烯(5.4)做参比溶液,使用 4 cm 比色皿,分别测定正十六烷、异辛烷和苯标准溶液在 2930 cm-1、 2960 cm-1 和 3030 cm-1 处的吸光度 A2930、A2960 和 A3030。代入公式(1)求解后,可分别得到相应的校正系数 X,Y,Z 和 F,输入仪器进行校准。 式中: ρ——四氯乙烯中目标物的含量(mg/L); A2930、A2960 和 A3030——各对应波数下测得的吸光度; X、Y、Z ——与各种C-H 键吸光度相对应的系数; F——脂肪烃对芳香烃影响的校正因子,即正十六烷在 2930 cm-1 与 3030 cm-1 处的吸光度之比。 能谱科技致力于傅立叶红外光谱仪,红外测油仪,粉尘游离二氧化硅分析仪的研发生产销售多元化高xin技术企业;无论是常规检查,还是用于前沿科学研究,在这您一定能找到合适您的理想工具。
  • 瑞士万通推出生物柴油滴定分析的整体解决方案
    有关生物柴油的标准DIN EN 14214 规定了,通过非水酸碱滴定法测定酸值和通过硫代硫酸钠的氧化还原滴定反应测定碘值的方法。酸值测定的等当点通过Solvotrode电极测定;碘值测定的等当点通过Pt Titrode电极测定。两种方法都容易使用,并且具有高准确度和高精密度。测试样品的酸值0.202mg/g和碘值114.4g I2 /100g,完全符合DIN EN 14214标准中规定的酸值0.5mg/g 和碘值120 I2 /100g 的要求。 根据ASTM标准 D 4806,用硝酸铅测定生物乙醇中的总硫酸盐,以Pb选择电极为工作电极,双液接的Ag/AgCl电极或者玻碳电极为参比电极。尽管两个参比电极都得到很好的回收率,但是玻碳电极更易维护。两个电极的理想测试范围是1-20ppm。相应的回收率在98%-109%。通过硫酸盐标准物的加入和增加商品化的生物乙醇(E85)中高氯酸浓度,可以检测亚ppm级的硫酸盐。 通过可再生植物资源获得的生物燃料,近年引起了极大关注。原因在于对矿物油需求的增加和矿物油燃烧带来的环境污染问题。为了防止生物燃料对发动机燃油喷射系统和发动机本身的干扰,车辆和生物燃料制作商已经提出了相应的质量标准, 这些标准规定了测试方法和生物燃料的品质。有两个主要生物柴油标准,即,欧洲的 EN 14214 和美国的 ASTM D 6751。生物乙醇只有一个标准,即,美国的ASTM D 4806。ASTM D 4806相当于欧洲的EN 15376标准,EN 15376正在逐步完善中。详细资料下载:http://metrohm.com.cn/application/research.aspx?info_id=788&kind=45更多产品请登陆瑞士万通中文官网:http://www.metrohm.com.cn关于瑞士万通:1950年,瑞士万通发明了第一支复合pH电极。1954年,瑞士万通设计出第一台用于痕量分析的实用自动极谱仪。1956年,瑞士万通开发出第一支活塞型滴定管。1968年,在瑞士万通诞生世界首台数字化滴定仪,第一台数字化电子滴定管。&hellip &hellip 2007年,瑞士万通研发出首台智能型离子色谱仪。2010年,瑞士万通研制出世界首台紫外离子色谱。Metrohm - 瑞士万通,是当今世界唯一全方位涵盖各类不同离子分析技术的国际化分析仪器公司。
  • 贺利氏特种光源助力喷涂行业“油改水”“漆改粉”
    近年来,随着我国环保政策越来越严格,许多地区陆续出台了“禁油令”,极大地限制了油性涂料的发展,除此之外,在涂料行业“十三五”规划中也明确提出,要大力推动水性涂料和环保性涂料的发展。在喷涂行业“油改水”、“漆改粉”已成大势所趋,金属件的粉末固化应用越来越多。面临的挑战 然而,现在广泛使用的粉末涂料及涂装工艺,对于腐蚀防护要求较高的挖掘机产品,容易出现边角涂层膜厚较薄,以及复杂的阴角(凹下的角)部位露底等缺陷。 为了解决现有缺陷问题,采用了“干碰干”粉末涂料涂装新工艺。即:将新研制的粉末涂料分两种类型,底粉和面粉,底粉在边角孔洞位置附着力强且有优良的耐腐蚀性;面粉有优良的流平性和装饰性,适用于大面积的涂装涂层。面粉可以在底粉没有固化之前(即底粉为干粉状态下)进行喷涂,喷涂之后两种粉末在一起进行固化。但是,目前国内这种新的喷涂工艺大批量用于涂装生产线的较少,因为这对喷涂设备(喷枪)和固化方法都有较高的要求。所以如何在粉末涂装生产线改善工件固化品质(使表面流平变得更好更均匀)并改善边角固化(工件结构复杂的位置固化效果变好)是企业急需解决的问题。同时客户希望能够提高生产速度,以更快地完成客户的机械订单交付。贺利氏解决方案 客户原本使用的固化方式为传统热风炉加热,尽管这是行业的普遍做法,但是却有着升温时间慢以及占地面积大的问题。在了解了客户需求并在客户现场进行测试后,在贺利氏特种光源团队提出了在客户的热风烘道前,增加燃气催化红外炉对工件进行预热的方案(工艺由纯热风烘道变为燃气催化+热风相结合)。 采用红外预热和热风烘道加热相结合的方式,提高加热效率,节省场地空间,同时又获得了更好的工件表面喷涂效果。 燃气催化红外炉设备内部的情况(从前往后共3个区域,每块区域8块燃气催化加热板,共24块板) 工件经过燃气催化+热风相结合总过程加热曲线。 从曲线前段斜率可以看出在短时间内工件升温速度非常快,相比传统加热炉提升了效率,与此同时并没有影响温度均衡,且固化效果更好了。选择贺利氏的理由 秉承让事实说话的原则,让我们一起来看一下方案实施后现场实测的结果:涂装固化产线长度以及固化时间都缩短了约50%,整套方案的能耗节约了40%,整体固化工艺速度得到了显著提升。气体催化红外系统01.优势预热或固化时间通常为热风炉的1/3减少占地面积,释放有价值的工厂空间节能高达50%最小化系统内气流,消除了不同颜色批次之间的相互干扰无焰反应,生成水、CO2和热催化气体的波长特别适合粉末的吸收特性维护成本低02.适用工艺热敏基材的涂覆(如MDF)粉末喷涂(如金属基材和非金属基材)烘干工艺(如油漆、食品、皮革等)塑料的热成型
  • 我国正制定地沟油检验方法(图)
    9月16日,昆明安宁市公安局郎家庄派出所民警发现一涉嫌制造“地沟油”的黑工厂。   图为用机器压榨出来的肉渣饼。   记者从卫生部获悉,按照国务院食品安全委员会办公室的统一部署,卫生部正全力组织科研攻关研究鉴别“地沟油”检验方法。  7个部门合力攻关  按照国务院食安办的统一部署,卫生部组织科技部、工商总局、质检总局、食品药品监管局、粮食局,以及中国疾控中心等有关方面共同研究制定了“地沟油”检验方法论证方案,并组建了包括油脂加工、食品安全、卫生检验、化学分析等领域权威专家和相关机构在内的检验方法论证专家组,对相关技术机构研发的检验方法进行科学论证。  据了解,“地沟油”检验具有很高的技术难度,国内外尚未建立科学可行的“地沟油”检验方法,检验方法论证工作仍在紧张进行中。  现行国标漏洞很大  业内专家指出,目前在对“地沟油”的监管方面存在漏洞,让“地沟油”很容易蒙混过关。以现行的国家强制性标准2716-2005《食用植物油卫生标准》为例,按照国标,食用油检验通常都是检验酸价、苯并芘、农药残留等9项指标。而如果仅检验这9项,“地沟油”也可能合格。比如,警方日前在浙江宁海查获了大量“地沟油”并送检,按照现行的国标检验,送检的10个样品中,只有两个样品不合格。  北京市食品安全监控中心研发室主任黄华介绍,“‘地沟油’生产者会根据《食用植物油卫生标准》,在加工过程中添加火碱之类的东西,消除‘地沟油’的酸价,把不合格的指标掩盖住”。  已摸索出指标体系  据了解,目前,北京市食品安全监控中心在筛查了“地沟油”可能涉及的80多个技术检验项目后,已经找到了包括多环芳烃、胆固醇、电导率和特定基因组成等4类能够排查“地沟油”的有效指标,初步建立了“地沟油”检验的指标体系。  上文中提到的用国家标准“检验合格”的“地沟油”样品,根据这4类指标检验,竟然查出10多种致癌物质。
  • “桑吉”轮沉没 泄漏的油该怎么办?
    p  1月14日中午,装载有约13.6万吨凝析油、燃烧了8天的“桑吉”轮突然发生爆燃,全船剧烈燃烧,火焰达到800至1000米左右。13时45分左右,“桑吉”轮全部被浓烟笼罩,看不清船形,随后被确认已经沉没。沉没位置为北纬28度22分,东经125度55分,距离事发水域位置东南约151海里。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201801/insimg/3ced2e76-d270-4fd1-9b27-adbc342fb27d.jpg" title="图1.jpg"//pp style="text-align: center "事故现场,“桑吉”轮燃爆产生的巨大火焰。  /pp 据央视新闻报道,海面上只有“桑吉”轮的残留物和残油在燃烧,并形成了10平方公里的油污带,溢油情况非常严重。/pp  据介绍,“桑吉”轮或出现溢油和有毒物排放,对海洋环境会有什么样的影响,需要主管部门监视。/pp  “桑吉”轮之所以燃烧这么久、还不时发生爆燃,主要是因为事发时,该船装载有约13.6万吨凝析油。同时,除了货舱中的凝析油,“桑吉”轮自身油箱还装有近1000吨重型柴油。/pp  凝析油又称天然汽油,其挥发性极高,混合在空气中容易产生燃烧或爆炸。经过燃烧后,还会产生一些有毒有害的成分,会对海洋环境存在潜在的影响。此外,凝析油含有硫醇等一些杂质,一旦挥发到大气中还可能产生一定的大气污染。/pp  1月12日,本报新媒体报道了凝析油的特性和“桑吉”轮事故可能产生的后果。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201801/noimg/f8bbb3bf-2bea-42a1-81e6-0e7c97762d38.jpg" title="图2.jpg"//pp style="text-align: center "事故现场,浓烟滚滚。  /pp 此前,国家海洋局网站发布消息称,1月12日9时,监视发现事故船舶附近有彩虹色的轻微油污带,采样分析显示,海水中石油类物质浓度为5.46~21.3μg/L。13时,事故船舶附近海域发现长约5公里的油污带,自船首向东北方向延伸,呈羽毛状,右舷中部附近海面油污仍有燃烧情况。1月13日,监测人员在事故船舶附近海域进行了采样分析,监测结果显示,海水中石油类物质浓度高值为25μg/L。/pp  据国家海洋局监测,事故船舶距离我国舟山近岸约350公里,爆炸发生前,称“暂不会对近岸海域生态环境产生严重影响”。国家海洋局东海监测中心高级工程师张勇说:“这块应该属于开放海域,离我们人类居住的地方应该很远,影响很小。”/pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201801/noimg/b18d1df1-2a73-4e8b-83b4-a04bf0b32a64.jpg" title="图3.jpg"/ /pp style="text-align: center "浓烟笼罩的“桑吉”轮。 /pp 有外媒报道称,事件发生地区的数百海里范围内可能会长期禁止捕鱼。东海近海是中国最重要的近海渔业捕捞区,年捕捞量在30万吨以上。而东海地区绝大多数渔业资源都集中在长江口东南方向,如果凝析油大规模泄漏,将给东海渔业造成严重影响。/pp  扬州工业职业技术学院石油工程教授李发印表示,“桑吉”轮上装载的13.6万吨凝析油,相当于1400个一级加油站的存量。他表示,这次事故燃烧产生的废气,相当于我国年每年汽车尾气总量的千分之一,由于集中于事故区域,其危害性相当严重。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201801/noimg/ba19dc09-90ad-4381-a2e7-ddf3d556a6cf.jpg" title="图4.jpg"//pp style="text-align: center "大火中的“桑吉”轮。  /pp 英国南安普敦大学国家海洋中心的海洋地理学家西蒙?博克索尔此前在接受采访时说,“如果船只携同大量完整货物沉没,那么就相当于在海床上放了一个慢慢释放凝析油的定时炸弹。这一地区的数百公里范围内可能会长期禁止捕鱼。”/pp  多位专家表示,一旦船体沉没,船中的燃油会在海底缓慢泄漏,污染深层海水和海底沉积物,将会对周边海洋生态环境产生十几年甚至几十年的长久影响。/pp  救援人员已发现并带回2名船员遗体,“桑吉”轮上其余30人依然失联。据俄罗斯卫星通讯社称,伊朗当局证实,“桑吉”轮所有船员遇难。目前,仍有多艘中国船只在进行搜救,韩国方面派出1艘海警船、日本派出2艘海警船和1艘消防船协助救助。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201801/noimg/e491fa96-b9cc-4728-8e84-ba0eb718d647.jpg" title="图5.jpg"//pp style="text-align: center "救援人员登上“桑吉”轮。  /pp 常州大学石油工程学院黄维秋教授认为,救援过程中应密切注意事发周边区域的气象预报和卫星云图,做好应急准备及相关预防措施。同时,及时调运油污防御物资及回收物资,对于流散或燃烧余留的油品围栏进行回收处理。/pp  “对于此类泄漏事件,要采用多种方法混合处理。有一些微孔结构丰富、比表面积大、密度比水小的高性能吸附材料,可用来吸附回收泄漏的凝析油。还有一种高分子的分散剂,像家用洗洁精一样,散撒到浮油表面,可对浮油进行分解。也有一些机械式油水分离装置,但对于这种大面积污水处理,难度较大。”黄维秋说。/pp  按照以往的经验,如果油船下沉进海里,那么船舶原本装载的油品也会随之沉入海中。接下来,如何处理沉进海底的凝析油则是一个棘手的问题。/p
  • 又一批粮油行标将制修订 这些仪器及分析检测标准2020年完成
    p  日前国家粮食和物资储备局办公室下达2018年第三批粮油行业标准制修订计划。71项标准制修订计划中包括了粮食标准体系的制定、中国好粮油 小麦等标准的修订、以及多项分析检测标准的制定,其中涉及了多类别的仪器检测方法,包括X 射线荧光光谱法、高效液相色谱-电感耦合等离子体质谱法、 时间分辨荧光免疫层析法、固体进样测汞仪法、高效空间排阻色谱法、液相色谱串联质谱法等。/pp style="text-align: center "strong2018年第三批粮油行业标准制修订计划/strong/pp/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="57"p style="text-align:center "序号/p/tdtd width="244"p style="text-align:center "项目名称/现标准号/p/tdtd width="104"p style="text-align:center "制定/修订/p/tdtd width="94"p style="text-align:center "完成时间/p/tdtd width="446"p style="text-align:center "主要起草单位及主要联系人/p/td/trtrtd width="945" colspan="5"p style="text-align:center "原粮及制品分技术委员会(SC1)/p/td/trtrtd width="57"p style="text-align:center "1/p/tdtd width="244"p style="text-align:center "粮食标准体系/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局标准质量中心、北京市粮油食品检验所、四川省粮油中心监测站、国家粮食和物资储备局科学研究院、河南工业大学、武汉轻工大学、国粮武汉科学研究设计院 br/ 徐广超/p/td/trtrtd width="57"p style="text-align:center "2/p/tdtd width="244"p style="text-align:center "中国好粮油 小麦 br/ LS/T 3109-2017/p/tdtd width="104"p style="text-align:center "修订/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院 br/ 孙辉/p/td/trtrtd width="57"p style="text-align:center "3/p/tdtd width="244"p style="text-align:center "中国好粮油 稻谷 br/ LS/T 3108-2017/p/tdtd width="104"p style="text-align:center "修订/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院 br/ 段晓亮/p/td/trtrtd width="57"p style="text-align:center "4/p/tdtd width="244"p style="text-align:center "中国好粮油 大米 br/ LS/T 3247-2017/p/tdtd width="104"p style="text-align:center "修订/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院 br/ 段晓亮/p/td/trtrtd width="57"p style="text-align:center "5/p/tdtd width="244"p style="text-align:center "中国好粮油 杂粮 br/ LS/T 3112-2017/p/tdtd width="104"p style="text-align:center "修订/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院 br/ 欧阳姝虹/p/td/trtrtd width="57"p style="text-align:center "6/p/tdtd width="244"p style="text-align:center "中国好粮油 荞麦及其制品/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院、云南粮食科学研究院、中国农业大学、云南省粮油科学研究院 br/ 洪宇,李再贵/p/td/trtrtd width="57"p style="text-align:center "7/p/tdtd width="244"p style="text-align:center "中国好粮油 青稞及其制品/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "西藏自治区粮食局粮油中心化验室、国家粮食和物资储备局科学研究院、青海省粮油检测防治所 br/ 伍松龄、商博/p/td/trtrtd width="57"p style="text-align:center "8/p/tdtd width="244"p style="text-align:center "中国好粮油 粟、小米/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院、山西省粮食质量监测中心 br/ 刘建磊/p/td/trtrtd width="57"p style="text-align:center "9/p/tdtd width="244"p style="text-align:center "中国好粮油 特色大米/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院、吉林省粮油卫生检验监测站、黑龙江省粮油卫生检验监测中心、江西省粮油质量监督检验中心 br/ 段晓亮/p/td/trtrtd width="57"p style="text-align:center "10/p/tdtd width="244"p style="text-align:center "中国好粮油 燕麦及其制品/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院、中国农业大学、吉林省粮油卫生检验监测站 br/ 孙辉,李再贵/p/td/trtrtd width="57"p style="text-align:center "11/p/tdtd width="244"p style="text-align:center "中国好粮油 玉米碴/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "辽宁省粮油检验监测所、国家粮食和物资储备局科学研究院 br/ 郁伟/p/td/trtrtd width="57"p style="text-align:center "strong12/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 谷物及其制品中烷基间苯二酚含量的测定方法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong南京财经大学、国家粮食和物资储备局科学研究院br/ 方勇、汪丽萍/strong/p/td/trtrtd width="57"p style="text-align:center "strong13/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 小麦(粉)中镉的快速检测方法-X 射线荧光光谱法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong河南省粮油饲料产品质量监督检验中心、河南省粮食科学研究院有限公司br/ 尹成华/strong/p/td/trtrtd width="57"p style="text-align:center "14/p/tdtd width="244"p style="text-align:center "粮油检验 大米中矿物油的测定/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "北京市理化分析测试中心br/ 武彦文/p/td/trtrtd width="57"p style="text-align:center "strong15/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 粮食中五种硒形态的测定方法 高效液相色谱-电感耦合等离子体质谱法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong南京财经大学、浙江大学、国家粮食和物资储备局科学研究院br/ 方勇、陆柏益、刘明/strong/p/td/trtrtd width="57"p style="text-align:center "16/p/tdtd width="244"p style="text-align:center "大米加工精度标准样品制备技术规范/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "安徽省粮油产品质量监督检验站 br/ 胡斌/p/td/trtrtd width="57"p style="text-align:center "strong17/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 谷物中脱氧雪腐镰刀菌烯醇的测定 时间分辨荧光免疫层析法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong国家粮食和物资储备局科学研究院、北京智云达科技股份有限公司br/ 叶金、王松雪/strong/p/td/trtrtd width="57"p style="text-align:center "strong18/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 粮食中总汞含量的快速检测法 固体进样测汞仪法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong黑龙江省粮油卫生检验监测中心br/ 宋秀娟/strong/p/td/trtrtd width="57"p style="text-align:center "strong19/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 粮食中重金属离子铅的测定 胶体金快速定量法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong南京财经大学、北京粮油质量检测所、北京华安麦科生物技术有限公司br/ 袁建/strong/p/td/trtrtd width="57"p style="text-align:center "strong20/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 粮食中重金属离子镉的测定 胶体金快速定量法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong南京财经大学、北京粮油质量检测所、北京华安麦科生物技术有限公司br/ 袁建/strong/p/td/trtrtd width="57"p style="text-align:center "21/p/tdtd width="244"p style="text-align:center "荞麦米/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "昆明市粮油饲料产品质量检验中心、云南云荞生物科技有限公司br/ 李维香、吕世懂/p/td/trtrtd width="57"p style="text-align:center "strong22/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 粮食及制品中抗虫和抗除草剂转基因检测-胶体金定性筛查法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong黑龙江省粮油卫生检验监测中心br/ 季澜洋/strong/p/td/trtrtd width="945" colspan="5"p style="text-align:center "油料及油脂分技术委员会(SC2)/p/td/trtrtd width="57"p style="text-align:center "23/p/tdtd width="244"p style="text-align:center "中国好粮油 葵花籽/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院、内蒙古自治区粮油质量检测中心 br/ 薛雅琳/p/td/trtrtd width="57"p style="text-align:center "24/p/tdtd width="244"p style="text-align:center "中国好粮油 花生/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学、国家粮食和物资储备局科学研究院 br/ 刘玉兰/p/td/trtrtd width="57"p style="text-align:center "25/p/tdtd width="244"p style="text-align:center "核桃肽/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "武汉轻工大学br/ 何东平/p/td/trtrtd width="57"p style="text-align:center "26/p/tdtd width="244"p style="text-align:center "芝麻蛋白粉/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学、合肥燕庄食用油有限公司br/ 刘玉兰、魏安池/p/td/trtrtd width="57"p style="text-align:center "strong27/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 植物油真实性鉴别辅助图谱/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong国家粮食和物资储备局科学研究院、武汉轻工大学、江南大学br/ 薛雅琳/strong/p/td/trtrtd width="57"p style="text-align:center "strong28/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 玉米黄素的测定/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong河南工业大学、中粮佳悦(天津)有限公司、天津科技大学br/ 马宇翔、邓斌、刘玉兰/strong/p/td/trtrtd width="57"p style="text-align:center "29/p/tdtd width="244"p style="text-align:center "花生组织蛋白/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "武汉轻工大学br/ 胡传荣/p/td/trtrtd width="57"p style="text-align:center "30/p/tdtd width="244"p style="text-align:center "亚麻籽酱/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "江南大学br/ 刘睿杰/p/td/trtrtd width="57"p style="text-align:center "31/p/tdtd width="244"p style="text-align:center "冷榨芝麻油/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学、合肥燕庄食用油有限公司、武汉轻工大学br/ 刘玉兰/p/td/trtrtd width="57"p style="text-align:center "32/p/tdtd width="244"p style="text-align:center "粮油检验 粮食感官检验辅助图谱 花生/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学br/ 王艳艳/p/td/trtrtd width="57"p style="text-align:center "33/p/tdtd width="244"p style="text-align:center "油用南瓜籽/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "武汉轻工大学br/ 张四红/p/td/trtrtd width="57"p style="text-align:center "strong34/strong/p/tdtd width="244"p style="text-align:center "strong粮油检测 植物油中双酚A的测定/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong广西壮族自治区粮油质量检验站br/ 柳永英/strong/p/td/trtrtd width="57"p style="text-align:center "35/p/tdtd width="244"p style="text-align:center "高油酸葵花籽油/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "武汉轻工大学br/ 何东平/p/td/trtrtd width="57"p style="text-align:center "36/p/tdtd width="244"p style="text-align:center "食用级米糠/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学、益海嘉里(哈尔滨)食品工业有限公司br/ 刘玉兰/p/td/trtrtd width="57"p style="text-align:center "37/p/tdtd width="244"p style="text-align:center "油用南瓜籽饼粕/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "武汉轻工大学br/ 胡传荣/p/td/trtrtd width="57"p style="text-align:center "strong38/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 油脂黏度的检测/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong中粮黄海粮油工业(山东)有限公司、合肥燕庄食用油有限责任公司、西安中粮工程研究设计院有限公司br/ 安骏/strong/p/td/trtrtd width="57"p style="text-align:center "39/p/tdtd width="244"p style="text-align:center "初榨椰子油生产技术规范/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "江南大学、上海交通大学、上海理工大学br/ 常明/p/td/trtrtd width="57"p style="text-align:center "40/p/tdtd width="244"p style="text-align:center "乳木果油/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "西安中粮工程研究院设计院有限公司br/ 曹万新/p/td/trtrtd width="57"p style="text-align:center "41/p/tdtd width="244"p style="text-align:center "龙脑油/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "江南大学br/ 王兴国/p/td/trtrtd width="57"p style="text-align:center "42/p/tdtd width="244"p style="text-align:center "食品工业用豌豆蛋白/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "江南大学br/ 张彩猛/p/td/trtrtd width="57"p style="text-align:center "strong43/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 食用植物油煎炸过程中聚合和氧化甘油三酯的测定 高效空间排阻色谱法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong江南大学、益海嘉里食品营销有限公司br/ 张晖/strong/p/td/trtrtd width="57"p style="text-align:center "strong44/strong/p/tdtd width="244"p style="text-align:center "strong粮油检验 油脂和油料中灭多威等6种氨基甲酸酯类农药残留量的测定 液相色谱串联质谱法/strong/p/tdtd width="104"p style="text-align:center "strong制定/strong/p/tdtd width="94"p style="text-align:center "strong2020/strong/p/tdtd width="446"p style="text-align:center "strong安徽省产品质量监督检验研究院、合肥燕庄食用油有限责任公司、安徽出入境检验检疫局检验检疫技术中心、武汉轻工大学、河南工业大学、安徽省粮油产品质量监督检测站、中粮黄海粮油工业(山东)有限公司br/ 徐彦辉/strong/p/td/trtrtd width="57"p style="text-align:center "45/p/tdtd width="244"p style="text-align:center "沙棘油/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "江南大学、武汉轻工大学 br/ 王兴国/p/td/trtrtd width="945" colspan="5"p style="text-align:center "粮食储藏及流通分技术委员会(SC3)/p/td/trtrtd width="57"p style="text-align:center "46/p/tdtd width="244"p style="text-align:center "粮油储藏 氮气气调储粮工程设计规范/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中国储备粮管理有限公司br/ 徐晓涛/p/td/trtrtd width="57"p style="text-align:center "47/p/tdtd width="244"p style="text-align:center "粮食仓储数据元 氮气气调/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学、中储粮成都粮食储藏科学研究院br/ 阎磊、王殿轩/p/td/trtrtd width="57"p style="text-align:center "48/p/tdtd width="244"p style="text-align:center "粮油储藏 氮气气调储粮智能控制技术要求/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中国储备粮管理集团有限公司br/ 徐晓涛/p/td/trtrtd width="57"p style="text-align:center "49/p/tdtd width="244"p style="text-align:center "粮油储藏 储粮智能控制系统通用技术要求/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中储粮成都粮食储藏科学研究所br/ 赵小军/p/td/trtrtd width="57"p style="text-align:center "50/p/tdtd width="244"p style="text-align:center "粮食仓库安全操作技术规程/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国贸工程设计院br/ 刘继辉/p/td/trtrtd width="57"p style="text-align:center "51/p/tdtd width="244"p style="text-align:center "粮油储藏 粮食仓库挡粮门/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工大设计研究院、河南工业大学br/ 梁彩虹/p/td/trtrtd width="57"p style="text-align:center "52/p/tdtd width="244"p style="text-align:center "粮食仓储数据元 粮情测控/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学br/ 甄彤/p/td/trtrtd width="57"p style="text-align:center "53/p/tdtd width="244"p style="text-align:center "花生储藏技术规范/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学br/ 刘玉兰、王殿轩/p/td/trtrtd width="57"p style="text-align:center "54/p/tdtd width="244"p style="text-align:center "粮油储藏 横向通风风机技术要求/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南未来机电工程有限公司、国家粮食和物资储备局科学研究院br/ 李勇/p/td/trtrtd width="57"p style="text-align:center "55/p/tdtd width="244"p style="text-align:center "粮油储藏 粮食仓储企业危险源辨识与评估方法/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "辽宁省粮食科学研究所、国家粮食和物资储备局科学研究院br/ 郝立群/p/td/trtrtd width="57"p style="text-align:center "56/p/tdtd width="244"p style="text-align:center "气膜钢筋混凝土圆顶仓设计规范/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中储粮成都粮食储藏科学研究所br/ 余鹏彪/p/td/trtrtd width="57"p style="text-align:center "57/p/tdtd width="244"p style="text-align:center "气膜钢筋混凝土圆顶仓工程施工与验收规范/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中储粮成都粮食储藏科学研究所br/ 马春宝/p/td/trtrtd width="57"p style="text-align:center "58/p/tdtd width="244"p style="text-align:center "粮食储运真空清扫系统设计技术规程/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国贸工程设计院、郑州中粮科研设计有限公司 br/ 邱平、王勇/p/td/trtrtd width="57"p style="text-align:center "59/p/tdtd width="244"p style="text-align:center "粮食物流园区分类与规划指南/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国贸工程设计院br/ 刘继辉/p/td/trtrtd width="57"p style="text-align:center "60/p/tdtd width="244"p style="text-align:center "地下粮食储仓设计技术规程/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学、河南工大设计研究院、中原粮食有限公司br/ 张昊/p/td/trtrtd width="57"p style="text-align:center "61/p/tdtd width="244"p style="text-align:center "仓储虫螨DNA条形码分子鉴定方法/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院、中国农业大学、中储粮成都粮食储藏科学研究所、河南工业大学、南京财经大学br/ 伍祎/p/td/trtrtd width="57"p style="text-align:center "62/p/tdtd width="244"p style="text-align:center "粮油储藏 内环流储粮技术规程/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中国储备粮管理集团有限公司br/ 唐洁/p/td/trtrtd width="57"p style="text-align:center "63/p/tdtd width="244"p style="text-align:center "粮食物流主要运输工具适载性管理规范/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中粮贸易有限公司br/ 刘杰/p/td/trtrtd width="57"p style="text-align:center "64/p/tdtd width="244"p style="text-align:center "粮食散装船运损耗控制技术规程/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中粮贸易有限公司br/ 刘杰/p/td/trtrtd width="57"p style="text-align:center "65/p/tdtd width="244"p style="text-align:center "粮油储藏 储粮内环流通风控制系统技术规范/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学br/ 吴建军/p/td/trtrtd width="57"p style="text-align:center "66/p/tdtd width="244"p style="text-align:center "粮油储藏 大米、小麦粉储藏期间害虫防治技术规程/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "河南工业大学br/ 吕建华/p/td/trtrtd width="57"p style="text-align:center "67/p/tdtd width="244"p style="text-align:center "船舶散装原粮监装检验流程技术要求/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中粮贸易有限公司br/ 丁耀魁/p/td/trtrtd width="57"p style="text-align:center "68/p/tdtd width="244"p style="text-align:center "粮油储藏 简易仓囤储粮通风技术规程/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "国家粮食和物资储备局科学研究院、中储粮成都粮食储藏科学研究所br/ 唐芳、许胜伟/p/td/trtrtd width="57"p style="text-align:center "69/p/tdtd width="244"p style="text-align:center "粮油储藏 平方仓局部通风技术规程/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "中储粮成都粮食储藏科学研究所、辽宁省粮食科学研究所br/ 王双林、王德华/p/td/trtrtd width="945" colspan="5"p style="text-align:center "粮油机械与设备分技术委员会(SC4)/p/td/trtrtd width="57"p style="text-align:center "70/p/tdtd width="244"p style="text-align:center "粮油机械 集装箱翻转机/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "郑州中粮科研设计院有限公司br/ 赵瑞营/p/td/trtrtd width="57"p style="text-align:center "71/p/tdtd width="244"p style="text-align:center "粮油机械 平房仓装仓机/p/tdtd width="104"p style="text-align:center "制定/p/tdtd width="94"p style="text-align:center "2020/p/tdtd width="446"p style="text-align:center "郑州中粮科研设计院有限公司br/ 夏朝勇/p/td/tr/tbody/tablepbr//pp/ppbr//p
  • “油改气”出租车加气难题如何解?
    核心提示:成本低、污染少,&ldquo 油改气&rdquo 一度成为深受出租车主的追捧,成为&ldquo 流行趋势&rdquo 。但在加气难问题日益突出的情况下,加气站供不应求的现实亟待引起相关部门的关注。新华08网天津1月6日电(记者翟永冠 邓中豪)成本低、污染少,&ldquo 油改气&rdquo 一度成为深受出租车主的追捧,成为&ldquo 流行趋势&rdquo 。但在加气难问题日益突出的情况下,加气站供不应求的现实亟待引起相关部门的关注。--加气难问题突出,出租车主与加气站矛盾激化下午四点半,气温在零下十度以下,冷风吹得行人瑟瑟发抖。记者在位于天津市西青区的天津市压缩天然气第一总站看到,前来加气的出租车沿着门外的公路向东排满以后转弯向北排列,等待加气的队伍至少排了五六百米。由于天气寒冷,除了三三两两的司机偶尔出来透透气,大部分司机都在车里躲避严寒。在加气站内,加气站的工作人员紧张工作,完成一个出租车的加气大约需要五六分钟的时间。排队的出租车司机罗先生告诉记者,夏天高峰的时候一般要等两到三个小时,冬天一般要等一到两个小时,自己现在已经等了一个多小时。罗师傅的车已经&ldquo 油改气&rdquo 两年了,当时改装花了不到七千块,汽车改气后没有出过问题。但是烧油加一次油可以跑500公里,加一次气只能跑大概270公里,如果是更小的加气罐,可以维持的时间就更短。&ldquo 我现在每天都必须加一次气。&rdquo 罗先生说。&ldquo 排一两个小时的队,从市里跑到加气站再跑回去的路上,不一定能拉到活儿,损失的时间也是成本。有时候只能宽慰自己,就当给自己歇个班了。&rdquo 目前,天津市区有32000辆左右的出租车,其中有大约7000辆是燃气出租车。加气难之所以存在,是因为燃气出租车需求很大而加气站却供给不足。天津中油燃气车用燃料技术有限公司经营着天津市区内包括第一总站、第二总站的四个大型加气站。据总经理范玉祥介绍,目前加气站24小时不间断满负荷加气,仍满足不了出租车的加气需求。其中第二总站设计加气量每天是十万平方米,现在每天要加到二十万平方米,但加气站外出租车仍排起长龙。由于每天都要花费大量时间等待加气,出租车司机对此怨声载道,也造成了出租车司机与加气站矛盾的激化。2012年12月25日下午五点,因为出租车司机与加气站工作人员在加气量上出现纠纷,导致四五十辆出租车司机围堵位于卫国道的天津市压缩天然气第二总站,直到第二天下午仍没有散去。&ldquo 每一年都会有几起这样的事情发生。&rdquo 一名加气站工作人员告诉记者,&ldquo 出租车加气难,司机们有时候会把怨气撒在加气站身上,再加上出租车司机们相互联系方便,比较团结,所以每次围堵都是因为小事而起,但很快会形成规模。&rdquo 范玉祥说,随着加气难问题日益突出,实际上出租车主与加气站之间的矛盾在不断激化。--加气难阻碍&ldquo 油改气&rdquo 天津市于2001年建成首个天然气加气母站,2006年3月正式实施《鼓励出租车更新为燃气汽车的优惠政策(暂行)》,通过政府发放改燃补贴、企业实施优惠气价等措施,鼓励出租车更新改造。在实际应用中,&ldquo 油改气&rdquo 车不仅省钱节能更清洁环保。据相关专家介绍,使用天然气的车辆单车每天可以节省燃料费一半左右。公路运输管理部门提供的出租车天然气与汽油单位公里消耗对比显示:使用传统汽油的出租车,每百公里消耗9.5升,折合10.06千克标煤/百公里;使用天然气的出租车,每百公里消耗天然气8立方,折合9.5千克标煤/百公里。与汽油、柴油车相比,使用天然气的汽车每公里排放二氧化硫减少70%,硫化物减少99%,铅减少100%,氮氧化合物减少40%,一氧化碳减少89.7%,消除对土壤的油渗入污染。同时车辆进行&ldquo 油改气&rdquo 的程序也比较简单。目前天津市有五家定点的改装厂,在位于中北镇的西青机动车监测站旁一家改装点,记者了解到一般改车的时间只需要两个多小时,费用在7000元左右。手续办理也很简单,只需要质量技术监督部门出具&ldquo 钢瓶合格证&rdquo 就可以。但加气难的问题却阻碍了出租车司机&ldquo 油改气&rdquo 的脚步。一些没有进行油改气的司机,对油改气充满担忧。天津出租车司机曹权金告诉记者,烧油的话大概合1公里6毛钱,烧气合一公里3毛钱,烧气比烧油的费用低一半。经常有人劝自己把汽车改成烧气的,自己迟迟没下决心。就是因为每次加气太难,天津市区的4个加气站位置偏远,加气排队时间太长,耽误不起。&ldquo 不管是从经济角度,还是从环保的角度,出租车' 油改气&rsquo 都应该得到推广。而加气站过少,出租车加气难的问题则让车主们对于改装望而生畏。&rdquo 一名业内人士告诉记者。--市场调节加政府管理解决出租车&ldquo 加气难&rdquo 出租车加气难并不是一个新问题,也不局限于天津一地,而是全国范围内各地面临的共同现象。多位受访专家表示,要解决出租车加气难的问题,应该采取市场调节加政府管理的方法,二者缺一不可。范玉祥告诉记者,汽车燃料供不应求,公司在天津市区下属的四个加气站也是超负荷运转。目前在蓟县建设的加气站很快会投入运转,但在市区并没有在建的加气站,公司面临着&ldquo 有钱花不出去&rdquo 的尴尬。&ldquo 市场经济条件下,供不应求时就应该扩大供应,一方面为了满足需求,公司也有业务可以做。但具体到建加气站扩大供应,面临的问题是在市区周边找不到可以建站的地方。&rdquo 范玉祥说,&ldquo 加气站按照要求需要建在商业用地,并且环境评估、城市规划等要求较高,这就决定了给我们在市区周围建站几乎是不可能的。&rdquo 加气站的选址非常困难,要求绝对安全,严格审核。目前天津市区的加气站都在公交场站附近,在场站外很难找到合适地点。范玉祥认为,政府应该给予加气站建设支持,在规划、环评等方面能够充分考虑到市场需求,在保证绝对安全的情况下对加气站选址&ldquo 网开一面&rdquo 。还有专家建议,解决当前&ldquo 加气难&rdquo 问题,最直接、最便捷的方式就是合理利用现有加油站点资源,对符合条件的部分加油站进行改造升级,扩展营业面积,配置加气设备和安全设施,进行油气混合经营。这样不仅能逐渐建成布点合理、方便快捷的加气站体系,而且还可以节省土地,易于符合环保和消防等要求。免责声明:本文仅代表作者个人观点,与上海昌吉无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
  • 生物柴油国标修订版 一价金属检测调整
    近日,记者从2012年全国生物柴油行业协作组年会获悉,备受业界关注的《柴油机燃料调和用生物柴油(BD100)国家标准》修订工作已取得阶段性进展。目前该标准已通过第一届石油燃料和润滑剂分技术委员会(产品组)第十三次会议审查,预计将于今年年底或明年年初发布。  据了解,与2007年5月1日开始实施的《柴油机燃料调和用生物柴油(BD100)国家标准》相比,修订后的新标准增加了醇含量、酯含量、一价金属含量、残碳的控制要求,并对闪点、酸值等指标作了相应的修改。在新标准中,闪点(闭口)由原来的不低于130℃修改为不低于101℃,酸值由原来的不大于 0.8mgKOH/g修改为不大于0.5mgKOH/g,一价金属含量(Na+K)不大于5微克每升,酯含量不小于96.5%。  中石化科学研究院高级工程师蔺建民告诉记者,一般生物柴油酸值是石油柴油的10余倍,酸值大的燃料易造成腐蚀;而残留金属可导致发动机沉积和磨损,并造成泵和注射器实效,使柴油车排烟增大,启动困难,还会引起柴油机尾气后处理装置中催化剂中毒。因此酸值、金属含量等指标的高低都是下游企业所关注和担心的,也是产品接受度差的一个重要原因。因此,要对这些指标做修订。  蔺建民还表示,此次新标准的修订对业界影响是双向的。一方面,新标准对闪点要求降低,对90%回收温度、残炭指标的要求也有放松,这对于生物柴油企业来说,原料的选择性增加,扩大了原料来源,降低了生产成本,对原料紧缺的状况会有一定的缓解。  但另一方面,对于企业来说也有不利的因素。一是酸值降低到0.5mgKOH/g,这就要求企业要增加降酸值工艺,不仅增加了成本,还有可能导致其他合格指标出现反弹风险,对普遍采用酸碱催化的中小企业有很大的风险;二是酯含量要求不低于96.5%,这对原料皂化值低的产品有一定难度,将使得企业提高精馏成本;三是一价金属含量不超过5ppm,企业为此要增加分析检测费用和脱碱性催化剂工艺的设计成本等。
  • 【技术指导】绝缘油介电强度测定仪的油杯清洗方法及注意事项
    绝缘油介电强度测定仪油杯清洗方法、注意事项A1160技术指导产品介绍产品名称:绝缘油介电强度测定仪产品型号:A1160概 述:绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9油杯清洗方法⑴ 用洁净的绸布反复擦拭电极表面和电极杆。⑵ 用标准规调整好电极间距。⑶ 用石油醚(忌用其它有机溶剂)清洗3次,每次须按以下方法进行:② 将石油醚倒入油杯,占油杯容量的1/4~1/3。 ② 把一块用石油醚冲洗过的玻璃片盖住油杯口,均匀摇晃一分钟,注意要有一定力度。 ③ 将石油醚倒掉,用吹风机吹2~3分钟。⑷ 用待测油样清洗1~3次。 ② 将待测油样倒入油杯,约1/4~1/3。 ② 用吹干的玻璃片盖住油杯,均匀摇晃1~2分钟,注意要有一定力度。 ③ 倒掉剩余油样之后即可做打压实验。搅拌桨清洗方法⑴ 用干净的绸布反复擦拭搅拌桨,直至表面无细小颗粒,忌用手接触搅拌桨表面。⑵ 用镊子夹住搅拌桨,浸入石油醚中反复洗涮。⑶ 用镊子夹住搅拌桨,用吹风机吹干。⑷ 用镊子夹住搅拌桨浸入待测油样内反复洗涮。油杯储放方法1:实验完毕后,用质量较好的绝缘油倒满油杯,并将油杯平稳放置。方法2:按上述清洗方法用石油醚清洗吹干后放入真空干燥器中储存。注:第一次测试前和测试劣质油后必须按上述方法清洗油杯和搅拌浆。注意事项1、试验前油样的选择,安放及电极间的距离应符合国标及行标。2、电源接通后,严禁操作人员或其它人员触及外壳,以免发生危险。3、本仪器在使用过程中如发现异常,应立即切断电源。4、新油杯或新清洗的油杯应先击穿24次才可进行试验,油杯在不进行试验时应用干净的油侵泡。
  • 专家:无法对方便面油包制定重金属剂量标准
    近日,台湾方便面油包含重金属引起广泛关注,在大陆市场畅销的康师傅、统一公司纷纷发出声明,表示在大陆销售的产品符合国家标准,不存在安全隐患。请关注&mdash &mdash 方便面油包重金属超标了吗?  据台湾媒体《今周刊》报道,台湾地区市面售卖的多种知名品牌方便面的油包内都含铜、铅、砷等重金属,大陆人所熟知的康师傅、统一等品牌纷纷中枪。该媒体还称,有专家表示若重金属摄入超过一定限度时将会致癌。  那么,大陆所售方便面还能吃吗?方便面油包重金属含量是否合格?是否有严格的重金属剂量标准?  无法对方便面油包制定重金属剂量标准  日前,《今周刊》先后在市面上购买多款罐装调味酱及泡面送SGS台北食品实验室检验,检测结果显示,&ldquo 统一老坛酸菜牛肉面&rdquo 酱包的含铜及铅量最高,分别达1.73ppm和0.222ppm,含砷量最高的则是&ldquo 韩国辛拉面&rdquo ,数值为0.532ppm。《今周刊》称,目前台湾没有制定方便面油包的重金属含量标准,因此暂无法判定是否超量。  那么大陆地区是否有针对方便面油包重金属含量相关标准?食品安全专家、国际食品包装协会常务副会长董金狮表示:由于方便面的油包和调味料都来自多种食品成分混合加工而成,不同产品配方不同,因此无法对方便面的油包制定重金属剂量的标准。  大陆有两项方便面重金属相关标准  据董金狮介绍,我国2003年出台的《方便面卫生标准》GB17400和2012年出台的《食品安全国家标准食品中污染物限量》GB2762均可对重金属剂量标准。  笔者翻阅了国标《方便面卫生标准》GB17400,其中规定铅和砷的剂量都设定为低于0.5ppm,《食品中污染物限量》GB2762调味品中铅含量的标准设定为低于1ppm,其中取消了对铜的限量要求,铜、铁都不再被作为污染物指标。依据此标准来看,统一老坛酸菜牛肉面0.222ppm的铅含量标准无疑符合大陆地区的食品安全规定,而韩国辛拉面含砷的数值为0.532ppm,超过了既定的0.5ppm。在大陆市场广为行销的康师傅、统一公司也均发出声明,纷纷否认其产品存在安全隐患,并表示均符合国家标准。  对于未作规定的铜的摄入剂量该怎么判定,中国农业大学食品学院营养与食品安全系副教授,食品科学博士范志红表示,&ldquo 铜是一种人体必需的元素,仅仅吃日常食物,不太容易发生铜中毒的情况。铜在动物性食品和水产品中含量较高,酱包测出的这个数值比日常吃一次螃蟹还要少,故无需担心。&rdquo   方便面油包中的重金属从何而来?  &ldquo 土壤、水源中广泛存在的重金属会随着农作物的生长进入植物再到动物当中,作为农产品原料含带的重金属在加工中不能全部去除。同时,加工各环节也有污染可能,如容器、设备、管道、包装袋中如果有铅溶出,或使用重金属超标的不合格食品添加剂,也可能污染最终产品。&rdquo 范志红解释道。  对于铅砷汞镉这些重金属,由于人体代谢的速度较慢,若日常摄入量偏高将会在人体中逐渐蓄积而有可能在生命后期造成危害,包括对免疫系统、造血系统、神经系统等多方面的危害。&ldquo 比如铅中毒可引起造血系统和神经系统损害,发生贫血、神经衰弱、消化吸收不良等情况,儿童铅中毒可影响智力。&rdquo 范志红举例说。  董金狮也提醒消费者:&ldquo 对于方便面油包的检测结果,合格不等于安全。&rdquo 每个人的体质不同,重金属对个体的危害程度也不一样,比如小孩儿过多食用后果当然会更严重。他建议消费者不要长期食用较多添加剂加工的食品,平衡饮食。  长期食用方便面带来的&ldquo 隐性饥饿&rdquo 更可怕  &ldquo 你是否还相信统一、康师傅方便面质量安全?&rdquo 截至发稿时,新浪财经在微博上发起的一项调查显示,近300多名受访者中七成人选择了&ldquo 不相信&rdquo 的答案。对此专家表示,没有必要因方便面检测出重金属的新闻感到恐慌。  &ldquo 实际上,只要检测仪器足够灵敏,那么任何一种没有经过加工的天然食品都会检出重金属,只是含量的差异多少而已。&rdquo 范志红说,如果食物中测出来有重金属就不敢吃,那人类恐怕只能绝食啦。&ldquo 这些危害都是摄入并积累达到一定量之后的危害。&rdquo   然而,范志红表示了另一种隐忧,方便面中大量的油脂、钠盐,对预防肥胖、高血压、冠心病等疾病非常不利的,增加肾脏负担,也不利于消化系统的健康。它不能提供蔬菜水果中的营养物质,也不能提供鱼肉蛋奶豆制品中的营养物质。方便面可以是一种应急食物,偶尔突发情况时才用它&lsquo 凑合&rsquo 一顿。经常靠方便面来满足食欲的话,看似吃饱,实质上身体缺乏多种微量营养素,处于&ldquo 隐性饥饿&rdquo 的状态,长此以往是非常伤身体的,&ldquo 这种伤害,要远远大于目前测出这些重金属的危害!&rdquo
  • 我国将制定7项油脂/粮油检验新国标
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中国家粮食局将主管制定7项动植物油脂、粮油检验标准。涉及的仪器包括液相色谱仪、紫外分光光度计、脉冲核磁、凝胶渗透色谱、液相色谱串联质谱法等。2014年第一批国家标准制修订计划 动植物油脂、粮油检验标准  《动植物油脂 食用植物油中谷维素含量的检测》  谷维素是一种植物神经调节剂,对植物神经失调有明显的疗效,并且具有抗高血脂,及脂质氧化和抑制自体合成胆固醇的作用,能改善调节肠胃神经官能症,谷维素亦被列为脂溶性维生素,能促进生长发育。  本标准规定了食用植物油中谷维素和谷维素类化合物含量的检测方法。 第一法采用高效液相色谱法:用乙腈-甲醇-异丙醇(50:45:5)溶解提取食用植物油样品中的谷维素类化合物,通过构建标准曲线,测定试样的峰面积,进而换算出食用植物油中谷维素类化合物的含量。 第二法采用紫外分光光度计法。先用三氯甲烷溶解食用植物油,再以乙醇为溶剂提取其中的谷维素,通过构建标准曲线,测定试样的吸光度值,进而换算出食用植物油中谷维素含量。  《动植物油脂 脉冲核磁法测定固体脂肪含量-第2部分:间接法》  固体脂肪含量的测定,对于了解塑性脂肪的塑性特征具有非常重要的意义。使用核磁共振法测量精确、重复性高、操作简单、测量结果不受操作人员的技术和判断所影响。脉冲核磁共振法分为直接法和间接法。  本标准规定了使用低分辨率脉冲核磁(NMR)间接测定动植物油脂固体脂肪含量的方法。规定了两个可供选择的热预处理方法:一类适用于一般用途的油脂,无显著多晶并主要是&beta &prime 晶型 一类适用于类似于可可脂的油脂,具有显著多晶并主要是&beta 晶型。另外的热预处理方法列于资料性附录中,更适用于特殊目的。与直接法相比,间接法更准确,更普遍应用于所有脂肪。  《动植物油脂中胆固醇含量的测定 凝胶渗透色谱净化液相色谱串联质谱法》  目前,国家标准体系中无任何标准用于食用油脂中胆固醇含量的测定,仅有三个标准用于食品中胆固醇含量的测定,分别为:《GB/T 5009。128-2003 食品中胆固醇的测定》、《GB/T 9695。24-2008 肉与肉制品 胆固醇含量测定》、《GB/T 22220-2008 食品中胆固醇的测定 高效液相色谱法》,由于食用中油脂含量过高,这三种方法均不适用于油脂中胆固醇的含量测定,且三个标准的检出限均很高,根本无法满足伪劣食用油脂中痕量胆固醇的测定。  凝胶渗透色谱(GPC)技术是目前极为先进高效的净化方法,尤其适用于去除食用油样品中的大量的油脂及色素等杂质,能高效的分离提纯胆固醇等目标物 串联四极杆质谱是目前定性与定量最为准确、灵敏度最高的检测仪器。本标准结合GPC与串联四极杆的各自优势,利用凝胶渗透色谱净化(GPC)技术进行目标物的净化与浓缩,使用液相色谱串联质谱(HPLC-MS/MS)仪对胆固醇进行测定。  《粮油检验 大豆水溶性蛋白质含量的测定》  水溶性蛋白含量是评价大豆储存品质的重要指标。我国谷物与豆类蛋白质含量测定方法标准中,原本包括水溶性大豆蛋白含量测定的方法。但2008年修订该标准时,为等同采用国际标准,将该部分内容删除。但目前大豆储存、加工、贸易企业对此指标仍非常重视,需要制定相应标准方法进行评价,以便于协调一致,减少争议。  《粮油检验 稻谷黄粒米含量测定 图像分析法》  &ldquo 黄粒米含量&rdquo 是稻谷质量判定的一项重要指标。客观准确地检测&ldquo 黄粒米&rdquo 指标,对于粮食收购环节准确地对粮食定等分级、执行粮食&ldquo 优质优价&ldquo 政策,保护农民的利益具有非常重要的意义。利用图像处理法检测大米黄粒米含量等外观品质的仪器将为稻谷的分类储存、加工和质量检验提供一个方便快捷的检测手段,可以避免目前人工感官判定方法造成的主观性较强,精确度较低,可重复性较差等缺陷,代替人工检测方法,达到客观准确检测之目的。  本标准规定了图像分析法测定稻谷黄粒米含量的术语和定义、原理、仪器、扦样、操作方法、结果表示和重复性等要求。适用于稻谷黄粒米含量测定。  《粮油检验 粉类粮食动物源性杂质测定 酸水解法》  粮油食品的安全性越来越受到社会各个阶层乃至大众的关注,面粉(包括小麦粉、玉米粉、玉米糁、豆粉、淀粉等)中若含有动物源性杂质将直接影响其食用品质。因此,正在修订的《食品安全国家标准 粮食》征求意见稿中参照CAC标准拟规定成品粮中不允许含有动物源性杂质,但其中给出的检验方法是按GB/T 5494中大样杂质检验的规定,挑拣出动物源性杂质,进行称重、计算含量。该方法不适用于面粉类成品粮的检验。所以,制定适用于面粉中动物源性杂质的检验方法标准具有重要的现实意义。  本标准适用于粉类粮食中动物源性杂质的检测。主要技术内容包括:原理,试剂和材料,仪器和用具,操作步骤,结果计算与表示,重复性。盐酸,5%的水。矿物油。洗涤剂,5%含水钠月桂基硫酸钠(作为商业产品的Vel),甘油醇(50-50)。  《粮油检验 粮食感官检验辅助图谱 第4部分:油料》  油料收购定等检验常常是以感官检验的结果为标准进行定价、扣价和增价,直接关系到贸易双方的经济利益。按照国家标准进行油料的定等,目前除水分、容重等部分指标可采用仪器检验外,其余指标如不完善粒、杂质等还只能采用感官检验。感官检验受人为因素影响较大,验质结果的准确性有相当的控制难度。为了尽可能克服感官检验的主观误差,为提高感官检验的一致性提供辅助工具,制定本标准具有重要的现实意义。  本标准规定粮食感官检验辅助图谱中油料图谱的术语和定义、检验环境与工具、感官指标和图示。适用于收购、储存、运输、销售的商品油料感官检验的辅助参考。主要技术内容包括:术语和定义、检验环境与工具、感官指标和图示。
  • 车用汽油与乙醇汽油两项国家标准修订
    全国石油化工燃料和润滑油委员会近期进行了两项燃料油标准的制修订,来满足不断严格的机动车排放要求。鉴于车用汽油燃料的相关主要技术指标包括:硫含量、烯烃含量和芳烃含量、蒸气压、锰含量以及苯含量,这些修订主要包括这些方面。  1、GB18351—2004《车用乙醇汽油》的修订:  《车用乙醇汽油》发布于2005年。2005年5月国家环保局发布了GB18352.3—2005“轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)”国家标准,并于2008年7月在全国范围实施。为了提高车用乙醇汽油的质量水平,使之能够满足国家第三阶段的排放法规的要求,对GB18351—2004《车用乙醇汽油》进行修订。与GB18351—2004《车用乙醇汽油》相比主要技术参数有如下变化:  将夏季蒸气压限值由“不大于74kPa”修改为“不大于72kPa”   将硫含量限值由“质量分数不大于0.05%”修改为“质量分数不大于0.015%” 仲裁试验方法修改为“人间人 间 人SH/T0689《轻质烃及发动机燃料和其它油品的总硫含量测定法(紫外荧光法)》”。  将苯含量的限值由“体积分数不大于2.5%”修改为“体积分数不大于1.0%”   将烯烃的含量指标限值由“体积分数不大于35%”修改为“体积分数不大于30%”‘  将锰的含量指标限值由“不大于0.018g/L”修改为“不大于0.016g/L”。  2、GB17930—2006《车用汽油》的修订:  对GB17930—2006《车用汽油》的修订依据是在国内开展的“满足国家第四阶段排放要求的清洁燃油组成与排放关系研究”工作的基础上,借鉴国外车用汽油质量升级的发展趋势以及欧洲在实施第四阶段排放要求时对车用汽油的技术要求,考虑到我国环保的要求和炼油工业的实际情况,根据国家标准管理委员会“关于下达2007年第六批制修订国家标准项目计划的通知”对现行GB17930—2006《车用汽油》标准中的某些指标进行适当修订。与GB17930—2006《车用汽油》相比主要技术参数有如下变化:  汽油中的硫含量修改为:不大于50mg/kg   汽油中的烯烃含量修改为:体积分数不大于25%   汽油的夏季蒸发压修改为:不大于70kPa   汽油中的锰含量修改为:不大于0.014g/L。  3、GB17930《车用汽油》修订值的简要分析  硫含量是50mg/kg。考虑到全球降硫的发展趋势,借鉴欧盟在执行欧Ⅳ阶段排放要求对汽油中硫含量的要求,在标准修订中,建议将第Ⅳ阶段的车用汽油的硫含量控制为不大于50mg/kg。汽油中的硫含量测定方法可以采用SH/T0689《轻质烃及发动机燃料和其它油品的总硫含量测定法(紫外荧光法)》、GB/T11140《石油产品硫含量的测定X射线光谱法》和SH/T0253《轻质石油产品中总硫含量测定法(电量法)》方法。在测定结果又异议时,以SH/T0689《轻质烃及发动机燃料和其它油品的总硫含量测定法(紫外荧光法)》测定结果为准。  鉴于目前我国炼油装置的实际情况和汽油消费市场的需求,建议在第Ⅳ阶段的车用汽油中分别控制烯烃和芳烃体积分数不高于25%和40%。考虑到97号汽油生产的实际要求,对于97号汽油允许在烯烃和芳烃总含量控制不变的前提下,控制芳烃含量最大值为42%。北京车用汽油标准中的烯烃含量体积分数不大于25%,烯烃和和芳烃总的含量体积分数不大于60%。  修订中汽油的夏季蒸发压为不大于70kPa。北京车用汽油标准中夏季蒸气压为不大于65 kPa。鉴于目前我国炼油装置的实际情况和消费市场对汽油辛烷值的需求状况,在标准修订中,建议将第Ⅳ阶段的车用汽油中锰含量控制为不大于0.014 g/L,相信随着炼油装置的改造以及新型炼油企业的建成,汽油中的锰含量会逐渐降低。北京现行的DB11/238—2007《车用汽油》标准中锰含量为不大于0.006g/L。
  • 山东邹平市市场监管局: 成品油抽检 “双100%”全覆盖
    山东邹平市市场监管局: 成品油抽检 “双100%”全覆盖2020-08-12 10:44:52 中国质量报本报讯 (徐丽娜)近日来,山东邹平市市场监管局对全市在营114家加油站开展“双100%”全覆盖抽检活动。该局制定成品油抽检工作方案和实施细则,并在中国邹平网站公示,有效履行市场监管部门的监管职责。该局执法人员会同淄博质检所和山东柏森化工技术检测有限公司,对全市在营加油站的在营成品油开展抽样检验,共抽取样品316个,其中车用柴油样品207个、汽油样品109个,做到在营油站和在营油品“双100%”抽检。目前,送检的316个样品已经全部检验完毕,合格率达99.05%。对于不合格的油品,该局正依法调查处理,并督促和帮助加油站查找不合格原因,进一步提升成品油质量,保障消费者权益。下一步,该局将加大执法力度以及成品油检测、快检频次,为绿水青山和优良的大气环境贡献市场监管部门的力量。《中国质量报》
  • 混入食用油中的煤制油该如何检测?
    近期有媒体曝光,运输过煤制油等化工液体的罐车,不经清洗直接灌装食用油!此事件引发了大量讨论,也为食品安全敲响了警钟。那么,如果食用油中混入了煤制油,应当如何检测呢?《GB/T 37514-2019 动植物油脂 矿物油的检测》作为现行的国标,采用皂化法和氧化铝薄层色谱法对动植物油脂中的矿物油成分做定性检测,最低检出限分别为0.5%和0.3%。那么如何进行定量检测呢?今天小编为大家带来了能够定量检测的《粮油检验 动植物油脂中饱和烃和芳香烃矿物油的测定》征求意见稿介绍,以及适用于食品安全检测的BRAND产品推荐。01原理动植物油脂中的矿物油经皂化除去油脂,分别以氧化铝净化除去固有烷烃、环氧化除去固有烯烃干扰,随后以液相色谱-气相色谱联用仪(配备氢火焰离子化检测器)分离和测定,内标法定量。02试剂配制试剂种类:a.二氯甲烷-正己烷混合溶剂(30+70,体积比)b.间氯过氧苯甲酸溶液(200 g/L)c.硫代硫酸钠溶液(100 g/L)d.氢氧化钾溶液(3.0 mol/L)e.正己烷-乙醇混合溶剂(50+50,体积比)试剂配制Tips:BRAND有机型瓶口分液器DispensetteS ORG,适用于二氯甲烷、正己烷和乙醇的分液,在保证精度的同时提高实验效率 BRAND透明和棕色容量瓶,精准定容 BRAND 电动移液管助吸器配合玻璃移液管,操作更快捷。03操作步骤1皂化:称取 2.0 g(精确至 1 mg)油脂试样至玻璃离心管中(固体脂肪应事先于 50℃熔化并均质),加入10 μL 饱和烃/芳香烃矿物油混合标准工作溶液 I,然后加入 15 mL 氢氧化钾溶液,在 60 ℃下皂化反应 30 min(震荡),直至溶液澄清;冷却至室温,向皂化液中加入15 mL 正己烷,充分 振摇 5 min;再加入 10 mL去离子水,振摇、离心取上清液;随后再向残留的皂化液中加入 10 mL 正己 烷,重复提取1 次,合并上清液,形成待用试液。2净化:将一份待用试液转移至硅胶/氧化铝复合柱,净化去除饱和烃矿物油中的固有烷烃干扰物,然后用25ml正己烷淋洗并收集流出液A;对流出液A在不高于40℃条件下减压浓缩至1ml,形成待测样。3环氧化:将另一份待用试液转移至硅胶净化柱,用15mL二氯甲烷-正己烷混合溶剂洗脱,收集流出液B,对流出液B在不高于40℃条件下减压浓缩1ml,环氧化(用于去除芳香烃矿物油中的固有烯烃干扰物)处理后形成待测样。4测定:将待测样注入液相色谱-气相色谱联用仪,在参照条件下进行测定,得到饱和烃和芳香烃矿物油的色谱图,分别以环己基环己烷和1,3,5-三叔丁基苯为内标物计算饱和烃和芳香烃矿物油的含量。皂化操作Tips:BRAND外置活塞移液器Transferpettor,更适合油脂类高粘度液体的移取,耐受粘度可达140000mm2/s。BRAND 通用型瓶口分液器DispensetteS,适用于氢氧化钾溶液的精准分液。减压蒸馏Tips——旋转蒸发最佳搭档PC 3001自动蒸发,压力按需自适应调节 安静无声地运行 极大的降低能耗 极少的维护需求 有效缩短过程时间 过程和数据可保存和重复 04实验数据处理矿物油的气相色谱图呈现 UCM 鼓包峰形状。通常,饱和烃和芳烃矿物油应在相同的保留时间段出现。计算矿物油的峰面积时,首先积分计算UCM 鼓包峰及其上端尖峰的总面积 A1。然后,积分计算 UCM 鼓包峰的上端尖峰的总面积A2。上述两次计算的积分面积相减即得到矿物油的峰面积(Ai):Ai = A1 &minus A205结果计算试样中饱和烃或芳香烃矿物油的含量以 Xi 计,数值以毫克每千克(mg/kg)表示,按照(2)式计算:式中:Xi ——试样中饱和烃或芳香烃矿物油的含量,单位为毫克每千克(mg/kg);Ai ——试样中饱和烃或芳香烃矿物油的峰面积;AIS ——内标物的峰面积;mIS ——内标物的质量,单位为毫克(mg);mi ——试样的质量,单位为克(g);计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,保留到小数点后两位。BRAND产品助力食品安全检测,如果有对BRAND相关产品感兴趣的小伙伴,欢迎联系我们申请试用~参考标准:[1] 粮油检验 动植物油脂中饱和烃和芳香烃矿物油的测定 征求意见稿[2] GB/T 37514-2019 动植物油脂 矿物油的检测BRAND GMBH + CO KG是德国移液设备与玻璃塑料体积量具的领导品牌,自1998年起被授予德国计量校准服务(DKD,现更名为DAkks)资质,在小容量(0.1 μl – 10 L)校准技术方面具有数十年的经验。BRAND生产制造最广泛的的移液操作产品线,如分液器Dispensette与移液器Transferpette 以及相关的塑料耗材,满足了生命科学实验领域的广泛应用需求。
  • 精打细算,助粮油企业降本增效 ——近红外分析仪在粮油企业应用的效益分析
    近红外光谱技术应用在粮油行业已有多年的时间,自2010年以来,粮油行业包括小麦或小麦粉、稻谷、玉米、大豆等在内的相关的国家标准已有十余项,检测指标包括水分、蛋白、脂肪、淀粉等含量的测定。近红外光谱技术以其特有的快速、无损、准确的特点,成功应用于粮油行业。 作为国内唯一拥有全线近红外分析产品的龙头企业,聚光科技(杭州)股份有限公司在国内粮油行业占据近三分之一的市场份额,积累了大量模型的同时,对国内粮油行业的现状和粮油企业的需求也有了充分的了解和认识。聚光科技致力于为粮油企业提供高性价比的好产品,让产品满足用户使用需求的同时,还能为用户带来额外的效益,助力用户开源节流,降本增效。聚光科技Sup-NIR系列近红外分析仪到底能给粮油企业带来什么,让粮油企业它如此青睐?且听笔者慢慢分析。没有近红外的日子,粮油企业是怎么进行常规检测的? 目前粮油行业常规检测还是多用传统检测手段,传统的分析方法需要大量消耗水、电、及化学试剂。 粮油行业常见指标的传统检测方法与近红外检测方法时间对比如下: 时间就是金钱!这是生产企业生存的第一法则! 试想一下,一个粮油生产企业每天投入近10个小时的时间,至少3人次的人力去做大量的实验来检测上述5个指标,费时费力不说,前处理、人为分析等多个环节都会给检测的结果带来不可避免的误差,导致结果不准确。检测结果不准确,直接影响粮油生产企业原料采购和生产产品的品质检测。相同的样品,相同的条件,只要3分钟,近红外分析仪就能给出全部5个指标的检测结果! 近红外是如何减少企业化验成本的?以国内一家年产量10万吨的油脂企业为例:传统的分析方法需要大量消耗水、电、及化学试剂,而近红外分析只需耗用极少量的电力,无需其它任何试剂。化验室测试粗蛋白、水分、灰分,原料平均每月需分析450个样品(分析粗蛋白、水分、灰分、粗脂肪),采用近红外检测后,这些样品所耗的试剂、水、电等费用可全部节约。具体数字见下表。表1 采用近红外分析方法节约水电试剂费用明细 说明:采用近红外分析,每月累计节约费用近3387元,以上样品分析是以每批为计算,若不足满批,则成本会更高。故合计每年节约费用在:37257元。对于该企业来说,每年仅是水费、电费和试剂费就可节省最少37257元,还不包括因此节省下来的人力成本。因为常规理化检测需要接触有毒试剂,对身体健康不利,因此造成化验人员不固定,每次新化验人员上岗,均需进行培训,并且管理难度增大。采用近红外设备分析后,化学试剂使用量减少,对环境污染减少,可节约减排费用。同时人员流动相对减少,因此可节省员工培训时间,降低管理难度,从而间接创造收益。 近红外是如何帮助企业降低原料采购成本的? 油脂行业的生产成本中,原料成本大约占用了85%的比例,其它如工人工资、能源等只占到15%左右。因此,控制原料成本是提高效益、创造利润的重要环节。销售价格由原料成本+固定成本+人工/费用+毛利组成,由下表可计算出:当原料成本节约了1%时,毛利由5%增长为6%,实际增长率=20%。 以大豆油生产企业为例进行效益分析: (1)豆粕中水分控制效益分析: 检测水分含量,调整干燥(蒸汽)工序中物流速度与蒸汽量,调节水分含量: 水分含量偏高,采取降低物流速度或提高烘蒸温度; 水分含量偏低,采取加大蒸汽流量; 水分效益分析 : 水分每增加0.1%,带来3元/吨的利润; 水分控制由原来的平均12.5%提升到12.8%,则增加了0.3%的水分,即可带来9元/吨的利润;(2)豆粕中蛋白控制效益分析: 检测蛋白含量,调整豆皮或高蛋白豆粕加入量,调节蛋白含量: 蛋白含量偏高,采取加入豆皮; 蛋白含量偏低,采取加入高蛋白豆粕; 蛋白效益分析: 蛋白每降低0.1%,带来15元/吨的利润; 蛋白控制由原来的平均43.5%降低到43.3%,则降低了0.2%的蛋白,即可带来30元/吨的利润;(3)豆粕中残油控制效益分析: 检测残油的目的主要为控制加工工艺,平衡效率和效益: 一般残油小于0.5%,则豆子浸泡时间过长,影响生产效率,即产量变低; 一般残油大于0.7%,则豆子浸泡时间不足或轧胚、浸出工序异常,出油率偏低,影响效益; 近红外是如何帮助企业控制原料和粕类品质的? 在油脂品质控制中,控制原料和粕类品质,可带来巨大收益。 假设大豆粗脂肪为18%,价格约3500元/吨。大豆粗脂肪每增加一个百分点,每吨的价格就要高60元左右。如能严格控制检测含油量,按质定价可以节约不少成本。 假设豆粕粗蛋白含量43%左右,价格约3100元/吨 豆粕粗蛋白含量每高一个百分点,每吨价格就要高50-100元。利用近红外技术快速检测豆粕粗蛋白,可以通过添加低价的豆皮,对豆粕的粗蛋白含量进行精确调控。再以年产量10万吨豆粕的油脂厂为例,以粗蛋白检测为例:表2 采用近红外方法后仅节约蛋白一项可增加的效益 根据以上两个表,可估算出:在采用近红外分析技术后,对于示例中的油脂厂,每年可节约的水电试剂费为37257元;严格质量控制,仅节约蛋白可增加41万元收益。同样如果能严格控制水分含量和收购原料时含油量和水分含量,可带来非常可观的收益。除了有形的开源节流,对于生产企业的无形的品牌和知名度也有正面的影响。近红外分析仪可在2~3分钟内快速反映成品质量是否合格,加快了成品出厂周期,减轻了成品库负荷。成品抽检频率可提高上百倍,减少了不合格品的流出,从而保证产品质量的稳定性,提高了客户满意度。另外近红外快速分析仪还可以通过快速检测减少堆装时间、节省部分装运费用;通过快速分析原料适当降低原料库存,节省资金利息;降低质量事故,减少差错成本;使采购部门快速判断原料质量和价格,增加采购机会。综上所述,采用近红外带来的收益主要有如下部分: 直接节约实验室化验成本 按质论价,降低原料成本 快速控制原料和粕类品质 降低人员管理难度,节约管理费用 降低环境污染,节约减排费用 稳定产品质量,提高企业信誉,带来无形收益。 注重的效益粮油企业在寻求着各种能够节能降耗的方法,提高效益的同时降低成本,还要保证产品的质量和用户的满意度。用户的需求就是仪器生产企业的动力,聚光科技开发出的SupNIR系列近红外分析,不仅能够快速无损地检测多种指标,还能够替用户精打细算,降本增效,因此受到广大粮油企业的欢迎。目前国内包括山东三维油脂、嘉里粮油(青岛)有限公司、鲁花集团等大中型粮油企业都已采购聚光科技的近红外分析仪,相信有了用户的大力支持,聚光科技会推出更多更好的服务! ps:更多近红外在细分领域的应用请点击专题查看http://www.fpi-inc.com/jgzt/welcome.php?7
  • 【技术指导】绝缘油析气性测定仪的注意事项及保管
    绝缘油析气性测定仪注意事项、保管A1210技术指导产品介绍产品名称:绝缘油析气性测定仪产品型号:A1210概 述:绝缘油析气性测定仪用于测定绝缘液在受到强度足以引起在液、气交界处放电的电场作用下,放出、吸收气体的能力。适用于测定电缆油、电容器油和变压器油。广泛应用于石化、电力、铁路、科研等部门。适应标准:GB/T11142、 NB/SH/T0810、ASTM D2300保管1.仪器应存放在温度-5℃~40℃、相对湿度在85%以下,且空气中不含有腐蚀性气体的环境中。2.在用户遵守产品的保管、使用、安装、运输规则的条件接好电源线及跨接线缆; 3.将高压接地连线分别接在仪器控制箱后盖板高压接地端子上和浴盖上的接地端子上。从本厂发货日期起一年内,因产品制造质量不良而发生故障不能正常工作时,本厂免费为用户维修或更换零件,超过保修期时收取维修费。故障分析1.仪器外壳应与大地接触良好以保证安全;2.恒温浴内没有液体或液面距离顶部大于30毫米时,不得启动仪器加热控温,拔下电源插头;否则将损坏加热器。3. 在更换保险丝或其它零部件时,应拔下电源插头;4.非本厂维修人员不得随意拆启仪器;5.仪器使用完毕后,应及时切断电源;6.交流电源AC220V接地端必须可靠接地
  • 《车用汽油》标准进入修订阶段
    中国质量报讯 记者获悉,《车用汽油》国家标准的修订报批稿(以下简称报批稿)已于近日进入征求意见阶段。此次修订有利于促进国内炼油行业的技术进步和装置改造,促进汽油质量的进一步提高。报批稿增加了“安全”内容。车用汽油的硫含量初步修改为不大于50mg/kg。  据悉,该报批稿由全国石油产品和润滑剂标准化技术委员会(SAC/TC280)编制完成。  我国现有的《车用汽油》是2006年颁布的。此次标准修订的依据是,在中国石化石油化工科学研究院和中国石油化工研究院等单位联合开展的“满足国家第Ⅳ阶段排放要求的清洁燃油组成与排放关系研究”工作的基础上,借鉴国外车用汽油质量升级的发展趋势以及欧洲在实施第Ⅳ阶段排放要求时对车用汽油的技术要求,考虑到我国环保的要求和炼油工业的实际情况,对原标准中的某些指标进行了适当的修订。  硫含量是汽油质量的重要参数之一,对发动机的腐蚀和排放会产生重要的影响。当汽油中硫含量过高时,会导致汽车尾气催化转化器的催化剂转化效率降低和氧传感器灵敏度的下降,从而不利于对车辆尾气排放量进行有效的控制。从全球范围内看,降低车用汽油中的硫含量已经成为各国提高油品质量的主要标志。  我国自2000年开始限制含铅汽油的生产,在全国范围内实施硫含量不大于1000mg/kg的GB 17930-1999《车用无铅汽油》以来,一直把降低汽油中的硫含量作为我国汽油质量升级的主要目标。但是由于我国的炼油工业在其自身的发展过程中,形成了以催化裂化二次加工为主的特点,因此在制定国家标准时就应该充分考虑国内装置构成和技术改造等因素,初步将本标准中车用汽油的硫含量修改为不大于50mg/kg。  据了解,此次标准中的每一个数据都是通过实际测试得出的。通过使用石油化工科学研究院利用中国石化燕山分公司和高桥分公司提供的5种试验油品,选用了17辆具有一定代表性的、车辆设计能够满足第IV阶段排放要求的汽车各进行了10万公里的整车耐久性试验。  鉴于车用汽油属于易燃液体,所以本次修订在标准中增加“安全”一章,并规定其涉及的安全问题应符合相关法律、法规和标准的规定。另外,鉴于国家即将出台的第V阶段机动车污染物控制标准,在本次标准修订中,根据国外车用汽油的发展趋势,提出了满足第V阶段排放要求的建议性车用汽油技术指标。  据了解,目前北京、上海市都先后发布了地方标准《车用柴油》、《车用汽油》,广东地方标准也将实施《车用汽油》地方标准。
  • 合力推动中国矿物油分析发展 ——“矿物油分析测试技术研究合作实验室”揭牌仪式 暨矿物油分析技术最新进展学术交流
    p style="text-indent: 2em "strong仪器信息网讯/strong 2019年8月27日,北京市理化分析测试中心与德国Axel Semrau公司的“矿物油分析测试技术研究合作实验室”揭牌仪式暨矿物油分析技术最新进展学术交流成功召开。北京市科学技术研究院副院长刘清珺、北京市粮食和物资储备局副局长阎维洪、中国分析测试协会汪正范、北京市科学技术研究院技术转移处处长郭鲁钢和科研处副处长李彦雪,北京市理化分析测试中心副主任高峡、研究员武彦文,以及德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、仪真分析仪器有限公司技术总监朱丽敏、安捷伦大中华区战略规划总监何峻等20多人参加了合作实验室揭牌仪式和矿物油分析技术最新进展学术交流活动。 /pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/b6953265-6131-47f1-a5c3-6ed3461420f3.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "span style="font-size: 14px "strong活动现场/strong/span/pp style="text-indent: 2em "从各自未来发展战略需求出发,北京市理化分析测试中心与德国Axel Semrau公司成立了“矿物油分析测试技术研究合作实验室”。合作实验室将开展仪器应用、方法培训与标准验证等方面的工作。双方希望通过合作,优势互补,共同推动液相色谱-气相色谱联用的矿物油分析技术在中国的本土化应用,特别是食品中矿物油的测定方法标准的建立,为中国食品安全出力,为未来具备矿物油在国内食品中分布的筛查、降低膳食中有害物质含量等,提供技术储备和方法支持。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/9933b358-d5da-4070-9b37-c1a9fae3b75a.jpg" title="1_副本.jpg" alt="1_副本.jpg"//pp style="text-align: center "strong style="font-size: 14px text-indent: 2em "北京市科学技术研究院副院长刘清珺博士/strong/pp style="text-indent: 2em "北京市科学技术研究院是北京市属的大型多学科高水平科研机构,立足应用基础研究、战略高技术研究、重大公益研究和科技服务发展定位。刘清珺简介了北京科学技术研究院的六大中心三大平台的概况,其中检测分析与测试平台即以北京市理化分析测试中心为主,形成了仪器设备开放共享的新型运行机制,加强应用研究、高新技术研究和重大科技攻关,不断提高科研开发和自主创新能力,形成竞争领先优势。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/32d335da-719a-4300-bcce-9dcd20990b76.jpg" title="6.jpg" alt="6.jpg"//pp style="text-indent: 2em text-align: center "strongspan style="font-size: 14px "北京市理化分析测试中心副主任高峡博士/span/strong/pp style="text-indent: 2em "经过近40年的发展,北京市理化分析测试中心成为了首都地区唯一的综合性分析科学研究机构、最大的开放共享分析测试平台。目前,中心综合实力在全国地方分析测试中心中位居第2,进入全国第三方理化分析检测机构前10名,中心连续四年实现经济总量超亿元。/pp style="text-indent: 2em "北京市理化分析测试中心围绕着食品药品安全、环境监测、材料分析、生物技术、国产科学仪器应用示范等主要领域开展分析测试科学研究和技术服务工作,形成了食品药品质量安全检测技术、水土气环境监测与检测技术、未知物成分分析与鉴别技术等技术品牌。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/0b03a027-e367-49f7-b0ba-6fe69288b4a0.jpg" title="13.jpg" alt="13.jpg"//pp style="text-indent: 2em text-align: center "span style="font-size: 14px "strong德国Axel Semrau公司执行总监Dr.Andreas Bruchmann/strong/span/pp style="text-indent: 2em "在过去的35年里,Axel Semrau及其员工一直致力于样品制备、色谱、化学合成以及应用优化工作站的开发、销售和支持。Axel Semrau公司正在开发自己的硬件和软件,以便能够提供独特、强大的食品分析特别是粮油在线全自动样品前处理和多维色谱联用的解决方案。Axel Semrau的目标是以优秀的应用解决方案结合基于自身开发的优秀软件而闻名于世。此外,Axel Semrau这个名字将与卓越的客户服务和客户关系密切相关,包括客户、供应商或合作伙伴。/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f6d8ceb5-aea2-41d4-9b9b-d88b2fbf10f7.jpg" title="16.jpg" alt="16.jpg"//pp style="text-align: center "span style="font-size: 14px "strong仪真分析仪器有span style="font-size: 14px "限公司技术/span总监朱丽敏博士/strong/spanbr//pp style="text-indent: 2em "上海仪真分析仪器有限公司(仪真分析)成立于2005年,具备研发、集成、生产、代理、销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析的技术团队由多位留学博士及硕士和专业培训的工程师组成,在上海、北京及广州设有主要的办公室,上海设有研发试验和培训实验室。/pp style="text-indent: 2em " 仪真分析与Axel Semrau 公司合作,应用Axel Semrau的软件平台,与仪器公司合作开发适合中国应用的包含软件与硬件的解决方案。2018年,仪真分析成为了安捷伦VAR合作伙伴,推出食品中矿物油检测的解决方案。/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/01eab20c-b922-482a-83d1-c1dbb5245aaf.jpg" title="14.jpg" alt="14.jpg"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/0e392f1d-f066-4b4e-8bda-3353c882bbce.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "span style="font-size: 14px "strong德国Axel Semrau公司执行总监Dr. Andreas Bruchmann和/strong/spanbr//pp style="text-align: center "span style="font-size: 14px "strong北京市理化分析测试中心副主任高峡签署合作协议/strong/span/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/c7422c93-8773-442a-aab6-d804de491c30.jpg" title="11.jpg" alt="11.jpg"//pp style="text-align: center "span style="font-size: 14px "strong北京市粮食和物资储备局副局长阎维洪和北京市科学技术研究院副院长刘清珺为合作实验室揭牌/strong/span/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/1af6c700-d21b-4b3a-b7f4-7965fe8fad38.jpg" title="12.jpg" alt="12.jpg"//pp style="text-align: center "span style="font-size: 14px "strong向北京市理化分析测试中心武彦文、仪真分析仪器有限公司技术总监朱丽敏颁发证书仪式/strong/span/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/c9d190e2-168a-4fa8-8006-67e474ec655a.jpg" title="9_副本.jpg" alt="9_副本.jpg"/img src="https://img1.17img.cn/17img/images/201908/uepic/2afede2e-9415-477f-a40c-f07069dcadb9.jpg" title="7_副本.jpg" alt="7_副本.jpg" style="max-width: 100% max-height: 100% "//pp style="text-align: center "span style="font-size: 14px "strong嘉宾致辞(北京市科学技术研究院技术转移处处长郭鲁钢、中国分析测试协会汪正范、安捷伦大中华区战略规划总监何峻)/strong/spanbr//ppspan style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/df342eba-ec56-4282-9c99-c4b7f9944b3f.jpg" title="2_副本.jpg" alt="2_副本.jpg"//pp style="text-align: center "span style="font-size: 14px "strong北京市科学技术研究院科研开发处副处长李彦雪主持活动/strong/span/pp style="text-indent: 2em "矿物油源于石油,是C10~C50的烃类化合物的总称,主要包括直链、支链烷烃和烷基取代的环状饱和烷烃(MOSH)以及烷基取代的芳香烃(MOAH)两个类型,而如今普遍认为MOAH 具有可能致癌和致突变的隐患,而 MOSH(特别是C16~C35) 容易在身体器官中积累并可能造成损伤,所以对矿物油的检测显得至关重要。/pp style="text-indent: 2em "近年来,食品中的矿物油污染问题备受关注。食品接触材料特别是回收或再生包装纸中的残留油墨,食品原料在收割、晾晒、加工过程中接触的发动机润滑油、未完全燃烧的汽油、轮胎和沥青碎屑,食品加工使用的白油,以及环境污染等,都是食品中矿物油污染的主要来源。然而,由于组成复杂、数量巨大、基质干扰严重,使得矿物油的检测是行业公认的技术难题。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料MOSH迁移量小于2mg/kg, MOAH小于0.5mg/kg。2017年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。随后,欧盟推出了EN16995矿物油分析方法,大力推动欧盟内部或输欧食品中矿物油污染调查。北京理化分析测试中心的武彦文团队从2015年开始开展矿物油分析方法的研究,目前其开发的方法及测试水平均已步入国际前列。/pp style="text-indent: 2em "合作实验室揭牌仪式后,与会人员就矿物油分析技术最新进展展开了学术交流。德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、北京市理化分析测试中心武彦文博士分别就国内外矿物油分析研究进展及标准制定等内容进行了分享。关于该项技术的推广应用与会者进行了热烈的讨论,期待互相合作、共同推动该技术的进一步发展。/pp style="text-align: center "span style="font-size: 14px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/1d28b593-14b0-4622-8649-727425cb392f.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "span style="font-size: 14px "strong国际矿物油分析技术的最新进展/strong/spanbr//pp style="text-align: center "span style="font-size: 14px "strong德国Axel Semrau公司执行总监Dr. Andreas Bruchmann/strong/span/pp style="text-indent: 2em "Axel Semrau公司优化了原始 LC-GC 方法,成功推出CHRONECT LC-GC 食品中矿物油分析系统,与欧盟方法EN16995完全一致,通过特殊的阀设置将LC和GC分离互相结合,使得在一次分析中测定 MOSH 和MOAH 馏分成为可能。/pp style="text-indent: 2em "通过独立的大体积进样系统进行GC进样,进样量可达450μL;2通道GC进行两次平行和正交分离,随后进行FID检测。因此,样品中MOSH和MOAH含量的结果在30分钟后即可获得。CHRONOS软件控制采样、LC、GC、阀门连接,从而构成对方法和样品制备的完全自动控制。该解决方案应用于快速检测不同基质中的矿物油污染物,如化妆品、食品、油脂、饲料和包装材料。/pp style="text-align: center "span style="font-size: 14px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/cf5aa040-5566-482d-bd91-2ef1bdd54e52.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "span style="font-size: 14px "strong我国矿物油分析方法的研究进展/strong/spanbr//pp style="text-align: center "span style="font-size: 14px "strong北京市理化分析测试中心武彦文博士/strong/span/pp style="text-indent: 2em "气相色谱-氢火焰离子化检测器(GC-FID)是目前公认的矿物油检测方法,FID对所有烃类化合物的响应几乎完全一致,可以无需标准品对照对矿物油进行准确定量。但同时也存在着对鼓包峰的灵敏度仅为尖峰的百分之一、作为通用检测器也意味着没有选择性这两大需要解决的问题。而On-line HPLC-GC技术,由于HPLC柱的填料颗粒小、柱效高,分离效率好;LC-GC将分离、浓缩和测定联为一体,避免了人工操作,自动化程度高,方法重现性好等优点,使得LC-GC成为了测定矿物油的理想技术。/pp style="text-indent: 2em "北京市理化分析测试中心武彦文研究员于2015年开始了矿物油分析方法的研究。2018年国内第一台“全自动在线LC-GC二维色谱联用矿物油分析系统”落户武彦文的实验室,使得她的研究实现了由手动向全自动化的转变。/pp style="text-indent: 2em "仪器安装使用不到两个月的时候,武彦文团队即参加了国际能力验证,获得了“with great success”的成绩。经过1年多的时间,武彦文团队在将国际先进分析方法本土化实现的同时,在样品前处理方面,尤其是在提取技术方面实现了多项创新。短短的时间内,该团队已经发布了10多篇高水平论文,并且计划制定3项方法标准。如:行标“粮油检验 大米中矿物油的测定”,采用了SPE结合普通GC以及HPLC-GC联用的方法;行标“粮油检验 动植物油脂中饱和烃和芳香烃矿物油的测定”采用了HPLC-GC联用的方法。除了食用油中矿物油污染物的研究,武彦文团队还进行了婴幼儿配方乳粉、巧克力和咖啡中的矿物油分析等研究工作。下一步,武彦文计划在继续拓展不同基质食品中矿物油研究的同时,还将开展将该方法应用于环境领域的探索工作。/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/b7041e77-aee3-4026-8ae1-d55b1986d51e.jpg" title="15.jpg" alt="15.jpg"//pp style="text-align: center "span style="font-size: 14px "strong合影/strong/span/ppstrong附录/strong:/pp style="text-indent: 2em "北京市理化分析测试中心(理化中心)成立于1979年,隶属于北京市科学技术研究院,是公益性大型综合分析测试科学事业机构,围绕着食品药品安全、环境监测、材料分析、生物技术等主要领域开展分析测试科学研究和技术服务工作。理化中心坚持以分析测试为核心业务,以公益技术支持、公共技术服务和科学技术创新为立足点的发展定位,依靠高素质的分析方法开发与检验检测队伍,采用先进的分析测试技术和手段,为全社会提供全方位多层次的分析测试服务。/pp style="text-indent: 2em "德国Axel Semrau公司致力于开发,销售和支持样品制备和色谱自动化专业解决方案的,如在线SPE,以及LC,LCMS,GC和GCMS其他高效前端解决方案,还包括基于LC-GC和GCMS-系统的应用优化的工作站。Axel Semrau公司开发的产品如专业色谱软件解决方案和LC-GC系统,已在全球上市和销售。/pp style="text-indent: 2em "上海仪真分析仪器有限公司(仪真分析)是一家专业的,具备研发,集成,生产,代理,销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析拥有一流的由多位留学博士及硕士和专业培训的工程师组成的技术团队,销售团队覆盖大中国区的整个区域;致力于市场研究与应用开发,将世界领先的分析技术与行业标准与中国分析技术发展相结合,将先进分析技术及解决方案本土化。/pp style="text-align: right "  采访撰稿编辑:刘丰秋/ppspan style="text-indent: 2em "/spanbr//ppbr//p
  • 助力环保行业|江西环保能源公司成功验收得利特绝缘油析气性测定仪等
    北京得利特作为仪器专注油品分析仪器的公司,依然很关注环保项目。这不,前不久就与环保行业的公司进行了深度合作 。据了解,此次发往江西环保能源公司的油品分析仪器数量较多,设备清单如下:绝缘油析气性测定仪 、绝缘油氧化安定性测定仪,石油产品热值测定仪、自动水溶性酸测定仪、自动多功能振荡仪、油液颗粒污染度检测仪,都是常用的油品检测仪器。北京得利特从材料采购、工艺、制造、装配等全过程进行严格监督,深入一线严把质量关。经常召开进度协调会,对各类问题事无巨细进行讨论决策。对重要的技术问题,开展技术攻关予以解决,始终确保了该批油品分析设备交货进度风险可识别和可管控。北京得利特售后专员来到客户公司,协助客户验收设备,并培训设备操作方法,方便客户日后可独立完成各项检测试验。经过三天的调试培训,客户基本上掌握了设备的使用,对测试数据的分析技巧学习的也非常透彻。临走前,我司技术人员对仪器使用的注意事项也做了细致的说明讲解。具体产品详细参数 绝缘油析气性测定仪适应标准:GB/T11142-89、NB/SH/T0810-2010、ASTM D2300。用于测定绝缘液在受到强度足以引起在液、气交界处放电的电场作用下,放出吸收气体的能力。适用于测定电缆油、电容器油和变压器油。A1210操作简便、精度高,广泛应用于石化、电力、铁路、科研等部门。仪器特点1、大屏幕液晶显示,中文提示菜单,触摸屏控制,方便试验操作。2、透明的恒温油浴槽,采用先进的PID控温整定,使系统温度更精确。3、高压系统采用干式高压变压器,环氧真空浇注工艺,可确保输出电压稳定可靠。4、自动计时,具有定时报警功能,方便提示试验人员。5、透明安全保护罩,保证试验人员安全。6、可根据试验要求选定标准。7、可提供仪器鉴定报告,使试验结果更具有可溯性。技术参数控温范围:0℃~100℃控温精度:±0.5℃试验电压:10KV 电压精度:±2%计时范围:1~120分钟计时精度:±1s气体流量:3L/h环境温度:5℃~40℃环境湿度:≤85%工作电源:AC220V±10%,50Hz功 率:≤1500W外形尺寸:400mm×450mm×950mm重  量:38Kg
  • 【技术指导】油介损及体积电阻率测定仪的油杯三种清洗方法及常见故障
    油介损及体积电阻率测定仪油杯清洗方法、常见故障A1170技术指导产品介绍产品名称:油介损及体积电阻率测定仪产品型号:A1170概 述:油介损及体积电阻率测定仪用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。适应标准:GB/T5654油杯三种清洗方法测量前,应对油杯进行清洗,这一步骤非常重要。因为绝缘油对极微小的污染都有极为敏感的反应。因此必须严格按照下述方法要点进行。方法一:⑴ 完全拆卸油杯电极;⑵ 用中性擦皂或洗涤剂清洗。磨料颗粒和磨擦动作不应损伤电极表面;⑶ 用清水将电极清洗几次;⑷ 用无水酒精浸泡各零件;⑸ 电极清洗后,要用丝绸类织物将电极各部件的表面擦拭干净,并注意将零件放置在清洁的容器内,不要使其表面受灰尘及潮气的污染;⑹ 将各零部件放入100℃左右的烘箱内,将其烘干。有时由于油样很多,所以在测试中往往会一个接一个油样进行测试。此时电极的清洗可简化。具体做法如下:⑴ 将仪器关闭,将整个油杯都从加热器中拿出,同时将内电极从油杯中取出;⑵ 将油杯中的油倒入废油容器内,用新油样冲洗油杯几次;⑶ 装入新油样;⑷ 用新油样冲洗油杯内电极几次,然后将内电极装入油杯。这种以油洗油的方式可大大提高了测量速度,但如遇到特别脏的油样或长时间不用时,应使用方法一。方法二:⑴ 将电极杯拆开(参见油杯示意图)。⑵ 用化学纯的石油醚和苯彻底清洗油杯的所有部件。⑶ 用丙酮再次清洗油杯,然后用中性洗涤剂漂洗干净。⑷ 用5%的磷酸钠蒸馏水溶液煮沸5分钟,然后,用蒸馏水洗几次。⑸ 用蒸馏水将所有部件清洗几次。⑹ 将部件在温度为105~110℃的烘箱中,烘干60~90分钟。⑺ 各部件洗净后,待温度降至常温时将其组装好。方法三:超声波清洗方法⑴ 拆开油杯。⑵ 用溶剂冲洗所有部件。⑶ 在超声波清洗器中用肥皂水将所有部件振荡20分钟;取出部件,有自来水及蒸馏水清洗;在用蒸馏水振荡20分钟。方法四:溶剂清洗法⑴ 拆开油杯。⑵ 用溶剂冲洗所有部件,更换二次溶剂。⑶ 先用丙酮,再用自来水洗涤所有部件。接着用蒸馏水清洗。⑷ 将部件在温度为105~110℃的烘箱中,烘干60~90分钟。 当试验一组同类没有使用过的液体样品时,只要上次试验过的样品的性能优于待测油的规定值,可使用同一个电极杯而无需中间清洗。如果试验过的前一样品的性能值劣于待测油的规定值,则在做下一个试验之前必须清洗电极杯。常见故障1、屏幕显示“电极杯短路”答:首先查看内电极与外电极的定位槽是否对准,再检查“内电极”安装是否有松动。2、屏幕显示“请进行【空杯校准】”答:空杯电容值不在60±5pF的范围内的时候,需要空杯校准;①油杯的内外电极未放好或内电极未组装好,有放电现象;②油杯不干净,在内外电极之间有杂质需要进行清洗 。3、蜂鸣器响5声后仪器返回到开机界面。答:①检查空杯电容值是否在60±5pF范围之内,②检查油杯是否放 好,有无放电现象。4、在做直流电阻率时,电化60秒时间不变化。答:检查仪器的时钟是否在运转,调整时钟。5、被设电压参数个位显示不为零时,怎么办?答:用【减小】键使被设电压值变为最小,再用【增加】键调整即可。
  • 海洋溢油事件频发 油指纹鉴别技术是时代之需
    溢油事故:超级杀手  “据不完全统计,1976~2006年,我国沿海平均每4天发生一起溢油事故,其中,溢油量在50吨以上的溢油事故60多起。”国家海洋局北海环境监测中心主任高振会告诉记者,“随着我国对外开放和海洋经济的迅速发展、海洋石油勘探开发规模不断加大、海上石油运输日益繁忙,加之我国未来对石油需求的不断增加、油运市场的不断壮大,我国海域可能是未来溢油事故的多发区和重灾区。海上溢油事故正逐渐成为十分敏感的问题。”  海洋溢油被称为海洋生态环境的超级杀手,是我国近海经常发生的重要环境灾害之一。随着我国经济的不断发展,各类油污染事件呈上升趋势,发生的频率与风险正日益加大,这给我国海洋生态环境、生态资源及人民群众带来了重大损失。  高振会举例说,2002年,一艘装载8万吨原油的马耳他籍“塔斯曼海”轮船在渤海湾发生撞船事故,大量原油泄漏,经过评估,这起事故给我国带来的环境经济损失达1亿多元。除此之外,各种地沟油、加油站漏油、发电厂及机修厂漏油也是油污染的主要来源,而它们直接危害到周围居民的健康。  发展,迫在眉睫  溢油源的确定和损失评估是溢油事故处理的重要依据,因此,发展溢油鉴别与损害评估技术越来越迫切。  “海洋溢油具有突发性、偶然性和瞬时性,加之其在海洋环境中的复杂变化,使得其损害的对象也十分广泛。但目前我国缺乏专门的海洋溢油科研平台,部分基础研究成果零散分布,缺乏有效的海洋溢油快速鉴别与损害评估技术,给查找肇事者、有效保护我国海洋生态环境带来诸多困难。”高振会告诉记者,面对我国沿海经济的迅速发展,我们应该逐步开展以溢油监测与鉴别技术、溢油的生态环境影响评估、溢油现场处置与生态修复技术为重点的研究与应用示范工作,从而指导我国海洋溢油环境保护工作。  针对溢油事故频发及其对海洋环境的巨大损害,目前国际上很多国家和地区都建立了相关的专业研究机构,如美国早在1978年就在海岸警备队成立了油品鉴别中心实验室 欧洲的比利时、丹麦、德国、挪威、葡萄牙和英国等6个国家的研究机构也于1983年在对油类分析研究的基础上,建立了欧洲海上溢油鉴定系统,后经过两次修订于1992年被《波恩协议》所接受,作为《波恩协议》内部溢油鉴别的推荐方法。这些机构在溢油方面开展的研究成果,不仅促进了海洋溢油相关技术的发展,并在海洋行政管理中发挥了重要作用。而我国在这方面却一直落后于这些发达国家。  我国也应时代发展的需要,于2007年在国家海洋局北海分局建立了我国第一个溢油鉴别与损害评估技术重点实验室,促使海洋科学技术研究及成果转化与海洋行政管理的结合。  油指纹鉴别技术是时代之需  溢油鉴别与损害评估技术重点实验室通过溢油监测与鉴别技术、溢油的生态环境影响、溢油应急处置及生态修复等方向与多学科交叉研究,深入了解海洋溢油的特征和规律,准确查明各种溢油来源,对其造成的海洋生态环境损害作出客观评估,为修复受损的海洋生态环境、发展海洋突发事件研究的理论体系、发展相应的高新技术提供技术平台,为我国海洋减灾防灾和维护国家海洋权益提供科学依据。该实验室以溢油监测与鉴别技术、溢油的生态环境影响和溢油现场处置与生态修复技术为主要研究内容和方向。  高振会向记者介绍,这些技术中油指纹鉴别技术至关重要。  该技术最早始于20世纪60年代,美、日等国家在70年代相继推出标准方法,北欧标准也在80年代颁布。近些年来,随着技术的发展和研究的不断深入,各国都在不断完善自己的溢油鉴别体系,并建立起了自己的油指纹库,我国也正在着力建设自己的标准油指纹库。  高振会解释说,所谓的油指纹鉴别就是基于油品指纹的差异性,通过对溢油和可疑溢油源油样的“油指纹”进行比对,从而实现溢油源的排查和确认。  众所周之,原油是由上千种不同浓度的化合物组成,这些化合物通过不同的分析检测手段获得不同的信息,如利用色谱获取的组分信息、利用光谱获得的各种光谱特征,这些信息就是反映油品特征的油指纹。  油指纹的差异性主要受到3个方面因素的影响:首先,原油的形成和聚集过程中的因素,包括原油生源岩本身的有机质特征、热环境以及原油在地层和油井内的运移 其次,原油通过不同的炼制过程获得的成品油,因为炼制过程不同,不同的需求,以及运输、储存等过程的不同,不同成品油的油指纹不同 最后,油品溢出到环境中后的风化和混合,不同的风化过程、不同的环境背景和环境中其他烃类污染源带来的混合,油指纹也会发生不同程度的变化。  记者了解到,为提高溢油鉴定能力,为海洋行政执法管理提供科学依据,国家海洋局北海分局建立了气相色谱、气相色谱—质谱、红外光谱、荧光光谱及物理方法等一套国际先进的油指纹库建设体系和多手段逐级鉴定体,承担并完成了油指纹库建设体系及关键技术研究。  关键之处显身手  “在我国科技工作人员的努力下,在认真梳理、总结多年工作成果并广泛借鉴国内外先进经验的基础上,我国现已完成了国家标准《海面溢油鉴别系统规范》的制定。该标准是在行业标准部分内容的基础上,广泛吸收《欧洲溢油鉴别系统》(NT CHEM 001,1991)和美国ASTM相关标准中先进的油指纹鉴别技术,研究石油指纹的化学分析方法、溢油鉴定程序和判定方法,较之前行业标准已经有了质的飞跃,溢油鉴定流程方面实现了与国际接轨。”高振会高兴地对记者介绍。  高振会进一步补充说,这些技术目前已经得到了很好的应用,积累了较丰富的实践经验。如长岛海域油污染事件鉴定、埕岛海域油污染鉴定、“塔斯曼海”轮溢油鉴定、威海“恒冠36”轮溢油事件鉴定、绥中36-1油田F31井溢油污染鉴定、黄骅滩涂溢油鉴定、黄岛溢油鉴定等几十起溢油事故鉴定中,这些技术都发挥了关键性作用。尤其是2006年“长岛海域油污染事件”中,北海分局北海监测中心基于油指纹鉴定技术,排除了多种溢油嫌疑,成功地确定溢油来源,为事件的处理提供了有力证据。
  • “食用油变毒油”食品安全问题再次引发热议,该如何检测食用油的安全?
    近日,一则关于“罐车运输油罐混用”的新闻再次引发了公众对食品安全问题的担忧。据报道,一些罐车在卸载完煤制油后,未经过清洗便直接装载食用大豆油进行下一轮运输。这种情况不仅频发,而且罐车所运输的液体种类繁多,从煤油化工等危险液体到糖浆、大豆油等食用类液体均有涉及。新闻曝光后,立即在社会上引发了关于“食用油变毒油”的激烈讨论。通过查询涉事企业的公开招标信息,下游涉及销售到高校食堂、农贸市场和食品厂等多个领域,其潜在的风险不容忽视。煤制油中含有的碳氢化合物,特别是其中的不饱和烃、芳香族烃和硫化物等,都可能导致人体中毒,而此次事件中的煤油罐车装载食用油后,还可能引入二价镉、无机砷、六价铬、无机汞和铅等重金属,进一步加剧了食用油被污染的风险。“食用油变毒油”事件之后,该如何检测食用油来确保其安全性呢?通过新闻可知食用油在生产、储存以及运输链条中,会存在着诸如微生物、重金属和农药残留等多种潜在的污染源,这些污染物不仅可能降低食用油的营养价值和食用安全,还可能对人体健康造成潜在威胁。北京吉天仪器有限公司(以下简称:吉天仪器)可针对食用油中的复杂化合物、重金属和农药残留等问题,提供了一系列高效、准确的检测方法和设备,确保食用油的安全与品质。随着大众消费水平和健康意识的日益增强,对于食用油中的油脂风味物质的要求也愈发严格。为了确保食用植物油的风味品质一致性和稳定性,并科学鉴别油脂种类、精准识别油脂掺假及含量,国家粮食和物资储备局公开发布了《粮油检验 植物油挥发性风味成分的测定 气相色谱-离子迁移谱法》的征求意见稿。该征求意见稿详细规定了通过气相色谱-离子迁移谱法(GC-IMS)测定植物油挥发性风味成分的方法。气相色谱-离子迁移谱法是一种先进的检测技术,它将气相色谱的高分离效能和离子迁移谱的高灵敏度的优势联为一体,可为食用植物油的风味分析、掺假测定以及分类等问题提供了全新的解决方案。吉天仪器在其气相色谱-离子迁移谱(GC-IMS)联用产品的开发上,倾注了数年的科研心血。这款分析仪融合了快速气相色谱、高能电子光电离源、双极离子迁移谱设计以及多路复用离子注入等技术,成功研发出了具备独立知识产权的新一代高灵敏度的串级联用分析仪。吉天仪器使用GC-IMS 3000对某品牌纯食用油(C)、掺杂5%的混合油(A)、掺杂10%的混合油(B)进行了挥发性成分分析,部分指纹谱图如下所示。指纹谱图显示了不同样品间的差异,三种样品间存在相同的挥发性化合物,也存在特征性挥发性组分,部分特征组分只存在于混合油样品中,且信号强度随着混合比例的增加而增大。可通过GC-IMS非靶向分析及指纹谱图技术进行食用油掺杂鉴别。食品安全重于泰山,从原材料采集到最终餐桌上的过程,都承载着对人体健康的责任。因此,确保食品安全,不仅需要在生产、储存、运输等各个环节进行严格的检测,更需要有先进的技术和设备作为保障。吉天仪器深知这一使命的重要性,将持续投入研发力量,不断创新检测方法,研制高精度仪器,为食品安全的每一个环节提供坚实的检测技术支撑。
  • FerroCheck便携式铁量仪 ——只需不到2ml油样,30秒判定设备磨损程度
    FerroCheck 2000系列便携式铁量仪,可精确检测润滑油和润滑脂中铁磁性颗粒浓度。检测时间快,大约30秒。所需样品少,润滑油仅需1.5ml油样,润滑脂仅需0.75ml油样。FerroCheck测量的铁磁颗粒既包括来自正常设备磨损的小颗粒,也包括来自异常磨损的大颗粒。检测原理FerroCheck 2000便携式铁量仪的核心是产生磁场的精确缠绕的磁感线圈。当少量的在用油插入到一个线圈中时,铁、镍、钴等铁磁性颗粒会与磁场发生相互作用,并引起线圈的阻抗变化。阻抗的改变量与油液中铁磁颗粒的浓度成正比,阻抗的改变量越大表明铁磁颗粒浓度越高。润滑油或润滑脂的样品管设计是为了使样品在测量线圈中处于最佳位置。在测量样之前,消除了外界温度变化对测量的影响,线圈中的电流是保持自动平衡的。如果不考虑操作人员自身和环境温度的影响,测试结果也是稳定的和可重复检验的,这对现场进行润滑油和润滑脂分析而言是至关重要的。主要特点可检测油样中铁磁颗粒的总量可检测设备正常磨损的所有铁磁颗粒浓度和异常磨损的大铁磁性颗粒浓度。检测结果准确,可重复精度高检出限低重复精度高:<3ppm检测范围宽含校准标油简单易用无需样品预处理,无需溶剂只需不到2ml的油样30秒之内出检测结果锂电池供电设计,方便携带重量轻,配有专用运输箱,方便携带,锂电池可续航4小时,也可插电使用。数据传输功能自动存储检测结果,可以用CSV格式文件或者用AMS Oilview将检测结果输出ASTM标准满足ASTM D8120 "铁磁颗粒浓度检测的标准方法"满足工业现场及油液监测实验室的使用需求检测结果准确、可重复精度高、检测结果稳定,检测范围广电池可充电
  • 气相色谱仪检测分析绝缘油/绝缘油检测分析仪器厂家直销
    南京科捷是检测分析绝缘油/绝缘油检测分析气相色谱仪的厂家,联系电话:尹先生13951792301,欢迎来电咨询、购买! 绝缘油一种润滑油。通常由深度精制的润滑油基础油加入抗氧剂调制而成。主要用作电器设备的电介质。电器绝缘油的主要性能是低温性能、氧化安定性和介质损失。绝缘油检测分析仪专用气相色谱仪性能: GC5890型气相色谱仪 :全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、裂解炉进样器、甲烷转化炉. 更多检测分析绝缘油/绝缘油检测分析气相色谱仪详情可登录www.kj17.com了解!
  • 绝缘油析气性测定仪产品知识培训
    为了让生产及销售员工更多的了解产品知识,提高生产及业务水平,更好生产产品和服务客户。7月15日,北京得利特技术部经理组织开展了 绝缘油析气性测定仪产品知识培训,参加此次培训的有20多位生产及销售员工,技术经理先普及了一下绝缘油析气性测定仪的生产标准.然后又根据实际产品讲解了绝缘油析气性测定仪的系统构造,技术经理现场对仪器进行参数设定,员工更加直观的了解了产品的重要参数。员工认真听讲,做笔记。不懂的地方积极提问,技术经理耐心帮大家解答。 通过这次培训,生产员工了解了析气性测定仪系统结构,以后在生产过程中可以简单解决遇到的小问题,提高生产效率,销售员工可以向客户详细的介绍我们的仪器产品,让客户更加深入了解我们的产品,提高了销售业务能力。A1210绝缘油析气性测定仪适应标准:GB/T11142-89、NB/SH/T0810-2010、ASTM D2300。用于测定绝缘液在受到强度足以引起在液、气交界处放电的电场作用下,放出吸收气体的能力。适用于测定电缆油、电容器油和变压器油。A1210操作简便、精度高,广泛应用于石化、电力、铁路、科研等部门。仪器特点大屏幕液晶显示,中文提示菜单,触摸屏控制,方便试验操作。透明的恒温油浴槽,采用先进的PID控温整定,使系统温度更精确。高压系统采用干式高压变压器,环氧真空浇注工艺,可确保输出电压稳定可靠。自动计时,具有定时报警功能,方便提示试验人员。透明安全保护罩,保证试验人员安全。可根据试验要求选定标准。可提供仪器鉴定报告,使试验结果更具有可溯性。
  • 专家解析:“地沟油”检测难在哪里?
    仪器信息网讯 “地沟油”检测产品及检测方法相继公布,尽管众多仪器厂商均声称自己的产品可以用于“地沟油”检测,但“我要测”(www.woyaoce.com)网对相关专家的采访显示,到目前为止,“地沟油”检测尚无科学办法。  据媒体报道,2012年5月,卫生部正在验证和完善已收集到的7个“地沟油””检测方法。时间已过去近半年,截止到目前,再没有进一步的消息。亦有媒体报道,卫生部2次向社会征集“地沟油”的检测办法,到目前仍然没有公布可以推广使用的检测方案,那么“地沟油”到底能不能检测,其检测难点是什么?  “地沟油”定义须准确  “当前,对什么是地沟油,尚未形成统一的官方概念。”“我要测”网采访到的一位不愿透露姓名的业内专家说,他认为,狭义地看,“地沟油”仅指阴沟油,即那些进入下水道、阴沟、隔油池等的废弃食用油。这位专家称,这类阴沟油回收炼制后的主要去向是生物柴油或其他化工原料,而不会用于提炼食用油返回餐桌,因为其含油率低、提炼难度大,加工成本高,在技术性和经济性两方面已不具备返回餐桌的价值。  目前返回餐桌的“地沟油””主要是煎炸老油和泔水油(或称潲水油),不过也不排除有极少量的阴沟油掺到煎炸老油和泔水油中后,回流到餐桌。这种状况已得到大量的“地沟油”圈内从业人员确认。  “地沟油”是否有毒  该专家介绍说,地沟油是无标准的东西,提炼加工方法与提炼程度千差万别,使得地沟油的化学构成十分多变,可以肯定的是,提炼程度不高的地沟油难免会外源性毒素超标,提炼程度过高的还可能内源性有毒氧化产物超标。所以,至少多数情况下地沟油有害健康。  “地沟油”如何上餐桌  为了研究“地沟油”,该专家花费了大量精力了解“地沟油”的产业链情况,多次暗访相关企业,并收集了上千份不同的“地沟油”样本进行分析。他告诉“我要测”网,在“地沟油”从业圈内,煎炸老油、泔水油、阴沟油通常是分类收集,粗加工方法各异,粗炼后一般不混合装运,售价也不一致。煎炸老油和泔水油经过加热、脱渣、脱色、脱臭,其色泽、气味、滋味等感官指标,以及酸价和过氧化值等理化指标大多可接近或完全达到国家《食用植物油卫生标准》(GB 2716-2005),掺混后难以与合格食用油区分。  从既往“地沟油”的加工与市场流通情况看,这些经过炼制的二次油基本上都是混合油脂,极少情况下是单一品种的废弃食用油,主要是以散装的形式,卖给一些日常用油量较大的餐馆、饮食摊,及一些不良的油脂生产厂。  “地沟油”检测难在哪  这位专家表示,目前,开发的检测方法和手段主要是针对“地沟油”中的理化指标、外界污染物及油脂生成物的检测。  理化指标主要有:酸价、过氧化值、凝固点、折光率、色泽等 但是这些指标在精炼的过程中,都可能达到正常油品的指标。即用理化指标检验的方式,容易造成“漏杀”。  外界污染物是指合格油品中不应该超标含有的物质,主要源于外界的污染,如重金属、真菌毒素、洗涤剂、食盐等。“地沟油”属于二次用油,在使用环境中,往往可能掺入污染物。但“地沟油”的来源多样化,其所掺污染物的可能性也不同,比如:并不是所有的“地沟油”中都含有重金属。  油脂生成物是食用油在煎、炒等过程反应生成的氧化产物、水解产物、热质变产物等。但是这些物质不仅存在“地沟油”中,合格的食用油在长时间搁置的过程中,也会氧化、水解,产生这些物质。以此方法,会造成“错杀”。  “目前还不没有找到某一种物质,作为‘地沟油’中共有且特有的标记物,来区别‘地沟油’和合格油。检测物确定不了,检测方法也就无从说起了。”这位专家说。  “地沟油”检测的出路  经过大量研究方法的实践,这位专家认为,地沟油概念不统一,缺失定性物质或指标,是制约地沟油检测技术突破的瓶颈。检测对象不明确,何谈准确检测?特性不明,靠什么定性?由于该瓶颈的存在,因此:1、地沟油的检测不存在方法准确率,只有针对特定样品的某一次的准确率,宣称某某方法准确率90%云云,是毫无意义的 2、不能定量检测,地沟油是极不标准的东西,此地沟油非彼地沟油,宣称某方法可检出10%的地沟油掺伪量的说法,也就毫无意义的。  这位专家强调,“区分”与“鉴定”的本质不同。非合格食用油不一定都是地沟油。目前很多方法都是基于“非合格食用油”的检测来判定地沟油的,包括部分面向社会征集到的7个方法。这类“区分”方法来判定地沟油,理论上就存在漏洞。诸如过期油等不合格油的种类非常多,怎能都归入“地沟油”?  针对某一种物质的检测来定性确证“地沟油”,这种方法还行不通。目前来说,较有效的办法,是进行筛查。即给地沟油分类,针对每一类地沟油找出具特异性的标记物或指标,多个指标的组合检测。因为“地沟油”的来源极其复杂,因此,筛查时要用多指标检测,抓出“嫌疑犯”。  就长远来说,还需要加强对“地沟油”基本属性的研究,对“地沟油”的检测研究分步走、分类走更切合实际。
  • 采用中和法原理的柴油汽油煤油酸度测定仪
    柴油汽油煤油酸度测定仪适用标准:GB/T264-83 GB/T7599-87 GB258-77, 用于检测变压器油,汽轮机油及抗燃油等样品的酸值分析测量。酸值是中和1克油品中的酸性物质所需要的氢氧化钾毫克数,用mgKOH/g油表示,它是油品质量中应严格控制的指标之一。该仪器通过机械、光学以及电子等技术的综合运用,采用微处理器,能够自动实现多样品切换、滴定、判断滴定终点、打印测量结果等功能,该系统稳定可靠,自动化程度高。可广泛运用于电力、化工、环保等领域。仪器特点1.液晶大屏幕、中文菜单、无标识按键;2.自动换杯、自动检测、打印检测结果;3.该仪器可对六个油样进行检测;4.采用中和法原理,用微机控制在常温下自动完成加液、滴定、搅拌、判断滴定终点,液晶屏幕显示测定结果并可打印输出,全部过程约需4分钟;5.用试剂瓶盛装萃取液和中和液,试剂在使用过程不与空气接触,避免了溶剂挥发和空气中CO2的影响。技术参数工作电源:AC220V±10% ,50Hz耗电功率: ﹤100W测定范围: 0.0001~0.9999mgKOH/g 分辨率: ≥0.0001 mgKOH/g测量准确度:酸值<0.1时 ±0.02 mgKOH/g酸值≥0.1时 ±0.05 mgKOH/g重复性: 0.004 mgKOH/g环境温度:10℃~40℃相对湿度:<85%
  • 婴儿核桃油也中招!塑化剂该如何管控?
    p style="text-indent: 2em text-align: justify "近日,有媒体爆出拉图蓝乔(上海)贸易有限公司代理的婴幼儿辅食品牌La Tourangelle(拉杜蓝乔)核桃油存在“邻苯二甲酸酯类物质”成分残留。随后,千麦实业通过“La Tourangelle拉杜蓝乔”官方微博发布第三方机构出具的报告,显示其委托检测的拉图蓝乔2款不同包装的核桃油产品,邻苯二甲酸二(2-乙基己)酯检测结果分别为1.86mg/kg和1.17mg/kg。很明显,其中一个批次产品已超出了国家规定的限值1.5mg/kg。/pp style="text-indent: 2em "据悉,拉杜蓝乔在婴儿辅食界很有名,由于声称是婴幼儿高端辅食用油、富含不饱和脂肪酸等卖点,拉杜蓝乔系列油制品成了很多妈妈的选择。因此消息传出后,妈妈圈一片哗然。/pp style="text-indent: 2em text-align: justify "邻苯二甲酸酯又称酞酸酯,是邻苯二甲酸形成的酯的统称,又称“塑化剂”,被普遍应用于玩具、食品包装材料、个人护理用品等产品中。目前常见且受关注的邻苯二甲酸酯有邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二(2-乙基己)酯(DEHP)、邻苯二甲酸甲苯基丁酯(BBP)、邻苯二甲酸二辛酯(DOP)、邻苯二甲酸二异壬酯(DINP)等。酒鬼酒中超标的是DBP,台湾饮料安全事件中的主角是DEHP,此次核桃油事件的主角同样是DEHP。/pp style="text-indent: 2em text-align: justify "塑化剂进入人体的途径有很多,主要包括通过消化系统、呼吸系统甚至皮肤进入人体。 其代谢产物主要分布于血液、肝脏、肾脏、胃肠道及脂肪组织。流行病学与毒理学证据均表明,邻苯二甲酸酯对机体健康多个方面均有不良影响,具体表现为生殖发育毒性、胰岛素抵抗、肥胖、神经行为发育异常、哮喘和过敏性疾病等。也有专家指出,邻苯二甲酸(2-乙基己)酯是一种人类致癌物质。/pp style="text-indent: 2em " “塑化剂”已经不是第一次出现在大众视野,短短几年间就曾曝出多起塑化剂事件,严重威胁着人们的健康。因此,各国也出台了各种严苛的法律法规及标准来限制塑化剂的使用。/pp style="text-indent: 2em "strong中国/strong/pp style="text-indent: 2em "国家卫生计生委(原卫生部)于2011年6月1日曾紧急发布公告,将塑化剂邻苯二甲酸酯类列为第六批“食品中可能违法添加的非食用物质和易滥用的食品添加剂名单”之中,并规定食品、食品添加剂中DEHP、DINP、 DBP最大残留量分别为1.5mg/kg、9.0 mg/kg、0.3 mg/kg。/pp style="text-indent: 2em text-align: justify "我国国家标准GB 9685- 2008 《食品容器、包装材料用添加剂使用卫生标准》中规定的可用于食品接触材料的邻苯二甲酸酯类塑化剂主要有8种,分别为:DMP、DIBP、DBP、DEHP、DINP、DAP、DIOP和邻苯二甲酸二烯丙酯与丙烯酸乙酯和甲基丙烯酸的共聚合物。而新版的GB 9685-2016《食品接触材料及制品用添加剂使用标准》,则删除了4种邻苯二甲酸酯类物质,规定可用于食品接触材料的有四种,即DBP、DEHP、DAP、邻苯二甲酸二烯丙酯与丙烯酸乙酯和甲基丙烯酸的共聚物,并规定在食品接触材料中DBP的最大残留量为0.3mg/kg,DEHP的最大残留量为1.5 mg/kg,DAP及邻苯二甲酸二烯丙酯与丙烯酸乙酯和甲基丙烯酸的共聚物最大残留量则为不得检出。标准还规定生产材料或制品strong不得用于接触脂肪性食品、酒精含量高于20%的食品和婴幼儿食品/strong。此外,我国《化妆品卫生规范》(2007年版)规定,邻苯二甲酸酯为禁用物质。新颁布的《玩具安全》标准将邻苯二甲酸二丁酯等6种塑化剂列为限用物质,限量要求跟欧盟相同。/pp style="text-indent: 2em text-align: justify "另外,国标GB 5009.271-2016《食品安全国家标准 食品中邻苯二甲酸酯的测定》代替了原来的GB/T 21911-2008《食品中邻苯二甲酸酯的测定》和SN/T 3147-2012《出口食品中邻苯二甲酸酯的测定》,并给出两种检测方法。第一法主要是食品中16种邻苯二甲酸酯类物质含量的气相色谱质谱联用(GC-MS)测定方法,规定邻苯二甲酸二正丁酯定量限为0.3mg/kg,其他15种邻苯二甲酸酯定量限为0.5 mg/kg。与第一法相比,第二法采用外标法并增加了邻苯二甲酸二烯丙酯和邻苯二甲酸二异壬酯的测定。第二法规定,邻苯二甲酸二异壬酯(DINP)的定量限为9.0mg/kg,邻苯二甲酸二正丁酯(DBP)定量限为0.3mg/kg,其他16种目标化合物定量限均为0.5mg/kg。/pp style="text-indent: 2em "strong美国/strong/pp style="text-indent: 2em "2008年,美国发布的消费品安全改进法案规定,玩具及儿童护理产品中DEHP、DBP和BBP三类邻苯增塑剂被实施永久禁令,DINP、DIDP和DNOP三类邻苯增塑剂被实施暂时禁令。2017年,美国消费品安全委员会正式通过了关于禁止儿童用品中含有含量超过0.1%的特定邻苯二甲酸酯的最新规定,并将之前增塑剂限制种类由6种增加至8种。/pp style="text-indent: 2em "strong欧盟/strong/pp style="text-indent: 2em text-align: justify "欧盟是较早开始对邻苯二甲酸酯毒性进行调研评估并对其使用进行限制的区域。2005年12月通过的强制禁令——第2005/84/EC号指令规定所有玩具或儿童护理用品中DEHP、DBP、及BBP的浓度不得超过0.1%;对可放进口中的玩具及儿童护理塑料中所含的另三种邻苯二甲酸盐(DINP、DIDP及DNOP)进行限制,浓度不得超过0.1%。但2005/84/EC指令没有对与食品接触的塑料材料中的使用进行明确规定。欧盟在2007年3月31日的官方刊物上发布的2007/19/EC指令则在与食品接触的塑料材料及商品方面对2007/72/EC指令做出了许多修改。/pp style="text-indent: 2em text-align: justify "近期正式执行的欧盟RoHS2.0规定所有输欧电子电器产品(除医疗和监控设备)均需满足指令中规定的使用某些有害物质限制的要求。其中,新增四项邻苯二甲酸酯检测要求,包括DEHP、DBP、DIBP和BBP,限值为0.1%。为了应对法规管控需求,中国出口企业将需根据IEC62321-8《电子电气产品中某些物质的测定 第8部分:使用气相色谱质谱联用仪,配有热裂解热脱附的气相色谱质谱联用仪测定聚合物中的邻苯二甲酸酯》标准规定检测产品塑化剂的含量。/pp style="text-indent: 2em text-align: justify "由于塑化剂在工业上被广泛使用,我们无法完全离开,只能在日常生活中尽量减少塑化剂的暴露风险。未来,随着人们健康意识的不断提高,相信各国对塑化剂的管控也将会越来越严。/pp /pp style="text-indent: 2em "i参考文献/i/pp style="text-indent: 2em "国内外增塑剂相关法规比较/pp style="text-indent: 2em "塑化剂的毒性及安全标准研究/pp style="text-indent: 2em "GB 9685- 2008 食品容器、包装材料用添加剂使用卫生标准/pp style="text-indent: 2em "GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定/p
  • 多轮测试更新推出---绝缘油析气性测定仪
    石化工业作为国民经济的重要支柱产业和原材料配套工业,在后疫情时代有着新的机遇和未来。疫情过后,世界石化产业将重构,进入新的变革与调整期。我国石油化工产业将朝着原料多元化、产品需求差异化、营销电商化、产业绿色低碳化、产业智能化等方向发展。我国石油储量有限,石油对外依存度高,石化产业必须拓宽原材料渠道。为满足人们生活水平日益提高的需要,石化下游产品向功能化、精细化、差异化方向发展成为必然。绿色发展、低碳发展已经成为发展潮流我国政府高度重视生态文明建设,修订出台了严格的环境保护法,对排污、碳排放的标准和要求都在提高。A1210绝缘油析气性测定仪适应标准:GB/T11142-89、NB/SH/T0810-2010、ASTM D2300。用于测定绝缘液在受到强度足以引起在液、气交界处放电的电场作用下,放出吸收气体的能力。适用于测定电缆油、电容器油和变压器油。A1210操作简便、精度高,广泛应用于石化、电力、铁路、科研等部门。仪器特点:1、大屏幕液晶显示,中文提示菜单,触摸屏控制,方便试验操作。2、透明的恒温油浴槽,采用先进的PID控温整定,使系统温度更精确。3、高压系统采用干式高压变压器,环氧真空浇注工艺,可确保输出电压稳定可靠。4、自动计时,具有定时报警功能,方便提示试验人员。5、透明安全保护罩,保证试验人员安全。6、可根据试验要求选定标准。7、可提供仪器鉴定报告,使试验结果更具有可溯性。技术参数:控温范围:0℃~100℃控温精度:±0.5℃试验电压:10KV 电压精度:±2%计时范围:1~120分钟计时精度:±1s气体流量:3L/h环境温度:5℃~40℃环境湿度:≤85%工作电源:AC220V±10%,50Hz功 率:≤1500W外形尺寸:400mm×450mm×950mm重  量:38Kg
  • GB/T 17623气相色谱分析仪--适用分析充油电器设备
    根据中投产业研究院发布的《2021-2025年中国石油化工行业投资分析及前景预测报告》,我国石化化工行业的发展形势,具体主要有以下几点:一是市场需求总体继续扩大,但增速下降。一方面,随着城镇化和基础设施建设的不断深入,基本原材料的需求还将保持一定增速,但增速会有所降低,人们日常生活用品也不会有太大的提高;另一方面,人们的消费升级以及生活方式和消费模式的改变,将提高或改变市场需求,促进与经济发展相配套的石化化工产品升级换代。因此,预计“十四五”期间,传统石化化工产品,如成品油、大宗化工产品等,在很长的一段时间内消费保持低速增长态势,甚至有些个别产品还会有略微下降;而在与智能制造、电子通信、生活消费品和医药保健等有关的化工产品,主要是电子化学品、纺织化学品、化妆品原材料、快餐用品、快递服务用品、个人防护和具备特殊功能的化工新材料等,都将会有很大增幅。二是低油价可能成为新常态。油价是世界经济的温度计。世界经济下行,将影响经济需求,进而导致国际原油及其他大宗商品价格走低。加上页岩油(岩页油)、页岩气(岩页气)技术的成熟,非常规油气资源的大规模开发利用,国际原油市场供求关系正在发生转折性变化,国际石油供应总体保持宽松,油价将极大概率继续低位运行。综合国际政治经济多因素分析,低油价可能成为今后一个较长时期内的新常态。在油价低位的背景下,煤价也将下移,价格中枢回落。低油价、低煤价将向石化产业链下游传导,整个产业链的价格体系都将重构。三是安全生产、绿色发展的要求日益提高。石化化工生产“易燃、易爆、有毒、有害”特点突出,尤其是近几年,化工行业事故频发,特大恶性事故连续不断,给人们生命财产造成重大损失,在社会各界造成极其恶劣的影响。随着我国城镇化的快速推进,原来远离城市的石化化工企业已逐渐被新崛起的城镇包围,带来了许多隐患。“十四五”期间,社会各界将更加紧盯各地石化化工企业,石化化工企业进入化工园区,远离城镇布局将成为必然要求,安全生产也将是企业必须加强的一门必修课。气相色谱仪是利用色谱分离技术和检测技术,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不超过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。气相色谱-质谱联用仪是一种质谱仪,应用于医学、物理学,气相色谱的流动相为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。A1220气相色谱分析仪是依据GB/T 17623、DL/T 703标准规定的方法设计制造的,适用于分析充油电器设备中(包括变压器、电抗器、电流互感器、电压互感器、充电套管等)溶解于绝缘油中的氢、一氧化碳、甲烷、二氧化碳、乙烯、乙烷、乙炔等气体含量的分析。主要技术特点与参数:1、实现计算机实时控制和数据处理:仪器自带数字接口,通过一根通讯线在计算机上实现实时数据信号采集、数据处理及检测结果。仪器电脑连接互联网,可通过远程计算机与仪器连接,实现远程数据采集和管理。提高了装置的自由度,促进实验室的有效应用。通过人性化软件操作界面,极大方便用户设定包括各路温度、程升、检测器、桥流等参数;直观地操作包括FID点火(先已改成全自动的,无需人工操作),开关桥流,开启关闭控温,和各个时间事件等功能;2、高精度,稳定可靠的温度控制系统:主控电路采用了功能先进的微处理器、大容量存储器的采用,使数据的保存更加可靠;同时集测量、控制、电路板的一体化设计提高了仪器的抗干扰性和可靠性;采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度; 柱箱具有超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位;3、简洁明了的人机对话界面,操作简便,易学易用仪器采用大屏幕LCD液晶汉字显示,显示直观、操作方便、更适合中国国情;自我诊断功能,能显示故障部位;数据断电保护功能,仪器所设定的运行数据在断电后能长期保存;具有秒表、计数功能4、双重稳定的高精度气路控制系统。载气气路采用先稳压后稳流的双重稳定的气路系统流量调节阀采用旋钮调节,直观、可靠性好。配有电子压力显示系统,精度比压力表更高。5、柱室采用跟踪升温方式。6、仪器检测低含量的烃类和高含量的CO、CO2可分开检测,避免相互干扰。7、氢火焰离子化检测器(FID):圆筒型收集极结构设计,金属喷嘴,响应极高检测限:≤2×10-12g/s(正十六烷/异辛烷)基线噪声:≤2×10-13A基线漂移:≤2×10-12A/30min线性:≥106可调式全自动点火,稳定时间:30分钟8、热导检测器(TCD):采用半扩散式结构电源采用恒流控制方式灵敏度:≥5000mVml/mg。基线噪声:≤10μV。基线漂移:≤100μV/30min。线 性:≧1059、大屏幕LCD液晶显示:清晰显示各路温度的设定值,实测值和保护值实时显示仪器状态触摸式键盘,菜单式操作,全自动点火10、温控指标:温度范围:室温上5℃~420℃?精度±0.1℃11、其他参数:电源:220V±22V,50Hz,功率:≥2kW重量:55KG外形尺寸:60cm×50cm×50cm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制