浮游细样器

仪器信息网浮游细样器专题为您提供2024年最新浮游细样器价格报价、厂家品牌的相关信息, 包括浮游细样器参数、型号等,不管是国产,还是进口品牌的浮游细样器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合浮游细样器相关的耗材配件、试剂标物,还有浮游细样器相关的最新资讯、资料,以及浮游细样器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

浮游细样器相关的厂商

  • 400-860-5168转2703
    北京普力特仪器有限公司是一家水域生态相关采样设备的专业制造商,也是国际知名水质分析仪器在国内的代理商,产品涵盖环保、水文和海洋等水环境领域。公司团队由多名专业人员组成,他们均具备相关技术背景和丰富的市场经验,熟知设备的操作和应用,能够为用户提供完善的售前、售后服务。我们服务的理念是:专业,执着。我们也会虚心听取您的意见和建议,进一步完善产品和服务,为中国的科研环保事业尽一份力量。产品包括-------------------------------------------------- 水质采样器(采水器)有机玻璃采水器、不锈钢采水器、小型铜质采水器、杆持式采水器和卡盖式采水器等。沉积物采样器(采泥器)硬质表层采泥钻、底泥定深采样钻、柱状透明采泥管、挖斗式采泥器、箱式采泥器和竖直重力型采泥器等。浮游生物采样器及处理装置浅水型浮游生物网(I型/II型/III型)、杆持式浮游生物网、25号浮游生物网(25号粘泥网或25号滤网)、13号浮游生物网、微型浮游生物采集网、浮游生物沉淀器(浓缩器)、浮游生物(藻类)计数框、测微尺、浮游生物分类计数器等。底栖生物采样器底栖生物分样套筛、三角底拖网、矩形底拖网(阿氏拖网)、杆持D型网、抓斗式采泥器(彼得逊采泥器)等。着生生物采样器(人工基质采样器)污损生物附着挂板、底栖生物附着挂板。滩涂湿地生物采样器滩涂取样钻、定量框、计算框、手捞网、手柄耙、多用镐铲、手柄铲和长柄钢锨等。浮游生物培养系统浮游植物培养器、浮游动物培养器、藻类大型培养器和卤虫孵化培养器。水质物理参数测量测深仪、水色计、流速仪、塞氏盘(透明度盘)、水温计等。水质分析仪pH计、离子计、盐度计、浊度仪、电导率测定仪、溶解氧测定仪、总溶解固体测定仪、多参数测定仪等。
    留言咨询
  • 400-860-5168转4591
    青岛水德科技有限公司专注于为中国用户引进国际先进的海洋调查技术,公司的使命是“成为连接世界海洋科技与中国用户的桥梁”。水德的产品主要包括CTD采水器、采泥器、水生生物采样器、浮游生物多联采样网、海洋微塑料采样分析系统、浮游动物扫描分析系统、水下颗粒物和浮游动物图像原位采集系统、多通道沉积物捕集器、高精度温盐深仪、水下原位营养盐分析仪、海洋二氧化碳分压监测仪、超短基线水下定位系统等。成为海洋行业的最专业的科技解决方案提供商是水德的远景目标。水德品牌创立以来,不断举办海洋新技术路演和培训会,积极参加行业展会,获得了各大涉海科研院所及高校的一致好评。公司专业的技术团队为客户提供了稳定的技术保障,针对不同研究领域配有相应的专业技术团队,让客户无后顾之忧!
    留言咨询
  • 上海海海洋科技有限公司成立于2015年,是一家专注于为海洋工程、海洋科考领域提供高技术、高可靠性的海洋设备,致力于为用户提供一站式定制服务的专业公司。公司在加拿大和中国都有分公司。 公司着眼于海洋科考仪器设备销售、技术咨询、技术服务,产品涵盖探测、监测、观测、取样及船载支撑保障装备五大类,初步形成从浅层到中深层不同深度取样,从沉积物、岩矿到水体微生物、浮游生物、宏生物观测监测及采集,从区域地形、地貌测量到不同尺度异常探测,从水面到水下不同层面的环境探测,从船舶到海底全覆盖的深海勘查装备体系。包括声学系统、光学系统、动力系统、控制系统、电缆系统、水密系统、环境观测系统、样品采集系统等各类不同作业系统。 公司具有较强的系统集成能力,面向广大用户提供海洋工程、海洋科考综合解决方案。公司秉承诚信为本,积极开拓,扎根于海洋,专注于海洋工程、科考设备,深刻了解用户需求,依托多年的经验积累,伴随着海洋事业的大踏步前进快速成长,我们的目标是打造为专业的方案解决者,用我们的专业、真诚、进取,赢得客户的信赖。
    留言咨询

浮游细样器相关的仪器

  • ZR-2050A型 空气浮游菌采样器产品简介 ZR-2050A型 空气浮游菌采样器是一种单级多孔撞击式采样器,该仪器基于安德森撞击原理,撞击速度为10.8m/s,可将空气中直径大于1μm的粒子全部采集。该仪器将空气通过多孔采样头吸入,撞击到Φ90mm的培养皿上,空气中的微生物即被“捕获”到琼脂培养基上。本仪器广泛应用于制药工业、食品工业、药检所、疾病控制、卫生防疫、医院等相关行业和部门。符合标准GMP 药品食品生产质量管理规范ISO 14698-1/2 洁净室及相关控制环境的生物污染控制GB/T 16293-2010 医药工业洁净室(区)浮游菌的测试方法执行标准Q/0212 ZRB006-2011 空气浮游菌采样器技术特点原装进口风机,电子流量传感器,流量控制精度高;达不到额定采样流量(电量不足或采样头堵塞)时自动停止采样,以保障采样准确性;内置大容量锂电池,持续采样高达6小时;随时查询历史数据,可通过U盘导出;点阵式液晶显示屏,中英文菜单化操作;实时时钟显示;节电功能,自动调节背光亮度,无操作自动关机;阳极氧化铝外壳,坚实耐用,时尚美观;采样头水平和竖直方向可调;专用三脚支架,采样高度可调;压缩气体采样头(选配)。
    留言咨询
  • ZR-2052型 空气浮游菌采样器产品简介ZR-2052型空气浮游菌采样器是一款高效的单级多孔撞击式采样器,基于安德森撞击原理,撞击速度为10.8m/s,可采集空气中直径大于1μm的粒子。空气被泵吸入,经多孔采样头,撞击到Φ90~100mm的培养皿上,空气中的微生物即被“捕获”到琼脂培养基上,经过培养后可形成可见菌落,进而分析。本采样器可实现0.4 m/s的等速采样,与洁净室风速保持一致,提高检测结果准确性。可广泛应用于制药、食品、药检、疾控、卫生防疫、医院等相关行业领域进行环境空气洁净度的检测与压缩气体微生物含量的检测。参考标准GB 50591-2010 洁净室施工及验收规范GB/T 16292-2010医药工业洁净室(区)悬浮粒子的测试方法GB/T 16293-2010医药工业洁净室(区)浮游菌的测试方法GB/T 25916 洁净室及相关受控环境 生物污染控制GB/T 39990-2021 颗粒 生物气溶胶采样器 技术条件ISO 14698 Cleanrooms and associated controlled environments — Biocontamination controlJJF 苏 188-2017浮游菌采样器校准规范GMP 药品生产质量管理规范技术特点 高精度电子流量计具有流量补偿功能,采样流量稳定准确; 可预设采样点位并指定采样方案; 培养皿定位功能,可将Φ90mm或Φ100mm培养皿固定在最佳位置; 软件具备三级用户管理与审计追踪功能,保证数据完整性; 支持环境空气与压缩气体采样; 时间、体积双采样模式,参数可自由调整; 可调的采样循环次数(等间隔)、采样间隔时间、采样延迟时间,满足更多采样需求; 大容量存储,记录信息丰富; 排气过滤,保证环境洁净; 内置电池,超长续航急速快充; 可以选配手操器实现无线控制,也可多台组网。
    留言咨询
  • 浮游生物培养器 400-860-5168转2703
    名称:浮游植物培养器 | 浮游动物培养器型号:PLR | PR产地:欧洲介绍:PLR培养器用于在实验室内培育藻类等浮游植物。当光照、CO2和营养等条件持续充沛,培养器内的微藻生长迅速,24小时内总量可扩增四倍。淡水和海水类浮游植物都可以在PLR培养器中进行培养。PR培养器可进行海水或淡水类浮游动物的培养。在最佳条件的藻类养料供应下,轮虫(Brachionus)等浮游动物的生物量在4天中可增长一倍。PLR和PR配置相同,唯一区别在于PLR培养器拥有照明系统。培养器使用时需固定在墙上。技术参数容积:2.5L内径:80mm长度:80cm管接口:6mm照明单元:18W荧光灯(PLR浮游植物培养器配备)主要配置:培养器,墙托,气泵接口,固定夹,充气泵,照明系统(PLR培养器专属)
    留言咨询

浮游细样器相关的资讯

  • 除了海洋里,空气中也有浮游微塑料 你呼吸了吗?
    p  据《西日本新闻》报道,福冈工业大学环境科学研究所的研究团队在福冈市内的空气里检测出了浮游的微塑料垃圾。这是日本九州地区首次在空气中检测到微塑料垃圾。/pp  但由于空气中的微塑料比海洋中的体积更小,肉眼完全看不见,很难掌握其移动和扩散途径及范围,因此成为当前研究的一个紧急课题。另一方面,研究人员目前并不清楚微塑料究竟会对人体造成何种影响。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/ee990c9b-bdeb-447b-be31-fdbd966bdb1a.jpg" title="b151f8198618367aaa21de1d6ef042d1b11ce5cb.jpg" alt="b151f8198618367aaa21de1d6ef042d1b11ce5cb.jpg"//pp  福冈工业大学环境科学研究所的研究团队首次在日本九州地区的空气里检测出了微塑料。(图据《西日本新闻》)/pp  strong日本九州空气中首次测出微塑料/strong/pp  据了解,2004年,英国普利茅斯大学的汤普森等人在《科学》杂志上发表了关于海洋水体和沉积物中塑料碎片的论文,首次提出了“微塑料”的概念。它指的是直径小于5毫米的塑料碎片和颗粒。实际上,微塑料的粒径范围从几微米到几毫米,是形状多样的非均匀塑料颗粒混合体,肉眼往往难以分辨,被形象地称为“海中的PM2.5”。/pp  随着研究的不断深入,有研究论文指出,微塑料不仅只存在于海洋中,也广泛浮游在空气里,而且随季风等影响,在全球范围内移动。/pp  今年3月,福冈工业大学环境科学研究所的研究团队在永渊修客座教授的带领下,分析了该校东区校园的空气和雨水样本,并在样本里发现了聚乙烯和聚苯烯的微粒子。这是日本九州地区首次在空气中检测到微塑料垃圾。此前,研究人员曾在山岳地带的树冰里发现过微塑料垃圾。该结果在日本首次印证了此前的研究。今后,该研究团队将进一步研究这些微塑料的传播途径、传播量等更多情况。/pp  而在今年4月,一项发表在知名地学刊物《自然-地球科学》(Nature Geoscience)的研究称,一个欧洲研究团队在海拔1300多米的比利牛斯山脉的空气里检测到了微塑料。这表明微塑料不仅能从海洋传播到陆地,还能在空气中进行远距离传播。/pp  但由于空气中的微塑料比海洋中的微塑料体积更小,肉眼完全看不见,很难掌握其移动和扩散途径及范围,因此成为当前研究的一个紧急课题。/pp  永渊修客座教授从大约30年前就开始致力于研究山岳地带的树冰,试图从中发现大气污染物的变化。他将其当作研究大气污染物的一个重要途径,每年寒潮到来的时候,都要去九州地区的山岳地带采集样本。他表示:“寒潮的移动路线在卫星云图上一目了然,只要在树冰里发现了微塑料,就很容易判断出它们的传播途径。”/pp  strong8个国家的人类粪便里曾测出微塑料/strong/pp  据报道,去年10月23日,维也纳医科大学的研究团队曾发表研究论文称:“从包括日本在内的8个国家的人类粪便里检测出了微塑料。其中1名研究对象的粪便里发现了9种不同的塑料。”该团队表示,这是全球首次从人体内检测出微塑料。其途径可能是通过食物、饮用水等进入体内。可能会对人体健康造成影响,必须进行进一步研究调查。/pp  虽然研究人员目前并不清楚微塑料究竟会对人体造成何种影响,但在永渊修看来:无论是微塑料还是有害化学物质,只要吸入了人体,都可能会引发健康问题。永渊修表示,自己将带领团队到日本鹿儿岛县、大分县以及韩国济州岛等地区采集样本,作进一步的分析研究。/p
  • 新型AI算法提升海洋浮游生物图像机器识别性能
    北京时间11月10日,中国科学院深圳先进技术研究院集成所光电工程技术中心李剑平博士团队在海洋数据机器学习算法研究中取得新成果,提出了一种基于对比学习的浮游生物图像识别检索框架,在解决实际海洋数据中的不均衡分布、数据漂移、开集识别问题中展现出了优异性能。论文以Contrastive Learning-based Image Retrieval for Automatic Recognition of in situ Marine Plankton Images为题,发表在国际海洋考察理事会海洋科学期刊ICES Journal of Marine Science上。中国科学院大学硕士杨振宇为第一作者,李剑平博士为论文通信作者,深圳先进院为第一单位。来自厦门大学、哈尔滨工业大学(深圳)的数据科学家参与本课题的合作研究。文章上线截图经过了30多年来的发展,海洋水下成像仪器为海洋浮游生物原位观测带来了海量图像数据,刺激了计算机图像自动识别技术的长足发展。然而,训练机器对来自实际中复杂海洋环境下的图像数据进行准确识别始终是一项极具挑战的任务。现有浮游生物图像机器学习分类算法虽然在某些闭合数据集上取得了良好表现,但是当应用于来自不同时空的实际数据时,往往会出现性能不稳定甚至骤降的问题,不能满足海洋观测的实时准确要求。通过深入调研,李剑平团队发现现有算法几乎全部将浮游生物识别问题处理成了一个对“N+1类”目标图像的分类问题(即N类感兴趣目标和1类所有不感兴趣目标)。然而,与其他领域中图像识别任务不同的是,在真实海洋环境中采集的数据必将面临成像质量恶化、数据分布不均、数据分布漂移和分布外样本出现等问题的挑战。因此,在闭合数据集上训练优化的机器学习算法在应用时,由于待识别数据集不满足与训练数据集的独立同分布条件,导致识别性能极易下降,只能通过费时费力的数据重新标注和模型重新训练来恢复其性能,显然这样就造成了机器学习算法的高昂的部署成本,难以在实际中应用。 李剑平团队提出的浮游生物原位图像检索识别框架IsPlanktonIR示意针对这一瓶颈,李剑平团队设计并训练了一种基于对比学习的浮游生物图像检索框架IsPlanktonIR,以图像相似度比对的方式,通过图像检索灵活地解决浮游生物的原位图像识别问题,实现浮游生物图像的自动识别。在该框架里,研究团队首先选取SEResNext作为浮游生物图像特征提取器,利用有监督的对比学习对其训练,使其获得较强的特征提取能力。识别图像时,通过比较待识别图像和一个检索库中图像特征的相似性,实现对其具体类别判定或对分布外样本的发现与拒识。此外,IsPlanktonIR框架还提供了人机交互接口,以供使用者方便地检查校验识别结果,扩充检索库,不断完善增强识别性能。 训练浮游生物图像检索框架中特征提取器的代表图像数据为了实现该识别框架的算法训练和效果验证,团队利用独立研发的海洋浮游生物原位光学成像仪在深圳大亚湾和海南昌江海域采集的图像构建了一个实验数据集。利用该数据集,团队使用部分类别图像对模型进行了训练,构造了多种不同组合的检测数据集,以检验该框架在真实海洋环境中应对必将发生的数据不均衡、数据分布漂移、分布外样本出现情况下的性能表现。实验结果表明,IsPlanktonIR算法框架在应对同时存在上述问题的测试集上均表现出了优异的性能。尤其是当测试中遇到新类别图像出现时,只需向检索库中添加部分新的人工标注样本,即可使框架实时拥有对新类别图像的正确识别能力。此外,团队还对该框架与经典的浮游生物图像分类算法和最新的异常值检测算法的性能在相同的测试集上进行了比较。结果表明,IsPlanktonIR不仅在二者不可处理的开集识别问题上取得了很好的效果,在这两类算法擅长处理的闭集分类问题上也取得了可比拟、甚至部分超越的性能指标。IsPlanktonIR的识别结果稳健性也大大增强,展示出了在实际海洋观测应用中的可靠性和灵活性。 在不同条件下的测试实验中IsPlanktonIR识别框架和对照算法的性能表现对比此外,为了提高框架的图像检索效率,减小存储和计算开销,李剑平团队还提出了一种压缩精简的算法,将浮游生物图像检索库进一步稀疏化,在几乎不降低识别准确率的前提下将检索库的大小缩小了一半,保障了基于图像检索的图像识别框架在大规模数据下的检索速度,以满足海洋观测的高实时性要求。IsPlanktonIR框架的发展为真实海水环境下的浮游生物原位长期观测提供了一套更加有效、稳健、灵活、便捷的算法方案,更加贴近海洋观测的实际需求,将有助于促进人工智能在海洋生物观测识别任务的落地应用。该论文研究得到了中国科学院国际合作重点项目和深圳市科技创新计划基础研究重点项目的支持。
  • 浮游菌采样方法
    空气中的活性粒子是洁净室中需要检测的重要对象之一,活性粒子本身可能携带活微生物,或其本身就是活微生物粒子。空气中的活性粒子(下称浮游菌),其含量的多少会直接影响无菌药品的灭菌程度。浮游菌采样可在静态或动态下进行,检测时一般采用φ90x15mm的培养皿,内含TSA或SDA培养基。测试前,宜先进行温湿度、风速风量和压差、以及高效检漏的测试,以确定浮游菌检测的环境条件。在空态或静态下,单向流环境的检测宜在空调系统运行不少于10分钟后开始;非单向流环境宜在空调系统运行不少于30分钟后开始。同时应对各类表面进行擦拭消毒,但不得对室内空气进行熏蒸。动态测试时应记录生产开始的时间以及测试时间。

浮游细样器相关的方案

  • 如何快速测定淡水、海水浮游生物的生物量?
    浮游植物是水中悬浮生活的若干种藻类的总称。浮游植物作为水生态系统的重要成员,是鱼类天然饵料的重要组成。因浮游植物对环境变化十分敏感,在环境监测中也很重要。不同类型的水体或同一水体的不同季节,藻类组成是不相同的,各种藻类的相对量在不断地变化,此变化有一定的趋势。水中浮游植物组成和存量是养殖鱼类合理投放的重要科学依据,可服务于水生态研究及利用。浮游植物现存量是指某一瞬间单位水体中所存在的浮游植物量。其有两种表示方法:用数目单位表示成密度(一般用个/L为单位),用质量单位mg/L表示的现存量则为生物量。以往调查中,通常仅注重浮游植物的种类或数量,而对其生物量不够重视。因不同水体、不同种类的藻类在个体上的差异很大,仅仅用数量就很难评价不同水体中饵料生物的丰歉,故浮游植物的定量得以测算生物量为目标,才更科学。浮游植物生物量的经典研究方法有两类。一类是生物量“状态”测量(测干重,细胞数量和种群体积),其在理论上是将整个浮游植物作为代表生物量的指标,此方法偏差较、,可靠性不高。另一类是浮游植物生物量“集团”测量(测浮游植物细胞组份)。其包括浮游植物细胞三大组份颗粒态有机碳(POC),颗粒态有机氮(PON),颗粒态有机磷的测定和细胞其它组份的测定,如叶绿素a,ATP,蛋白质以及其它色素的测量。此方法测的是活细胞有效组份,且能精确地反映种群的生物量,但其难以反映生态系统中不同浮游植物物种对物质和能量传递的贡献。国外有些学者在测定了不同浮游植物细胞的碳含量、细胞体积、细胞表面积后,发现细胞体积与细胞碳含量的相关性要比与细胞表面积的更强,并建立了浮游植物细胞体积和细胞碳含量的回归方程。从而将各种浮游植物细胞计数结果,通过细胞体积与碳含量等生物量测量的关系转换为生物量,以便在物种水平上合理估算对浮游植物群落生物量。该生物量估算法用途很广泛:可了解浮游植物群落生物量的结构,以及不同浮游植物功能群或物种对生物量的贡献,进而对了解生态系统结构的意义重大。它从物种水平上还可了解浮游植物群落与生物量的相关生态过程,故对了解生态系统的功能,意义重大。镜检计数法是最直接的浮游植物生物量测量方法,也是迄今惟一可鉴定和计数浮游植物到物种水平的方法。其计数结果可用于定义浮游植物群落,分析种群分布和物种组成,以及群落在时间和空间上的块状分布,同时,计数结果也可将浮游植物细胞数量转化为生物量或能量,但传统直接计数法速度慢、费力,并需要相当丰富的分类学专业知识。为此,杭州万深检测科技有限公司融汇整理了国内外公开的各海量资源,推出卓越的AlgaeC浮游生物计数及辅助鉴定系统。该系统能分类统计浮游生物数量,并配有功能强大的浮游生物智能搜索图库,以帮助相关人员快速、简便地分类统计及鉴定浮游生物,该系统还包含有高效的浮游植物生物量测定模块。通常,浮游植物个体极小,不宜直接称重,且其细胞相对密度多数接近于1,故可用形态相似的几何体积公式计算来细胞体积,即:细胞体积转换法或几何体积拟合法。文献[1]研究表明:该方法对浮游植物细胞体积的估算较可靠和可行。目前的万深AlgaeC浮游生物计数及辅助鉴定系统采用此法已内置有34种不同的几何模型,并对常见藻类进行了多模型的编码对应,会根据属名自动推荐该选用的几何模型,使生物量测定的整个过程,既简单又方便(测量步骤具体详见附件)。该计算方法也类似用于浮游动物的生物量估算。参考文献[1] 孙军. 海洋浮游植物细胞体积和表面积模型及其转换生物量[D]. 中国海洋大学,2004[2] 赵文. 水生生物学. 北京:中国农业出版社,2005 附件生物量测量步骤:1、利用万深AlgaeC系统辅助鉴定种类并建立计数表之后,选定要测量的项,右键弹出菜单点击测量体积,如下图:2、打开体积测量窗体,系统根据种类给出推荐模型,也可根据实际需要自行从已内置的32个几何模型中选择。3、根据模型示意图,测量各项参数,即可获得体积。可测量直线长度、曲线长度,及拖动十字锚点调整测量值。对于测量困难的物种以原始参考文献提供的三维尺度比例进行折算。4、测量完成后,点击确定按钮,测量体积就会出现在计数中。分类统计完全部视野数量后,万深AlgaeC系统生成检验报告。示例截图如下:
  • 紫外/ 可见/ 近红外分光光度计测试海洋水体浮游植物含量
    海洋水体主要由纯水、非藻类颗粒物、浮游植物和有色可溶性有机物组成。海洋浮游植物通过光合作用合成氧气,为大自然生态系统重要一环。研究海洋水体中浮游植物分布,对于水体研究、生态研究都有着重要科研价值。水体中悬浮颗粒物指悬浮于水中一切有机和无机颗粒物,悬浮物是水体重要组成,同时也是影响水体光学特性重要因子。悬浮物一般分为两部分:一部分是藻类颗粒物,主要是浮游植物及微生物,可以通过色素完成光合作用,因此藻类颗粒物吸收特性可以反映水体初级生产能力;另一部分是非藻类颗粒物,包含藻类颗粒物分解残体、无机颗粒物及碎屑。目前来测试水体吸收系数有2 种方法,定量滤膜技术和手持设备现场测试。定量滤膜技术利用分光光度计测量滤液及滤膜上颗粒物吸光度,来推算浮游植物及非浮游植物颗粒含量。该方法可以分别测量水中主要组分,如浮游植物、非浮游植物颗粒物的吸收系数,然后推算出其含量。定量滤膜技术手持现场测试设备,测试结果更加准确、可靠。
  • 浮游海蝴蝶的水下飞行
    采用LaVision公司独特的层析PIV流场测量系统。可以得到浮游海蝴蝶水下游动(飞行)的3D3C流场。特别强调DaVis层析PIV分析软件包的自标定功能是实现这种测量的关键。

浮游细样器相关的资料

浮游细样器相关的试剂

浮游细样器相关的论坛

  • 【分享】浮游菌采样器的原理介绍

    浮游菌采样器根据狭缝撞击的原理,以缝隙加速法采集空气中的浮游细菌,具有采集效率高的特点 。浮游菌采样器内置进口大流量无油真空泵,可以在很短的时间内完成GMP要求的流量采集,并可根据使用要求设置不同的采样量。由单片微电脑控制运行,操作简便,采集过程自动进行。与常规的沉降法相比,浮游细菌采样器能直接得到单位体积空气中所含的菌落数,而且不受环境气流的影响。 其中ZH7498浮游菌采样器设计合理,性能稳定,操作方便,其主要性能指标达到了国外同类仪器的先进水平。应用于制药厂、医院、生物制品、食品加工、公共场所、劳动卫生、检验检疫等行业。

  • 浮游菌采样器

    我想请教一下,SX-JCQ-5浮游菌采样器,半年没用,然后用的时候屏幕什么都没有,充了好久的电,还是打不开,是怎么回事?应该怎么做?

  • 【原创大赛】南湖浮游动物特征分析

    【原创大赛】南湖浮游动物特征分析

    南湖浮游动物特征分析 浮游动物同样对于水质的分析具有特殊的意义。它由原生动物、轮虫、枝角类、桡足类四大类组成,它们在水体整个生态系统的物质循环和能量流动中占有重要的地位,对保持水体生态平衡,食物链组成和调节水体自净能力均起着重要作用,并且对水体的生态环境因子的变化具有较敏感的反应,因此通过分析,南湖浮游动物的种类组成和数量变动,可以了解水体污染状况和富营养化程度。它们的数量变化更是与水质污度、温度变化密切相关,水质富营养化程度高,则原生动物和轮虫数量与浮游动物数量均高,而甲壳类数量少,则代表富营养化程度高。这些对于分析富营养化程度均有重要的参考价值。1.样品的采集 定性采用网捞的形式;定量采集时,使用有机玻璃采水器0.5m下水样,采集10L,现场用25号网过滤后,加福尔马林固定2.样品的分析方法 使用镜检法,对照浮游动物图库进行分类鉴定及计数,计数100视野以上。就是一个累人的活,说技术含量吧有些,但是要鉴定到种真的很难。分析方法对于我们初学者来说用个形象的比喻,就如同“找茬”。3.样品的分析结果 表1 南湖浮游动物种类组成变化 单位:种http://ng1.17img.cn/bbsfiles/images/2012/12/201212301115_417244_2121991_3.jpg图2-2南湖浮游动物种类组成变化表2 南湖浮游动物种类数量变化 单位:个/Lhttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301114_417243_2121991_3.jpg通过上述数据,我们发现,在前几年,南湖原生动物、轮虫数、桡足类数量及生物量均有所下降,而枝角类数量及生物量则增加较多,会食掉大量藻类,特别是有抑制蓝藻“水华”的作用。说明治理部门近十五年采取的诸如生态工程综合治理是有效果的,但从上表中可以看出,近几年原生动物、轮虫等指标都有所反弹,说明长期效果不佳,不能真正彻底的改变状况,且受到的干扰因素过多,所以需要我们从别的方向进行研讨,找到好的方法。

浮游细样器相关的耗材

  • 浮游生物计数框 藻类定量
    浮游生物计数框 藻类定量由上海书培实验设备有限公司生产提供,规格有0.1ml 1ml 2ml 5ml 8ml ,用于蛔虫卵测定。介绍:配套产品有:不锈钢开口直壁容器产品名称:浮游生物计数框 藻类定量计数框规格:0.1ml 玻璃拼接框,0.1ml藻类不锈钢一体框,1ml 一体框,2ml 一体框,5ml一体框,S型/回型全玻璃计数框,S型/回型有机璃一体框材质:玻璃,有机玻璃规格:产品名称规格单价(元)品牌浮游生物计数框藻类定量计数框0.1ml 玻璃拼接框350上海书培0.1ml藻类不锈钢一体框400上海书培1ml 一体框350上海书培2ml 一体框350上海书培5ml一体框380上海书培S型/回型全玻璃计数框455上海书培S型/回型有机璃一体框550上海书培使用方法介绍:显微镜的校准:两重合线之间台尺格数目尺长度(mm)= - 两重合线之间目尺格数浮游生物计数时,要将样品充分摇匀,将样品置入计数框内,在显微镜或解剖镜下进行计数。用定量加样管在水样中部吸液移入计数框内。加样之前要将盖玻片斜盖在计数框上(如图)样品按准确定量注入,在计数框中一边进样,另一边出气,这样可避免气泡产生。注满后把盏玻片移正。(1)长条计数法首先将目测微尺放入目镜中,然后用台测微尺去校目尺的长度,再用S-R计数框计数,以目测微尺的长度作为“个长条的宽度,从计数框的左边直计数到计数框的右边称为一个长条。计数的长条数取决于浮游生物的多少,浮游生物越少,计数的长条就要越多,一般计数2~4个长条。计数时,浮游植物和浮游动物要分开计数,然后分别计算单位体积中的浮游植物数和浮游动物数。2)视野计数法先用台测微尺测出显微镜视野的直径,然后算出视野的面积,再用S-R计数框或网格计数框计数。计数时以视野为单位计数。1.其计算 公式为! Cx1000浮游生物个数/mL=I A-D-FA=。一个视野面积(mm2)D=视野的深度(mm) F=计数的视野数( -般至少10个)C=计数的生物个数。其计算公式为Cx1000浮游生物数/mL=LW-DSC=计数的浮游生物数L=一个长条的长度,也就是计数框的长度( m)W=一个长条的宽度,即目尺的长度(mm)D=一个长条的深度,即计数框的深度(m)S=计数的长条数。3,网格计数法如用网格计数框,可采用网格计数法。如浮游生物密度不大,可将框内生物全部数出,密度大时,可利用计数框上的刻度,计数其中的几行(如2.5.8行)其计算公式为:c.V1浮游生物数/升=C=计数的生物个数 V1=由1升水浓缩成的样品水量V2=计数的样品水量。小型:1沉降计数法:将水样或混合样取3个分样,分别装满3个等体积的沉降器中,加盖玻片静置24h后,使用倒置显微镜鉴定,计数。取样体积应视样品浊度和浮游植物密度而定。计算公式: C=N1VC-一单位体 积水体中标本总量,单位为个每毫升(cells/mL) :N三个 分样计数的标本总个数,单位为个(cells) V-一 三个分样的总体积,单位为毫升(mL)2浓缩计数法视样品中浮游植物数量多少,浓缩或稀释至适当体积,用取样管搅拌均匀,迅速将取样管直立于样品中,准确地1次吸取所需体积并移入浮游植物计数框,加盖玻片后进行鉴定、计数:浮游植物的计数视其数量多少确定计数全部、1/2或1/4, 重复计数4次.浮游动物每次的计数值应在100个以上。计算公式:网才样品C= (n*V1) 1 (V2*Vn)C-单位体积水体中标本总量, 单位为个每立方米(cells/m3) n一取样计数个数, 单位为个(cells) :V1-- -水样浓缩后的体积,单位为毫升(mL)↓V2-滤水量, 单位为立方米,Vn--取样计 数的体积,单位为毫升(mL) 。采水样品: C-单位体 积水体中标本总量,单位为个每升(cells/L) n-取样计数个数, 单位为个(cells) :V1-水样浓缩后的体积,单位为毫升(mL) V2-- 原采水量,单位为升(L) Vn-取样计 数的体积,单位为毫升(mL)。中型:1浮游动物体积分数测定优去除样品杂物,标定体积测量器的体积为50mL将样品全部倾入体积测量器内进行抽滤,样品中材网的水分滤出后,拧上底盖,再用装满50mL海水的滴定管从测量器的加水孔注入海水至液面与指针尖---端相接触为止。此时留在滴定管中的水量即代表浮游动物的体积,换算浮游动物体积分数(10 的负6次方)2浮游动物湿重含量测定去网孔略小于采样网孔的筛绢,剪成与漏斗内径相同的圆形,用水浸湿后沥干称重,记录。测定时,除去样品中杂物,将已标定重量的筛绢平铺于漏斗中,倒入样品抽滤片刻,移出载有样品的筛绢至吸 检器材水纸上吸去筛绢底表多余水分,然后称重。总重减去筛绢重即得样品湿重,换算浮游动物湿重生物含培界量(mg/m3 (立方米) ) 咨国公究3浮游动物干重含量测定方法基本同2,用已知重量的筛绢过滤样品,烘干后称重。总重减去筛绢重为浮游动物干重含量。换算含量(mg/m3)。4浮游生物个体计数:浮游生物计数框中,于体视显微镜下鉴定计数。
  • JYQ-III浮游菌采样器
    JYQ-III浮游菌采样器JYQ-III浮游菌采样器 产品概述: 目前,制药、生物制品、保健品、饮料、医院等行业的灭菌车间、实验室、手术室, 广泛采用菌落法,测定空气中的细菌数。这种方法虽然简便,但有不少缺点:1、无法测得单位体积空气中所含细菌的个数;2、由于细菌的自然沉降慢,所以难以收集,效率低,采集时间长;3、细菌的沉降受气流影响,产生的误差大。根据狭缝撞击的原理,以缝隙加速法采集空气中的浮游细菌,具有采集效率高的特点 该仪器内置进口大流量无油真空泵,可以在很短的时间内完成GMP要求的流量采集,并可根据使用要求设置不同的采样量。整个仪器由单片微电脑控制运行,操作简便,采集过程自动进行。与常规的沉降法相比,浮游细菌采样器能直接得到单位体积空气中所含的菌落数,而且不受环境气流的影响。设计合理,性能稳定,操作方便,其主要性能指标达到了国外同类仪器的先进水平。是药厂、医疗器械厂及其监测部门为贯彻GMP第十五条,对&ldquo 洁净室(区)内空气的微生物数"进行&ldquo 定期监测"的理想仪器。 技术参数: 性能规格:JYQ-III、采样流量(L/min):50 采样时间(min):1~10、20、30、40、50、60、70、80、90十八档 缝隙参数:宽0.4㎜长50㎜、平皿直径:ф90× 15 外形尺寸:310× 270× 280、总量: 9Kg
  • FA-2撞击式空气微生物(浮游菌)采样器
    FA-2撞击式空气微生物(浮游菌)采样器FA&mdash 2型二级筛孔撞击式空气微生物(浮游菌)采样器(简称二级采样器)是模拟人体呼吸道的解剖结构及其空气动力学特征,采用惯性撞击原理,将悬浮在空气中的微生物粒子,按大小等级分别收集在采样介质表面上,然后供培养及做进一步的微生物分析,求出空气微生物粒子数量及其大小分布的特征。 二级采样器能够测定空气中的微生物总数,又能测出可吸入(8&mu m)和非吸入微生物数,可吸入微生物气溶胶是一个重要的环境参数,对人体健康危害最大。基层单位用于环境日常监测,不需要过细区分微粒大小的分别情况,只要求测定可吸入与非吸入和总细菌数,用二级采样器最为合适。二级采样器与多级采样器相比,其结构简单,操作方便,价格便宜,使用平皿数量少(2个玻璃平皿)。特别适合于各级防疫站、医院及气象部门监测使用 。技术参数  撞击级数:2级采样  流量:28.3L/min/流量可调  尺寸:约110x130x160mm  重量:约5 Kg  供电电源:抽气泵220V交流电
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制