当前位置: 仪器信息网 > 行业主题 > >

热工控制仪

仪器信息网热工控制仪专题为您提供2024年最新热工控制仪价格报价、厂家品牌的相关信息, 包括热工控制仪参数、型号等,不管是国产,还是进口品牌的热工控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热工控制仪相关的耗材配件、试剂标物,还有热工控制仪相关的最新资讯、资料,以及热工控制仪相关的解决方案。

热工控制仪相关的论坛

  • 工控主板必选PCB接线端子的几大理由

    工控板有分为商用和工控用,那具体他们两者之间怎么区本,而为什么PCB接线端子排适用的是后者呢?速普收集了一些资料可供大家了解。跟选用PCB接线端子排一样,主板由多个元器件组成。1.用料与设计商用主板: 由于其服务的产品更新换代的速度快,且对产品的稳定性及使用环境的要求比较低,所以对元器件要求是满足近2、3年的系统运行即可,因此会重点考虑降本。元器件的用料上选择价格定位不高的普通型就可以了。而工控主板就不同了,一般会要求选用经过长时间、高要求验证元器件,用以保证产品在恶劣条件下高可靠性要求。2.使用寿命再者就是工控主板的寿命 ,一般商用的在2-3年间,工控的寿命最低要求是3年以上。近几年CPU质量好坏的拉开,也是衡量主板功能的一大标准。工控型和商用型在电容材质、检测、尺寸、接口的支持、使用环境、工作温度和散热方式上都是有很大的差别。3.PCB接线端子排的应用环境商用主板采用的是4层PCB设计,一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间。工业主板采用的是6层以上PCB线路板设计,其设计是为了加强主板的抗电磁干扰、电磁兼容能力,增强主板的稳定性等等。PCB接线端子排使用到工控主板上是主板厂家对端子这个元器件的质量和作用的认可,工控主板的应用面越来越广,也是为PCB端子的发展提供了更多的机会。

  • 广州国际工业展绚丽开启 中国工控行业网行业网倾情参展

    广州国际工业展绚丽开启 中国工控行业网行业网倾情参展

    8月11日,2011中国(广州)国际石油与化工、气体工业展暨中国(广州)国际加油加气站、油气回收、防爆电气、危化晶运输设备展于广州正式开幕,席间拥有超过一半以上的展商是来自自动化行业,他们多数都以机械设备为主要营运产品。此次展会,各界展商不远千里来到广州,就是为了让采购商们能够一睹己企实力以及展示最新科技产品。此外,作为本次展会上为数不多的工控媒体,中国工控行业网(GK361)有幸被主办方选中,成功跻身参展队列。展会现场人潮涌动在展会开幕之初,许多参展商与采购商便已嗅到了潜伏的商机——本此展会聚集了较多的行业种类,如工业控制类、工业类、能源类、仪器类等。据了解,甚有参展商不惜以将近6位数的展费豪取展位。展会现场来往的商宾融洽交流,足有四米宽的过道在人来人往间也显得格外拥挤,绝大多数人都需侧身前行。如此人潮涌动的场面,想必也只有经得起实力考证的展商才能拥有。展商娴熟操作 共鉴新品示范在一家机械设备公司的展位上,我们看到三位工作人员正以娴熟的操作技术为大家展示新产品的震撼力。利用机械自动化,将抓取、打包、固定三部曲一次到位,而操作人员只需在执行之前将需要“被操作”的产品放置指定的位置,再在设备上进行数控调整,前后几个按钮,便能最终形成一条龙的机械自动化。在这一演示中所展现出来的便利与迅捷也让围观的来宾叹为观止。GK361倾情参展中国工控行业网(GK361)此次参展在一些人看来是始料未及的,因为本次展会中的自动化工业控制展商仅占整个展会的50%左右,因此作为一个专业的工控信息门户网站,并不能体现出该公司在展会上的分量。对此GK361的负责人表示,公司甚少参展,是出于慎重,并非为对各类展会过激筛选的表现。而此次参展完全是为了迎合公司的下一步计划,预计在未来几年内,GK361将扩张事业版图,加大服务的针对面,所以本次参展,还是以学习的目的为主,希望通过学习得到成长,从而为广大工业同仁带来帮助。展会精彩走秀 魅力夺人眼球展会上出彩的模特走秀表演,着实让参展的商宾眼前一亮,平均每一个小时出场一次,而且每次在服装上都做出了更新,据聘请到这些模特的商主反映,对于服饰的更换是他主动提出来的,旨在与本次展会众商云集、百花争艳的场面形成辉映,每一款服饰都象征着一类参展行业。如此盛世虽不能说是空前绝后,在其中特色却足以令人津津乐道,广州国际工业展的落幕时间为8月13日,趁周末,或许会有更多采购商之外的宾客莅临观摩,届时的人声鼎沸令人期待。http://ng1.17img.cn/bbsfiles/images/2011/08/201108121422_309982_2115883_3.jpg 原文见:http://www.gk361.com/info/shownews.asp?newsid=16168

  • 测量与控制技术开发应用

    航天测控(http://www.casic-amc.com)测控系统集成、故障诊断系统、遥测遥控系统、工控系统产品、控制与制导、软件开发、模块研发、结构件产品及测量与控制杂志和研讨会信息HTEDS8000系列华佗电子诊所VTB-7200热环境试验测控系统VTB7000 VXI总线通用测控平台GT9000广灵通测试系统ET8800便携测试仪VTC-6000 VXI总线遥测遥控系统UN2000DCS-4集散控制系统ViCS6000高性能高精度闭环控制系统CCS-100 CAN总线测控系统DAS Ver1.0 通用数据采集工作站软件包VITE Ver2.0 虚拟仪器测试环境软件包CE2008 组态专家Fault Doctor Ver1.0 故障诊断软件平台VXI总线模块PXI/CPCI/PCI总线模块信号调理类产品台式仪SCA-8000系列信号连接适配器MC-1200移动式减震机箱SCA-5000S信号连接适配器GSE-8 通用信号转接适配器AMC6210A/AMC6220A VXI模盒AMC69002 通用6槽CPCI机箱AMC69003 通用8槽CPCI机箱AMC68401A/AMC68403A VXI主机箱AMC69001 通用6槽CPCI机箱AMC61000B 通用8槽PXI/CPCI机箱

  • 怎么应对冷热一体控制机安装故障?

    冷热一体控制机在安装的时候需要注意一些小的问题,多注意冷热一体控制机的性能,以正确的安装的状态来进行安装,那么,冷热一体控制机怎么应对安装故障呢?  由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出,因此应尽可能采用热电极较细、保护管直径较小的热电偶。在测温环境许可时,甚至可将保护管取去。  冷热一体控制机在使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管,在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。  由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。为了准确的测量温度,应当选择时间常数小的热电偶,时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,冷热一体控制机绝缘变差而引入的误差。  冷热一体控制机保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。  冷热一体控制机以上的安装故障,尽量避免为好,降低冷热一体控制机的出错率,节约企业运行成本。

  • 精密热成型工艺中的正负压力控制解决方案

    精密热成型工艺中的正负压力控制解决方案

    [size=16px][color=#339999][b]摘要:真空压力热成型技术作为一种精密成型工艺在诸如隐形牙套等制作领域得到越来越多的重视,其主要特点是要求采用高精度的正负压力控制手段来抵消重力对软化膜变形的影响以及精密控制成型膜厚度。本文提出了相应的改进解决方案,通过可编程的纯正压控制技术实现软化膜上下压差以及热成型压力的精密调节,在保证产品质量的同时可简化控制系统。[/b][/color][/size][align=center][size=16px] [img=精密热成型工艺中的正负压力控制解决方案,550,292]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190914248981_6279_3221506_3.jpg!w690x367.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 热成型是一种将热塑性片材加工成各种制品的较特殊的加工方法。在具体成型过程中,片材夹在框架上加热到软化状态,在外力作用下,使其紧贴模具的型面,以取得与型面相仿的形状。冷却定型后,经修整即成制品。热成型方法有多种,但基本都是以真空和压力这两种方法为基础加以组合或改进而成。典型的真空和压力热成型原理如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.真空和压力热成型示意图,550,275]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917007981_2026_3221506_3.jpg!w690x345.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 真空和压力热成型原理示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空成型最大的成型压力为一个大气压,这造成真空成型压力较低,这往往使得受热软化后的热塑材料很难在模具的拐角或坑洼处形成紧密贴合,如图2所示,这会造成整体的成型精度较差。因此,真空成型工艺一般用于对成型精度要求较低的通用性塑料件的生产。[/size][align=center][size=16px][color=#339999][b][img=02.真空热成型过程中的非紧密贴合现象示意图,550,198]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917280643_6456_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 真空热成型过程中的非紧密贴合现象示意图[/b][/color][/size][/align][size=16px] 正压热成型在真空(负压)基础上的发展演变而来,正压成型的压力往往可以达到4~5个大气压甚至更高,在压缩空气的正压作用下,贴合度大幅提高,产品外观质量和生产效率有了明显的提高,所以正压形式正逐步在高精度热成型工艺中得到广泛应用,特别是对于成型精密度有很高要求的隐形牙齿矫治器(隐形牙套、透明牙套),正压热成型已经成为一种标准工艺。采用正压热成型机器在3D打印模型上制造隐形牙齿矫正器,可以获得更均匀的塑料层,但产生均匀塑料层的理想正压水平需要根据以下几方面的影响因素进行确定和精密控制:[/size][size=16px] (1)牙模的结构比较复杂,表面沟壑较多,采用正压吸塑热成型工艺很难很好的控制牙套的厚度,要求正压压力控制精度极高。[/size][size=16px] (2)受热的热塑性材料呈软化状态,很容易受到重力影响而造成额外的形变,因此在正压热成型中受热软化片材的变形程度相差极大,必须消除重力带来的变形。[/size][size=16px] 为了解决上述问题,西安博恩生物科技有限公司在其发明专利CN112823761B中提出了正负压热成型工艺,首先控制平衡软化片材上下两侧的压强差,抵消重力带来的变形,然后在热成型时再通过压力变化来精确控制膜片的厚度。此发明专利仅提出了一种真空压力热成型工艺的新概念,并未给出压差和压力精密控制的具体实施方法描述,而具体真空压力控制的具体方式则是实现隐形牙套高精度热成型的关键技术之一。为此,本文针对诸如隐形牙齿矫正器正负压热成型工艺中的真空压力精密控制,提出相应的解决方案,以保证新型正负压热成型工艺的顺利实施。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 在专利CN112823761B中提出的正负压热成型过程如图3所示,固定有膜片的可上下移动的夹持器热成型设备分为上下两个独立的密闭腔室,每个独立腔室的真空和压力需要精密控制,只是真空压力的控制范围不同。[/size][align=center][size=16px][color=#339999][b][img=03.正负压加热成型过程示意图,385,113]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917482920_2081_3221506_3.jpg!w385x113.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 正负压加热成型过程示意图[/b][/color][/size][/align][size=16px] 在膜片被加热软化和随夹持器向下移动时,底部腔室相对于顶部腔室为正压,即顶部腔室内的压力要大于顶部腔室压力,底部腔室正压托起软化过程中的膜片以抵消重力的影响。[/size][size=16px] 当膜片贴附在牙模上后,撤掉底部腔室压力,并逐渐增大顶部腔室压力,使顶部腔室压力相对于底部腔室压力为正压,由此通过较大的正压压力使膜片与牙模紧密贴合。[/size][size=16px] 通过上述过程可以看出,正负压热成型中的压力控制具有以下两个重要特征:[/size][size=16px] (1)在压差控制阶段,底部腔室压力要始终大于顶部腔室,以托起软化中的膜片减少重力对膜片变形的影响。这种情况下,两个腔室压力都可以是正压,顶部腔室压力不一定非要是真空负压,顶部腔室也可以是正压,但只要底部腔室压力足够大并能形成相应的压差托起膜片极可。[/size][size=16px] (2)在加压贴附阶段,使顶部腔室的压力足够大就可实现软化膜片的紧密贴合,这也意味着底部腔室的压力也不一定非要是真空负压,只要是顶部腔室的压力足够大,底部腔室为常压时也完全能够实现高压贴合。[/size][size=16px] 由此两个特征可以得出结论:所谓的正负压热成型,完全可以只采用正压控制予以实现,但前提是能够精密和可程序控制上下两个腔室的正压压力。[/size][size=16px] 通过上述分析可知,对上下两个腔室进行正压精密控制,通过压差和高压可很好的实现膜片紧密贴合和保证厚度的均匀性,这样可以减少真空控制的环节和相应装置,简化了控制系统。[/size][size=16px] 依此,本文提出的解决方案就是两个腔室的精密正压压力控制解决方案,通过两套压力控制装置分别实现上下两个腔室的压力可编程控制,具体结构如图4所示。[/size][align=center][b][size=16px][color=#339999][img=04.隐形牙齿矫治器热成型精密压力程序控制系统结构示意图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190918023454_1832_3221506_3.jpg!w690x321.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 隐形牙齿矫治器热成型精密压力程序控制系统结构示意图[/color][/size][/b][/align][size=16px] 在膜片被加热软化和随夹持器向下移动时,底部腔室相对于顶部腔室为正压,即顶部腔室内的压力要大于顶部腔室压力,底部腔室正压托起软化过程中的膜片以抵消重力的影响。[/size][size=16px] 当膜片贴附在牙模上后,撤掉底部腔室压力,并逐渐增大顶部腔室压力,使顶部腔室压力相对于底部腔室压力为正压,由此通过较大的正压压力使膜片与牙模紧密贴合。[/size][size=16px] 通过上述过程可以看出,正负压热成型中的压力控制具有以下两个重要特征:[/size][size=16px] (1)在压差控制阶段,底部腔室压力要始终大于顶部腔室,以托起软化中的膜片减少重力对膜片变形的影响。这种情况下,两个腔室压力都可以是正压,顶部腔室压力不一定非要是真空负压,顶部腔室也可以是正压,但只要底部腔室压力足够大并能形成相应的压差托起膜片极可。[/size][size=16px] (2)在加压贴附阶段,使顶部腔室的压力足够大就可实现软化膜片的紧密贴合,这也意味着底部腔室的压力也不一定非要是真空负压,只要是顶部腔室的压力足够大,底部腔室为常压时也完全能够实现高压贴合。[/size][size=16px] 由此两个特征可以得出结论:所谓的正负压热成型,完全可以只采用正压控制予以实现,但前提是能够精密和可程序控制上下两个腔室的正压压力。[/size][size=16px] 通过上述分析可知,对上下两个腔室进行正压精密控制,通过压差和高压可很好的实现膜片紧密贴合和保证厚度的均匀性,这样可以减少真空控制的环节和相应装置,简化了控制系统。[/size][size=16px] 依此,本文提出的解决方案就是两个腔室的精密正压压力控制解决方案,通过两套压力控制装置分别实现上下两个腔室的压力可编程控制,具体结构如图4所示。[/size][size=16px] 如图4所示,两套压力控制装置配置完全相同,都是由压力传感器、压力调节阀和真空压力控制器构成,两套装置公用一套高压气源。为了保证高精度压力的程序控制,具体配置如下:[/size][size=16px] (1)压力传感器采用超高精度压力计,压力测量范围为0~0.8MPa(表压),精度为满量程的0.05%。压力调节阀采用数控电子减压阀,外部模拟控制信号0~10V对应的压力调节范围为表压0~0.8MPa,综合精度为满量程的0.2%。[/size][size=16px] (2)压力控制器采用超高精度可编程PID调节器,具有24位AD、16位DA和0.01最小输出百分比,具有PID参数自整定功能,并可设计20条程序曲线进行调用和控制,具有标准MODBUS协议的RS485通讯接口。压力控制器自带计算机软件,通过软件可在计算机上直接对控制器进行设置、运行、过程参数显示和存储。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文对相关的正负压热成型工艺进行了分析,特别是针对隐形牙齿矫正器这类高精度热成型制作工艺,本文提出了改进的解决方案,即不采用正负压控制方式,而是采用纯正压控制方式。在具体热成型过程中,通过对上下腔室的压力进行不同的程序控制形成可控压差来抵消重力对受热膜片变形的影响,然后再对上腔室进行高压控制,由此可实现高精度的热成型厚度控制,可大幅提高热成型产品的质量和一致性。[/size][size=16px] 新的解决方案可通过两路压力的精确控制,同样可实现正负压热成型过程中的压力成型功能和精密制作能力,但避开了正压和负压同时控制所造成的装置的复杂性和较高成本,这使得新的解决方案更具有实用性。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    [color=#990000][size=16px]摘要:现有的[/size][size=16px]ARC[/size][size=16px]加速量热仪普遍存在单热电偶温差测量误差大造成绝热效果不好,以及样品球较大壁厚造成热惰性因子较大,都使得[/size][size=16px]ARC[/size][size=16px]测量精度不高。为此本文提出了技术改进解决方案,一是采用多只热电偶组成的温差热电堆进行温差测量,二是采用样品球外的压力自动补偿减小样品球壁厚,三是用高导热金属制作样品球提高球体温度均匀性,四是采用具有远程设定点和串级控制高级功能的超高精度[/size][size=16px]PID[/size][size=16px]控制器,解决方案可大幅度提高[/size][size=16px]ARC[/size][size=16px]精度。[/size][/color][align=center][size=16px][color=#990000][b]==============================[/b][/color][/size][/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b][size=16px] 加速量热仪(Accelerating Rate Calorimeter)简称ARC,是一种用于危险品评估的热分析仪器,可以提供绝热条件下化学反应的时间-温度-压力数据。加速量热仪(ARC)基于绝热原理,能精确测得样品热分解初始温度、绝热分解过程中温度和压力随时间的变化曲线,尤其是能给出DTA和DSC等无法给出的物质在热分解初期的压力缓慢变化过程。典型的加速量热仪的结构如图1所示。为了保证加速量热计的测量精度,ARC装置需要实现以下两个重要条件:[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热计典型结构,500,267]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121740385310_8045_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 ARC加速量热仪典型结构[/b][/color][/size][/align][size=16px] (1)被测样品始终处于绝热环境。绝热环境的实施需采用等温绝热方式,即样品球周围的护热加热器温度始终与样品球温度保持一致,两者的温差越小,样品散失或吸收的热量则越小,量热仪测量精度越高。[/size][size=16px] (2)空心结构样品球(样品池或样品容器)的壁厚越薄越好,以最大限度减少热惰性因子,减少球体吸热和放热影响。[/size][size=16px] 在目前的各种商品化ARC加速量热仪中,并不能很好的实现上述两个边界条件,主要存在以下几方面的问题:[/size][size=16px] (1)样品温度和护热温度仅采用了两只热电偶温度传感器,而热电偶的测温精度和一致性本身就较差,仅靠两只热电偶测温和控温,很难保证达到很好的等温效果,往往会造成漏热严重的现象,导致测量精度较差。热电偶在使用一段时间后,这种现象会更加突出。[/size][size=16px] (2)因为化学反应过程中会产生高温高压,使得现有ARC的样品球壁厚必须较厚以具有较大的耐压强度,避免样品球或量热池产生形变或破裂,但这势必增大了热惰性因子。这种壁厚较厚和较大热惰性因子,是造成ARC加速量热仪测量误差较大的另一个主要原因。[/size][size=16px] (3)由于首先要保证壁厚和耐压强度,量热池所用材质往往是高强度金属,但这些金属材质相应的热导率往往较低,较低的热导率则会影响量热池侧壁温度的快速均匀。这种低导热材质所带来的样品球温度非均匀性问题,又会造成周边护热温度控制的误差,所带来的连锁效果会进一步降低测量精度。[/size][size=16px] 为了解决目前ARC加速量热仪存在的上述问题,本文提出了以下解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案主要包括两方面的技术改进,一是采用多只热电偶构成温差热电堆来提高温差检测的灵敏度和更好的保证绝热环境,二是在样品球外增加气体压力自动补偿。改进后的ARC加速量热仪的结构及控制装置如图2所示。[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热仪温度和压力控制装置结构示意图,550,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121741195817_6742_3221506_3.jpg!w690x356.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 ARC加速量热仪温度和压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在如图2所示的高温高压控制装置中,采用了4对热电偶组成的热电堆来检测样品球与护热加热器之间的温差,这样可以使温差测量灵敏度提高4倍,即可使原来采用单只热电偶的量热计测量精度得到大幅提高。在实际应用中,热电堆中的热电偶数量并不限制于4只,可以根据ARC结构和体积采用更多的热电偶,由此可进一步提高温差测量灵敏度,但在选择热电偶时,需要采用尽可能细的热电偶丝,以减少热量通过热电偶丝进行传递。[/size][size=16px] 对于补偿压力的控制,如图2所示,在ARC中增加了一路高压气路。压力控制回路由压力传感器、压力调节器和PID控制器构成,通过压力调节器将来自高压气源(如氮气)的压力进行自动减压控制,使得高温高压腔体内的压力始终跟踪样品球内的压力变化,从而尽可能降低样品球内外的压力差。压力调节器是一个内置压力传感器、PID控制器和两只高速进出气阀门的压力控制装置,可直接接收外部压力设定信号进行快速和准确的压力控制,非常适用于像ARC量热仪高温高压腔这样的密闭腔室的气体压力控制。压力调节器的压力控制范围为0~5MPa(表压),如需要更高压力调节,则需增加一个高压背压阀,但压力调节还是通过压力调节器。[/size][size=16px] 在图2所示的高温高压控制装置中,温差传感器的灵敏度、压力传感器测量精度以及压力调节器控制精度都决定了ARC加速量热计边界条件是否精确,但这些部件对ARC的最终测量精度贡献还需PID控制器来决定。PID控制器作为ARC绝热量热仪的核心仪表,需要满足以下要求才能真正保证最终精度:[/size][size=16px] (1)在量热仪绝热实现方面,采用温差热电堆,可灵敏检测出样品球与护热加热器之间的微小温差变化,但温差灵敏度最终是要通过PID控制器的检测精度得以保证,由此要求PID控制器应有尽可能高的采集精度。同样,绝热控制的最终效果是温差越小越好,这也对PID控制器的控制输出提出了很高的要求,即要求控制精度越高越好。本解决方案中选择了VPC2021系列的超高精度PID控制器,这是目前国际上最高精度的工业用小尺寸PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,可完全满足微小温差热电势信号高精度检测和高精度温度控制的要求。[/size][size=16px] (2)在量热仪高压补偿控制方面,需要对高温高压腔室内的气体压力进行跟踪控制以尽可能的减小样品球内外的压力差。在压力控制回路中,压力传感器用来检测样品球内部的压力变化,同时此传感器的输出压力值又作为高温高压腔室压力控制的设定值,PID控制器根据此设定值来动态控制高温高压腔室压力,这就要求PID控制器具有远程设定点功能,并具有与压力调节器组成串级控制回路的功能,而本解决方案配置的VPC2021系列PID控制器则具备这种高级控制功能。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案采用了温差热电堆和压力补偿两种技术手段对现有ARC加速量热仪进行改进,改进后的ARC加速量热仪具有以下特点:[/size][size=16px] (1)温差热电堆可明显提高温差检测灵敏度,可更好的实现绝热效果。[/size][size=16px] (2)压力补偿可使得样品球的壁厚更薄,并降低了样品球材质的强度要求,样品球就可以采用高导热金属,在降低样品球热惰性因子的同时,更能提高样品球整体的温度均匀性,可显著提高量热仪测量精度。[/size][size=16px] (3)采用了具有远程设定点和串级控制这些高级功能的超高精度PID控制器,可充分发挥上述技术改进措施的优势,真正使ARC加速量热仪测量精度的提高得到了保障。[/size][size=16px] (4)所采用的技术手段,可推广应用到其它形式的热反应量热仪中。[/size][align=center][color=#990000][b][/b][/color][/align][align=center][b]~~~~~~~~~~~~~~~[/b][/align][size=16px][/size]

  • 真空热重分析仪多种气体低气压高精度控制解决方案

    真空热重分析仪多种气体低气压高精度控制解决方案

    [align=center][size=16px] [img=真空热重分析仪多种气体低气压高精度控制解决方案,550,383]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170921522574_4489_3221506_3.jpg!w690x481.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:针对目前国内外各种真空热重分析仪普遍不具备低压压力精密控制能力,无法进行不同真空气氛环境下材料热重分析的问题,并根据用户提出的热重分析仪真空度精密控制技术改造要求,本文提出了技术改造解决方案。解决方案基于动态平衡法采用了上游和下游控制方式,通过配备的多路进气混合装置、高精度电容真空计、电控针阀和双通道PID真空压力控制器,可实现热重分析仪在10Pa~100kPa范围内多种气体气氛下的真空度精密控制。[/b][/color][/size][align=center][size=16px][color=#339999][b]==========================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 项目背景[/b][/color][/size][size=16px] 热重分析(Thermogravimetric Analysis,TG或TGA)是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组分。而真空热重分析(Vac-TGA)则是在普通热重分析中增加了真空变量,允许在低至1Pa的绝对压力条件下对样品进行分析,适用于在使用中需要减压条件的客户应用。真空热重分析技术用于解决在工作中遇到低气压的专业化检测分析,Vac-TGA还可以实现更准确地观察薄膜、复合材料、环氧树脂等材料的挥发物、降解和排气等情况。[/size][size=16px] 真空热重分析仪一般都配备真空密闭的炉体和精确控制保护气和吹扫气流量的气体质量流量控制器(MFC),为TG与FTIR或[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]等联用提供了便利。密闭系统的真空度最高可达1Pa(绝对压力),一般都包括两路吹扫气和一路保护气,由此可进行各种气氛环境下的热重分析,如惰性、氧化性、还原性、静态和动态气氛环境。[/size][size=16px] 目前常见的真空热重分析仪只能实现抽真空功能,普遍无法对密闭炉体内的气体压力进行准确控制,只有最先进的磁悬浮热重分析仪具有压力控制功能,但也仅适用于大于一个大气压的高压控制,其结构如图1所示,还是无法对低于一个大气压的低压环境进行调节控制,无法提供低压环境的模拟。[/size][align=center][size=16px][color=#339999][b][img=国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图,450,464]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170923427525_9766_3221506_3.jpg!w690x712.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 由于现有真空热重分析仪无法提供低压环境的真空控制,客户希望能对现有V-TGA进行技术改造,增加真空度控制功能,以对高原地区低氧、低气压条件下的煤燃烧过程开展研究。[/size][size=16px] 为了彻底真空热重分析仪的真空压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节热重分析仪的进气和排气流量,使内部气压快速达到动态平衡状态而恒定在设定真空度上,为热重分析仪提供可任意设定低气压值的精密控制,本文将提出以下技术改造实施方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 首先,根据客户要求以及今后真空热重分析仪的低压应用,本解决方案拟达到的指标如下:[/size][size=16px] (1)真空度控制范围:10Pa~100kPa(绝对压力)。[/size][size=16px] (2)真空度控制精度:±1%(读数)。[/size][size=16px] (3)气氛:真空、单一气体和多种气体混合。[/size][size=16px] 为达到上述技术指标,解决方案设计的热重分析仪真空压力控制系统结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=真空热重分析仪低气压精密控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170924200752_5900_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 真空热重分析仪低气压精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,为了实现10Pa~100kPa全量程内的真空度控制,控制系统的具体内容如下:[/size][size=16px] (1)配备了两只电容真空计,量程分别是10Torr和1000Torr,精度都为读数的±0.2%。[/size][size=16px] (2)采用了动态平衡法进行控制,其中在真空度10Pa~1kPa范围内采用上游(进气端)控制模式,而在1kPa~100kPa真空度范围内采用下游(排气端)控制模式。[/size][size=16px] (3)上游控制模式:上游控制模式是固定排气流量(真空泵全开,电动针阀2固定某一开度),通过自动调节电动针阀1开度来改变进气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施上游控制模式的闭环控制回路包括10Torr真空计1、电动针阀1和真空压力控制器的第一通道,如图2中的蓝色虚线所示。[/size][size=16px] (4)下游控制模式:下游控制模式是固定进气流量(电动针阀1固定某一开度),通过自动调节电动针阀2开度来改变排气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施下游控制模式的闭环控制回路包括1000Torr真空计2、电动针阀2和真空压力控制器的第二通道,如图2中的红色虚线所示。[/size][size=16px] (5)双通道真空压力控制器:所配备的VPC2021-2真空压力控制器具有两路独立的PID控制通道,与相应的真空计和电动针阀配合可组成上游和下游控制回路。在进行上游自动控制过程中,上游控制回路进行自动PID控制,而下游控制回路设置为手动控制并设定固定输出值以使得电控针阀2的开度固定。在进行下游自动控制过程中,下游控制回路进行自动PID控制,而上游控制回路设置为手动控制并设定固定输出值以使得电控针阀1的开度固定。[/size][size=16px] (6)电动针阀:所配备的NCNV系列电动针阀是一种步进电机驱动的高速针型阀,可在一秒时间内完成从关到开的高速线性变化,具有很好的线性度和重复性精度,具有极低的磁滞,可采用模拟信号(0-10V、4-20mA)和RS485进行控制,可对小流量气体流量进行精密调节。[/size][size=16px] (7)进气装置:图2所示的控制系统进气装置可实现多种气体的精密配比混合,每种气体的流量通过气体质量流量控制器进行调节和控制,多路气体在混气罐内进行混合,混合后的气体作为进入真空热重分析仪的进气。[/size][size=16px] (8)控制精度:由于整个控制系统采用了高精度的真空计、电动针阀和PID控制器,可实现全量程的真空度精密控制,考核试验结果证明控制可轻松达到±1%读数的高精度。[/size][size=16px] (9)控制软件:双通道真空压力控制器配备有计算机控制软件,通过控制器上的RS485通讯接口,计算机可远程操作真空压力控制器实现控制运行、参数设置和过程参数的采集、存储和曲线显示。[/size][b][size=18px][color=#339999]3. 总结[/color][/size][/b][size=16px] 本解决方案彻底解决了真空热重分析仪中存在的真空度精密控制问题,在满足用户所提的真空热重分析仪技术改造要求之外,本解决方案还具有以下优势和特点:[/size][size=16px] (1)本解决方案具有很强的实用性,并经过了试验考核和大量应用,按照解决方案可很快完成真空热重分析仪高精度真空压力控制系统的搭建和技术改造,无需对热重分析仪进行改动。[/size][size=16px] (2)本解决方案具有很强的适用性,通过改变其中的相关部件参数指标就可适用于不同范围和不同规格型号真空热重分析仪的真空压力控制,可满足各种真空热重分析仪的多种低气压控制需求。[/size][size=16px] (3)本解决方案可以通过增减高压气源来实现不同气体气氛环境的低压控制,也可进行多种气体混合后的低压控制,具有很大的灵活性。[/size][size=16px] (4)本解决方案还为后续的热重分析仪与其他热分析联用留有接口,如可以通过在排气端增加微小流量可变泄漏阀实现与质谱仪的联用。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【讨论】sys控制器,remote和local控制

    是不是sys控制就是用工作站来控制仪器,remote是系统控制的一种具体形式,而local控制时仪器自身的控制即仪器前置面板的控制?不知这样说对不对?

  • 双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    [size=14px][color=#ff0000]摘要:本文针对真空型热离子能量转换器(发电装置)中真空压力和温度的关联性复杂控制,提出一个简便的控制方式和控制系统的解决方案,控制系统仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个可调参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个电源的功率即可实现真空室气压和阴极温度的同时控制,由此可大幅减小设备造价且无需使用任何软件。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]一、问题的提出[/b][/color][/size][size=14px] 热离子能量转换器(TEC)是一种将热能直接转化为电能的静态装置,是一种基于热离子发射的转换方法。TEC可分为真空、带有正离子的铯离子和由辅助放电产生的惰性气体(如氩气)等形式。[/size][size=14px] 真空型TEC的简化示意图如图1所示,电极被放置在高真空环境中。阴极与热源热连接,阳极与热沉连接。电极颜色反映了它们温度之间的关系。[/size][align=center][size=14px][color=#ff0000][img=01.真空热离子能量转换器结构示意图,500,373]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931128921_2824_3221506_3.jpg!w690x515.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 真空热离子能量转换器结构示意图[/color][/align][size=14px] 一般情况下,最常见的商用温度控制器都能控制TEC阴极的温度,但如果使用了钡钨分压器阴极,因其氧化性问题则对加热过程有特殊的要求并不可忽视。在使用前,阴极必须烘烤并激活。为了保护阴极免受来自周围结构或焙烤过程中产品的氧化和污染,在真空室中必须保持必要的超高真空水平。此外,为了防止阴极可能被水分永久性污染而造成发射能力降低和钨阴极表面损伤,阴极必须允许浸泡在200~400℃足够长的时间,以允许完全的水蒸气出气。[/size][size=14px] 为了防止上述情况出现,最佳控制指标就是真空压力,即真空室中的压力必须始终小于1.33E-04Pa。因此,在TEC运行过程中,当给阴极加热器通电时,由于出气,温度会升高,真空室压力会增加。如果压力超过1.33E-04Pa,则需要关闭加热器电源,直到压力降到这个水平以下。真空室排气和焙烧后的活化是通过将钨基体中的氧化钡转化为阴极表面的游离钡来实现的。活化速率是真空室清洁度、阴极污染、时间和温度的函数。一般来说,阴极在工作温度或略高于工作温度时被激活。阴极温度不应超过1473K。[/size][size=14px][/size][size=14px] 由此可见,在TEC运行过程中,一个重要前提条件是供电加热和温度控制应确保整个过程的真空压力水平不应超过设定的超高真空度,即在运行过程中,除了温度控制之外,还需控制真空室内的真空度始终不超过额定值,但只有加热功率一个可调装置。[/size][size=14px] 从上述真空型TEC的运行要求可以看出,阴极的加热过程是通过调节一个可控变量(加热功率)来实现两个参数(气压和温度)的同时控制。[/size][size=14px] 为了实现这个特殊的控制过程,文献1采用一种复杂的控制机构,此控制机构基于类似的串级控制方法,使用了一个典型的PID控制器结合一个PXI单元,并编制了专用程序进行整体控制,其控制框图如图2所示。[/size][align=center][size=14px][color=#ff0000][img=02.文献1中使用的控制框图,600,356]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931510435_9811_3221506_3.jpg!w690x410.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 文献1中使用的控制框图[/color][/align][size=14px] 从图2所示的控制框图可以看出,整个控制装置结构较复杂,还需编制控制软件,整体造价也高。为了实现更简便的控制,本文提出一个更简便的控制方式和控制系统的解决方案,控制系统中仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个调节参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个调节小功率电源来实现真空室气压和阴极温度的控制。[/size][size=18px][color=#ff0000][b]二、解决方案[/b][/color][/size][size=14px] 由于在真空型TEC运行过程中只能调节阴极加热温度而同时不能使真空室内的气压超过设定值,这使得整个工作过程只有阴极加热功率一个可调节变量。为了实现阴极温度和腔室真空度的同时控制,解决方案采用了两个串联电源的新型结构,如图3所示。[/size][align=center][size=14px][color=#ff0000][img=03.新型真空压力和温度同时控制系统结构示意图,600,276]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932179007_2110_3221506_3.jpg!w690x318.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 新型真空压力和温度同时控制系统结构示意图[/color][/align][size=14px] 如图3所示,解决方案中采用了一个高精度的两通道PID控制器,此控制器具有两个独立的PID控制通道。第一通道与真空计和电源1组成第一闭环控制回路,第二通道与安装在阴极上的热电偶温度传感器(TC)和电源2组成第二闭环控制回路。这里的第一控制回路提供阴极的基础温度,其主要用于较低温度段的烘烤,并同时起到控制腔室真空度的作用。第二控制回路是在阴极温度达到一定温度后(如600℃)才开始起作用,其主要作用是将阴极温度最终恒定控制在设定的高温温度上。整个过程的真空压力和温度的控制效果基本与文献1所述的图4和图5所示相同。[/size][align=center][color=#ff0000][size=14px][img=04.全温域的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932441901_8566_3221506_3.jpg!w690x449.jpg[/img][/size][/color][/align][color=#ff0000][/color][align=center]图4 全温域的真空压力和阴极温度的变化[/align][align=center][size=14px][/size][/align][align=center][size=14px][img=05.加热初期的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230933014212_1816_3221506_3.jpg!w690x449.jpg[/img][/size][/align][size=14px][/size][align=center][color=#ff0000]图5 加热初期的真空压力和阴极温度的变化[/color][/align][size=14px] 在实际运行过程中的控制步骤如下:[/size][size=14px] (1)首先抽取腔室真空,使其达到2E-06Pa的超高真空水平。然后运行第一控制回路,真空计采集腔室压力,然后自动调节电源1的加热功率使得阴极温度从室温逐渐升高,其中的压力控制设定值为5E-06Pa。在此控制期间腔室压力始终不会超过设定值,但温度则会逐渐快速升高,且电源1始终有一定的输出功率。[/size][size=14px] (2)当第一控制回路控制中阴极温度达到初级设定温度(如600℃)后,第二控制回路自动开始运行,这使得电源2开始输出加热功率,此时电源1和电源2同时输出,使得阴极温度进一步升高,最终恒定在第二控制回路的温度设定值上。[/size][size=14px] (3)在第二回路工作期间,阴极温度进一步上升,势必会造成腔室气压升高而超出设定值5E-06Pa水平,此时第一回路会自动减小电源1的输出功率,使得阴极温度变化速度放缓。在第二回路运行过程中,第二回路相当于一个正向调节作用,第一回路实际上则是一个反向调节作用,这样既能保证腔室气压不会超出设定值,又能保证阴极温度逐步升高而达到设定的高温温度。[/size][size=14px] 总之,通过上述解决方案及其自动控制,可很便捷的实现热离子能量转换器中真空压力和温度的同时控制,压力水平和阴极恒定温度可根据阴极材料要求任意设定。而且整个控制装置得到了大幅度的简化,且无需进行采用任何软件。[/size][size=18px][b][color=#ff0000][/color][color=#ff0000]三、参考文献[/color][/b][/size][size=14px][1] Kania B, Ku? D, Warda P, et al. Intelligent Temperature and Vacuum Pressure Control System for a Thermionic Energy Converter[M]//Advanced, Contemporary Control. Springer, Cham, 2020: 253-263.[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 反应釜控温机组,反应釜冷热一体机,反应釜温度控制机

    反应釜控温机组,反应釜冷热一体机,反应釜温度控制机反应釜控温机组综合本公司多年的冷热温控经验,引进国外先进技术,提供全方位的工业温度控制技术和解决方案,在反应釜行业可根据客户要求量身定控制调节反应釜的温度,提高产品的质量产量,环保安全,不需要专人操作.我们有着最专业的团队和最优的产品可供大家选择,反应釜控温机组,反应釜温度控制机的介绍:根据您反应釜的大小,所需要的温度来设计不同功率的油加热器,加热方式为循环加热,所以介质无损耗,多点温度控制机组可订做,温控范围大,温度精确均匀稳定,导热速度快,升降温速度快.能自动精确控温,可快速达到设定温度,设定值和实际值分别显示,进口微电脑双组PID温度控制机,触摸式内储自动演算,精确可靠省电35%以上.反应釜冷热一体机特点如下:1.换热面积大,升温和降温的速率很快,导热油的需求量也比较小.可实现连续升降温,制冷换热器采用高力板式换热器,换热效率高,占地面积小.整个循环是密闭的,高温时没有油雾挥发,导热油不会被氧化和褐化,低温时不会吸收空气中的水汽,延长了导热油的寿命.2.具有自我诊断功能,冷冻机过载保护,高压压力开关,过载继电器,热保护装置等多种安全保障机能,充分保证使用安全.3.温度自适应控制,适应控制系统在控制工艺(如化学反应工艺)的过程中,持续不断的调节PID参数来给予工艺最好的控制温度和响应时间,这种过程是通过有效的多方位的测定温度,温度变化和温度变化的速率来实现的.带有矫正外循环和内循环温度探头PT100的功能.4.精确控制化学反应的速度(选配:一体化机组,实现高温冷凝回流,根据温度控制加料速率,防止反应过快,同时精确控制加料量).5.程序功能系列,非线性和线性的温度跳跃功能,所有程序的每步选项包括控制外循环程序,都由PLC控制器电脑来控制.6.自动诊断和系统的监控功能系列,通过PLC触摸屏控制器,电脑实行监控和显示详细系统信息,可以监控和显示升温速率等所有信息.7.触摸屏控制器;可以选择显示信息,实时图表显示实时的夹套温度和反应釜体内温度,显示实时的变化曲线以及安全信息等.彩色屏幕,详细菜单以及详细自我诊断系统都是可用的,设备可以用触摸屏热键,选码器或者程序号来控制.反应釜控温机组根据反应釜行业的应用特点设计,反应釜温度控制机根据客户要求选择水或者油作为传热介质,水最高温度可达180度,最高温度可达350度.我公司是专业生产反应釜温度控制设备,反应釜加热器,反应釜加热设备,反应釜精密温控设备的厂家.主要产品;反应釜夹套油加热器,反应釜温控机,反应釜恒温机,反应釜冷却机等反应釜行业专用温度控制设备。

  • 冷热冲击试验箱的控制器系统

    冷热冲击试验箱PID控制,以PID控制仪为控制核心,通过控制时间继电器、中间继电器、SSR、接触器等达到所要实现的目的,报警系统功能齐全。该控制系统机动性强,稳定,可直接读取老化过程中的温度、电流、电压等参数,方便维修,成本相对较低,但是其控制系统所能达到的功能简单, PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作得不是太好。最重要的是,简单的PID控制器有时却是最好的控制器。东莞高天冷热冲击试验箱的冲击温度控制器:液晶显示触控式莹幕直接按键型控制器,中英文表示5.7”图形之广视角,高对比附可调背光功能之大型LCD液晶显示控制器.一、控制器规格:(1)精度:温度±0.1℃+1digit.(2)分辨率:温度±0.1.(3)具有上下限待机及警报功能.(4)温度入力信号 T型.(5)P.I.D控制参数设定,P.I.D自动演算.二、画面显示功能:(1)采画面对谈式,无须按键输入,屏幕直接触摸选项.(2)温度设定(SV)与实际(PV)值直接显示.(3)显示故障状态及说明故障排除方法.(4)可显示目前执行程序号码,段次,剩余时间及循环次数.(5)温度程序设定值以图形曲线显示,具实时显示程序曲线执行功能.(6)具单独程序编辑画面,可输入温度,时间及循环次数.(7)屏幕可作背光调整.(8)屏幕显示保护功能可作定时,TIMER或手动关闭设定.三、程序容量及控制功能: a.可使用的程序组:最大96个PATTEN(即96个试验规范可设定).(1)可重复执行命令:每一个命令可达999次.(2)SEGMENTS时间设定0--99Hour59Min.(3)具有断电程序记忆,复电后自动启动并继续执行程序功能.(4)程序执行时可实时显示图形曲线.(5)具有预约启动及关机功能.(6)具有日期,时间调整功能.http://www.whgt17.com/uploads/allimg/160524/1-160524163P00-L.jpg

  • 防护热板法导热仪升级改造——计量单元电功率和护热温度的超高精度PID控制

    防护热板法导热仪升级改造——计量单元电功率和护热温度的超高精度PID控制

    [color=#990000]摘要:本文针对客户提出改进保护热板法导热仪测量精度和测试规范性的要求,给出了防护热板法导热仪升级改造技术方案。升级改造方案主要包括三方面的内容,一是采用超高精度双通道PID控制器分别用于控制计量单元和护热单元温度,二是计量单元和护热单元温度控制采用无超调PID控制,三是采用多只热电偶构成的高灵敏度温差热电堆。通过此升级改造,可大幅度提高保护热板法导热仪的测量精度和测试规范性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]一、背景介绍[/b][/color][/size]在低导热隔热材料的导热系数测试中,最常用的测试方法是稳态保护热板法。目前在市场上依据保护热板法的导热仪非常普遍,但国产导热仪普遍存在测量精度差和导热仪制作不规范的问题。最近有客户提出对已购置的国产防护热板法导热仪进行技术升级,以提高测量精度和规范化操作水平,具体技术要求如下:(1)样品热面温度要求以10的整数倍温度进行精确控制,配合相应的样品冷面温度控制,使得样品厚度方向上的温差可准确恒定控制在10、20和30℃的其中一个数值上。由此保证样品导热系数测试边界条件的一致性。(2)护热单元(侧向护热单元和底部护热单元)对计量单元的温度跟踪,要求采用标准测试方法GB/T 10294中规定的温差热电堆,温差热电堆至少由五对以上的热电偶组成,由此保证将计量单元的漏热降低到最低限度。本文将针对上述客户要求,提出防护热板法导热仪升级改造技术方案。[b][size=18px][color=#990000]二、升级改造方案[/color][/size][/b]升级改造方案主要包括以下三方面的内容。[size=18px][color=#990000]2.1 超高精度双通道PID控制器[/color][/size]为了实现既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了的升级方案是采用超高精度的双通道PID控制器代替目前所用的普通PID控制器(调节器)。这种新型PID控制器具有以下特点:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)独立的超高精度双通道控制功能,可分别用于计量单元和护热单元的温度控制。[size=18px][color=#990000]2.2 无超调PID 控制方法[/color][/size]在防护热板法导热仪中,所测材料一般为低导热系数的隔热材料,在计量单元的温度控制中一旦产生温度振荡或超调,如图1所示,则需要很长时间才能恢复到设定温度点。因此,在升级改造方案中,计量单元和护热单元的温度控制都采用了无超调的PID控制方法,由此可减少不必要的控温时间。[align=center][img=01.无超调PID控制示意图,600,475]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272247501334_6415_3221506_3.png!w690x547.jpg[/img][/align][align=center]图1 无超调PID控制示意图[/align][size=18px][color=#990000]2.3 高灵敏度温差热电堆[/color][/size]按照标准测试方法GB/T 10294中的规定,如图2所示,在计量单元和护热单元之间的狭缝两侧布置直径小于0.1mm的热电偶组成的温差热电堆。[align=center][img=02.温差热电偶布局示意图,690,383]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272248262325_3650_3221506_3.png!w690x383.jpg[/img][/align][align=center]图2 温差热电偶布局示意图[/align]为了提高护热单元温度对计量单元的温度一致性,温差热电堆至少要由五对热电偶组成以高分辨率的检测护热单元与计量单元之间的温差。热电堆的温差输出信号作为超高精度PID控制器第二通道的采集信号。由此,通过高灵敏温差热电堆和PID控制器的超高精度电压信号检测能力和温度控制能力,可大幅度减小计量单元的漏热,从而提高导热系数测量准确性。[size=18px][color=#990000][b]三、总结[/b][/color][/size]通过上述升级改造技术方案,可完全实现用户提出的技术改进要求,在保证计量单元温度和样品冷热面温差为任意设定值的前提下,可大幅减少护热温度不一致所引起的热损失,有效提高导热系数测量精度。同时所采用的无超调PID控制方法可有效缩短测试时间。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 热概念烧结炉 欧陆控制器

    最近我看热概念的烧结炉,用的是欧陆的控制器,不知道有没有用过该种烧结炉和该种控制器的,用着怎么样呢?

  • 高低温湿热试验箱的温度与湿度是如何控制的?

    [font='宋体'][size=18px]高低温湿热试验箱的温度与湿度是如何控制的?[/size][/font][font='宋体'][size=18px]温度与湿度是高低温湿热试验箱的两个重要参数,它们对于测试结果的准确性和可靠性具有至关重要的影响。因此,控制高低温湿热试验箱的温度与湿度是实验过程中的一项重要任务。[/size][/font][font='宋体'][size=18px][url=https://www.instrument.com.cn/netshow/SH103691][b]高低温湿热试验箱[/b][/url]的温度控制主要包括加热、制冷和恒温三个阶段。在加热阶段,试验箱采用电热元件或燃气燃烧器等加热方式将温度升高至所需的设定值。在制冷阶段,试验箱采用制冷剂循环系统将温度降低至所需的设定值。在恒温阶段,试验箱采用温度传感器和控制器等设备,通过调节加热或制冷系统的运行状态,使试验箱内的温度保持恒定。[/size][/font][font='宋体'][size=18px]湿度控制是高低温湿热试验箱的另一项关键技术。湿度控制系统主要包括加湿和除湿两个部分。加湿系统通过向试验箱内注入水蒸气或化学蒸汽等方式增加湿度;除湿系统则采用冷凝、吸附或离心等方法去除试验箱内的湿气。湿度传感器和控制器等设备用于监测和控制试验箱内的湿度,使其达到所需的设定值。[/size][/font][font='宋体'][size=18px]为了确保温度与湿度的控制精度和稳定性,高低温湿热试验箱还需要注意以下几点:[/size][/font][font='宋体'][size=18px]1. 选用高精度传感器和控制器等设备,保证温度和湿度的测量与控制精度;[/size][/font][font='宋体'][size=18px]2. 定期进行设备维护和校准,确保设备的正常运行;[/size][/font][font='宋体'][size=18px]3. 根据实际需要调整温度和湿度的设定值,以满足不同测试条件的要求;[/size][/font][font='宋体'][size=18px]4. 注意试验箱内的气流组织,保证温度和湿度的均匀分布;[/size][/font][font='宋体'][size=18px]5. 在使用过程中,避免在试验箱内放置过多物品,以免影响气流流动和温度湿度的均匀性。[/size][/font][table][tr][td][img]https://ng1.17img.cn/bbsfiles/images/2024/01/202401161651166808_3977_6279606_3.jpeg[/img][/td][/tr][tr][td][img]https://ng1.17img.cn/bbsfiles/images/2024/01/202401161651171245_1457_6279606_3.jpeg[/img][/td][/tr][/table][font='宋体'][size=18px]总之,高低温湿热试验箱的温度与湿度控制是一个复杂的过程,需要综合考虑加热、制冷、恒温、加湿和除湿等多个方面的因素。为了获得[/size][/font][font='宋体'][size=18px]准确的测试结果,操作者需要了解并掌握相关技术和知识,以便更好地使用和维护高低温湿热试验箱。[/size][/font][font='宋体'][size=18px][/size][/font]

  • 【资料】有关原子力温度控制热台的文献

    现在带温度控制的原子力显微镜具有非常强的功能,可以提供样品在不同温度下的信息,提供一篇文献给大家参考[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=55569]有关原子力温度控制热台的文献[/url]

  • 海达冷热冲击试验仪电气控制系统介绍

    1) 显示器:采用原装日制彩色触摸屏微电脑大型液晶LCD(320*240CLOTS)中英文显示器。2) 运行方式:程序方式。2.1控制对象:试验区曝露温度、高温恒温区预热温度、低温恒温区预冷温度、低温恒温区除霜温度2.2指示精度:0.1℃2.3 输 入:热电偶T DIN2.4控制方式:微电脑PID+ SSR控制3) 设定方式:中文菜单,触摸屏方式输入。4) 程序容量:1000组程式,每个程序最大3步;每个程序可设2000次循环,最大循环设定9999cycles;5) 设定范围:高温室预热温度上限:+205℃;低温室预冷温度下限:-80℃;试验室(试样区):6) 温度冲击上限+155℃;温度冲击下限:-70℃7) 显示分辨率:温度:0.1℃ 时间:0.1min;8) 通讯功能:RS-232接口,具有本地和远程通讯功能,最多时可同时连接16台设备,电缆累计长度最大800m;9) 控制方式:抗积分饱和PID,模糊算法;BTC平衡调温控制方式;10) 附属功能:故障报警及原因、处理提示功能、故障记录、超温保护、上下限温度保护、断电保护、传感器上下风选择、试验暂停、报警输出、时间信号输出,试验结束输出、温度到达输出、定时启动及自动停止功能、自诊断功能;11) 其它功能:11.1.微电脑多功能控制,具有各组冷冻压缩机,电磁阀,加温HEATER等全自动输出控制功能11.2.具安全检知接口装置,当异常故障发生时,立即经由LCD文字显示故障状态及切断电源11.3.具有预约开机,关机时间之设定功能,可由年,月,日,时,分来设定之11.4.具运转保养累积时间显示功能,可供机台运转时间及保养参考用11.5.LCD背光灯开与关之时间,可由程序规划之,以延长背光灯之使用年限11.6.可选择单段控制或多段程序之多种画面,以增加其操作上之方便性11.7.曲线绘制功能,当温度数据设定完成后,或者运转执行中可叫出程序设定执行画面,以便了解设定及执行之各种状况 11.8.程序执行中可暂停 (HOLD),跳段(ADV)及从事其它程序之设定11.9.具恢复时间与测试时间WAIT功能11.10.停电复归功能,可选择 BREAK, COLD, HOT,可任意设定之11.11.附时序控制接口RELAY 可规划外部逻辑驱动组件输出(信号,机构,电源等相关辅助控制)

  • 【求助】103型气相色谱热导池温度控制不工作问题

    今天打开[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],打开热导池电源-温度控制器的热导温控时,发现没有电压(但是热导温控的显示灯还是亮的),调节热导温控的刻度时,电压也没有发生变化,柱槽温控和进样器温控都有电压显示,有谁知道故障是什么呢,如何排除故障,谢谢赐教!

  • 产品有害物质控制与如何应对REACH法规相关文章

    1世界各国产品有害物质控制法规基本情况2全球化学品名录清单及如何查询全球化学品名录3欧盟进口商如何邮件确认产品是否符合REACH法规4企业应正视REACH后预注册 符合REACH要求应放首位5产品有害物质控制与法规符合应对解决方案的评估6产品有害物质控制与法规符合应对解决方案的实现7产品有害物质控制与法规符合应对解决方案的设计8国际上普遍接受的产品有害物质控制法规符合的方法9产品有害物质控制法规指令符合的难点10产品有害物质控制相关法规符合的要义112011年Rapex通报情况分析12儿童服装为何受加拿大《儿童饰品条例》监管13中国胶水被海关没收 CLP法规分类标签应严格执行14完成REACH注册仅是应对REACH法规的起点15解读中国磷化工行业REACH注册(二)16解读中国磷化工行业REACH注册(一)17REACH预注册号为什么失效 如何避免预注册号失效18解读中国新化学物质登记现状及各阶段应对策略19解析REACH法规下的“授权”20CPSC海关抽查数据显示中国产儿童产品违规最严重21双酚A介绍及BPA涉及的法规与事件22SIEF及REACH法规与SIEF的关系232011年新化学物质简易申报登记数量统计242012/7/EU号玩具安全指令收紧玩具镉含量限值25FDA建议制药行业避免用DBP和DEHP作为赋型剂26REACH伙伴项目RPP主要内容27REACH法规主要内容及相关责任和义务28简析四部重要的中国化学品法规29关于SVHC及SVHC通报问题30东莞的一家玩具企业被CPSC通报召回31运用HENZ系统可持续符合RoHS、REACH法规32CRIOC调查显示出企业SVHC信息传递不足

  • 冷热温度正反向控制技术在冷凝器热疲劳试验中的应用

    冷热温度正反向控制技术在冷凝器热疲劳试验中的应用

    [size=16px][color=#3366ff][b]摘要:空调换热器需要进行可靠性试验以满足整机产品在不同环境下的寿命周期,温度交变试验是可靠性试验中是较为关键的一项。本文在现有PLC交变温度控制技术基础上,提出了一种模块式的改进解决方案,即增加了专用的高精度PID调节器分别进行热水箱和冷水箱的温度控制,特别是采用具有冷热双向控制功能的PID调节器,在提高控温精度的同时,主要是能够大幅减小PLC控制器的软硬件复杂程度和编程工作量,更重要的是此方案可推广应用到其它任何形式的温度波和压力波的形成。[/b][/color][/size][size=16px][color=#3366ff][b][/b][/color][/size][align=center][size=16px][img=换热器热疲劳试验装置的冷热温度交变控制解决方案,600,331]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221448031765_8068_3221506_3.jpg!w690x381.jpg[/img][/size][/align][size=18px][color=#3366ff][b]1. 问题的提出[/b][/color][/size][size=16px] 单冷式空调以及冷暖型空调(又称为热泵型)中的室外换热器(也称为冷凝器或蒸发器),其所处环境比较复杂严酷,例如在冬季使用时,室外换热器经常会结霜,在运行一段时间后空调控制器就会让其化霜。所以室外换热器经常会处于温度交替变化状态,如果换热器结构或材料选用不当,极端情况下换热器会出现裂缝导致制冷剂泄漏造成空调器不能工作。因此,为了考核换热器的可靠性,室外换热器必须进行冷热温度交变条件下的可靠性试验。[/size][size=16px] 目前很多用于热疲劳可靠性试验的换热器温度交变试验装置,基本都采用如图1所示的控制结构,分别使得冷热液体交替通过换热器来实现冷热温度交变。其中热水箱采用加热器进行温度调节,冷水箱则通过加热器和压缩制冷机进行加热和制冷调节,加热器和制冷机则则采用了PLC上位机进行PID自动控制。[/size][align=center][size=16px][color=#3366ff][b][img=01.温度交变试验装置结构示意图,550,293]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221449444721_961_3221506_3.jpg!w690x368.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]图1 温度交变试验装置结构示意图[/b][/color][/size][/align][size=16px] 换热器温度交变试验装置基本都是自行搭建的非标设备,在实施过程过程中存在以下问题:[/size][size=16px] (1)温度交变试验装置采用PLC作为上位机进行控制是非常合理的,但PLC同时还要具有加热器控制功能,这需要增加PID温度控制模块及其相应的编程,这对很多PLC使用人员较有难度。[/size][size=16px] (2)特别是还需采用PLC实现冷水温度加热和制冷的双向控制,这更是增大了采用PLC进行控制的实现难度。[/size][size=16px] 为了解决上述问题,本文将提出一种模块化解决方案,即采用高精度PID温度控制器,特别是采用一种高精度的加热制冷双向PID温度控制器去控制加热器和压缩机制冷机组,由此控制器组成温控模块与上位机PLC通讯,可大幅减小温度交变试验装置的搭建难度和编程工作量。[/size][size=18px][color=#3366ff][b]2. 解决方案[/b][/color][/size][size=16px] 为了实现模块式温度交变试验装置的搭建,简化温度系统中PLC的复杂程度和编程难度,本文提出的解决方案如图2所示,即在图1所示的试验装置中增加了两套专用的PID温度控制器。[/size][align=center][size=16px][color=#3366ff][b][img=02.模块式温度交变试验装置结构示意图,600,261]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221450133742_6417_3221506_3.jpg!w690x301.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]图2 模块式温度交变试验装置结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,在模块式温度交变试验装置中采用了两个独立的PID温度控制器,其中一个用于热水箱的温度加热控制,另一个用于冷水箱的制冷加热双向控制。这里的PID温度控制器是一种高精度的PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,并具有正反双向控制等一些串级、分程和比值复杂控制功能,非常适合同时进行加热和制冷控制的仪器设备,具有PID参数自整定功能和无超调PID控制功能。[/size][size=16px] 图2中所配置的PID温度控制器具有RS485通讯接口和随机软件,可直接采用软件在计算机上运行温控器进行温度控制,也可以与上位机PLC通讯进行参数设置和运行控制。[/size][size=18px][color=#3366ff][b]3. 总结[/b][/color][/size][size=16px] 通过上述的解决方案,采用独立的多功能高精度PID调节器,可实现模块式温度交变试验装置的搭建,简化了温度系统中PLC的复杂程度和编程难度。[/size][size=16px] 更重要的是,采用高精度PID调节器组成的模块式试验装置,可推广应用到其它类型换热器的温度交变可靠性测试中,可以用于其他任何试验所需的高精度温度波和压力波的生成。[/size][align=center][size=16px][color=#3366ff][b][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 灵活的自动化解决方案助您简化仪器控制系统的实施

    灵活的自动化解决方案助您简化仪器控制系统的实施

    灵活的自动化解决方案助您简化仪器控制系统的实施仪器设备越来越复杂,自动化程度越来越高,设备体积要求越来越小,定位精度更高、设备更新快,成本控制等一系列新的需求提出,众多仪器设备制造商对控制系统提出了更高的要求。机器制造商现在可轻松搭建自己需要的自动化设备,并实现持续性的更新,运动控制正在迈入“模块化的PC机时代”。传统运动控制的问题就传统运动控制而言,往往基于专用控制器、运动控制模块、运动控制卡,这些带来以下问题:(1)受到轴数限制由于传统PLC连接的运动控制单个控制模块支持有限轴数,而且总线在轴多时会同步性能大幅度降低,即使采用现有的通信,但其软件架构却仍然是制约的瓶颈。(2)需要多个开发环境,费时费力为搭建一套系统,往往需要多个厂商的产品,其编程软件、风格、项目管理均需不同的学习,而且,是否能够互通使得各个组件性能得到最佳发挥—几乎不大可能。整套系统的搭建对研发提出了很高的要求,时效上无法很好的满足。(3)更新维护麻烦,人力成本高设备维护往往无法远程控制和实施,需要技术层次较高的人到用户现场进行故障查找和调试,从而提高了设备制造商的人力成本由于传统的运动控制架构不易于拓展,设备需要更新时,无异于重新开发。(5)设备体积较大使用传统的控制系统,设备体积臃肿不堪,众多的线束导致设备内部管理极为不易。 UIROBOT的一体化控制网络优爱宝公司倡导机器人及自动化系统的模块化设计及制造理念,模块之间采用统一的通信协议,这种机器人积木化的理念为用户提供了前所未有自动化系统设计的人性化和便捷性。可以让不熟悉工控系统底层工作原理用户也能在极短的时间内完成设计和产品化。http://ng1.17img.cn/bbsfiles/images/2014/04/201404201417_496808_2851234_3.jpg它为您带来什么好处?在此统一架构下,可以得到如下的应用收益:(1)搭建周期大幅缩短,研发效率提升对于优爱宝而言,机器的运动控制被分解为不同运动轴之间的协作,每个轴的控制模块均具备智能,能独立处理局部事务。模块之间采用统一的CAN总线相连,主控机只负责协调流程,和用户界面无论系统多么复杂,用户仅需关心协调流程和界面,大幅降低了用户的搭建难度。(2)简单便捷的编程平台UIROBOT提供的STEP EVA软件可让用户方便的实现控制系统的操作和调试,完整的SDK库文件支持涵盖VC.C#.VB. LabVIEW等多平台,用户可便捷实施二次开发。(3)扩展性和升级简化模块化的产品和统一的架构,提升了用户在拓展性和优化升级方面的体验(4)设备体积减小、设备精细化提升一体化的设计,设备体积减小。CAN总线的通信连接,设备内部实现了无板卡化,主网络仅需两根通信线,设备精细化提升http://ng1.17img.cn/bbsfiles/images/2014/04/201404201417_496809_2851234_3.jpg(5)标准化提升设备可靠性(6)远程实施维护,维护难度降低对于UIROBOT而言,远程维护与诊断、信息化接口满足未来机器的互联与信息化管理需求,维护成本降低UIROBOT使得开发自主知识产权的仪器更为便捷与快速

  • 可程式高低温湿热试验箱可程式控制器

    可程式高低温湿热试验箱用来测试材料结构或复合材料,在经极高温及极低温的连续环境下所能忍受的程度,藉以在试验其热胀冷缩所引起的化学变化或物理伤害。适用的对象包括金属,塑料,橡胶,电子……等材料。 1、温度控制仪表采用(触摸屏)全进口超大屏幕画面,荧幕操作简单,程式编辑容易。 2、控制器操作界面设中英文可供选择,实时运转曲线图可由屏幕显示。 3、具有120组程式12000段999循环步骤的容量,每段时间设定最大值为99小时59分。 4、资料及试验条件输入后,控制器具有荧屏锁定功能,避免人为触摸而停机。 5、可在电脑上设计程式,监视试验过程并执行自动开关机等功能。 6、具有自动演算的功能,可将温度变化条件立即修正,使温度控制更为精确稳定。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制