当前位置: 仪器信息网 > 行业主题 > >

粉蛋白定仪

仪器信息网粉蛋白定仪专题为您提供2024年最新粉蛋白定仪价格报价、厂家品牌的相关信息, 包括粉蛋白定仪参数、型号等,不管是国产,还是进口品牌的粉蛋白定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粉蛋白定仪相关的耗材配件、试剂标物,还有粉蛋白定仪相关的最新资讯、资料,以及粉蛋白定仪相关的解决方案。

粉蛋白定仪相关的论坛

  • 酪蛋白在奶粉中的作用

    大多数婴儿都是吃奶粉长大的,因为奶粉里面的营养物质是非常多的,能够针对孩子的成长阶段,有不同的奶粉搭配,不同阶段的奶粉里面的营养成分不一样,酪蛋白是婴儿比较需要的一种物质,这种物质能够帮助婴儿分解身体内的蛋白质,促进蛋白质的吸收,那么酪蛋白在奶粉中都有什么作用呢? 一些婴儿的蛋白质分解能力很差,仅为成人的五分之一,因此牛奶中的大分子很难被儿童肠道吸收,这可能会导致蛋白质过敏。蛋白质奶粉的水解意味着首先处理奶粉中的蛋白质,并且通过水解来减少原来的蛋白质分子,这使得对蛋白质过敏的人更容易吸收,因为蛋白质分子减少了,所以身体中的免疫系统不会对它们起作用,也不会出现过敏症状。 酪蛋白具有防止矿物质流失、预防龋齿、预防骨质疏松和佝偻病、治疗缺铁性贫血和镁缺乏性神经炎等多种功能,特别是其促进主要元素(钙、镁)和微量元素(铁、锌、铜、铬、镍、钴、锰、硒)有效吸收的功能特性。一方面,它能有效防止钙在小肠的中性或微碱性环境中沉淀,另一方面,它能让钙在没有VD参与的情况下被肠壁细胞吸收,因此它是最有效的钙吸收促进剂之一。低蛋白膳食(植物蛋白)能抑制黄曲霉毒素诱发癌症,而且,即使癌症已经发生,低蛋白膳食也能显著地遏制癌症病情的恶化。而高蛋白膳食(动物蛋白)则能对黄曲霉毒素诱发癌症起到“推波助澜”的作用。事实上,膳食蛋白质对癌症的影响是非常显著的,只需要调整蛋白质的摄入量,就可以激活或者抑制癌症的发生和发展。

  • 蛋白胨和胰蛋白胨

    本文引用自cheney《蛋白胨和胰蛋白胨简介》蛋白胨是将肉、酪素或明胶用酸或蛋白酶水解后干燥而成的外观呈淡黄色的粉剂,具有肉香的特殊气息。蛋白质经酸、碱或蛋白酶分解后也可形成蛋白胨。蛋白胨富含有机氮化合物,也含有一些维生素和糖类。它可以作为微生物培养基的主要原料,在抗生素、医药工业、发酵工业、生化制品及微生物学科研等领域中的用量均很大。不同的生物体需要特定的氨基酸和多肽,因此存在着各种蛋白胨,一般来说,用于蛋白胨生产的蛋白包括动物蛋白(酪蛋白、肉类)和植物蛋白(豆类)等两种。能为微生物提供C源、N源、生长因子等营养物质。因此,蛋白胨从来源上可分为动物性蛋白胨和植物性蛋白胨。胰胨、肉胨、骨胨等都是动物性蛋白胨,而大豆蛋白胨等则是植物性蛋白胨。动物性来源的蛋白胨还有:蚕蛹蛋白胨、血液蛋白胨等。   不同来源的蛋白质和不同的水解条件,其水解物中组成可千差万别。所以胨往往是一个复杂的多肽混合物。可溶于水,过热不凝固,在饱和硫酸铵中不发生沉淀但可为蛋白质沉淀剂所沉淀。可用作微生物和动物细胞培养基、特种功能性食品和化妆品的配料,也有用作啤酒等产品的稳定剂。胰蛋白胨,又称胰酪蛋白胨(Casein Tryptone)、胰酶消化酪蛋白胨(Pancreatic digest of casein),是一种优质蛋白胨,是以新鲜牛肉和牛骨经胰酶消化,浓缩干燥而成的浅黄色粉末。具有色浅、易溶、透明、无沉淀等良好的物理性状。含有丰富的氮源、氨基酸等,可配制各种微生物培养基,用于细菌的培养、分离、增殖、鉴定,以及无菌试验培养基、厌氧菌培养基等细菌生化特性试验用培养基的配置。胰蛋白胨还广泛应用于高品质的抗生素、维生素、医药工业,氨基酸、有机酸、酶制剂、黄原胶等发酵工业,生化制品及微生物学科研等领域中的用量均很大,临床用于抗炎消肿,工业上用于皮革制造,生丝处理,食品加工。在国际市场上,胰蛋白胨也属于货紧价昂的短线品种之一。   胰酪蛋白胨质量标准及其检验标准:   常规各项理化指标:   1. 澄清度(磷酸盐、碱性沉淀):无沉淀、澄清   2. 2%水溶液:透明   3. 酸碱度:6-7   4. 氨基氮:≥3%   5. 色氨酸:≥0.8%   6. 胨含量:≥80%   7. 总氮:≥13%   8. 水份:≤5%   9. 灰份:≤6%   10. 氯化钠:≤0.2%胰蛋白胨特指用胰蛋白酶酶解酪蛋白生成的蛋白胨产物,与一般蛋白胨的区别在于酶解工艺处理上,属于水解度更高、胨分子量更小更均衡的蛋白胨。

  • “蛋白变性”的望文生义

    现在人们是越来越注重食品健康了,于是任何关于某种食品不健康的说法都能吸引一堆眼球。有人说自己买的乳清蛋白粉不容易溶在水中,立刻有人跳出来说千万不能用热水,蛋白质会变性。于是有一堆看起来对蛋白质有一点了解的人纷纷附和,大谈如何保持蛋白不变性。 很多人看到“蛋白变性”这个词,就望文生义地想到“变质”“变坏”,仿佛“变性”了就有害健康了。最常见的还有一个例子,反对微波炉的人总是说微波炉会导致蛋白质的变性。 蛋白质通常是由20种不同的氨基酸组成的,不同的蛋白质只是各种氨基酸的组成和连结方式不同。因为各种氨基酸的理化特性不同,它们会互相影响,最后会像积木一样形成一定的空间结构。通常也就说是蛋白质的天然构象。如果因为某种原因,蛋白质分子失去了它的天然构象,被称为变性。而蛋白质被吃到肚子里,首先要被水解(消化)成一个个的氨基酸分子,才能被吸收。而在多数情况下,变性的蛋白更容易被水解。可见,蛋白质变性对于食物来说,不仅不是“变质”,而且是好事。 我们所吃的所有蛋白,比如肉、鱼、鸡蛋、牛奶、豆浆、豆腐,作熟的过程就是蛋白质变性的过程。豆浆中的蛋白质不变性是变不成豆腐的。而作为商品出售的各种蛋白粉,多数都经过了高温灭菌和干燥处理,早已经变性了。对于某些产品而言,适当的工业处理甚至能够提高蛋白质的品质。比如大豆中的蛋白,其蛋白质质量指数(蛋白质消化校正计分)是0.91 ,但是经过分离纯化高温干燥等处理之后,就能达到1了。还有相当多的蛋白质产品甚至经过了酶解处理,以获得更好的理化特性。那些蛋白质,不仅是空间构象,连化学结构都变了,更是“变性”得深入。

  • 【“仪”起享奥运】来源不同的蛋白质---植物蛋白,动物蛋白

    [font=宋体, SimSun][size=15px]蛋白质按来源可以分为动物蛋白和植物蛋白,两者所含的氨基酸是不同的。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]一般说,植物蛋白和动物蛋白从本质上没有太大的区别,但是在氨基酸组成和数量上有一定的不同。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]尽管植物蛋白取材来源广泛,但其蛋白的种类和相对数量与人体的要求有一定差距。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]例如,植物蛋白中缺乏免疫球蛋白[i][/i],谷类中则相对缺乏赖氨酸等。植物蛋白的消化、吸收要比动物蛋白差,但是植物蛋白的优势是不含有胆固醇。动物蛋白相对与人类的营养结构比较吻合,其蛋白质的种类和结构更加接近人体的蛋白结构和数量,而且一般都含有人体必需的8种氨基酸(特别是蛋制品和奶制品),所以动物蛋白质比植物蛋白质营养价值高。[/size][/font]

  • 药物绑定靶蛋白的效果首次可直接测量

    新技术有助于开发更好的药物2013年07月06日 来源: 中国科技网 作者: 陈丹 科技日报讯 据物理学家组织网7月5日(北京时间)报道,瑞典卡罗林斯卡医学院的研究人员开发出一种方法,首次能够直接测量药物抵达其位于细胞中的目标蛋白的效果。《科学》杂志上描述的这项新技术,对于开发新的、改良型的原料药将是一个重大贡献。 大多数药物都是通过与一种或多种蛋白质结合并影响其功能来发挥效力的,但药物开发也因此面临两个常见问题:认定正确的目标蛋白,并设计能够有效地找出和绑定它们的药物分子。此前没有任何一种手段可用于直接测量药物分子定位和绑定其靶蛋白的效率,这使得药物开发过程的很多阶段都存在一定程度的不确定性。在某些情况下,候选药物在人体临床试验中没有达到预期效果,经证实正是由于药物分子没有与正确的蛋白质结合造成的。 而卡罗林斯卡医学院研究人员利用靶蛋白与药物分子结合时通常会变得稳定的观念,开发出了这个被称为CETSA(细胞热转移分析)的新技术。他们认为,这项技术可作为药物开发过程中一个重要的控制阶段,也可作为对其他方法的一个补充。“我们已经证明,该方法适用于多种靶蛋白,使我们能够直接测量药物分子是否抵达了其位于细胞或动物模型中的目标。”该医学院医学生物化学与生物物理学系首席研究员帕尔·诺德隆德说,“我们相信,CETSA技术最终将帮助提高许多药物的效率,并有助于开发更好的药物分子和更有效的治疗方案。” 研究人员还对可能导致细胞耐药性的工序进行了仔细检查,并表示,这一技术能够确定现有药物是否适合个别患者,因此其具有应用于个性化治疗的潜在价值。 “我们认为,该方法可以为癌症治疗提供一个重要的诊断工具,比如,从原则上来说,CETSA技术让我们能够确定哪种药物针对肿瘤中的蛋白质最有效,临床医生也可以在早期治疗阶段确定肿瘤是否已经具备了某种抵抗力、哪种治疗方案对病人更合适。”诺德隆德的同事丹尼尔·马丁内兹·莫利纳说,他带领的团队正在开展一个旨在将CETSA技术用于病患研究的项目。(记者陈丹) 总编辑圈点 体温可以测量,骨密度可以测量,就连药物绑定靶蛋白的效果也可以直接测量,让人不得不慨叹医学技术发展的速度之快。文中提到的细胞热转移分析技术,就好比狙击手的瞄准镜,能帮助狙击手调整位置以便更准确地击中目标。这样一来,不仅可以更好地提高药效,还尽可能地减少副作用,其实际应用价值非同一般。那种“杀敌一千,自损八百”的诊疗方法或将成为过去,那些原本被认为的绝症或将“绝”处逢生。 《科技日报》(2013-07-06 一版)

  • 【求助】牛血清白蛋白对UV吸光度检测是否有影响?哪里有供应质量稳定的牛血清白蛋白?

    最近在做公司产品含药量的释放情况,释放液是加了牛血清白蛋白的PBS液,释放后产品从释放液中取出,注射用水洗净后晾干。产品上残留药品再用乙酸乙酯超声洗脱,用UV测定乙酸乙酯中的药品浓度。因最近新换了牛血清白蛋白,后来实验数据与前比似乎有点偏低,怀疑产品上牛血清白蛋白没洗干净,对UV吸收有影响?牛血清白蛋白对UV吸光度值有什么影响呢?哪里有供应质量稳定的牛血清白蛋白?

  • 整合蛋白和跨膜蛋白区别?跨膜蛋白制备详解

    [b][font=宋体]整合蛋白和跨膜蛋白定义:[/font][/b][font=宋体] [/font][font=宋体]整合蛋白和跨膜蛋白是两类重要的蛋白质,它们在细胞分子水平上起着重要的作用。[/font][font=宋体] [/font][font=宋体]整合蛋白,也称为内在蛋白或跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。它们是生物膜的基本结构成分,许多具重要生理功能的膜蛋白均属整合蛋白,如膜结合的酶类、载体蛋白、通道蛋白、膜受体等。[/font][font=宋体] [/font][font=宋体]跨膜蛋白,是可以跨越细胞膜的蛋白,它在细胞的信号传递系统中担当着重要的角色。跨膜蛋白在结构上可以分为单次跨膜、多次跨膜、多亚基跨膜等,它们具有能够跨越细胞膜的能力。[/font][font=宋体] [/font][b][font=宋体]整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异[/font][/b][font=宋体] [/font][font=宋体]①位置:整合蛋白主要存在于细胞质内,细胞核或其他非细胞膜结构中,它们容易在细胞中自由移动。而跨膜蛋白则嵌入细胞膜中,一部分位于细胞膜的胞外侧,另一部分位于细胞膜的胞内侧,形成了一个穿过细胞膜的通道。[/font][font=宋体][font=宋体]②结构:整合蛋白的结构通常由两个独立的部分组成,一个是靠近细胞膜的膜结合区域([/font][font=Calibri]TM[/font][font=宋体]),另一个是靠近细胞骨架的非膜结合区域([/font][font=Calibri]N-TM[/font][font=宋体])。当接受到外界的信号时,整合蛋白的[/font][font=Calibri]TM[/font][font=宋体]区域会被激活,把来自外界的信号转化为细胞内可以识别的信号,直接参与细胞信号传导系统中。[/font][/font][font=宋体]③功能:整合蛋白主要是用来从外界传达信号到细胞内,充当细胞与外界信号的桥梁。而跨膜蛋白则在细胞的信号传递系统中担当着重要的角色。[/font][font=宋体]总的来说,整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异,这些差异使得它们在生物体中扮演着不同的角色。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达与制备服务[/b][/url],制备流程图:基因合成[/font][font=宋体]→载体构建→细胞转化[/font][font=Calibri]/[/font][font=宋体]转染→蛋白表达→细胞收集→细胞破碎→膜脂提取→膜脂增溶→蛋白纯化→质量检测,同时义翘拥有[/font][/font][b][font=宋体]三大跨膜蛋白制备平台[/font][/b][font=宋体],可以为客户提供全面的多次跨膜蛋白产品和服务。同时,为基础研究和药物研发提供更加优质的原材料。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 多肽蛋白偶联

    多肽蛋白偶联

    蛋白多肽多肽:多肽是α-氨基酸以肽键连接在一起而形成的化合物,是蛋白质水解的中间产物。由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等。通常由10~100氨基酸分子脱水缩合而成的化合物叫多肽,它们的分子量低于10,000Da(Dalton,道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质。蛋白质:生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。是α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合合而成的高分子化合物。蛋白偶联KLH/BSA/Ovalbumin etc 偶联小肽/半抗原必须耦合到载体蛋白(KLH,BSA,Ova),才可以获得高效的抗体。一般来说,多肽可以与蛋白偶联的条件如下:1 有一个自由的氨基或羧基2 半胱氨酸上的-SH也可以与载体蛋白偶联目前我公司提供高质量的偶联载体蛋白(KLH,BSA,OVA)[img=,690,300]https://ng1.17img.cn/bbsfiles/images/2019/02/201902191022256586_4193_3531468_3.jpg!w690x300.jpg[/img]我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。请移步百度搜“[b]合肥国肽生物[/b]”即可

  • 稳定细胞系助力重组蛋白高效生产

    [b][font=宋体]前言[/font][/b][font=宋体]在蛋白质研究领域,稳定细胞系的应用已成为生产高质量结构生物学蛋白质的关键手段。随着技术的不断进步,稳定细胞系的生成与筛选方法得到了显著改进,从而推动了蛋白质生产的高效化与精准化。[/font][font=Calibri] [/font][b][font=宋体]细胞系的建立和应用[/font][font=宋体][font=Calibri]HEK293[/font][font=宋体]和[/font][font=Calibri]CHO[/font][font=宋体]细胞系[/font][/font][/b][font=宋体]因其稳定的蛋白表达和适当的翻译后修饰而被广泛用于结构生物学研究。这些细胞系能有效地生产具有复杂糖基化模式的蛋白质,这对于确保蛋白质的功能和稳定性至关重要。糖基化缺陷细胞系通过特定的基因改造,能够分泌脱糖基化糖蛋白,为蛋白质生产提供了更加纯净的原料。[/font][font=Calibri] [/font][b][font=宋体]稳定细胞系的生成[/font][/b][font=宋体][font=宋体]传统的稳定细胞系生成技术如瞬时转染,虽然方法简便,但存在整合频率低、转基因沉默等问题。为了克服这些困难,研究者们开发出了一系列新技术,如细胞分选技术、位点特异性重组(如[/font][font=Calibri]FLP/FRT[/font][font=宋体]系统)、转座子系统(如[/font][font=Calibri]piggyBac[/font][font=宋体])、慢病毒系统以及噬菌体整合酶等,提高了稳定细胞系的生成效率和稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]序列特异性基因组工程也为稳定细胞系的生成提供了新的思路。通过敲除或修饰特定的基因,研究者们能够实现对细胞功能的精准调控,从而优化蛋白质生产的效率和纯度。例如,一种同时缺乏[/font][font=Calibri]GnTI[/font][font=宋体]和谷氨酰胺合成酶([/font][font=Calibri]GS[/font][font=宋体])活性的[/font][font=Calibri]CHO[/font][font=宋体]细胞系被成功开发出来,为高效筛选具有[/font][font=Calibri]GS[/font][font=宋体]标记的稳定细胞系提供了有力工具。[/font][/font][font=Calibri] [/font][b][font=宋体]稳定细胞系与瞬时转染的比较[/font][/b][font=宋体]稳定细胞系相较于瞬时转染具有多个优点,包括能够进行大规模生产和保持高水平的蛋白表达稳定性。尽管瞬时转染在某些情况下能快速产生大量蛋白,但其表达水平和重复性通常不如稳定细胞系。[/font][font=Calibri] [/font][b][font=宋体]展望[/font][/b][font=宋体]近年来,利用稳定细胞系高效生产结构生物学蛋白质已成为研究的热点和趋势。通过引入新技术、优化筛选方法和改进整合系统,不仅能够提高蛋白质生产的效率和纯度,还能够为结构生物学研究提供更加精准、可靠的实验工具。随着基因编辑和细胞工程技术的进步,预计在未来,通过精确的基因操作能够更有效地创建和利用稳定细胞系。这些技术的进步将促进结构生物学和药物开发中蛋白质的高效和可持续生产。[/font][font=宋体] [/font][font=宋体]本文由义翘神州进行整理,同时提供[/font][url=https://cn.sinobiological.com/services/stable-cell-line-development-service][u][font=宋体][color=#0000ff]稳定细胞系构建服务[/color][/font][/u][/url][font=宋体],详情可点击了解![/font][font=Calibri] [/font][font=宋体]参考文献:[/font][font=Calibri]Büssow K. Stable mammalian producer cell lines for structural biology. [/font][i][font=Calibri]Curr Opin Struct Biol[/font][/i][font=Calibri]. 2015 32:81-90. doi:10.1016/j.sbi.2015.03.002[/font]

  • 跨膜蛋白与通道蛋白的区别:跨膜蛋白制备平台详解

    [font=宋体]跨膜蛋白是生物体内广泛存在的一类蛋白质,它们在细胞膜上以不同的方式与其相互作用,从而发挥各种生物学功能。根据不同的结构和功能,[/font][b][font=宋体]跨膜蛋白可以分为三种类型:通道型跨膜蛋白、受体型跨膜蛋白和泵型跨膜蛋白。[/font][/b][font=宋体] [/font][font=宋体][font=宋体]通道型跨膜蛋白是跨膜蛋白中最为简单的类型,它们主要的功能是在细胞膜上形成一些具有选择性通透性的孔道,使得离子和小分子物质能够通过。通道型跨膜蛋白具有多个跨膜域,通常由[/font] [font=宋体]α 螺旋和 β 折叠两种二级结构组成。α 螺旋通道如 [/font][font=Calibri]K+ [/font][font=宋体]通道能够容纳阳离子,β 折叠如离子泵[/font][font=Calibri]Na+/K+-ATPase [/font][font=宋体]能够承载各种离子。[/font][/font][font=宋体] [/font][font=宋体]受体型跨膜蛋白是一类比较复杂的蛋白质,它们能够接受信号分子的结合,从而调节细胞内的生物学路径。受体型跨膜蛋白通常由单个跨膜域和两个不同构的端基组成,其中一个端基是细胞外的受体结构域,能够特异性地与信号分子结合;另外一个端基是细胞内的调节结构域,能够将受体活性传递到细胞内部。受体型跨膜蛋白具有多种作用方式,如酪氨酸激酶受体,转录因子受体等。[/font][font=宋体] [/font][font=宋体][font=宋体]泵型跨膜蛋白是一类能够通过能量输入来驱动物质运输的蛋白质。它们能够将离子或者小分子物质从低浓度区域转运到高浓度区域,从而维持细胞内的化学平衡和稳态。泵型跨膜蛋白一般由多个跨膜域组成,并能借助外源性能量如[/font][font=Calibri]ATP[/font][font=宋体]进行运输。常见的泵型跨膜蛋白有[/font][font=Calibri]Na+/K+-ATPase, H+/K+-ATPase[/font][font=宋体]等。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州提供跨膜蛋白制备平台,包括:[/font][font=Calibri]VLP[/font][font=宋体]技术平台[/font][font=Calibri]/[/font][font=宋体]去垢剂技术平台[/font][font=Calibri]/Nanodisc[/font][font=宋体]技术平台。[/font][/font][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体][font=宋体]利用[/font][font=Calibri]VLP[/font][font=宋体]平台制备跨膜蛋白具有以下优势:[/font][/font][font=宋体]? 全长跨膜蛋白,保持完整的天然构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测、抗体筛选等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州搭建了基于[/font][font=Calibri]HEK293[/font][font=宋体]表达系统的[/font][font=Calibri]VLP[/font][font=宋体]([/font][font=Calibri]virus-like particle[/font][font=宋体])技术平台,能够将目的膜蛋白完整展示在[/font][font=Calibri]VLP[/font][font=宋体]表面,使其能够像普通蛋白一样进行检测,义翘神州目前可以为客户提供膜蛋白定制服务,助力药物研发进程。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体]去垢剂技术平台的优势:[/font][font=宋体]? 可精确定量[/font][font=宋体]? 胶束为膜蛋白疏水基团提供保护并稳定构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测等[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体][font=Calibri]SMA-Nanodisc[/font][font=宋体]技术平台的优势:[/font][/font][font=宋体]? 可精确定量[/font][font=宋体][font=宋体]? [/font][font=Calibri]SMA[/font][font=宋体]共聚物包裹的膜蛋白稳定性更好,有助于更好地研究膜蛋白的结构和功能[/font][/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测及细胞实验等[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量占大豆蛋白复合纤维的比例来确定大豆蛋白复合纤维含量,有点不可理解?大豆蛋白复合纤维,目前是大豆蛋白和聚乙烯醇复合,仅仅用蛋白溶解后,剩余的聚乙烯醇的含量来‘推算’出来大豆蛋白复合纤维的含量,是有点欠妥,虽然规定了大豆蛋白复合纤维的蛋白含量,但是实际的大豆蛋白复合纤维中,大豆蛋白和聚乙烯醇含量的比例不一定的,也就是说比例不是那么固定的,这样的检测方法对检测公司来说是没有任何问题的,也是标准的一个进步,但对生产企业来说,确实是致命的,没有规定大豆蛋白复合纤维的配比必须是多少,这个检测很可能每批次大豆与羊毛动物纤维,蚕丝产品的标示和实际检测结果是不合格的。而实际生产添加的各成分是标准的?比如填充,大豆与羊毛动物纤维,蚕丝混合,生产企业是烘干后,按照回潮率计算,按重量比添加混合的,这样企业就根据这样的比例进行标示,这个是最准确的,也是最合理的?大家认为呢?[img=,690,172]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250916_01_2154459_3.png!w690x172.jpg[/img][img=,690,138]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250913_01_2154459_3.png!w690x138.jpg[/img]

  • 蛋白液顶空测乙腈残留

    本人刚接触气相没多久 最近做了一个蛋白液的乙腈残留,参考了药典白介素的方法,精密量取1ml顶空进样(1ml定量环),80℃平衡30min,4ml/min柱流速,45摄氏度等温,分流比5:1。对照为0.0004%乙腈,超纯水稀释,峰面积大约35左右。样品为蛋白液,其中有多种无机盐,twen80。问题:现在做了挺多样品,对照品出峰重现性还可以接受,倒是样品峰面积直接差到姥姥家了,几乎每次都相差很大,一个峰面积为5,下一针可能就是20!求有这方面经验的大神不吝赐教啊!

  • 膜蛋白的类型及功能详解

    [b][font=宋体]什么是膜蛋白?[/font][/b][font=宋体]膜蛋白是一类广泛存在于生物体细胞膜上的蛋白质分子。它们在维持细胞结构完整性、调控物质运输和信号传导等方面起着重要作用。根据蛋白分离的难易及在膜中分布的位置,膜蛋白基本可分为三大类:外在膜蛋白或称外周膜蛋白、内在膜蛋白或称整合膜蛋白和脂锚定蛋白。膜蛋白包括糖蛋白,载体蛋白和酶等。[/font][font=宋体] [/font][font=宋体][font=宋体]通常在膜蛋白外会连接着一些糖类,这些糖相当于会通过糖本身分子结构变化将信号传到细胞内。研究膜蛋白结构的技术包括[/font][font=Calibri]X[/font][font=宋体]射线衍射等,常用于重组膜蛋白的表达系统有真核表达系统。[/font][/font][font=宋体] [/font][b][font=宋体]膜蛋白的类型:[/font][/b][font=宋体]目前存在不同类型的膜蛋白,例如:[/font][font=宋体]①整合膜蛋白[/font][font=宋体]②外周膜蛋白[/font][font=宋体]③脂质结合蛋白[/font][font=宋体]④两性蛋白[/font][font=宋体] [/font][b][font=宋体]膜蛋白的特点:[/font][/b][font=宋体][font=宋体]膜蛋白有多种形状和大小,执行多种任务,但它们总是依赖于一些关键特征。[/font] [font=宋体]膜蛋白的一些区别特征如下。[/font][/font][font=宋体]①跨膜域: 跨膜结构域是延伸到脂质双层全长的蛋白质片段。 疏水性氨基酸残基是这些结构域的共同特征,它们介导与膜磷脂疏水性尾部的相互作用。[/font][font=宋体]②疏水和亲水区域: 膜蛋白包含疏水和亲水结构域,使它们能够与脂质双层和两侧的水环境进行交流。[/font][font=宋体]③选择性:膜蛋白的一个共同特征是它们能够调节某些分子或离子的通过。 通常是蛋白质的独特结构和电荷决定了它的选择性。[/font][font=宋体]④受体位点: 当膜蛋白上的受体区域与各自的目标分子或离子结合时,这些区域就会被激活。 大多数时候, 分子 或由受体检测到的离子在受体上具有与该位点结构或化学相容的结合位点。[/font][font=宋体]⑤构象变化: 当膜蛋白结合特定分子或离子时,它通常会发生构象变化,从而引发生物反应或允许蛋白质将结合的分子转运穿过膜。[/font][font=宋体]⑥锚固:多种机制,包括与其他蛋白质的相互作用和与膜中脂质分子的结合,可用于将膜蛋白锚定到细胞膜。[/font][font=宋体]⑦糖基化:碳水化合物链通过称为糖基化的过程与几种膜蛋白结合。 这种改变可以作为防止蛋白水解的保护措施,并作为细胞中下游蛋白质的信号。[/font][font=宋体][font=宋体]跨膜结构域、疏水和亲水区域、选择性、受体位点、构象变化、锚定和糖基化都是膜蛋白的特性,对它们在细胞膜中的功能至关重要。[/font] [font=宋体]由于这些特性,膜中的蛋白质能够运输分子、发送信号、提供结构支持和催化反应。[/font][/font][font=宋体] [/font][b][font=宋体]膜蛋白的功能:[/font][/b][font=宋体]①运输功能[/font][font=宋体]膜转运蛋白分为载体蛋白和通道蛋白两种。主动运输和协助扩散都需要载体蛋白。水分子进去细胞时需要水通道蛋白,还有一种离子通道蛋白,需要注意的是通过通道蛋白进出细胞因为不需要能量所以属于协助扩散。[/font][font=宋体] [/font][font=宋体]②识别功能[/font][font=宋体] [/font][font=宋体]两个不相邻细胞间信息交流是通过信号分子(如激素、神经递质、淋巴因子等)来完成的,而细胞膜上能与信息分子结合的便是细胞膜上的特异性受体。[/font][font=宋体] [/font][font=宋体][font=宋体]细胞与细胞之间可以通过相互接触而相互识别,例如精子与卵细胞的相互识别,效应[/font][font=Calibri]T[/font][font=宋体]细胞与靶细胞之间的相互识别就是依靠糖蛋白来完成的[/font][/font][font=宋体] [/font][font=宋体]③催化功能[/font][font=宋体] [/font][font=宋体][font=宋体]膜蛋白可能是某些反应所需要的酶。例如[/font][font=Calibri]Na+-K+[/font][font=宋体]泵中存在[/font][font=Calibri]ATP[/font][font=宋体]水解酶;光反应、有氧呼吸之所以在膜上发生的原因之一就是膜上存在反应所需的相关酶。[/font][/font][font=宋体] [/font][font=宋体]④抗原功能[/font][font=宋体] [/font][font=宋体][font=宋体]表面抗原能和特异的抗体结合,如人细胞表面有一种蛋白质抗原[/font][font=Calibri]HLA[/font][font=宋体],是一种变化极多的二聚体。不同的人有不同的[/font][font=Calibri]HLA[/font][font=宋体]分子,器官移植时,被植入的器官常常被排斥,这就是因为植入细胞的[/font][font=Calibri]HLA[/font][font=宋体]分子不为受体所接受之故。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白制备[/b][/url]平台及跨膜蛋白详解:详情可查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 一种新型的重组蛋白A柱

    一种新型的重组蛋白A柱

    http://simg.instrument.com.cn/bbs/images/brow/em09511.gif一种新型的重组蛋白A柱 洗脱条件温和,充分防止蛋白变性蛋白A是一种金黄色葡萄球菌细胞壁蛋白质,能特异性地与人和哺乳动物抗体(主要是IgG)的Fc区结合。因而,将蛋白A与琼脂糖凝胶以一定的方式结合,可制备用于抗体纯化的亲和填料。早期的蛋白A柱结合的都是天然蛋白A。天然蛋白A由5个IgG结合域和其它未知功能的非Fc结合域组成,分子量约42KD,结构如图一所示。这种柱子对IgG的亲和能力很强,可以吸附大量的lgG。但同时,天然蛋白A的其他非结合域会和非目标蛋白结合,这样被洗脱下来的蛋白质纯度不够,会影响到后续的试验。为了解决这些问题,科学家们运用基因工程技术,克隆出蛋白A的基因,并对其进行改造,除去了一些不重要的非结合域。偶联这种重组蛋白A的琼脂糖凝胶柱在蛋白质纯化中,的确是提高了产物的纯度。目前,市场上绝大部分重组蛋白A柱都是这种产品。但是,纯化时所用的洗脱液一般为pH=2.7的甘氨酸溶液,如果洗脱效果不是很理想,还要降低pH,采用pH=1.9的甘氨酸溶液。由此可见,此法洗脱条件比较剧烈,最后收集的蛋白质很有可能变性,或者是复性困难。 这种洗脱条件剧烈的柱子结合的重组蛋白A一般具有5个串联结构域:E、D、A、B、C。虽然每个域均可以和IgG的Fc段结合,但不同的域结合强度略有差异。因此洗脱条件不均一,而且经常需要较低的pH值。GE的重组蛋白A柱即为这种类型,如图二所示。考虑到减少串联结构域的个数,并且采取同型结构域串联,就可以避免不同结构域与抗体Fc 段亲和性的差异从而使洗脱条件温和而均一,Putus研制出了含有三个串联B结合域的重组蛋白A,如图二所示。同时,我们用Putus重组蛋白A柱和GE重组蛋白A柱纯化人血浆,纯化的结果用于比较两种纯化柱的纯化效果,结果如图三所示。GE Putus 图二、重组蛋白A结构示意图待纯化样品:人血浆实验材料:GE公司的重组蛋白A柱(E、D、A、B、C结构域串联,见图二)Putus公司的重组蛋白A柱(3个B结构域串联,见图二)实验方法:分别按照每个公司的说明书来操作,洗脱条件分别为pH值3.0和4.5, SDS-PAGE检测结果如下: 上图从左边起,泳道1为标准蛋白Marker,泳道2为经过GE填料洗脱后抗体,泳道3为经过Putus填料洗脱抗体,泳道4为人血浆。从图中,我们可以看出,与GE 重组蛋白A填料从人血浆纯化抗体纯度比较,拥有3个同型结构域的Putus填料可以获得同样纯度的抗体。但是,后者的洗脱条件仅为4.5,高于前者的洗脱条件3.0。由此可见,使用具备较少B结构域的重组蛋白A柱也能获得高纯度的IgG,并且洗脱条件温和,能防止蛋白质聚集,保护蛋白质活性。http://cp00a3cee71b5f96adf6e669b5d7f56a9f11.jpg/http://C:\Documents and Settings\adim\桌面\001.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_632703_1672347_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187444_1672347_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187445_1672347_3.jpg

  • 重组蛋白是什么?融合蛋白和重组蛋白的区别

    [font=宋体][b]什么是重组蛋白?[/b][/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白[/b][/url]的产生是应用了重组[/font][font=Calibri]DNA[/font][font=宋体]或重组[/font][font=Calibri]RNA[/font][font=宋体]的技术从而获得的蛋白质。体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。[/font][/font][font=宋体] [/font][font=宋体][b]融合蛋白和重组蛋白的区别[/b][/font][font=宋体][font=Calibri]1[/font][font=宋体]、重组蛋白[/font][/font][font=宋体]重组蛋白是指应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子。融合蛋白表达只是重组蛋白表达的一种策略,融合表达是一种方法。因为融合表达具有表达效率高、产物稳定而且水溶性好、易于鉴定和纯化等优点,现已被广泛采用。[/font][font=宋体][font=Calibri]2. [/font][font=宋体]融合蛋白[/font][/font][font=宋体][font=宋体]融合蛋白是指通过重组[/font][font=Calibri]DNA[/font][font=宋体]技术将你要表达的目的蛋白基因同表达载体上融合蛋白基因相连,这样表达出的蛋白质就会是同时具有目的基因蛋白和融合基因蛋白两个部分的重组蛋白。[/font][/font][font=宋体][font=宋体]融合蛋白与重组蛋白不是一个层次上对立的概念,融合蛋白表达只是重组蛋白表达的一种策略,融合表达是一种方法。因为融合表达具有表达效率高、产物稳定而且水溶性好、易于鉴定和纯化等优点,现已被广泛采用。融合蛋白又称标签([/font][font=Calibri]Tag[/font][font=宋体]),常用的[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体]总结:在生物制药领域,重组蛋白具有较高的活性和纯度,更易吸收,安全性也更高的特点。重组蛋白的利用率也更高。[/font][font=宋体] [/font][font=宋体]为了生产重组蛋白,基因被分离并克隆到表达载体中。重组蛋白的生产需要蛋白表达系统、蛋白纯化系统和蛋白识别系统。[/font][font=宋体] [/font][font=宋体][b]获取重组蛋白的基本步骤:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]目标基因的扩增。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]插入克隆载体。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]亚克隆到表达载体中。[/font][/font][font=宋体][font=Calibri]4.[/font][font=宋体]转化到蛋白表达宿主中[/font][font=Calibri]([/font][font=宋体]细菌[/font][font=Calibri]([/font][font=宋体]大肠杆菌[/font][font=Calibri])[/font][font=宋体]、酵母细胞、哺乳动物细胞或杆状病毒[/font][font=Calibri]-[/font][font=宋体]昆虫细胞系统[/font][font=Calibri])[/font][font=宋体]。[/font][/font][font=宋体][font=Calibri]5.[/font][font=宋体]重组蛋白鉴定试验[/font][font=Calibri](Western blot[/font][font=宋体]或荧光[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]6.[/font][font=宋体]大规模生产。[/font][font=Calibri]([/font][font=宋体]大规模发酵[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]7.[/font][font=宋体]分离和纯化。[/font][/font][font=宋体] [/font][font=宋体]需要考虑多种因素:[/font][font=宋体][font=Calibri]1.[/font][font=宋体]选择哪个宿主系统?[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]如何分离和纯化重组蛋白?[/font][/font][font=宋体] [/font][font=宋体]选择适当的表达宿主或使用正确的纯化方法并不容易,应考虑目标重组蛋白的性质。下面列出了一些重要因素:[/font][font=宋体] [/font][font=宋体]? 膜结合[/font][font=宋体]? 溶解度[/font][font=宋体]? 单或多结构域[/font][font=宋体][font=宋体]? 大小[/font][font=Calibri]([/font][font=宋体]分子量[/font][font=Calibri])[/font][/font][font=宋体]? 表达位置[/font][font=宋体] [/font][font=宋体][font=宋体]对于大多数没有足够经验来表达和分离重组蛋白的人来说,重组蛋白的生产是非常耗时的。许多生物公司为各种不同规模的重组蛋白表达提供良好的服务,例如义翘神州[/font][font=Calibri]([/font][font=宋体]参考重组蛋白生产的详细服务清单)[/font][/font][font=宋体] [/font][font=宋体]义翘神州提供重组蛋白和[url=https://cn.sinobiological.com/resource/protein-review/fusion-protein][b]融合蛋白[/b][/url]等相关信息,详情可以关注[/font][font=宋体][font=宋体]融合蛋白:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/fusion-protein[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白生产:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font]

  • 【“仪”起享奥运】酵母蛋白---素食者的蛋白新思路

    [size=16px]素食者在蛋白质摄入上一直面临着挑战,尽管素食食品富含多种营养成分,但素食者在蛋白质摄入方面存在不足。首先,植物性食品中的蛋白质含量相对较低,且氨基酸组成不如动物性蛋白完整,素食者需要摄入更多的植物性食品才能满足蛋白质的需求。然而,过多的植物性食品摄入可能导致热量过剩、膳食纤维过多等问题。其次,一些素食者可能存在对某些植物性食品的过敏或不耐受情况,例如大豆、坚果等食品中的蛋白质可能引发人体过敏反应,而谷物中的麸质[i][/i]则可能引起不耐受反应等。此外,植物性蛋白质的生物利用率较低,需要素食者通过合理搭配食物来提高蛋白质的摄入效率。[/size][size=16px]在传统素食者蛋白质摄入不足的背景下,素食蛋白棒产品正逐渐在素食者中普及起来。[/size][size=16px]素食蛋白棒是一种高蛋白、低脂肪、便携的零食,能够方便素食者在日常饮食中补充蛋白质,满足素食者对蛋白质的需求。素食蛋白棒的热量和脂肪含量相对较低,使得素食者可以在控制热量摄入的同时,获得足够的蛋白质补充。[b]一是丰富的营养价值[/b]:作为素食蛋白棒中重要蛋白来源的酵母蛋白,是一种来源于酿酒酵母的优质完全蛋白,拥有高蛋白质含量与优质氨基酸配比,其蛋白质含量高达80%以上,富含人体所需的全部8种必需氨基酸,且其氨基酸配比合理,易被人体吸收利用。酵母蛋白除了赋予素食蛋白棒高蛋白质含量外,还提供B族维生素和矿物质等多种营养成分,有助于维持身体的正常代谢和健康状态。研究表明,酵母蛋白中的活性成分能够调节肠道菌群平衡,促进有益菌的增殖,抑制有害菌的生长,从而改善肠道环境,提高肠道健康水平。[b]二是环保与可持续性和性价比优势[/b]:酵母蛋白来源于微生物发酵,相比动物源蛋白和植物源蛋白更加环保和可持续,它不需要大量的土地、水和饲料资源,也不产生温室气体排放。目前,酵母蛋白的生产已完全工业化,生产效率高、成本低,使得酵母蛋白与乳清蛋白等动物蛋白相比在价格上具有一定的优势,同时避免了动物源蛋白和植物源蛋白可能带来的过敏源问题。[/size]

  • β-乳球蛋白属于乳白蛋白还是属于乳球蛋白里面的一种成分?

    β-乳球蛋白属于乳白蛋白还是属于乳球蛋白里面的一种成分?最近看到有两种版本,其一,说是属于乳白蛋白里面的一种成分,乳白蛋白包括α-乳白蛋白、β-乳球蛋白和血清白蛋白。乳球蛋白即免疫球蛋白。其二,乳白蛋白包括α-乳白蛋白和血清白蛋白,乳球蛋白包括β-乳球蛋白和免疫球蛋白。现在不知道哪种说法对,请各位指教!!!谢谢!!!

  • 抗体与蛋白的区别?抗体蛋白结构解析

    [font=宋体]抗体,作为一类特殊的蛋白质,在免疫系统中发挥着至关重要的作用,它们能够特异性地识别并中和外来病原体,如细菌和病毒。而蛋白质,作为生命活动的基础分子,具有多种多样的功能,从酶催化到结构支撑,无所不包。抗体与蛋白的区别在于,抗体是一类具有特定功能的蛋白质,而蛋白质则是更广泛的一类生物分子。本文将深入探讨抗体与蛋白的具体区别,并详细解析抗体蛋白的结构与功能,为读者提供一个全面而深入的理解。[/font][font=宋体] [/font][b][font=宋体]抗体与蛋白的区别?[/font][/b][font=宋体] [/font][font=宋体]定义:[/font][font=宋体][font=宋体]抗体([/font][font=Calibri]antibody[/font][font=宋体])是指机体由于抗原的刺激而产生的具有保护作用的蛋白质。它(免疫球蛋白不仅仅只是抗体)是一种由浆细胞(效应[/font][font=Calibri]B[/font][font=宋体]细胞)分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等的大型[/font][font=Calibri]Y[/font][font=宋体]形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其[/font][font=Calibri]B[/font][font=宋体]细胞的细胞膜表面。抗体能识别特定外来物的一个独特特征,该外来目标被称为抗原。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]抗体是一类能与抗原特异性结合的免疫球蛋白。抗体按其反应形式分为凝集素、沉降素、抗毒素、溶解素、调理素、中和抗体、补体结合抗体等。按抗体产生的来源分为正常抗体(天然抗体),如血型[/font][font=Calibri]ABO[/font][font=宋体]型中的抗[/font][font=Calibri]A[/font][font=宋体]和抗[/font][font=Calibri]B[/font][font=宋体]的抗体,和免疫抗体如抗微生物的抗体。按反应抗原的来源分为异种抗体,异嗜性抗体,同种抗体和自身抗体。按抗原反应的凝集状态分为完全抗体[/font][font=Calibri]IgM[/font][font=宋体]和不完全抗体[/font][font=Calibri]IgG[/font][font=宋体]等。抗体在医疗实践中应用甚为广泛。如用于疾病的预防、诊断和治疗方面都有一定的作用。临床上用丙种球蛋白预防病毒性肝炎、麻疹、风疹等,国际上用抗[/font][font=Calibri]Rh[/font][font=宋体]免疫球蛋白预防因[/font][font=Calibri]Rh[/font][font=宋体]血型不合引起的溶血症。诊断上如类风湿因子用于类风湿性关节炎,抗核抗体([/font][font=Calibri]ANA[/font][font=宋体])、抗[/font][font=Calibri]DNA[/font][font=宋体]抗体用于系统性红斑狼疮,抗精子抗体用于原发性不孕症的诊断等;治疗上如毒素中毒用抗毒治疗以及免疫缺陷性疾病的治疗等。[url=https://cn.sinobiological.com/resource/antibody-technical][b]抗体相关资源[/b][/url][/font][/font][font=宋体] [/font][font=宋体]蛋白:[/font][font=宋体][font=宋体]蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的[/font][font=Calibri]16%~20%[/font][font=宋体],即一个[/font][font=Calibri]60kg[/font][font=宋体]重的成年人其体内约有蛋白质[/font][font=Calibri]9.6~12kg[/font][font=宋体]。人体内蛋白质的种类很多,性质、功能各异,但都是由[/font][font=Calibri]20[/font][font=宋体]多种氨基酸([/font][font=Calibri]Amino acid[/font][font=宋体])按不同比例组合而成的,并在体内不断进行代谢与更新。点击查看:[url=https://cn.sinobiological.com/resource/protein-review][b]蛋白相关资源[/b][/url][/font][/font][font=宋体] [/font][b][font=宋体]区别与联系:[/font][/b][font=宋体][font=宋体]蛋白质还是有一定的区别以及关联性的,虽然说抗体是蛋白质,但是蛋白质不一定是抗体。[/font] [font=宋体]主要是因为抗体是通过人体内的浆细胞所产生的,而且还可以喝相应的抗原特异性相互结合,这样在一定程度上就能发挥出蛋白质。[/font][/font][font=宋体] [/font][b][font=宋体]抗体[/font][font=宋体]蛋白[/font][font=宋体]结构[/font][font=宋体]解析[/font][font=宋体]:[/font][/b][font=宋体][font=宋体]抗体是一种免疫球蛋白,由[/font][font=Calibri]B[/font][font=宋体]淋巴细胞产生。抗体的单体是一个[/font][font=Calibri]Y[/font][font=宋体]形的分子,有[/font][font=Calibri]4[/font][font=宋体]条多肽链组成。其中包括两条相同的重链,以及两条相同的轻链,之间由双硫键连接在一起。每条重链[/font][font=Calibri]50kDa[/font][font=宋体],每条轻链[/font][font=Calibri]25kDa[/font][font=宋体],轻重链间存在二硫键链接。[/font][/font][font=宋体] [/font][font=宋体]轻链[/font][font=宋体][font=宋体]轻链包括可变区和恒定区,可变区约占轻链的[/font][font=Calibri]1/2[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]重链[/font][font=宋体][font=宋体]重链包括可变区和恒定区。根据重链的不同,可以将抗体分为不同的种类,例如哺乳动物[/font] [font=Calibri]Ig [/font][font=宋体]的重链有α、δ、ε、γ和 μ 五种[/font][font=Calibri],[/font][font=宋体]相对应可以将哺乳动物[/font][font=Calibri]Ig[/font][font=宋体]分为 [/font][font=Calibri]IgA[/font][font=宋体]、[/font][font=Calibri]IgD[/font][font=宋体]、[/font][font=Calibri]IgE[/font][font=宋体]、[/font][font=Calibri]IgG [/font][font=宋体]和 [/font][font=Calibri]IgM [/font][font=宋体]五类。[/font][/font][font=宋体] [/font][font=宋体]可变区[/font][font=宋体][font=宋体]抗体分子的[/font][font=Calibri]N[/font][font=宋体]端存在一段氨基酸序列变化较大的区域,该区域称为可变区。可变区中存在可以与抗原特结合的部位,即抗原结合位点。一个抗体有两个抗原结合位点,可以同时结合两个抗原分子。在可变区中有三个区域的序列高度变化,成为高变区([/font][font=Calibri]hypervariable region[/font][font=宋体],[/font][font=Calibri]HVR[/font][font=宋体])又称为抗原互补决定区([/font][font=Calibri]complementarity determining region[/font][font=宋体],[/font][font=Calibri]CDR[/font][font=宋体])。可变区主要通过其[/font][font=Calibri]3[/font][font=宋体]个[/font][font=Calibri]CHR[/font][font=宋体]区形成[/font][font=Calibri]3[/font][font=宋体]个环状结构与抗原特异性结合。可变区中非[/font][font=Calibri]CDR[/font][font=宋体]部分成为骨架区([/font][font=Calibri]framework region[/font][font=宋体],[/font][font=Calibri]FR[/font][font=宋体]),其氨基酸组成和排列变化相对[/font][font=Calibri]CDR[/font][font=宋体]较少。[/font][/font][font=宋体] [/font][font=宋体]恒定区[/font][font=宋体][font=宋体]抗体分子[/font][font=Calibri]C[/font][font=宋体]端氨基酸序列相对稳定,该区域称为恒定区。同一种抗体的恒定区是相同的。抗体轻链的恒定区由一个[/font][font=Calibri]Ig[/font][font=宋体]结构域构成;重链的恒定区由[/font][font=Calibri]3-4[/font][font=宋体]个串联的[/font][font=Calibri]Ig[/font][font=宋体]结构域及一个用于增加灵活性的铰链区构成。[/font][font=Calibri]IgA[/font][font=宋体]、[/font][font=Calibri]IgE[/font][font=宋体]、[/font][font=Calibri]IgG[/font][font=宋体]有三个结构域([/font][font=Calibri]CH1[/font][font=宋体]、[/font][font=Calibri]CH2[/font][font=宋体]、[/font][font=Calibri]CH3[/font][font=宋体]),[/font][font=Calibri]IgD[/font][font=宋体]、[/font][font=Calibri]IgM[/font][font=宋体]有四个结构域([/font][font=Calibri]CH1[/font][font=宋体]、[/font][font=Calibri]CH2[/font][font=宋体]、[/font][font=Calibri]CH3[/font][font=宋体]、[/font][font=Calibri]CH4[/font][font=宋体])。不同种类抗体的铰链区存在一定的差异,[/font][font=Calibri]IgA[/font][font=宋体]的铰链区较短,[/font][font=Calibri]IgD [/font][font=宋体]的铰链区较长,[/font][font=Calibri]IgM [/font][font=宋体]和[/font][font=Calibri]IgE [/font][font=宋体]无铰链区。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Fab[/font][font=宋体]片段[/font][/font][font=宋体][font=Calibri]IgG[/font][font=宋体]分子在木瓜蛋白酶的作用下可以被降解为两个[/font][font=Calibri]Fab[/font][font=宋体]段及一个[/font][font=Calibri]Fc[/font][font=宋体]段。[/font][font=Calibri]Fab[/font][font=宋体]段由抗体轻链的可变区、轻链的恒定区、重链的可变区及重链恒定区构成。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Fc[/font][font=宋体]段[/font][/font][font=宋体][font=Calibri]Fc[/font][font=宋体]段包含了所有抗体分子共有的蛋白质序列以及各个类别独有的决定簇。[/font][font=Calibri]Fc[/font][font=宋体]段有多种生物学活性,具有结合补体、结合[/font][font=Calibri]Fc[/font][font=宋体]受体、通过胎盘等作用。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/antibody-technical/antibody-structure-function][b]抗体的结构和功能[/b][/url]详情:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/antibody-structure-function[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 影响凯氏定氮法测定粗蛋白准确性应注意的细节问题

    影响凯氏定氮法测定粗蛋白准确性应注意的细节问题摘 要 阐述了影响凯氏定氮法测定粗蛋白准确性应注意的一些细节问题,并进行了相关分析,且提出了相应的解决办法。关键词 凯氏定氮法;粗蛋白;测定;准确性;问题随着饲料行业的飞速发展,饲料原料及其饲料产品的价格也居高不下。而粗蛋白的检测是评定饲料原料及其产品的重要指标之一,目前常用的为凯氏定氮法,即国家颁布的《饲料中粗蛋白的测定方法》(GB1996-6432)。但是该方法也存在着测定过成较复杂、费时等缺陷,测定时除严格按照规定程序操作外,还需要一定的实验技巧和实践经验。因此有很多饲料企业在实际操作过程中总是出现各种问题,导致检测结果异常而不知如何去分析。下面,笔者以GB/T6432—1994为准,针对影响凯氏定氮对测定结果标准性应注意的细节问题和大家共同探讨。1 试剂的配制粗蛋白测定中所用的化学药品如浓硫酸、盐酸、氢氧化钠、硼酸、硫酸铜、硫酸钾(硫酸钠)、硫酸铵、蔗糖等均为化学纯,标定盐酸标准溶液用的无水碳酸钠为基准试剂。在配制试剂前一定要用PH试纸或酸度计检测一下蒸馏水是否为中性,所用的烧杯、试剂瓶等配液设备清洗干净。1.1 盐酸标准溶液的配制配制的盐酸标准溶液尽量为低浓度,一般C(HCl)=0.02~0.05mol·L-1。低浓度虽然用量大,但可减少操作误差和读数误差。配制盐酸标准溶液一定要严格按照标准操作进行,基准无水碳酸钠已定于270~300℃灼烧至恒重,称准至0.0001g,做4~6个平行样,去掉最高值和最低值后取平均值,同时还要做空白试验。盐酸标准溶液的配制量尽量不要太多、使用时间太长,防止水分蒸发和盐酸挥发而影响其浓度的准确性。1.2 其他试剂的配制400g·L-1氢氧化钠溶液、20g·L-1硼酸溶液、混合指示剂(1g·L-1甲基红乙醇溶液与5g·L-1溴甲酚绿乙醇溶液等体积混合)等主要是在称量时要做到快、准、稳,再就是防止使用时间太长,特别是混合指示剂不要超过3个月。

  • 使用AFS检测单分子水平的蛋白去折叠过程

    使用AFS检测单分子水平的蛋白去折叠过程

    [b]使用声力研究蛋白去折叠[/b]单分子力谱(SMFS)技术是研究蛋白结构与蛋白去折叠中的生物力学性质的有力工具。SMFS能够为研究和药物开发提供有价值的信息。SMFS有助于揭示人类疾病病理的分子机制,而机制往往被认为与错误折叠的蛋白的形成和积聚有关,如阿茲海默症和帕金森氏症。然而现有的SMFS仪器缺少同时并行研究多个蛋白去折叠的功能,使得研究过程耗时很长。使用声波来对数以百计的生物分子施力并操控是非常理想的高通量研究方法。此案例中,声力谱学(AFS)是最新的用于研究蛋白去折叠的单分子操控方法。[img=,500,145]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021031435408_23_981_3.png!w690x201.jpg[/img]1 AFS检测蛋白去折叠的图解。蛋白一端栓住玻璃表面,另一端拴住聚苯乙烯微球。[img=,400,238]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021032257008_8827_981_3.png!w421x251.jpg[/img]2 对视野范围内被蛋白分子拴在玻璃表面的4.5 μm聚苯乙烯微球同时成像。物镜放大倍数为20x。AFS设备使用压电元件共振激发平面声阱穿过微流控芯片。共振波对与周围介质密度不同的微球施力,每个生物分子被单独地由微球拉伸(图1)。仪器可以实时并行操控视野范围内数以百计的微球,获得大量的数据以研究每个生物分子的随机与异质行为(图2)。在Yan Jie(NUS)的实验室的这项试点研究中,我们首次展示了AFS如何对蛋白施力并操控。实验对踝蛋白施力引发(去)折叠同时以高精确度记录蛋白的拉伸。踝蛋白属于机械敏感性大分子,在调控蛋白粘附于胞外基质中起作用。踝蛋白是细胞代谢过程和信号通路中的关键,并能够在力的作用下改变构象,在单分子生物物理学中备受关注。[img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021033524578_3892_981_3.png!w679x212.jpg[/img]3 使用AFS得到的单个踝蛋白分子的去折叠曲线,力变化速率为1 pN/s。轨迹在500 Hz下获得(彩色点),并平衡至50 Hz(黑色线)。3a 单个踝蛋白多次拉伸的力-距离曲线。3b 单个拉伸循环的力-距离曲线。3c 图3b中分子的时间-距离曲线。在这项研究中,连接了DNA的踝蛋白拴在聚苯乙烯微球和玻璃表面。启动声波后形成平面声阱,连接了踝蛋白的微球受到朝向声阱的力。实验中通过调节声波的振幅来改变力的大小。逐渐增加力的大小使得蛋白的结构域按顺序去折叠。实验循环进行拉伸与收缩的过程(力变化速率为1 pN/s)并同时以nm级的分辨率检测每个蛋白的拉伸长度(图3)。通过力-距离曲线(图3a)可以观察到单个踝蛋白的去折叠循环。将单个蛋白的去折叠轨迹叠加即可检测到单个结构域去折叠的发生,研究人员可以得到蛋白结构和蛋白去折叠自由能图谱信息。AFS仪器产生的超声并不会损害生物分子的结构完整性,因此蛋白可以连续去折叠和再折叠长达数小时,并能够得到单个蛋白多次去折叠和再折叠的曲线。相比于其他SMFS方法经过多次拉伸和收缩之后对蛋白造成光学损伤或力学损伤使得实验被迫终止,AFS能够获得更多的信息。图3b: 单个力-距离曲线中截取一小段,表示一个拉伸过程。将力从15 pN增加至19 pN,可以观察到4个去折叠过程,与蛋白的4个结构域相符合,拉伸长度为30 nm至100 nm。AFS的高分辨率检测功能可以很清晰地区分去折叠过程。AFS在x,y方向精度为2 nm,在z方向精度为4 nm(频率为25 Hz),可以大幅提高(去)折叠研究的精密程度。图3c: 图3b中分子的18秒范围内的时间-距离曲线。AFS可以检测短至毫秒级至长达10小时以上的事件,用于研究蛋白的热力学和动力学。通过检测踝蛋白的去折叠步骤并记录连续的高分辨率的去折叠轨迹,可以得出AFS如何用于研究蛋白去折叠。研究蛋白(去)折叠的详细机制能够在生物物理和生物医药领域产生突破性发现。今后的蛋白折叠以及蛋白相互作用的研究中,AFS的多分子并行操控功能将发挥重要作用,用户可以同时并行检测大量的蛋白分子。用户可以获得大量的实验数据,在不影响分辨率的同时对蛋白的机械性质数据作出分析。

  • 单次与多次跨膜蛋白的特点和功能:多次跨膜蛋白的意义

    [font=宋体][font=宋体]跨膜蛋白([/font][font=Calibri]TMEM[/font][font=宋体])是一种跨越细胞质膜的蛋白家族,允许细胞[/font][font=Calibri]-[/font][font=宋体]细胞和细胞[/font][font=Calibri]-[/font][font=宋体]环境之间的联系。结构决定性质,性质决定功能,一般单次跨膜主要起锚定作用,多次跨膜能形成疏水孔道,发挥运输的功能。这里我们将讨论膜蛋白的结构,并说明它们与脂质双分子层的不同关联方式。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]对膜成分而言,脂质分子数多,但膜蛋白质量较大[/font][/font][font=宋体][font=宋体]我们知道,脂质双分子层提供了细胞膜的基本结构,并作为膜两侧分子的渗透屏障,但是大多数膜的功能其实是由膜蛋白完成的。在动物中,蛋白质约占大多数质膜质量的[/font][font=Calibri]50%[/font][font=宋体],其余是脂质加上糖脂和糖基化蛋白中相对较少的碳水化合物。然而,由于脂质分子比蛋白质小得多,细胞膜通常含有的脂质分子大约是蛋白质分子的[/font][font=Calibri]50[/font][font=宋体]倍。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]不同类型的膜蛋白发挥诸多功能[/font][/font][font=宋体]膜蛋白不仅通过脂质双分子层运输特定的营养物质、代谢产物和离子;它们还有许多其他功能:有些将膜固定在两侧的大分子上;有些能作为受体,检测细胞环境中的化学信号,并将其传递到细胞内部;还有一些作为酶发挥功能,催化特定反应。每种类型的细胞膜都含有不同的蛋白质,反映了特定细胞膜的特殊功能。[/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]蛋白质可以通过多种方式与膜的脂双层相关联[/font][/font][font=宋体][font=宋体]直接附着在脂质双分子层上的蛋白质(如图[/font][font=Calibri]3-A,B,C[/font][font=宋体])只有用洗涤剂破坏双分子层才能被去除,这种蛋白质被称为膜内在蛋白,其余的膜蛋白称为膜外周蛋白(如图[/font][font=Calibri]3-D[/font][font=宋体]),它们可以通过更温和的提取过程从膜中释放出来,这一过程会干扰蛋白质与蛋白质之间的相互作用,但会使脂质双层结构保持完整。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]许多膜蛋白穿过脂双层,部分区域位于双层膜的两侧[/font][font=Calibri](A)[/font][font=宋体]。这些跨膜蛋白具有疏水性和亲水性区域。它们的疏水区域位于双层膜的内部,紧靠着脂质分子的疏水尾部。它们的亲水性区域暴露在膜的两侧的水环境中。[/font][/font][font=宋体][font=宋体]有的膜蛋白几乎完全位于胞质,与脂质双分子层相互作用的是蛋白表面的[/font][font=宋体]α螺旋结构[/font][font=Calibri](B)[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]有些蛋白质完全位于双层膜外(内侧或外层),仅通过一个或多个共价附着的脂类基团与膜相关联[/font][font=Calibri](C)[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]还有些蛋白质通过与膜蛋白的相互作用,间接地与膜表面相结合[/font][font=Calibri](D)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4. [/font][font=宋体]多肽通常以α螺旋的形式穿过脂双层[/font][/font][font=宋体][font=宋体]对于许多跨膜蛋白,多肽链只穿过膜一次,这些蛋白质中有许多是细胞外信号的受体。形成[/font][font=Calibri]a[/font][font=宋体]螺旋的氨基酸的疏水侧链与磷脂分子的疏水烃尾相接触,多肽主链的亲水部分在螺旋内部相互形成氢键。一个完全穿过膜的α螺旋结构需要包含[/font][font=Calibri]20[/font][font=宋体]个氨基酸。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]膜蛋白[/font][font=Calibri]x[/font][font=宋体]射线结晶学的进展使许多膜蛋白的三维结构得以确定。根据这些主要特征构建模型(片段包含约[/font][font=Calibri]20-30[/font][font=宋体]个氨基酸、具有高度疏水性),通常可以从蛋白质的氨基酸序列预测多肽链的哪些部分延伸到脂双层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5. [/font][font=宋体]跨膜α螺旋常和其他α螺旋互作或组合形成孔道[/font][/font][font=宋体][font=宋体]有的跨膜蛋白形成水通道,允许水溶性分子穿过膜,这样的孔道不能由具有单一的、均匀疏水的、跨膜螺旋结构的蛋白质形成。形成孔隙的蛋白质更为复杂,通常具有一系列的[/font][font=宋体]α螺旋多次穿过双层膜。许多单通道膜蛋白形成同源或异源二聚体,这些二聚体由两个跨膜螺旋之间的非共价、但强而特异的相互作用结合在一起,这些螺旋的疏水氨基酸序列包含指导蛋白质[/font][font=Calibri]-[/font][font=宋体]蛋白质相互作用的信息。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]在有些包含多个跨膜结构的蛋白质中,跨膜区域是由包含疏水性和亲水性氨基酸侧链的螺旋形成的。这些氨基酸的排列使得疏水侧链落在螺旋的一侧,而亲水侧链则集中在螺旋的另一侧。在脂双层疏水环境中,这类[/font][font=宋体]α螺旋呈环状并排排列,疏水侧链暴露于膜的脂质上,亲水侧链通过脂质双层形成亲水孔的内衬。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6. [/font][font=宋体]一些β折叠片多次跨膜形成大的离子通道[/font][/font][font=宋体][font=宋体]虽然到目前为止,[/font][font=宋体]α螺旋是多肽链穿过脂双层的最常见的形式,某些多肽链却是以β折叠穿过脂双层。膜蛋白以β折叠片的形式穿过脂质双分子层,被弯曲成圆柱形,形成一个开放式的桶状结构,称为β折叠桶。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]β片层的数目变化较大,少的可以有[/font][font=Calibri]8[/font][font=宋体]个,多的可以多达[/font][font=Calibri]22[/font][font=宋体]个。面朝桶内的氨基酸侧链主要是亲水的,而桶外的那些接触脂双层疏水核心的侧链则完全是疏水的。与α螺旋不同,β折叠桶只能形成宽的通道,因为β折叠片弯曲成桶的紧密程度是有限制的,不如α螺旋灵活。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]综上,膜的功能主要体现在膜蛋白的多样性上,膜蛋白的结构决定其功能。不同功能的膜蛋白其结构基础存在差异,因此其与膜骨架的关联方式也有不同。像膜偶联受体、膜偶联酶这些膜蛋白可能通过单次跨膜或者共价修饰,就能锚定在膜上实现其功能。而作用于底物转运的膜蛋白必须提供一个较大的亲水孔道,才能使水溶性的带电离子等底物通过,因此不同的[/font][font=宋体]α螺旋之间倾向于互作,或者同一个蛋白具有多个互作的α螺旋,或者通过β折叠形成桶状孔隙发挥功能。根据跨膜蛋白的疏水特性及跨膜区域的结构特点,可以对跨膜蛋白及其跨膜区段进行预测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体][b]义翘神州提供三大[/b][url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url][b]制备平台,有[/b][/font][font=Calibri]VLP[/font][font=宋体]技术平台、去垢剂技术平台、[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 方便面里应该含多少蛋白

    主管部门说:我们要保证食品的营养,所以要规定方便面里的蛋白质含量;生产厂家说:我们的“高端”方便面用的是低蛋白的面粉,蛋白含量的规定阻碍了“高端”产品的发展;消费者说:方便面里的蛋白含量比牛奶还高?黑心厂家会不会往里加三聚氰胺?那么,方便面里到底应该含有多少蛋白质呢?一、面粉中的蛋白质营养价值很低不管是牛肉面、鲜虾面还是排骨面、鸡汤面,方便面里蛋白质主要还是来源于面粉。虽然面粉都来自于小麦,但是不同的加工工艺获得的面粉其蛋白质含量略有差异。全粉(或叫“头粉”)是所有能够从小麦中取出的面粉,蛋白含量在13~15%左右。从其中分离出来的高档面粉“粉心粉”,蛋白含量大概11~13%,而剩下的“清粉”则可能高到17%。根据蛋白含量的不同,面粉通常被分为“高筋”“中筋”和“低筋”,其中高筋面粉的蛋白含量可达14%,而用来烤蛋糕的低筋面粉可能只有8%。面粉中的蛋白主要是通常说的“面筋蛋白”。它的氨基酸组成跟人体需求相差很大。比如说,人体需要的赖氨酸,它含得很少;而它富含的那些,人体却又要不了那么多。在食品科学上,人们用一个“蛋白质消化校正计分”来表示一种蛋白质满足人体需求的效率。鸡蛋蛋白、牛奶蛋白、纯化的大豆蛋白最好,得分为1,而面筋蛋白只有0.25。也就是说,如果只吃一种蛋白质的话,为了满足人体的氨基酸需求而吃的的面筋蛋白将会是上诉几种“优质蛋白”的4倍。另一方面,面筋蛋白是一种过敏源,大约有1%的人对它过敏,所以有一些食品甚至以“不含面筋蛋白”为卖点。面筋蛋白因此被当作“劣质蛋白”,在配方食品中几乎不被当作蛋白质的来源。面筋蛋白在食品中的作用只要是功能性的而不是营养性的。不含面筋蛋白的面粉主要就是淀粉,无法产生“韧性”——也就是我们通常所说的“筋道”。蛋糕远不如面包“筋道”,就是因为蛋糕粉中的面筋蛋白远远低于面包粉。二、方便面的成本与蛋白含量与没有必然联系方便面除了油炸干燥的那种类型含有很多油之外,其营养成分与传统的面条并没有本质差异。传统面条可以用各种面粉来作,方便面也可以。一方面,这些不同的面粉中的蛋白含量可能不同;另一方面,面粉之外的成分(主要是油)含量也不同,这样成品方便面的蛋白含量就有了比较大的差异。既然面粉的蛋白含量并不是衡量面粉品质的标准(“粉心粉”是最好最贵的面粉,其蛋白含量甚至要低一些),方便面的成本也就跟蛋白含量基本上没有什么关系。对于厂家所宣称的“高端”方便面,如果为了加工性能或者口感色泽的考虑加入淀粉的话,蛋白含量下降了,成本却要增加。三、方便面中应该含有多少蛋白无论是方便面、馒头、面包,还是传统的面条、烧饼,其中的蛋白都不是人体蛋白质的主要来源。它们主要都只是提供碳水化合物。无论规定其中的蛋白含量是多少都没有太大的意义——如果长期单一地依靠这些食物,即使是高筋面粉,也同样造成蛋白不足的“营养不良”;如果考虑食谱的全面均衡,不含蛋白的淀粉同样作出足够的贡献。四、国家标准与三聚氰胺疑虑热议中的方便面国家标准中要求蛋白含量不低于8%。应该说这个含量并不难实现。有的消费者担心这个含量差不多是牛奶中蛋白含量的三倍,会不会导致黑心厂家加入三聚氰胺之类的东西来牟利。这个疑虑基本上没有必要。牛奶中的固体含量只有百分之十几,其它的都是水。三聚氰胺加到牛奶里,可以把不要钱的水变成牛奶的价格。而方便面中,面粉是最便宜的原料,甚至价格便宜的面粉中蛋白含量还要高一些。所以,一般的方便面中加入三聚氰胺无助于厂家“牟利”。如果那些所谓的“高端”方便面加入了淀粉而导致蛋白含量下降,又非要显示“高”蛋白含量的话,倒是有理论上的可能。不过,既然是“高端”产品,自然也就是高价。通过合理配方,比如加入外来蛋白;或者改进工艺,比如减少油的吸收吸附,也并不难满足“国家标准”的要求。基于面食中蛋白的营养价值和含量,强制性的规定蛋白含量并没有太大的必要,反倒容易误导消费者以为方便面“富含”蛋白质,不如强制性要求标明蛋白质、油、碳水化合物以及盐等主要添加剂的含量,而不是简单地给一个“合格”还是“不合格”的标签。就促进行业健康发展而言,保证产品的内容与厂家的宣称相一致,是更难但是更有意义的事情。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制