当前位置: 仪器信息网 > 行业主题 > >

燃烧控制仪

仪器信息网燃烧控制仪专题为您提供2024年最新燃烧控制仪价格报价、厂家品牌的相关信息, 包括燃烧控制仪参数、型号等,不管是国产,还是进口品牌的燃烧控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合燃烧控制仪相关的耗材配件、试剂标物,还有燃烧控制仪相关的最新资讯、资料,以及燃烧控制仪相关的解决方案。

燃烧控制仪相关的论坛

  • 【分享】PE公司AA-300原子吸收仪点火困难和燃烧器控制系统剖析

    PE公司AA-300[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪点火困难和燃烧器控制系统剖析PE公司AA-300[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪点火困难和燃烧器控制系统剖析2005年02期邵星炜 , 苏浩 上海宝钢股份公司现有[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计20台,承担着原料、钢铁、环境、化工产品的分析,仪器分别来自美国PE、瓦里安,日本岛津、柳本公司.现对PE公司AA-300[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪燃烧器控制系统的剖析和对仪器点火困难和使用一段时间后熄火这一故障处理,结合PEAA-300燃烧器控制系统的原理,向大家介绍处理故障的经过,供[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪的维护人员在以后的同类故障处理中参考. 关键词: [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度 , 电流-气流转换器 , 燃烧器元件 , 喷雾器 , 燃烧器排液系统 , 点火器元件 , 气体控制器 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=67778]PE公司AA-300[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪点火困难和燃烧器控制系统剖析[/url]

  • 水平燃烧测试仪价格/水平燃烧测试仪

    水平燃烧测试仪价格/水平燃烧测试仪

    水平燃烧性测试仪用于检测纺织品特别是汽车内装饰织物的相对燃烧速率及阻燃性。该仪器配有密封不锈钢燃烧室、观察窗、试样夹及门式燃烧器。自动燃气控制系统包括电磁控制燃气阀、自动点火计时器及控制器。  使用描述:  1、采用具有悬空鼓膜结构,并带有钢弹簧和减振系统,可平稳操作;  2、配有自动燃气控制系统包括电磁控制燃气阀、自动点火计时器及控制器;  3、配有密封不锈钢燃烧室及观察窗,不锈钢采用316型材质,耐高温高压;  4、试样架可以上下及左右进行移动;  5、基本模式配有手动计时控制;  6、配有试样夹及门式燃烧器。

  • 【原创大赛】电线电缆垂直燃烧试验仪应用探究

    【原创大赛】电线电缆垂直燃烧试验仪应用探究

    [align=center]材料室-畅团民[/align][b]一:引言[/b] 时代在跨越,科技在进步,电能和信息当今社会是发展的两大支柱,人们对电能的认识从最初的感知到目前视电如柴米油盐的地步,21世纪是信息时代,人们对事物分析,规划,发展,决策等都取决于信息,因此电能和信息的传递就至关重要,电线电缆正是输送它们的桥梁,电线电缆质量优劣直接作用其作用的发挥,考究电线电缆某些特性就成了检测电线电缆必不可少的环节。[b]二:目的[/b]电线电缆在使用过程中由于发生短路或接触火种等,有可能使绝缘或护套发热引起燃烧,在严格的场合中,火焰应不蔓延,在一定时间内和一定长度上,应自行熄灭,这种情况称为不延燃,阻燃合格电缆应具备此功能,否则,将引起严重后果,因此检验电线电缆燃烧性能就成重中之重,垂直燃烧试验仪是检测单根电线电缆不延燃的最佳设备,该仪器使用频率高,运用范围广,操作简单,稳定可靠,成为检验人员不可缺得的检验利器。下面就河南奇瑞电线电缆检测设备公司生产的RS-II型垂直燃烧试验仪的应用和大家做一探讨:[b]三:仪器简介[/b]1.仪器名称和型号名称:垂直燃烧试验仪型号:RS-II2.仪器结构:A.空气压缩机气源,丙烷气源(95%纯度)如下图所示:[align=center][img=,601,445]https://ng1.17img.cn/bbsfiles/images/2019/10/201910211353379127_9019_3232436_3.jpg!w601x445.jpg[/img][img=,602,446]https://ng1.17img.cn/bbsfiles/images/2019/10/201910211353515437_1526_3232436_3.jpg!w602x446.jpg[/img][/align]B,标准通风柜(上部排气系统能顺利将有害气体排出)如下图所示:[align=center][img=,690,511]https://ng1.17img.cn/bbsfiles/images/2019/10/201910211354137459_4966_3232436_3.jpg!w690x511.jpg[/img][/align]C. 标准通风柜内的燃烧试验箱(燃烧室和控制部分,控制部分有空气燃气流量控制,燃烧时间,控制电源控制组成;燃烧部分由燃烧喷灯和放置试样的燃烧室组成)如下图所示:[align=center][img=,690,931]https://ng1.17img.cn/bbsfiles/images/2019/10/201910211354574897_430_3232436_3.jpg!w690x931.jpg[/img][img=,624,832]https://ng1.17img.cn/bbsfiles/images/2019/10/201910211355064117_5512_3232436_3.jpg!w624x832.jpg[/img][/align]D.连接空气气源,丙烷气源的气管(能承受一定压力)和仪器使用电源:3.仪器参数: A.燃气喷灯标准功率:1KWB.供火时间:1秒(s)-99分(min))99秒(s)C.电源条件:AC220V±10% 50HzD.燃烧室尺寸:高1200cm 宽300cm 深450cm4.仪器控制系统:单片机控制系统[b]四:原理,适应范围与满足标准[/b]1.工作原理:空气和燃气在火焰喷灯上混合燃烧,对垂直悬挂的电线电缆试样进行燃烧试验,系统以单片机控制系统为核心,单片机控制气阀打开,自动控制电子点火器点燃喷灯,通过伺服电机控制火焰喷灯的喷火方向,并和时间继电器一起控制气阀的开通与关闭。2. 适应范围:A: 单根聚氯乙烯绝缘电线火焰垂直燃烧。B:单根聚氯乙烯护套电缆火焰垂直燃烧。C:自熄性低烟无卤阻燃聚烯烃绝缘和护套电线电缆垂直燃烧。D:105℃低烟无卤阻燃聚烯烃辐照绝缘电线电缆垂直燃烧。3.符合标准:RS-II型垂直燃烧试验仪满足A:GB/T12666-2008« 单根电线电缆燃烧试验方法第一部分:垂至燃烧试验» 。B:GB/T18380.11-2008/IEC60332-1-1.2004« 电缆和光缆在火焰条件下燃烧试验第11部分:单根电线电缆火焰垂直蔓延试验-试验装置» 。C:GB/T18380.12-2008/IEC60332-1-2.2004« 电缆和光缆在火焰条件下燃烧试验第12部分:单根电线电缆火焰垂直蔓延试验-1KW预混合型火焰试验方法» 。[b]五 :应用与操作[/b]1. 供气导通:燃气灌,空气压缩机出口接调压阀,以使燃气和空气压力可调至0.1MPa.2:气体压力调节A:将空气调节阀调至最小位置(避免压力过大气管无法承受)打开电源给压缩机供电启动,等气瓶充满后,电动机自动关闭,打开气阀,再调节调压阀至输出压力约0.1MPa.B:打开燃气阀开关,调节减压阀至中央位置。3.流量调节 调节控制箱空气和燃气按钮至中间位置,给支箱体加电,打开面板开关,按调试按键,此时喷灯自动点火,反复调节空气和燃气旋钮,是空气流量在10±0.5L/min范围内,燃气流量在650±30ml/min范围内.2. 火焰高度与强度控制 当燃气和空气流量调节自动点火产生火焰时,用火焰测量尺对所产生的火焰高度进行测量,使其产生的火焰蓝色内锥提高度为50-60mm.外焰为170-190mm,并用火焰强度测试仪及热电偶测试其强度,观察热电偶从10℃-700℃所需要时间40-50秒,如不满足火焰高度或强度要求,调试空气和燃气比例,直至达到标准要求。3. 喷灯位置A. 蓝色火焰内锥的尖端正好触试样表面.B. 接触点距离水平的上支架下缘(475±5)mm处,C. 同时喷灯与试样的垂直轴线成(45±2)度。4. 供火时间与要求:A:供火要求:供火应连续,燃烧过程中不应间断,B 供火时间:根据试样直径确定,符合下列规定:供火时间 [table=568][tr][td]试样外径/mm[/td][td]供火时间/s[/td][/tr][tr][td] [align=center]D≤25[/align] [/td][td] [align=center]60±2[/align] [/td][/tr][tr][td]2575[/align] [/td][td] [align=center]480±2[/align] [/td][/tr][/table]5. 试验A:试样的长度:试样应是(600±25)mmB:试样处理:实验前所有试样应在(23±5)℃,湿度为(50±20)%的条件下处理至少16hC:试样安装:依照标准要求,把已经过温度处理,较直且长度为(600±25)mm的试样用铜丝垂直绑扎于试验箱金属罩两个水平支架上。固定的试样两个水平支架的上支架下缘和下支架下缘之间距离为(550±5)mm,试样下端距离金属罩底面约50mm,试样垂直轴线在金属罩中间,距离侧面150mm,背面225mm. D:燃烧:在调试好燃气,空气流量,火焰高度,强度,喷灯位置,燃烧时间符合要求后,启动开始按钮,关闭金属罩门进行试样燃烧试验,燃烧过程中,火焰不能偏离试样且中途不得熄灭,直至到规定供火时间。燃烧完成后。喷灯断气熄火,且自动复位,实验接束。如下图燃烧过程图片:[align=center][img=,484,646]https://ng1.17img.cn/bbsfiles/images/2019/10/201910211355549581_831_3232436_3.jpg!w484x646.jpg[/img][img=,511,681]https://ng1.17img.cn/bbsfiles/images/2019/10/201910211356043860_2879_3232436_3.jpg!w511x681.jpg[/img][/align][b]六:试验结果评价[/b]1. 碳化起始点规定:用锋利物体如小刀刀刃按压试样表面部,如果弹性表面在某部点变为脆化(粉化),则表明该点就是炭化部分起始点。2. 碳化距离测量:所有燃烧停止后,擦净试样,测量上支架下缘与炭化部分上起始点之间距离和上支架下缘与炭化部分下起始点之间距离,精确至mm.3. 评定要求 在产品没有给定特定性能要求时,燃烧结果满足以下要求A:上支架下缘和碳化起始点之间距离大于50mm,则认为电线电缆通过本次试验B:如果燃烧向下延伸至距离上支架下缘大于540mm时,应判为不合格,并进行两次复检,如果两次复检均通过,则认为电线电缆通过本次试验[b]七:RS-II型垂直燃烧试验仪操作注意事项[/b]1. 使用前检查电源电压是否为220V,气管有无漏气,确认无误后方可进行试验。2. 火焰高度和强度按标准要求试验,否则结果可能形成误判。3. 试验结束后应切断电源和关闭气阀,确认燃烧物完全无火,避免出现不安全因素。4. 燃烧结束后打开通风过排气系统,将有害气体排除室外,确保试验环境。[b]八:RS-II型垂直燃烧试验仪应用心得分享[/b]1. 试样预处理方面:实验验人员往往疏忽再进行试验时,试样要在要求的环境条件下处理规定的时间,影响测试结果的偏离。2. 喷灯火焰高度和强度方面:在进行燃烧前火焰调试时,不能一味认为当流量在要求范围时,火焰高度和强度就符合要求,只有每次燃烧时空气和燃气流量在要求范围且配比适合才能到火焰规定,并要用专门测试仪器测试并确认,当不符合时,反复调节气体流量,直至符合。3. 碳化起始点的确定:不能盲目认为延烧伸燃烧的位置就是碳化起始点。碳化起始点指的是弹性表面在某处变为脆化性(粉化),则表明该处为碳化起始点。[b]九:总结[/b] 仪器使用要遵循人和仪器相融合的原则,检验员要充分了解仪器,在实践中总结经验,结合理论,精益求精,剔除影响操作和结果不利因素,多操作,勤练习,试验时将会手到擒来,得出准确的试验结果。以上就是本人对RS-II型垂直燃烧试验仪应用探究,望大家多做评论,提出宝贵意见,共同进步!--END

  • 【求助】DSC如何测燃烧热?

    在25摄氏度,101 kPa时,1 mol可燃物完全燃烧生成稳定的化合物时所放出的热量,叫做该物质的燃烧热.用DSC测燃烧热,氧气气氛流量控制在多少?样品要加盖吗?助燃剂怎么加?请大虾指点一下

  • 热量计的燃烧和测量温度的实验

    将氧弹放入热量计盛水桶内,将用加冰方法调好低于外桶水温1℃左右的水,用容量瓶准确量取调好温度的水3000mL倒人盛水桶内,用0.1温度计精确测量量热计外套水温,以保证外套水温在燃烧曲线的中点,如相差太大需重调水温。装好搅拌马达,盖好盖子,将设置好的数字贝克曼温度计的探头插人水中,将控制器与氧弹电极相连。特别注意将控制器的“振动与点火”开关先设在“振动”档,打开总电源,开动搅拌马达。待温度稳定上升后,计时开关放在1min的档上,每隔1min读一次数字贝克曼温度计的读数,10min后,迅速将“振动与点火”开关拨至点火档,并将计时开关同时拔在半分钟一次档上,若控制台指示灯亮,温度迅速上升,表示点火成功,试样已燃烧,再将“振动与关火”开关拨至振动档,每30s读一次数。待温度上升较慢后,将计时开关按至1min档,再记录l0次,然后停止实验。若指示灯亮后不熄,表示点火丝未烧断,应立即加大点火电流。若指示灯根本不亮或加大电流也不熄灭,温度也未迅速升高,则点火不成功,应打开氧弹找原因。停止实验后,取出氧弹,放出余气,景后打开氧弹。若无未燃尽的剩余物(Ni丝除外)表示燃烧完全,称取剩余镍丝质量。若发现有未燃尽的剩余物,则表示燃烧不完全,实验失败。倒出内桶里的水用干毛巾把各部位一一擦干,备用。按同样方法,用苯甲酸试样再重复一次实验。

  • 织物垂直燃烧测试原理解析

    织物垂直燃烧测试原理解析

    织物垂直燃烧测试原理解析测试标准:ASTM D6413,DOC-FF 3/71,CALIF TB-117,GB/T5455,CPAI-84试验原理:用规定点火器产生的火焰,对垂直方向的试样底边中心点火,在规定的点火时间后,测量试样的续燃时间、阴燃时间及损毁长度。仪器设备组成及各部件配合:1、试验箱体,箱体侧面及顶部开有标准规定的通风孔。箱体门应嵌有透明耐火玻璃,以便测试者观察试样燃烧情况。2、试样夹具及其固定装置。试样夹具上设有倒钩,挂于箱体上部的试样夹具支架上,箱体中部还设有固定装置,保证试样维持在竖直方向。3、点火计时系统。仪器的点火计时系统是独立于试验箱体的。不同的标准,点火时间的控制是不同的。一种是控制煤气通入的时间,达到标准规定的时间后,燃气关闭,外源燃烧停止。一种是移动火焰位置,标准点火时间过后,火焰位置远离试样。4、计时装置为手动启动计时,试验这观察织物表面状态,按动开关进行计时。试验过程:以GB/T 5455-2014为例介绍垂直燃烧试验的试验过程。1、关闭试验箱前门,打开气体供给阀,点着点火器,调节火焰高度。燃烧一定时间后,熄灭火焰(排除管道内的空气)。2、干燥过后的试样装到夹具中,试样应尽可能的保证平整。将试样夹上端挂在支架上,侧面被试样夹固定装置固定。3、关闭箱门,点着点火器,火焰稳定后,移动火焰到试样正下方。4、点火时间后,点火器移开,打开计时器,记录续燃时间及阴燃时间。随时记录试样燃烧状况。5、打开风扇,或通风厨,排除烟气。6、打开箱门,取出试样,在织物一端悬挂重锤测试损毁长度,测试方法如图所示。沿试样长度方向上损毁面积内最高点折一条直线,然后在试样的下端一侧,距其底边及侧边各约6mm处,挂上选用的重锤,再用手缓缓提起试样下端的另一侧,让重锤悬空,再放下,测量并记录试样撕裂的长度,即为损毁长度,精确到1mm。http://ng1.17img.cn/bbsfiles/images/2015/05/201505211033_546883_1916297_3.png注意事项:1、纺织品的燃烧可能会产生影响操作人员健康的烟雾和有毒气体,试验人员需佩戴防毒面罩。试验时可在通风厨内完成。每次试验后应排除烟雾和烟尘。2、试样燃烧时应关闭通风系统,避免影响试验结果。3、当试验熔融性纤维制成的织物时,如果被测试样在燃烧过程中有熔滴产生,则应在试验箱的箱底平铺10mm厚的脱脂棉,并记录脱脂棉是否有燃烧或阴燃现象。

  • 耐火等级测试:燃烧试验箱的原理和特点

    耐火等级测试:燃烧试验箱的原理和特点

    垂直水平燃烧测试仪,又叫燃烧试验箱,主要用于测定塑料、橡胶或薄膜在规定火源下燃烧性能,以判断其耐火等级。适用于检验和评定塑料材料的燃烧特性。1、工作原理夹住矩形条状试验样品的一端,使样品呈水平或垂直状态,自由端则与规定的试验火焰接触。 用测量线性燃烧率的方法评定被水平支撑的条状样品燃烧特性;用测量余焰和余灼时间、火焰微粒的燃烧程度和滴落程度的方法评定被垂直支撑的条状样品的燃烧特性。2、用途适用于电工电子产品家用电器的部件,零件和元件,如:电线电缆,家用电器的绝缘外壳、开关面板、印刷电路板以及绝缘材料等,实现对设备和器具部件材料的可燃性能试验。适用于UL-94之V-0、V-1、V-2级等材料的可燃性进行定级评定。3、应用领域广泛应用于照明设备、低压电器、家用电器、机床电器、电机、电动工具、电子仪器、电工仪表、电气连接件和辅件等电工电子产品及其组件部件的研究、生产和质检部门,也适用于绝缘材料、工程塑料或其它固体可燃材料行业。4、特点◇ 玻璃观测窗,美观大方;便于观测试样燃烧状态;◇ 试验箱体 0.5m3,确保试验有充足空气供应;◇ 试验箱由试验部分和控制部分组成,采用一体化设计,方便现场安装和调试;◇ 先进工业外观设计、试验操作考虑人体工学设计,便于触及试样、燃烧器拉杆设计,易于操作;◇ 夹具为水平燃烧及垂直燃烧一体化设计;操作方便;节省空间;◇ 样品夹支架可上下、左右调节,燃烧座可前后调节,调节行程均大于300mm;◇ 试验程序手动控制,左右及上下移动自动控制,独立抽风;◇ 箱体内外不锈钢材质,火焰高度标尺304不锈钢材质,经久耐用;[img=,371,689]https://ng1.17img.cn/bbsfiles/images/2022/11/202211241431550067_7286_5568994_3.png!w371x689.jpg[/img]【英徕铂】英徕铂ENLAB,物性检测仪器品牌,为国内市场提供数百种物性检测仪器,为科研工作者提供检测仪器解决方案与服务

  • 提高燃气空调的锅炉燃烧效率的氧气分析仪推荐

    [b]氧化锆氧气传感器是如何提高燃气空调的锅炉燃烧效率的[/b]目前冷空气造访全国,北京这两天的室外温度已经达到-12℃的低温,或降至入冬以来最低,取暖成了头等大事。由于传统燃煤锅炉采暖易造成雾霾、用电空调存在制热效率差、花费高等问题,使得天然气空调的优势凸显出来。燃气调用的是天燃气,比煤气更加的环保而且价格也比较低,还没有像使用电器那样有漏电的危险。[b]燃气空调的工作原理[/b]燃气空调,即以燃气为能源的空调设备。广义上的燃气空调有多种方式:燃气直燃机、燃气锅炉+蒸汽吸收式制冷机、燃气锅炉+蒸汽透平驱动离心机、燃气吸收式热泵、CCHP等。燃气直燃机是采用可燃气体直接燃烧提供制冷、采暖和卫生热水。燃气直燃机能源转换途径少、技术成熟且行业发展迅速、应用普及,我们常说的燃气空调多指燃气直燃机。[b]燃气空调的优点[/b]燃气空调以天然气为能源,采用溴化锂和水为冷媒。与电力空调不同,电力空调可以直接用于家庭,而燃气空调主要用作商用,也就是主要用于办公楼、商务楼、商厦、车站大厅和大型公共场所。可有效平衡城市能源结构,缓解城市夏季供电紧张、燃气使用量过低的矛盾。此外从宏观效益来看,燃气空调还是一种绿色的制冷空调系统,符合环保要求。它直接利用燃气能源,制冷剂是水,吸收剂是溴化锂,不用氟利昂或其他替代品,不会污染大气,有利城市的生态环境的改善。具有高效、节能的特点。[b]如何提高燃气空调的锅炉效率?[/b]所有的燃烧过程都需要正确的氧气和燃料比值,因为它直接影响锅炉效率。太少的氧气导致不完全燃烧,从而产生有害的排放物。设置锅炉与过量的氧气燃烧是减少排放的正常的解决方案。氧化锆氧传感器可以帮助客户优化他们的锅炉燃烧效率,包括石油,煤炭,天然气和生物质在内的锅炉市场。[url=http://news.isweek.cn/wp-content/uploads/2018/12/20181228152916.png][img=20181228152916,449,300]http://news.isweek.cn/wp-content/uploads/2018/12/20181228152916-449x300.png[/img][/url]不正确的燃烧的过程会到导致一系列问题,包括燃料浪费,有毒气体排放量的增加,甚至会潜在的破坏燃烧系统,同时对环境和财务影响都是显着的。在大型工业和商业锅炉/炉中,燃料消耗和系统值的开销是很高的。为了看到投资回报和最低的运行成本,操作必须保持在峰值效率。完全燃烧需要正确的燃料和氧气比。这个比率,可以通过在一个闭环反馈系统中使用氧传感器测量排气/烟道气中的氧浓度来调节输入结构的控制器来优化和维持。当供应的燃料的品种是各种各样的时候这个就显得特别有用(即来自不同源头的气体)。[url=http://news.isweek.cn/wp-content/uploads/2018/12/20181228152934.png][img=20181228152934,355,300]http://news.isweek.cn/wp-content/uploads/2018/12/20181228152934-355x300.png[/img][/url]SST[url=https://www.isweek.cn/category_152.html]氧化锆氧传感器[/url]帮助客户优化其在石油,煤炭,天然气和生物质锅炉市场的燃烧效率。氧传感器用于提供一个干净的燃烧和减少有害排放物在燃烧过程控制领域,已经有超过15年的经验。将氧传感器插入锅炉烟道内,监测氧气水平,使锅炉氧燃比完全控制。[img=英国SST 高温氧气分析仪,300,300]https://www.isweek.cn/Thumbs/300/0180228/5a95ff30ad372.jpg[/img]SST的OXY-Flex[url=https://www.isweek.cn/1566.html]氧气分析仪[/url],不需要参考气体,可以在清新的空气中或任何其他已知的氧浓度进行简单的单点校准。传感器提供精确的输出值和可选择的输出量程范围(0.1至25% O2或0.1到100% O2),坚固的不锈钢结构,使它们拥有在极端温度下工作的能力(高达400℃),使得OXY-Flex成为一个坚固的,强大的,可靠的氧气监控设备。

  • 【分享】生活垃圾焚烧厂中二恶英的产生和控制

    1. 前言  生活垃圾焚烧厂烟气中的二恶英是近几年来世界各国所普遍关心的问题,自1999年比利时发生动物饲料二恶英污染事件后,二恶英更是倍受世人所关注,一时成为全球范围的热点。经过这一事件,二恶英在我国也是家喻户晓,闻毒色变。可以这样说,在今天研究生活垃圾焚烧厂烟气中二恶英的产生机理和控制措施,比以往任何时候都显得必要和重要。要建设生活垃圾焚烧厂,我们就不能也无法回避二恶英。  2. 二恶英的结构和特性  2.1 二恶英的分子结构  二恶英(DIOXIN,简称为DXN)即Poly Chlorinated Dibenzo-P-Dioxins,略写为PCDDs。简单地说PCDDs是两个苯核由两个氧原子结合,而苯核中的一部分氢原子被氯原子取代后所产生,根据氯原子的数量和位置而异,共有75种物质,其中毒性最大的为2,3,7,8—四氯二苯并二恶英TCDDs(2,3,7,8—TCDDs),计有22种,;另外,和PCDDs一起产生的二苯呋喃PCDFs,共有135种物质。通常将上述两类物质统称为二恶英(或称戴奥辛),所以二恶英不是一种物质,而是多达210种物质(异构体)的统称。  2.2 二恶英的特性  二恶英在标准状态下呈固态,熔点约为303~305℃。二恶英极难解溶于水,在常温情况下其溶解度在水中仅为7.2×10-6mg/L。而同样在常温情况下,其在二氯苯中的溶解度高达1400 mg/L,这说明二恶英很容易溶解于脂肪,所以它容易在生物体内积累,并难以被排出。二恶英在705℃以下时是相当稳定的,高于此温度即开始分解。另外,二恶英的蒸汽压很低,在标准状态下低于1.33×10-8Pa,这么低的蒸汽压说明二恶英在一般环境温度下不易从表面挥发。这一特性加上热稳定性和在水中的低溶解度,是决定二恶英在环境中去向的重要特性。  3. 二恶英的毒性和评价  据报导,二恶英是目前发现的无意识合成的副产品中毒性最强的化合物,它的毒性相当于氰化钾(KCN)的1000倍以上。同时它是一种对人体非常有害的物质,即使在很微量的情况下,长期摄取时便可引起癌症等顽症,国际癌症研究中心已将它列为人类一级致癌物。此外二恶英对人体还会引起皮肤痤疮、头痛、失聪、忧郁、失眠、新生儿畸形等症,并可能具有长期效应,如导致染色体损伤、心力衰竭、内分泌失调等。据有关报道,只要1盎斯(28.35克)二恶英,就能将100万人置于死地。  但上述结论更多的是建立在定性分析和理论推测的基础上的,因为根据国外有关报道,采用不同的方法对动物进行二恶英的毒性试验时,所获得的数据非常分散,变化范围相当广。其主要原因可能是二恶英的测量值极其微量(十亿分之几甚至万亿分之几),在不同的实验条件下,其结果会产生重大差异。而研究二恶英对人体的影响,至今还没有试验数据,今后也不可能用人来作直接试验。虽然,过去曾有过人体偶然接触二恶英从而导致伤亡的记录,但就此来确定二恶英对人体健康的影响是远远不够的。  恶英的毒性与异构体结构有很大关系,各异构体浓度的综合毒性评价方法一般以TCDDs为基准,利用TCDDs的毒性当量(TEQ)来表示各异构体的毒性,称之为毒性当量因子(TEF),其它异构体的毒性以相对毒性进行评价,其计量单位常采用ng-TEQ/Nm3,目前发达国家对二恶英的排放标准一般控制为0.1ng-TEQ/Nm3。  4. 二恶英的产生和排放  4.1 二恶英和垃圾焚烧厂  现在有一种观点认为,二恶英是生活垃圾焚烧厂特有的公害问题,这是一种偏面的认识,其实二恶英是有机物与氯一起加热就会产生的化合物,只要使用水的场所都有可能产生二恶英,它是一种普遍的化学现象。二恶英在空气、土壤、水和食物中都能发现,火山爆发及森林火灾是自然界中二恶英的主要来源。另外,除草剂、发电厂、木材燃烧、造纸业、水泥业、金属冶炼、纸桨加氯漂白及垃圾焚烧处理均会释放出二恶英。据有关报道,人体从生活垃圾焚烧厂排放烟气中接触二恶英的机率要比从其它途径(如食物、空气等)接触二恶英的机率小。综合有关资料,国外生活垃圾焚烧厂烟气中二恶英的浓度范围约为10-4~10-6mg/Nm3之间,对周围环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的影响非常微小。实际上世界各国曾经发生过的多次二恶英污染事件几乎都与生活垃圾焚烧厂的烟气排放无关,包括1999年发生在比利时引起世界范围恐慌的动物饲料二恶英污染事件。  但这并不是说在生活垃圾焚烧厂的设计和运行时就可以不重视二恶英了,实际上从生活垃圾焚烧厂排放出来的二恶英往往都占各国二恶英排放总量的相当大的比重,但现有的统计资料表现出相当大的离散性。例如,根据美国环保署1994年完成的评估报告,全美产生的二恶英中来自垃圾焚烧厂的约占3.5%,这是所见资料中的下限;又如,据1990年**的统计资料,**二恶英的排放总量中来自垃圾焚烧厂的占80%以上,这是所见资料中的上限。综合有关资料,在采用焚烧方法处理生活垃圾比例较高的国家中,由生活垃圾焚烧厂排放出来的二恶英约占该国二恶英排放总量的10%~40%,绝对是污染大户。这就是世界各国对生活垃圾焚烧厂排放出来的二恶英予以极大关注的原因所在。也充分说明了在建设生活垃圾焚烧厂或者在生活垃圾焚烧厂的运行管理中,要注意改善生活垃圾的燃烧条件,严格控制二恶英产生的重要性和必要性。  4.2 垃圾焚烧厂中二恶英的生成途径  生活垃圾在焚烧过程中,二恶英的生成机理相当复杂,至今为止国内外的研究成果还不足以完全说明问题,已知的生成途径可能有:  4.2.1生活垃圾中本身含有微量的二恶英,由于二恶英具有热稳定性,尽管大部分在高温燃烧时得以分解,但仍会有一部分在燃烧以后排放出来;  4.2.2在燃烧过程中由含氯前体物生成二恶英,前体物包括聚氯乙烯、氯代苯、五氯苯酚等,在燃烧中前体物分子通过重排、自由基缩合、脱氯或其他分子反应等过程会生成二恶英,这部分二恶英在高温燃烧条件下大部分也会被分解;  4.2.3当因燃烧不充分而在烟气中产生过多的未燃烬物质,并遇适量的触媒物质(主要为重金属,特别是铜等)及300~500℃的温度环境,那么在高温燃烧中已经分解的二恶英将会重新生成。

  • 你是如何调整燃烧头的位置的?

    你是如何调整燃烧头的位置的?

    在做火焰分析时往往要将燃烧头调整到与光轴相对垂直的位置,这是众所周知的常识。为此,在不同的仪器上就派生出了许多调整量具,目的就是保证燃烧头的燃烧缝在光轴的正下方。我下面展现的就是某款仪器的调整设置和量具的照片:http://ng1.17img.cn/bbsfiles/images/2011/11/201111181247_331480_1602290_3.jpg调整燃烧头与光轴的相对位置http://ng1.17img.cn/bbsfiles/images/2011/11/201111181704_331553_1602290_3.jpg量具的细部构造一般来说,在调整时,首先要让从阴极灯射出的光斑与量具的透光孔保持同心圆的状态。在上面的照片里,两个透光孔的水平高度位置,是指燃烧缝与光轴的相对垂直高度分别为15毫米和7.5毫米。量具的定位销子插入在燃烧缝中,以确保量具处于垂直状态。问:是不是光斑与量具上的透光孔保持同心圆就算调整好了? 还有没有其他数据或方法可做参考?仪器专场展示:原子吸收光谱 光谱配件 石墨管关 键 词:调整 位置 燃烧头

  • 废气VOCs燃烧折算问题

    GB37822-2019 《挥发性有机物无组织排放控制标准》中10.3.3 “进入VOCs燃烧(焚烧、氧化)装置中废气含氧量可满足自身燃烧、氧化反应需要,不需另外补充空气的(燃烧器需要补充空气助燃的除外),以实测质量浓度作为达标判定依据,但装置出口烟气含氧量不得高于装置进口废气含氧量。 ” 请问大佬们,括号里的“燃烧器需要补充空气助燃的除外”这种情况是需要折算还是不需要折算?

  • 如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 如何控制柴油发电机机组噪声?

    柴油发电机机组噪声往往成为周围环境噪声的主要污染源。当前社会对环保要求越来越高,如何有效地控制其噪声污染是一项有难度,同时又具有很大推广价值的工作,这也是我们环保的主要工作,应得到更多的重视。为了做好这项工作,首先要对柴油发电机组噪声的构成进行了解和分析。 一、柴油发电机机组噪声原因分析:  柴油机噪声是一个由多种声源构成的复杂声源,按照噪声辐射方式,柴油机噪声可以分为空气动力噪声和表面辐射噪声。按照产生的机理,柴油机表面辐射噪声又可以分为燃烧噪声和机械噪声。其中空气动力噪声为主要噪声源。 (一)、 空气动力噪声:  空气动力噪声是由于气体的非稳定过程,即由气体的扰动以及气体与物体的相互作用而产生的。直接向大气辐射的空气动力噪声包括:进气噪声、排气噪声、冷却风扇噪声。  1、进气噪声:  进气噪声是柴油机的主要空气动力噪声之一,它是由进气门的周期性开启与闭合而产生的压力起伏变化而形成的。当进气门开启时,在进气管中产生一个压力脉冲,而随着活塞的继续运动,它受到阻尼;当进气门关闭时,同样产生一个有一定持续时间的压力脉冲。于是产生了周期性的进气噪声。其噪声频率成分主要集中在200 Hz以下的低频范围。与此同时,当气流以高速流经进气门流通截面时,产生湍流脱体,导致高频噪声的产生,由于进气门通流截面是不断变化的,因此湍流噪声具有一定的频率范围,主要集中在1 000 Hz以上的高频范围。进气管空气柱的固有频率与周期性进气噪声的主要频率相一致时,空气柱的共振噪声在进气噪声中也会较为突出。  对于采用涡轮增压的发动机,由于涡轮增压器的转速一般较高,因此其进气噪声明显高于非涡轮增压的发动机。涡轮增压器的噪声是由于叶片周期性地切割空气产生的旋转噪声和高速气流形成的湍流噪声而形成的,是一种连续性的高频噪声,主要分布在500~10 000 Hz的频率范围。目前我公司大部分采用涡轮增压的发动机。  进气噪声与发动机的进气方式、进气门结构、缸径、凸轮型线等设计因素有关。对于同一台发动机来说,受转速的影响最大,转速提高一倍可导致进气噪声增加10~l5dB(A)。 2、排气噪声:  排气噪声是发动机噪声中最主要的声源,其噪声一般要比发动机整机噪声高出10~15dB(A)。发动机排气属高温(800~l000℃)、高压(3~4个大气压)气体。排气过程一般分为两个阶段,即自由排气阶段和强制排气阶段。发动机废气从排气门高速冲出,沿着排气歧管进入消声器,最后从尾管排入大气,在这一过程中产生了宽频带的排气噪声。  排气噪声包含了复杂的噪声成分:以单位时间内排气次数为基频的排气噪声、管道内气柱共振噪声、排气歧管处的气流吹气噪声、废气喷注和冲击噪声、汽缸的亥姆霍兹共振噪声、卡门涡流噪声及排气系统内部的湍流噪声等。  影响发动机排气噪声的主要因素有:汽缸压力、排气门直径、发动机排量及排气门开启特性等。对同一台发动机来说,发动机转速和负荷是影响其排气噪声的最主要因素。  3、冷却风扇噪声:  风扇噪声由旋转噪声和湍流噪声构成。旋转噪声是由于风扇的叶片周期性地切割空气,引起空气的压力脉动产生的,以叶片通过频率为基频,并伴有高次谐波。湍流噪声是由于风扇运动导致的周围空气发生湍流脱体,使空气发生扰动,形成气体的压缩与稀疏过程而形成的,是一个宽频带噪声。  冷却风扇噪声受转速的影响最大,转速提高一倍可导致其声级增加10~15dB(A)。在低速时风扇噪声要比发动机噪声低很多,而在高速时,往往会成为主要的噪声源。目前我公司使用的柴油发动机转速多为1 500转/分钟,属于高转速油机。  (二)、 表面辐射噪声:  燃烧噪声和机械噪声很难严格区分,通常将由于气缸内燃烧所形成的压力振动通过缸盖、活塞-连杆-曲轴-机体向外辐射的噪声称之为燃烧噪声。将活塞对缸套的撞击,正时齿轮、配气机构、喷油系统等运动件之间的机械撞击振动而产生的噪声叫作机械噪声。一般直喷式柴油机燃烧噪声要高于机械噪声,而非直喷式柴油机的机械噪声则高于燃烧噪声,但是低速运转时燃烧噪声都高于机械噪声。 二、 解决噪声的控制措施: (一)、空气动力噪声控制:  1、 进气噪声控制:  一般发动机均装有空气滤清器,进气噪声即可有较大衰减,成为次要声源。而当其它声源得到进一步控制后,进气噪声有可能成为主要声源,这时需考虑采用性能良好的进气消声器,通常进气消声器要和空气滤清器结合,进行一体化设计,既能满足进气和滤清方面的要求,又可使进气噪声得到有效的控制。  2、 排气噪声控制:  控制排气噪声最有效的方法是加装排气消声器,实际情况往往是降噪效果不很理想。分析原因主要是消声器结构设计不甚合理以及加工工艺存在问题,后一个问题可以通过提高工艺水平加以改善;前一个问题则涉及消声器的设计思路。通常消声器设计主要凭经验,一些设计计算程序是在一些理想假设条件下进行的,而在这些假设中实际影响最大的是忽略气流的存在,而且是高压、高温、高速脉动气流的存在。此种状态的气流将会影响消声器内部的声场分布、声速、声的传播规律等,特别是气流速度影响更大。气流影响消声器性能的主要原因是发动机排气的高速脉动气流再生噪声,其次是这种气流会冲击消声器的管路、壳体、隔板等声学元件,进而激发振动辐射噪声。当消声器结构参数选择不当,或结构不合理,或加工工艺存在问题时,都会导致消声器消声性能的下降,同时气流速度过高也会加大消声器的压力损失也会造成消声性能下降。  (二)、发动机表面辐射噪声的控制:  发动机表面辐射噪声(燃烧噪声和机械噪声)的控制要受到发动机性能方面的种种限制,从技术角度讲难度很大,且降噪量有限。实践表明,在结构上采取措施可以一定幅度地降低发动机的表面辐射噪声,从而降低整机噪声。控制的基本措施是

  • 【分享】南京科瑞星分析仪器公司谈电弧炉燃烧试样的注意事项

    电弧炉燃烧试样时的探讨 在现场分析检测钢铁材料中的碳硫含量,大多使用气体容量法定碳、碘量法定硫的碳硫高速分析仪(简称气容仪)。其试样燃烧多使用电弧炉。电弧炉用于燃烧样品。将其燃气导入气容仪等各种分析设备,定量分析样品中的碳、硫含量。电弧炉的工作原理是:在一定压力的富氧条件下,以瞬间高频高压电使试样与电极间产生电弧,以瞬间的工频大电流点燃在一定压力的富氧条件下的样品,让其高速燃烧,使样品中的碳元素氧化成CO2、硫元素氧化成SO2。用本设备燃烧钢铁样品的基本工艺是 “前大氧、后控气”。“前大氧”是指燃烧室(由炉体和坩埚组成)前供应的氧气要“大”(具体讲是氧气压力要达到40kPa)、“后控气”是指流出燃烧室的燃气流速要控制在一定范围(具体要求是控制在80-100L/h)。这样才能保证充分燃烧。电弧炉可在很多情况下(尤其是碳、硫分析方面)代替管式炉。它与管式炉比具有体积小,重量轻,不必预热,无热辐射,清洁卫生,并且有显著的节能效果。 钢的熔点约为1515℃,铁的熔点约在1535℃。这么高的熔点电弧炉是怎么将其熔化并释放出CO2和SO2呢?是添加剂起了至关重要的作用。 首先添加剂在氧气流中氧化燃烧。输出大量的热能.可以提高炉温.有显著的发热作用; 其次添加剂由于液化密度小于铁的氧化物或受热后生成气体物质,在炉体 内部向上飘浮的过程中,可加快碳、硫离子的扩散,有利于与氧气接触,使氧化反应加快起到良好的搅拌作用; 第三.氧化燃烧生成的CO2,和SO2部属于酸性氧化物,碱性介质不利于CO2和SO2的释放,而选取适量的偏酸性添加剂加入燃烧体系可使介质变成中性或弱酸性.有利于CO2和SO2的逸出; 第四,燃烧后生成的Fe2O3、SnO2,等粉尘对SO2有吸 附作用,导致测试结果偏低。加入有关的添加剂可阻止吸附消除干扰。电弧燃烧炉中常用的添加剂有纯锡粒和硅钼粉。硅主要起发热作用.燃烧产生热量,另外硅氧化后的产物是SiO2属酸性氧化物,它的密度比铁及其氧化物都小,在液体中有漂浮作用,有利于CO2和SO2的释放。MoO3是酸性氧化物,它的加入有利于SO2的释放。它在1155℃生成气体, 从液相中逸出时.起到良好的搅拌作用,有利于硫离子的扩散和SO2的生成。它能破坏Fe2O3的催化作用,防止管道吸附。锡的熔点是231℃,可以降低整个燃烧体系的熔点,主要作用是助熔并兼有发热稳燃的作用。 第五,分析检测铁或铁合金时,要加入适量纯铁(以添加后和试样合计为1克为宜),其主要作用是帮助燃烧,有利于在瞬间提高炉体内的温度,保证试样中碳硫的释放。 由于添加剂所起的重要作用,因此对添加剂的要求也很高,要求杂质成份含量少,碳、硫含量低,它的几何形状,粒度、空隙度也有一定的要求。使用这些添加剂会对测量的结果产生很大的误差而影响生产,建议用户选择正规的添加剂。 由于铁的熔点比钢高,而其称样往往只有钢的试样的一半或四分之一,因此保证铁试样在电弧炉中的燃烧是非常重要的。需要注意以下方面: 1. 正确确定称样重量和应补足的纯铁份量; 2. 做好试样的制样工作,样品颗粒小一点为宜,这样才能保证试样与氧气充分接触,有利于引弧燃烧,使碳硫充分释放; 3. 硅钼粉和锡粒等添加剂配比适当; 4. 及时清理电弧炉除尘器,防止过多的粉尘吸附SO2;5. 及时清理电极上的积炭,保证引弧燃烧效果

  • 如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 【原创】标准成束电线电缆燃烧试验机

    适用行业适用于判定评价垂直安装的成束电线电缆或光缆在规定条件下的抑制火焰垂直蔓延的能力。符合标准符合GB18380.31—2008《电缆在火焰条件下的燃烧试验 第3部分:垂直安装的成束电线电缆火焰垂直蔓延试验 试验装置》,等效采用IEC60332—3—10:2000;同时满足GB/T19666—2005《阻燃和耐火电线电缆通则》标准的表4规定要求、GB/T18380.32—2008/IEC60332—3—21:2000《电缆和光缆在火焰条件下的燃烧试验第32部分:垂直安装的成束电线电缆火焰垂直蔓延试验AF/R类》、GB/T818380.33—2008/IEC60332—3—22:2000《电缆和光缆在火焰条件下的燃烧试验第33部分:垂直安装的成束电线电缆火焰垂直蔓延试验A类》、GB/T818380.35—2008/IEC60332—3—24:2000《电缆和光缆在火焰条件下的燃烧试验第35部分:垂直安装的成束电线电缆火焰垂直蔓延试验C类》、GB/T818380.36—2008/IEC60332—3—25:2000《电缆和光缆在火焰条件下的燃烧试验第36部分:垂直安装的成束电线电缆火焰垂直蔓延试验D类》。设备组成试验箱、电器控制系统、空气源、引燃源流量控制系统(丙烷燃气和空气压缩气体)、钢梯、灭火装置、排放物净化装置等组成。试验装置试验箱:实验装置应是一个宽(1000±100)mm,深(2000±100)mm和高(4000±100)mm的自立箱体,箱底应高出地面。试验箱的周边应密封,空气从箱底距前墙(150±10)mm处打开一个(800±20)mm×(400±10)mm的进气口流入箱内。应在箱顶部的后面打开一个(300±30)mm×(1000±100)mm的出气口。试验箱的后墙和两侧应采用传热系数约为0.7W.m-2.K-1的热绝缘,1.5mm厚的USU304不锈钢板,中间包覆65mm厚的保温矿物纤维,外为1.5mm厚的USU304不锈钢板。钢梯与试验箱后墙之间的距离为(150±10)mm,钢梯最下面的横档距地面(400±5)mm[font

  • 【求助】卤素的ic测试,氧瓶燃烧法

    最近采用了6sigma工具对实验的检 测数据进行分析,考察我们检测样品的重复性和再现性。两个人对5个样品进行重复三次的检测, 发现我们的检测重复性可以接受,再现性不符合要求!也就是说两个人的检测结果相差太大,从数 据上看就是我做的数据比另外一个同事做的高,每次检测同一个样品检测三次的结果偏差达200ppm之 多!我们现在由于样品是阻燃性的,现在的做法是 称取约80mg左右的样品用国产滤纸进行 燃烧! 氧瓶是1000ml的氧瓶,吸收液是20ml0.09mol的NaOH 吸收后进行检测!每次同一个样品的3次检测 结果偏差最大达1ppm左右,这样 1ppm*20ml/0.08g=250ppm 也就是吸收液检测的结果有1ppm的偏 差换算回去,到80mg的样品中偏差就达到250ppm之多!!我自己的感觉是有的样品检测时燃烧不完 全,就导致了吸收液浓度偏差,另外一个同事这次是第一次做氧瓶燃烧,他的结果每个都比我做的 低,很明显感觉是燃烧不完全,很多氯还没有完全释放出来! 所以我想问一下,你们的氧瓶燃烧 法是怎么控制的,氧瓶是1000ml的吗?这么大的氧瓶称取多少样品进行燃烧呢?样品量太大会不会 由于氧瓶装的氧气不够而使燃烧不完全? 你们做过重复性再现性验证没有呢?氧瓶燃烧的检测误 差有多大呢?另外有一个问题,我们怀疑现在使用的滤纸的氯含量在波动!使我们每次实验扣除的 空白不准确!产生很大的误差!能不能跟我说下你们的的滤纸牌子,在那里购买的呢?能提供供应 商的联系方式最好了!

  • 【求助】大家来说说氧瓶燃烧法吧

    我最近才接触[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],现在都在用氧瓶燃烧法,我感觉氧瓶燃烧法很难控制,有很多地方我都不好把握。请大家介绍点经验。或发点相关资料吧!

  • 中美纺织品燃烧性法规和标准体系

    摘要:介绍了我国纺织品燃烧性能方面的法规、标准及最新进展,并详细阐述各标准的适用范围和技术要求。同时介绍了美国的纺织品燃烧性技术法规体系,为研究和建立我国的阻燃织物法规体系提供参考。 前言大多数纺织品具有易燃特性,是引发室内火灾的主要隐患之一。据统计,因纺织品易燃或阻燃效果差而引起的火灾约占火灾发生总数的一半以上。为此,各国针对纺织品的燃烧性能都制定了技术法规和标准。我国纺织品燃烧性技术法规研究和建立起步较晚,但近些年制定、实施了数项国家标准和行业标准,并颁布了一些具有法规地位的强制性国家标准,如GB20286-2006(公共场所阻燃制品及组件燃烧性能要求和标识》、GB50222-2001《建筑内部装修设计防火规范》、GB8965.1’-20o9《防护服装阻燃防护第1部分:阻燃服》、GB8965.2_2oo9《防护服装阻燃防护第2部分:焊接服》等。美国是我国纺织品出口大国,也是世界上易燃织物技术法规体系最健全的国家之一,其技术法规体系对规范纺织品市场的管理,加强织物易燃性的检测和控制,以及确保人身安全等方面,均起到了积极的作用。本文重点介绍我国纺织品燃烧性能方面的法规、标准及最新进展,以及各标准的适用范围和技术要求;同时介绍美国的纺织品燃烧性技术法规体系,以期为研究和建立我国的阻燃织物法规体系提供参考。

  • 【转帖】八米圣火不惧风雨 集中火力燃烧很节能

    【转帖】八米圣火不惧风雨 集中火力燃烧很节能

    [img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808091600_102906_1615922_3.jpg[/img]8月8日,第29届夏季奥林匹克运动会在国家体育场隆重开幕。这是李宁点燃主火炬。(新华社记者凡军摄)2008年8月8日(22时10分),29届奥运会开幕式上,被全世界瞩目的主火炬在鸟巢上方熊熊燃起,被称为本届奥运会保密度最高的主火炬被点燃。昨晚,承担着火炬燃烧装置的设计、制造、安装和运行保驾任务的市燃气集团揭开了主火炬诞生的秘密。火炬加装避雷装置本届奥运会主火炬平台设置在鸟巢60多米高的穹顶上,火炬火焰高8米,宽4米。火炬由三大部分构成,包括火炬头、输气管线和控制系统。决定其形状、色彩的密钥在于火炬燃烧器。它由数百个燃烧孔排成排、编成组、分成段而成盘状,共同形成1.6米的高度差的立体造型,且呈螺旋上升状。它的设计不仅具有抗风、防雨、防爆等共性特点,还具有节能环保的优势。由于采用了特殊结构和进行了特殊处理,主火炬可以抗10级风力,防每小时80毫米的暴雨完全符合奥组委每小时60毫米降雨的要求。为防雷击和燃烧噪音,火炬还加了避雷装置并具备“熄火无噪音”的特点。火炬燃烧很节能2007年3月16日,奥组委成立开闭幕式主火炬塔工作团队。汇集了各学科的专家和一批具有设计制作大型火炬经验的研究人员。2008年4月9日-5月8日,火炬整体在西集进行安装、调试、演练、最后拆除,历时一个月的时间。模拟开幕式程序演练了全过程,确定了火焰状态、燃气压力与流量。准确把握了各岗位操作程序的时间,为开幕式火炬点燃过程提供可靠依据。据介绍,火炬燃烧时的节能性也达到最佳效果。每小时只需消耗6000立方米天然气,比正常燃烧能耗降低了近二成。最大限度集中火力由于此次火炬的造型呈螺旋上升状,火炬高、低端燃烧点存在1.6米的高度差,这和以往火炬的燃烧器呈平面状有很大差异。为了保证火炬燃烧火形的视觉效果,火炬团队在设计中配合整体结构造型对燃烧装置供气腔体进行分段设置,分组组合,对火炬燃烧实施分段控制与调节,使火焰造型与结构更加吻合。从而最大限度地集中了火力,使火焰形状完整连贯、高度达到8米以上,大大增强了观赏性。五分钟内可提供应急气源调度中心组织火炬运行保障团队从7月24日开始至残奥会结束,将进驻主体育场执行24小时值班任务。燃气集团公司所属绿源达公司生产的压缩天然气将作为奥运主会场和市区其他地区的应急备用气源。燃气集团投资约350万元购买一套应急供气设备。在奥运会开幕前,这辆应急气源车及绿源达公司的应急供气队的人员、设备、已经进驻指定位置,一旦出现意外,5分钟就可赶到现场为主火炬提供应急气源。

  • 热概念烧结炉 欧陆控制器

    最近我看热概念的烧结炉,用的是欧陆的控制器,不知道有没有用过该种烧结炉和该种控制器的,用着怎么样呢?

  • 【转帖】生活垃圾焚烧厂中二恶英的产生和控制措施

    摘要--------------------------------------------------------------------------------1. 前言   生活垃圾焚烧厂烟气中的二恶英是近几年来世界各国所普遍关心的问题,自1999年比利时发生动物饲料二恶英污染事件后,二恶英更是倍受世人所关注,一时成为全球范围的热点。经过这一事件,二恶英在我国也是家喻户晓,闻毒色变。可以这样说,在今天研究生活垃圾焚烧厂烟气中二恶英的产生机理和控制措施,比以往任何时候都显得必要和重要。要建设生活垃圾焚烧厂,我们就不能也无法回避二恶英。  2. 二恶英的结构和特性  2.1 二恶英的分子结构  二恶英(DIOXIN,简称为DXN)即Poly Chlorinated Dibenzo-P-Dioxins,略写为PCDDs。简单地说PCDDs是两个苯核由两个氧原子结合,而苯核中的一部分氢原子被氯原子取代后所产生,根据氯原子的数量和位置而异,共有75种物质,其中毒性最大的为2,3,7,8—四氯二苯并二恶英TCDDs(2,3,7,8—TCDDs),计有22种,;另外,和PCDDs一起产生的二苯呋喃PCDFs,共有135种物质。通常将上述两类物质统称为二恶英(或称戴奥辛),所以二恶英不是一种物质,而是多达210种物质(异构体)的统称。  2.2 二恶英的特性  二恶英在标准状态下呈固态,熔点约为303~305℃。二恶英极难解溶于水,在常温情况下其溶解度在水中仅为7.2×10-6mg/L。而同样在常温情况下,其在二氯苯中的溶解度高达1400 mg/L,这说明二恶英很容易溶解于脂肪,所以它容易在生物体内积累,并难以被排出。二恶英在705℃以下时是相当稳定的,高于此温度即开始分解。另外,二恶英的蒸汽压很低,在标准状态下低于1.33×10-8Pa,这么低的蒸汽压说明二恶英在一般环境温度下不易从表面挥发。这一特性加上热稳定性和在水中的低溶解度,是决定二恶英在环境中去向的重要特性。  3. 二恶英的毒性和评价  据报导,二恶英是目前发现的无意识合成的副产品中毒性最强的化合物,它的毒性相当于氰化钾(KCN)的1000倍以上。同时它是一种对人体非常有害的物质,即使在很微量的情况下,长期摄取时便可引起癌症等顽症,国际癌症研究中心已将它列为人类一级致癌物。此外二恶英对人体还会引起皮肤痤疮、头痛、失聪、忧郁、失眠、新生儿畸形等症,并可能具有长期效应,如导致染色体损伤、心力衰竭、内分泌失调等。据有关报道,只要1盎斯(28.35克)二恶英,就能将100万人置于死地。  但上述结论更多的是建立在定性分析和理论推测的基础上的,因为根据国外有关报道,采用不同的方法对动物进行二恶英的毒性试验时,所获得的数据非常分散,变化范围相当广。其主要原因可能是二恶英的测量值极其微量(十亿分之几甚至万亿分之几),在不同的实验条件下,其结果会产生重大差异。而研究二恶英对人体的影响,至今还没有试验数据,今后也不可能用人来作直接试验。虽然,过去曾有过人体偶然接触二恶英从而导致伤亡的记录,但就此来确定二恶英对人体健康的影响是远远不够的。  恶英的毒性与异构体结构有很大关系,各异构体浓度的综合毒性评价方法一般以TCDDs为基准,利用TCDDs的毒性当量(TEQ)来表示各异构体的毒性,称之为毒性当量因子(TEF),其它异构体的毒性以相对毒性进行评价,其计量单位常采用ng-TEQ/Nm3,目前发达国家对二恶英的排放标准一般控制为0.1ng-TEQ/Nm3。  4. 二恶英的产生和排放  4.1 二恶英和垃圾焚烧厂  现在有一种观点认为,二恶英是生活垃圾焚烧厂特有的公害问题,这是一种偏面的认识,其实二恶英是有机物与氯一起加热就会产生的化合物,只要使用水的场所都有可能产生二恶英,它是一种普遍的化学现象。二恶英在空气、土壤、水和食物中都能发现,火山爆发及森林火灾是自然界中二恶英的主要来源。另外,除草剂、发电厂、木材燃烧、造纸业、水泥业、金属冶炼、纸桨加氯漂白及垃圾焚烧处理均会释放出二恶英。据有关报道,人体从生活垃圾焚烧厂排放烟气中接触二恶英的机率要比从其它途径(如食物、空气等)接触二恶英的机率小。综合有关资料,国外生活垃圾焚烧厂烟气中二恶英的浓度范围约为10-4~10-6mg/Nm3之间,对周围环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的影响非常微小。实际上世界各国曾经发生过的多次二恶英污染事件几乎都与生活垃圾焚烧厂的烟气排放无关,包括1999年发生在比利时引起世界范围恐慌的动物饲料二恶英污染事件。  但这并不是说在生活垃圾焚烧厂的设计和运行时就可以不重视二恶英了,实际上从生活垃圾焚烧厂排放出来的二恶英往往都占各国二恶英排放总量的相当大的比重,但现有的统计资料表现出相当大的离散性。例如,根据美国环保署1994年完成的评估报告,全美产生的二恶英中来自垃圾焚烧厂的约占3.5%,这是所见资料中的下限;又如,据1990年日本的统计资料,日本二恶英的排放总量中来自垃圾焚烧厂的占80%以上,这是所见资料中的上限。综合有关资料,在采用焚烧方法处理生活垃圾比例较高的国家中,由生活垃圾焚烧厂排放出来的二恶英约占该国二恶英排放总量的10%~40%,绝对是污染大户。这就是世界各国对生活垃圾焚烧厂排放出来的二恶英予以极大关注的原因所在。也充分说明了在建设生活垃圾焚烧厂或者在生活垃圾焚烧厂的运行管理中,要注意改善生活垃圾的燃烧条件,严格控制二恶英产生的重要性和必要性。

  • 今日分享内容:如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 【原创】烟气分析仪提高工业窑炉燃烧效率的意义及应用

    烟气分析仪提高工业窑炉燃烧效率的意义及应用【原创】 作者:李玉峰 上海**科学仪器有限公司 2011年5月16日 中国从二00六年起开始实施GDP能耗指标公报制度。来自国家发改委的消息说,万元GDP能耗、万元GDP能耗降低率等重要能耗指标将定期向社会公布。“十一五\"规划建议首次明确提出了单位GDP能耗下降指标,要求到二0一0年单位国内生产总值(GDP)能源消耗比“十五\"期末降低二成左右。这意味着,今后年均能耗将下降百分之四左右将成为一种趋势。根据未来我国经济社会发展的趋势和条件,提出了“十一五\"时期的主要发展目标。其中包括两个重要的数量目标:一是人均国内生产总值2010年比2000年翻一番;二是单位国内生产总值能源消耗比“十五\"期末降低20%左右。后一指标的具体含义是,按可比价计算的每万元国内生产总值的能源消耗量,以吨标准煤作为单位。在仅有的两个数量指标中,就包括能源消耗指标,充分说明这一目标在“十一五\"发展中的重要性。第二,降低能源消耗的任务很艰巨,潜力也很大。改革开放以来我国能源利用效率有所提高,但还不够明显。2003年、2004年我国能源消费增长速度均高于15%,而经济增长速度均为9.5%,单位国内生产总值能耗呈现上升趋势。2005-2008年的能耗增长速度也大大高于经济增长速度。例如,我国单位产出能源消耗大大高于发达国家和世界平均水平。据计算,2003年,我国单位国内生产总值的能源消耗比世界平均水平高2.2倍,比美国高2.3倍,比欧盟高4.5倍,比日本高8倍,比印度还高0.3倍。目前我国的一次能源消费相当于美国的60%,但经济总量仅相当于美国的比例不到15%。理论上讲,如果我国的能源利用效率达到世界平均水平,那么在现有基础上不用再增加能源消耗,也可以实现经济总量翻番。按照五年能耗降低20%计算,平均每年降低约4%,在现有偏高的能源消耗基础上,经过努力,这一能耗降低目标是有可能达到的。目前工业领域考虑节能、环保主要是提高工业窑炉热效率,且主要的途径如下是加强炉窑热工管理、热工控制,提高操作水平。上海普致科学仪器有限公司是专业从事气体采样调节、烟道气及过程气体分析、汽车尾气分析、汽车检测与诊断、火焰探测、光学仪器、热成像、气体传感器等领域国外知名品牌仪器仪表的研究与销售,普致科技凭借其专业的技术优势在业内遥遥领先,尤其在专业的气体分析领域拥有丰富的经验。不仅为各行各业提供完整的测量方案,而且为各级标准实验室提供最专业的测量及校准服务,多年以来累积了丰富的测量经验与解决方案,在测量技术的专业领域中拥有着极高的声誉与口碑。ecom®烟气分析仪在节能及环保方面的应用:当鼓风量过大时(即空燃比α偏大),虽然能使燃料充分燃烧,但烟气中过剩空气量偏大,表现为烟气中O2含量高,过剩空气带走的热损失Q1值增大,导致热效率η偏低。与此同时,过量的氧气会与燃料中的S、烟气中的N2反应生成SO2、NOX等有害物质。而对于轧钢加热炉,烟气中氧含量过高还会导致钢坯氧化铁皮增厚,增加氧化烧损。 当鼓风量偏低时(即空燃比α减小),表现为烟气中O2含量低,CO含量高,虽说排烟热损失小,但燃料没有完全燃烧,热损失Q2增大,热效率η也将降低。另外,烟囱也会冒黑烟而污染环境。 提高燃烧效率最直接的方法就是使用烟气分析仪器(如多功能烟气分析仪、燃烧效率测定仪、在线烟气分析仪检测仪)定期或连续监测烟道气体成分,分析烟气中O2含量和CO含量,调节助燃空气和燃料的流量,确定最佳的空气消耗系数。 所以,想全面、准确地了解一台锅(窑)炉的燃烧状况,仅仅测量SO2、NOX等参数是不够的,同时还要测量出O2及由O2计算的过剩空气系数,然后把SO2、NOX等参数进行折算,这样的结果才能符合国标的要求。无论采取何种方式控制燃烧效率,快速、准确的测量烟气中O2含量和CO含量都是实现最佳燃烧的前提条件。所谓提高燃烧效率,就是要适量的燃料与适量的空气组成最佳比例进行燃烧。因此,这里介绍一些典型的烟气分析仪器应用。 烟气分析仪是抽气采样炉窑烟道气体并自动进行成分分析的仪表,分为在线监测式和便携式。一般可以测量分析烟气中的CO、O2、NOX、SO2等气体含量,以及烟气温度、压力、环境温度等,并通过计算获得CO2含量、过剩空气系数、烟气露点、燃烧效率、排烟热损失、烟气流量等热工参数。 烟气分析仪中一般安装多个传感器,分为电化学传感器和红外传感器。电化学传感器测量原理是将待测气体经过除尘、去湿后进入传感器室,经由渗透膜进入电解槽,使在电解液中被扩散吸收的气体在规定的氧化电位下进行电位电解,根据耗用的电解电流求出其气体的浓度。 红外传感器主要由红外光源、红外吸收池、红外接收器、气体管路、温度传感器等组成。它是利用各种元素对某个特定波长的吸收原理,当被测气体进入红外吸收池后会对红外光有不同程度的吸收,从而计算出气体含量。红外传感器具有抗中毒性好、量程范围广、反应灵敏等特点。 烟气分析仪利用测量得到的O2、CO含量等数据可计算得到相应的热工参数:CO2含量,空气过剩系数,排烟热损失,燃烧效率,空气过剩系数等等 。 烟气分析仪器应用领域十分广泛,例如:(1)热电厂循环流化床锅炉用于燃烧控制室的烟道气体监测;(2)钢铁厂轧钢加热炉用于解决降低氧化烧损或脱碳层厚度时的炉气气氛检测;(3)全氢热处理炉用于检测辐射管是否烧穿漏气(4)研制新型燃烧器(蓄热式、低NOX式、辐射管式)时用于燃烧器结构尺寸的设计研究;(5)汽车尾气排放检测;(6)其他环境保护监测项目。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制