燃料胶定仪

仪器信息网燃料胶定仪专题为您提供2024年最新燃料胶定仪价格报价、厂家品牌的相关信息, 包括燃料胶定仪参数、型号等,不管是国产,还是进口品牌的燃料胶定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合燃料胶定仪相关的耗材配件、试剂标物,还有燃料胶定仪相关的最新资讯、资料,以及燃料胶定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

燃料胶定仪相关的厂商

  • 中橡减震是一家专业生产橡胶减震器的厂家,公司由专业橡胶技术工程师执掌技术;自公司成立以来,我们坚持以认真和专业的态度,致力于橡胶减震器的设计与制造。公司主要的产品有橡胶减震器(座)、各种标准橡胶减震垫。产品广泛用于汽机车零配件机械设备零件、发电机组、水泵等家用电器和电子仪器。公司具有独立的模具设计和制造能力,拥有完善的实验、检测设备、以及橡胶原材料配方的研制开发能力,各种橡胶材料均符合欧盟环境新规,能够根据客户的要求设计出满意的产品。公司管严格执行TS16949质量管理体系标准。所有产品采用先进的注射生产工艺,使铁件与橡胶的粘合强度达到40KG/GM2,我们秉承质量优先、客户至上的理念。质量控制从源头抓起,使用优质的原材料确保产品的稳定、可靠。所有产品必需通过严格的检测,务求使产品符合客户需求。
    留言咨询
  • 鹤壁市创研仪器仪表有限责任公司——致立于热值大卡检测分析仪器的生产、研发、销售制造厂家。国内热值化验设备生产企业之一。产品厂泛应用于:电力、冶金、地质、建材、化工、煤炭,节能环保、教学、科研等行业及生产部门的实验室。 公司坚持以诚信、求实、创新、发展为企业精神。为用户提供全方位的售后服务及产品技术指导。公司主要系列产品有:燃料油热值大卡检测仪、醇机燃料热值机、生物质颗粒热值检测仪、化卡机、验煤机、砖厂大卡机、-热值检测仪、量热仪系列、测硫仪系列、水份测定仪系列、测氢仪、胶质层指数测定仪、灰熔点测定仪、温控仪系列、马费炉、粘结指数测定代仪、鼓风干燥箱、破碎机系列、全套煤质分析仪器。
    留言咨询
  • 苏州欧仕达热熔胶机械设备有限公司创立于2003年6月份,是一家中国大陆知名的最具规模的专门从事热熔胶喷涂设备的研究、科技开发、生产、(主要零部件国外进口)销售并为客户提供技术咨询为一体的科技型合资企业。在香港及全国各地设有分公司或办事机构,为国内外客户提供及时优质的服务。 经过多年的努力,已推出一系列高品质热熔胶机、热熔胶枪、热熔胶管、热熔胶封盒机、热熔胶封箱机、热熔胶喷涂机、热熔胶喷涂设备。广泛用于卫生用品(纸尿裤,卫生巾等一次性用品),空气滤芯器、无纺布复合、鞋业、印刷、产品组装、制衣、不干贴,包装行业(纸箱包装,烟盒,酒盒,礼盒,眼镜盒,工艺盒,首饰盒,彩盒包装上胶点胶粘胶喷胶,),涂布复合行业(商标纸,标签双面胶带,医用透气胶带),产品组装(家电,家具贴合,电线电缆)汽车行业(内饰密封,车灯制造,挡风玻璃装配)书刊装订领域等各行各业。
    留言咨询

燃料胶定仪相关的仪器

  • LOIP 胶质测定仪 汽油燃料分析仪LOIP LP-381根据ASTM D38、ISO 6246及相关规范,采用喷射蒸发法进行五种同时测定汽油燃料中存在的胶含量的固体块浴装置。设备LOIP LP-381有两种供应选择,无需附加装置,并配有紧凑型隔膜压缩机。该压缩机噪音低,可靠性高,并保证必要的空气流量值。LOIP LP-381固体浴块设备实际胶质测定仪,采用喷射蒸发法测试石油燃料的实际胶质,可同时进行5个试样的测试,适用标准ASTM D381-IP131-IS06246等。该仪器包括内置加热器的固体铝浴块,可拆卸的锥形空气喷射适配器,铜屏幕,一个空气流量调节阀和压力表。该块有5测试孔和一个温度计插孔。浴块的温度通过微处理器温度调节器进行调节控制。特殊设计的控制算法使加热温度均匀,不会过高或过低——即使烧杯中装的是刚刚放入的冷样品。两个LED显示器会显示当前和预设的温度值,集成倒数计时器会显示剩余时间,并在试验结束时发出声音信号。可通过入口控制阀调节空气流量,并通过校准压力计监视流量。特点和优点:两个大的 LED显示器显示温度和时间,便利的防溅控制面板使操作方便安全 五处设计能更佳满足实际分析需求,(2x2平行样本+1空白样本) 设备已加热且随时可运行时会发出视声警报 通过压力表持续监测空气流动 产品配件:设备LOIP LP: 381有以下两个选择:1,不需额外配置2,配置小型隔膜压缩机,500ml烧杯,进气软管(2米)﹐空气入口管接头,2个软管夹所提供的压缩机噪音低,可靠性高,与LOIP LP-381工作时须保证一定的空气流量值。LOIP 胶质测定仪 汽油燃料分析仪产品规格:
    留言咨询
  • 产品简述: 本仪器是按照GB/T 8019 《车用汽油和航空燃料实际胶质测定法》、ASTM D381的标准要求设计制造的。适用于测定车用汽油、航空汽油和用于配制挥发性馏份及航空涡轮燃料在试验时的实际胶质。也可用于测定车用汽油的未洗胶质含量。仪器采用空气喷射法,金属浴进口减压阀调节。数显控温。仪器不带蒸气发生装置。使用时需配空气压缩机。概 述:本仪器是按照GB/T 8019 《车用汽油和航空燃料实际胶质测定法》、ASTM D381的标准要求设计制造的。适用于测定车用汽油、航空汽油和用于配制挥发性馏份及航空涡轮燃料在试验时的实际胶质。也可用于测定车用汽油的未洗胶质含量。仪器采用空气喷射法,金属浴进口减压阀调节。数显控温。仪器不带蒸气发生装置。使用时需配空气压缩机。 主要技术参数:(1) 试验浴温:162.5±2.5℃(2) 控温精度:试验孔温:155±5℃(3) 试验空气压力:小于35Kpa(4) 在室温(不加热状态)和试验空气压力下,各出口空气流量应在600±90mL/s(5) 在试验浴温和试验空气压力下,各出口空气流量应在1000±150mL/s(6) 温控表控温范围:0~199.9℃(7) 实验孔数:3孔(8) 加热功率:2000W(9) 蒸发介质:空气(10) 压力表范围:0~40Kpa(11) 电源:AC 220V±10% 50Hz (12) 外形尺寸:730×450×430(长×宽×高)。
    留言咨询
  • 产品介绍本仪器适用于按GB/T 8019《燃料胶质含量的测定(喷射蒸发法)》标准,用空气喷射装置测定航空燃料的实际胶质以及车用汽油和其他挥发性馏分(包括含有醇类、醚类含氧化合物以及沉积物抑制添加剂的产品)在试验时的胶质含量。本仪器也适用于ISO 6246,ASTM D381标准。产品特点蒸发浴为五孔金属浴,可同时做多个油样试验蒸发浴温度可设置,并由智能温控仪自动控制,液晶显示蒸发时间可设置,并可自动计时和到时报警流量计控制进气流量,直观方便配置稳压过滤装置,二级减压,使用安全方便技术参数蒸发浴:金属浴,五个试验孔蒸发浴温度:160℃~165℃,自动控制,液晶显示试验孔温度:150℃~160℃空气压力:≤35kPa空气流量:单孔:36 L/min ± 3.6 L/min,每个均有流量计控制加热功率: 3300W电源: 220VAC±10%,50Hz ±1Hz外形尺寸: 420mm × 420mm × 400mm
    留言咨询

燃料胶定仪相关的资讯

  • 低碳燃料标准制定全面启动
    低碳燃料标准制定全面启动 两项“低碳燃料”国标草稿 预计8月前报批  低碳燃料一般指与传统化石燃料(如柴油、汽油、航空煤油)相比,单位能量能源具有更低的碳强度(或者说温室气体排放强度),这种比较是建立在燃料生命周期评价的基础上。也就是说,燃料的碳强度应从能源原料的获取开始计算,包括开采(种植)、生产、运输以及最后汽车发动机燃烧,整个过程的温室气体排放都应包括在燃料碳度内,并不是只考虑汽车发动机的燃烧排放。而且,温室气体的排放可能因其中任何环节的改变而产生较大的变化,同一种燃料的碳强度是可以通过工艺改进、技术创新来降低的。从国内外研究成果来看,废弃油生物柴油、纤维素乙醇、可再生电力等具有更低的碳强度和减排潜力,被认为是低碳燃料。  那么,我国应如何实现交通燃料的低碳化呢?中国标准化研究院资源与环境标准化研究所的陈亮博士指出:“要摸清家底,开展交通燃料生命周期温室气体排放评价,首先要具备一套标准的评价方法学。”据悉,由中国标准化研究院、能源与交通创新中心、中粮集团等七家单位共同研究起草的两项“低碳燃料”国家标准。  其中,《交通燃料生命周期温室气体排放评价 原则和要求》已经完成了广泛征求意见稿并在广泛征求意见中 《交通燃料生命周期温室气体排放 报告与审核》处于标准起草阶段,有望于7月初完成标准征求意见稿。两项“低碳燃料”国家标准草稿计划于8月前报批国家标准化委员会。这两项国家标准不仅可以帮助企业评价交通燃料生命周期温室气体排放,也可以帮助各级政府决策部门根据评价结果制定相关的政策法规。  国家发改委相关人士表示,低碳燃料的研究工作能从定量角度对如何降低碳排放做了有益的探索,提出了思路。同时,还可以用科学的方法对当前的一些热点作出判断,不能说开发的产品是低碳的,就认定整个产业链就是低碳的。
  • 客户见证--LSA100 可视化粉末接触角测量仪助力新能源燃料电池的研发
    新年伊始,万象更新,我们的生活又翻开新的一页。2020年已转眼逝去,2021年迎着朝霞到来。在人们还在沉浸在元旦佳节喜气洋洋的气氛之时,我司工程师已赴四川成都中自环保科技股份有限公司为客户安装调试德国LAUDA Scientific公司生产的LSA100光学接触角测量仪。中自环保科技股份有限公司以催化剂技术为核心,致力于天然气、柴油、汽油等燃料发动机排放后处理催化剂(器)以及氢燃料电池的研发,多次获得省部科技进步奖项。承担国家多项重点项目,科研精度高,任务繁重。一直以来,测量电池碳粉的润湿性是困扰他们的难题,为了解决这个难题,他们与多家国内外厂商经过多次的沟通交流,最终选择了东方德菲仪器公司提供的德国Lauda Scientific LSA100光学接触角测量仪。配有可视化粉末测量功能的LSA100 接触角测量仪是德国Lauda Scientific 公司最新推出的新产品,它不仅可以完成常规的接触角及表界面张力的测量,还可以根据Washburm法完成粉末接触角的测量,实现了washbutm 法粉末测量的可视化,是目前世界上唯一实现washburm法可视化的接触角测量仪。 成都中自环保公司的燃料电池碳黑粉末样品具有颗粒小,比表面积大,难压片,难清洗等特点,采用传统的重量Washburm法测量,往往装样困难,清洗困难,还容易产生底部外润湿液面的问题,从而影响粉末接触角的测量结果。然而LSA100接触角测量仪以便捷的加样方式,易清洗的双开口样品管,独特的液面恒定系统,克服了样品自身的测量困难,并弥补了传统重量法测量的缺陷。使燃料电池炭黑粉末的测量变得更快速、更便捷。 客户对使用LSA100非常满意! 东方德菲致力于为中国客户提供最先进的表面测量仪器、最专业的技术服务,此次,我们能够助力国家新能源燃料电池的研发,我们也倍感自豪和骄傲!
  • 氢能产业要发展,质量检测标准应先行!——访氢能与燃料电池分析方法标准制定工作组组长潘义研究员
    为推进气候变化治理和能源转型,促进能源行业供给改革,保障国民经济和民生的可持续和高质量发展,我国以负责任的大国担当态度提出了“3060双碳”目标。氢能因其来源广、燃烧热值高、能量密度大、可储存、可再生的特点,成为我国节能减排和能源变革过程中最理想的能源互联媒介。近几年,国家各部委和地方政府密集出台了一系列促进氢能产业发展的顶层设计方案,以中石化、中石油、国家能源集团、国家电投等为代表的相关央企纷纷布局氢能产业链。质子交换膜燃料电池(PEMFC)汽车作为氢能利用的重要场景,我国早在2006年就将其列入了国家中长期科学和技术发展规划纲要。氢气作为燃料电池汽车的能量载体,其质量的优劣将直接影响PEMFC的运行和寿命正常与否。国内外相关科研机构围绕氢气中杂质组分对燃料电池的损伤机理开展了大量的探索与验证工作,各种微痕量杂质对燃料电池会产生不同的影响:水含量过高会使气体的扩散效率下降,阻止气体到燃料电池的催化层进行反应,影响燃料电池的效率、稳定性和耐久性;二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象;一氧化碳会占据 PEM 催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活;不同种类的硫化物如硫化氢、硫氧碳、二氧化硫、硫醇、硫醚等都会对PEMFC 阴极催化剂产生不可逆的毒化作用;甲酸和甲醛具有类似的毒化作用,两者均会在电池膜电极催化剂表面产生吸附,从而降低反应表面积;氨会降低电池电极电化学反应界面,对 PEMFC 性能产生不可逆的损坏;卤离子在电池阴极上与氧气的竞争吸附会影响燃料电池的工作效率,降低电池性能;颗粒物杂质会占据膜电极的活性位影响电池性能效率,并会影响氢气储存和反应系统的安全[1]。氢燃料质量相关标准的进化史目前ISO以及各个国家针对PEMFC所用燃料氢气中对电池性能以及关键零部件会会造成损害的杂质组分/种类和限值都作了明确的规定,并制定了相应的标准,如ISO 14687:2019、ISO 21087:2019、ISO 19880-8:2020、BS EN 17124:2018、SAE J 2719:2015和GB/T 37244-2018等。我国PEMFC汽车用燃料氢气的现行产品标准为GB/T 37244-2018,最初是以团体标准T/CECA-G 0015-2017的形式于2017年12月发布实施,后在2018年12月以国家标准的形式发布,2019年7月开始实施,该标准中对杂质组分种类和限值要求完全参照国际标准ISO 14687-2:2012和SAE J2719:2015。ISO 14687系列标准经历20多年的制定完善过程,最初以氢燃料质量标准ISO 14687:1999版本发布,后经2004年美国能源部召开的研讨会讨论将氢燃料的关注重点由纯度(Purity)转变为质量(Quality),并与2012年形成ISO 14687-2:2012,该标准系统规定了14类杂质组分的组成和限值要求。目前国际上现行有效的产品质量标准 ISO 14687:2019 由ISO/TC 197 Hydrogen technologies(国际标准化组织氢能技术委员会)于2019年发布,相较于国内现行版本 GB/T 37244-2018 有以下异同处(具体指标见表1)。BS EN 17124:2018规定的内容与ISO 14687:2019完全一致。在对氢气纯度、非氢气总量、水、氧、氦、二氧化碳、一氧化碳、氨、甲酸、总卤化物、最大颗粒物浓度等这11个指标的要求上,ISO 14687:2019与GB/T 37244-2018保持了一致。两者的主要区别在于,ISO 14687:2019放宽了对甲烷、氮、氩和甲醛等4个杂质含量限值的要求,其中对甲烷的含量限值作了单独规定,为100 μmol/mol;氮和氩由原来的合计不超过100 μmol/mol,更改为各自不超过300 μmol/mol;总烃含量的计量方式由“按照甲烷计”更改为“按照C1计且不包含甲烷”;甲醛的含量限量值由原来的0.01 μmol/mol提高为0.2 μmol/mol;总硫含量的计量方式也由“按照硫化氢计”更改为“按照S1计”。此外,ISO 14687:2019还针对一氧化碳、甲醛、甲酸的总含量提出不可超过0.2 μmol/mol的要求。需要注意的是,ISO 14687:2019标准内“总硫”参数所推荐的检测方法ASTM D7652已经于2020年作废了,目前ISO/TC 197正在组织开展ISO 14687:2019下一个版本的修订工作。表1. 国内外现行标准对燃料电池用氢杂质组分的限量值要求项目名称GB/T 37244-2018ISO 14687:2019氢气纯度(摩尔分数)99.97%99.97%非氢气总量300 μmol/mol300 μmol/mol单种/类杂质的最大浓度水(H2O)5 μmol/mol5 μmol/mol总烃2 μmol/mol(按甲烷计)2 μmol/mol(按Cl计、不含甲烷)甲烷(CH4)/100 μmol/mol氧(O2)5 μmol/mol5 μmol/mol氦(He)300 μmol/mol300 μmol/mol氮(N2)100 μmol/mol(两者总量)300 μmol/mol氩(Ar)300 μmol/mol二氧化碳(CO2)2 μmol/mol2 μmol/mol一氧化碳(CO)0.2 μmol/mol0.2 μmol/mol总硫0.004 μmol/mol(按H2S计)0.004 μmol/mol(按S1计)甲醛(HCHO)0.01 μmol/mol0.2 μmol/mol甲酸(HCOOH)0.2 μmol/mol0.2 μmol/mol氨(NH3)0.1 μmol/mol0.1 μmol/mol总卤化物(按卤离子计)0.05 μmol/mol0.05 μmol/mol颗粒物1 mg/kg1 mg/kg我国现行质子交换膜燃料电池汽车用氢气GB/T 37244-2018中提出了需要关注的氢燃料质量有影响的系列杂质组分限量值要求,并针对每种杂质组分分别引用了不同的分析方法标准。考虑到氢气背景条件下的适用性,从经济适用性等角度考虑,笔者认为部分方法标准还存在可以优化和提升的空间。氢能工作组全力开展检测方法标准化体系建设工作产业要发展,标准需先行。质子交换膜燃料电池用氢气作为产业“前端生产的产品”和“后端应用的原料”,建立准确可靠、具有溯源性的质量检测分析方法标准体系至关重要。在制定标准的过程中,要注重标准的质量:既不能造成标准实施过程中技术门槛和成本过高,现场适用性差,变为“僵尸标准”;亦要注意尽量采用先进的技术和方法,有利于技术的更新迭代,促进产业进步发展;既要响应国家提倡的分析仪器装备国产化要求,尽量实现技术自主可控;同时还要兼顾氢能产业对在线和离线测试需求的特点。为了健全我国氢燃料质量分析方法标准体系,2019年3月7日,经全国气体标准化技术委员会批准,依托中国测试技术研究院化学研究所为秘书处,成立全国气体标准化技术委员会气体分析分技术委员会氢能与燃料电池分析方法标准制定工作组(SAC/TC206/SC1/WG1,以下简称“氢能工作组”),氢能工作组负责国内氢能与燃料电池领域气体分析标准化的归口工作。工作组成立之后,在全国气体标准化技术委员会的指导下,秘书处承担单位组织科研人员,并联合工作组各成员单位,针对GB/T 37244和ISO 14687标准中规定的质子交换膜燃料电池汽车用氢气质量检测所涉及到的所有气态组分杂质和颗粒物组分杂质的取样和检测开展联合科研攻关和标准化工作,主要包括各类组分分析方法标准,气体分析术语标准,气体标准样品/物质制备方法,气体采样、取样方法标准等方面。如何确保痕量甚至是超痕量水平的测量需求,准确的取样、高水平的分析方法以及量值稳定、准确、可靠的气体标准物质是非常重要的三个环节。基于以上原则,结合全国气体标准化技术委员会在气体分析方法标准领域的经验积累和氢能工作组的技术优势,我们从2019年开始组织开展了大量针对性的标准化研究工作,目前已经联合国内外的优势分析仪器厂家共同开发了多个整体解决方案。针对不同指标灵活搭配检测仪器针对8个无机和烃类杂质组分需要3台不同仪器检测的问题,中国测试技术研究院的研究人员以岛津GC-2030气相色谱为应用测试平台,采用多阀多柱,热导检测器、火焰离子化检测器和甲烷转化炉组合的气相色谱分析方法,实现一次进样完成8个参数的准确定性定量分析,分析谱图见图1,实验表明THC、CO、CH4、CO2、Ar、O2、He、N2的线性相关系数R20.995,检出限分别为0.020 μmol/mol、0.033 μmol/mol、0.039 μmol/mol、0.14 μmol/mol、0.25 μmol/mol、0.32 μmol/mol、9.5 μmol/mol、1.7 μmol/mol。图1. 氢气中甲烷、二氧化碳、一氧化碳、氧、氦、氮、氩等7个组分的连续7次进样典型谱图针对标准中限值最为严格和分析难度最大的总硫含量(4 nmol/mol),中国测试技术研究院的研究人员开发了基于不同来源的氢气中9种典型硫化合物的低温富集与GC-SCD相结合的在线分析解决方案。此方案主要包括高准确度微痕量氢气中多组分硫化物混合气体标准物质、集成了在线动态稀释功能的半导体低温富集系统和硫化学发光气相色谱仪。结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析[2]。在该方案中,将毛细管色谱柱更换为非保留色谱柱即可用于氢气样品中总硫的分析。图2. 低温富集-GC-SCD在线分析系统数据示意图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5)(左图浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol;右图为0.1、0.2,0.5和1 nmol/mol)图3. 燃料电池汽车用氢中痕量硫化物解决方案系统组成图标准的最大价值在于服务社会进步、经济发展和产业创新,其最大使命在于指导、规范和约束使用者得到合理、科学和准确的结论。分析方法在实验室离线使用以及现场在线应用中,要充分考虑方法的适用性、合理性、安全性和经济性,氢能工作组在充分调研和前期实验研究的基础上,紧跟国际上最新的燃料电池用氢气质量标准ISO14687:2019中规定的杂质组分组成和限值要求,分别整理了一些分析方法解决方案供检测实验室和现场参考使用,具体见表2。表2. 针对ISO 14687要求的气体杂质组分分析方法解决方案杂质参数名称限量值要求分析方法解决方案总烃(按Cl计、不含甲烷)2 μmol/mol“三阀四柱+GC-(TCD+FID+MTN)”,在线/离线(注:可采用电化学氧气分析仪在线监控O2组分)甲烷(CH4)100 μmol/mol一氧化碳(CO)0.2 μmol/mol二氧化碳(CO2)2 μmol/mol氧(O2)5 μmol/mol氦(He)300 μmol/mol氮(N2)300 μmol/mol氩(Ar)300 μmol/mol总硫(按S1计)0.004 μmol/mol“低温富集+GC-SCD”,在线/离线甲酸(HCOOH)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”,在线/离线甲醛(HCHO)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”或“CRDS”,在线/离线氨(NH3)0.1 μmol/mol“FTIR”或“CRDS”或“在线吸收-离子色谱法”,在线/离线总卤化合物(按卤离子计)0.05 μmol/mol无机卤化物:“在线吸收-离子色谱法”,在线/离线;有机卤化物:“预浓缩+GC-MS”或“预浓缩+GC-ECD”,在线/离线水分5 μmol/mol露点法、电容法、石英晶体震荡;在线/离线颗粒物1 mg/kg在线滤膜取样+称重法目前,氢能工作组正在组织开展的与燃料氢气质量检测相关的国家标准制修订项目有:“气体分析 质子交换膜燃料电池用氢气质量分析方法 指南(制定)”、“气体分析 微型热导气相色谱法(制定)”、“GB/T 28726-2012 气体分析 氦离子化气相色谱法(修订)”、“气体中微量水分的测定”系列标准修订,“气体中微量氧的测定”系列标准修订等;正在开展的团体标准制定项目:《气体分析 氢气中硫化物含量的测定 低温富集-硫化学发光气相色谱法》、《气体分析 氢气中氨含量的测定 光腔衰荡光谱法》、《气体分析 氢气中氩、氧、氦、甲烷、非甲烷总烃、一氧化碳、二氧化碳含量的测定 气相色谱法》。同时,氢能工作组已组织团队完成了“氢气中甲烷、一氧化碳、二氧化碳、甲醛、甲酸、氨和氯化氢的测定 傅里叶变换红外光谱法”、“氢气中卤化物的测定 在线吸收-离子色谱法”、“甲醛的测定 低温富集-气相色谱/质谱法”、“气体中微量水分的测定 电容法”、“高压气态氢气的取样方法”等系列方法标准的前期验证试验工作,下一步将在全国气体标准化技术委员会的组织下积极申报国家标准,完善涉及燃料氢气质量检测相关的取样和分析方法标准体系,满足我国氢能产业高质量发展对气体分析标准化的需求。参考文献[1] 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.[2] Yi P, Feng F D, Zheng F, et al. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds[J]. Chinese Chemical Letters, 2021(DOI:10.1016/j.cclet.2021.05.067)(作者:中国测试技术研究院化学研究所 潘义,邓凡锋)

燃料胶定仪相关的方案

燃料胶定仪相关的资料

燃料胶定仪相关的试剂

燃料胶定仪相关的论坛

  • 国标准GB/T 509发动机燃料实际胶质测定法

    用途及适用范围SY509发动机燃料实际胶质试验器是按照中华人民共和国标准GB/T 509《发动机燃料实际胶质测定法》所规定的要求设计制造的,适用于按GB/T 509所规定的方法测定燃料(汽油、煤油、柴油)在发动机中使用时生成胶质的倾向。主要技术指标及参数、1、工作电源: AC220V±10% ;50Hz。2、浴缸形式: 油浴。3、油浴规格: Φ195mm×255mm。4、油浴容量: 5000ml±50ml。5、加热形式: 电加热器加热。6、加热功率: 1000W。7、控制温度: 室温~250℃。8、控温精度: 150℃±3℃;180℃±3℃;250℃±5℃。9、环境温度: 室温~+35℃。10、相对湿度: ≤85%。11、整机功耗: 不大于1200W。

  • 【转帖】中国氢燃料电池轿车驶进奥运会场

    【转帖】中国氢燃料电池轿车驶进奥运会场

    [img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807162227_98720_1615922_3.jpg[/img]图为氢燃料电池轿车。中国自主研制的氢燃料电池轿车走出实验室,驶进奥运会场。作为2008北京奥运“绿色车队”中的重要成员,由上海燃料电池汽车动力系统有限公司、同济大学、上汽集团等提供动力系统,上海大众汽车有限公司负责制造的20辆帕萨特领驭氢燃料电池轿车,6月20日完成全部的试制试验,其中5辆车作为先遣队,已经运抵北京,另15辆车整装待发。它们将作为公务用车在奥运中心区投入示范运营,与其它近500辆各类电动汽车一道,实现奥运核心区污染零排放。这20辆燃料电池轿车此前已通过国家安全性、可靠性、耐久性方面的严格检测,获得国家许可证。今天下午,上海发车仪式在同济大学新能源汽车工程中心举行。全国政协副主席、科技部部长万钢,上海市副市长艾宝俊出席发车仪式并致辞。在“十五”国家863电动汽车重大专项、“十一五”国家863节能与新能源汽车重大项目的支持下,同济大学、上汽集团等单位通过产学研紧密合作,已经自主成功研制出我国四代拥有完全自主知识产权的氢燃料电池轿车样车。该车以氢气为能源,经氢氧化学反应生成水,真正实现了零污染。经过一代代改进、优化,最新一代的燃料电池轿车动力性能持续增强,最高时速近150公里,一次性充氢连续行驶里程超过300公里,整车的可靠性、稳定性也不断得到提升。此20辆氢燃料电池轿车,是由整车企业牵头,利用大众帕萨特领驭车型,通过集成最新一代燃料电池轿车动力系统技术平台而成功研制出来的。与以前样车相比,它的工程化、产品化程度更高。为确保其安全性、可靠性,前5辆车每辆均已完成3000公里的实际道路行驶试验,另外15辆车也已完成相当量的行驶里程。“2008北京奥运会燃料电池轿车”专项计划于2007年8月启动,这是上海市政府为响应“科技奥运、绿色奥运、人文奥运”而实施的重要举措。这20辆氢燃料电池轿车,将主要为贵宾、媒体记者和奥组委官员等提供用车服务。据介绍,项目研发团队部分成员将于明天启程赴北京,为确保燃料电池轿车在奥运期间顺利运行提供技术支撑。有关负责人表示,这既是我国自主研发的燃料电池汽车走出实验室以来首次小规模化的示范运行活动,也是我国节能与环保最新科技成果的国际展示。

燃料胶定仪相关的耗材

  • EMCEE 1152 航空燃料电导率仪配件
    EMCEE 1152 航空燃料电导率仪 EMCE1152 航空燃料电导率仪提供了一种符合ASTM D2624标准要求的液体电导率测试方法,电导率值以pS/m为单位。仪器杰出的机电设计可方便地使用于实验室和工业生产中。基于安全原因,本仪器首先用 于烃类燃料特别是航空燃料的电导率测定,在改进后被大量应用于其他液体电导率的测定。技术参数测量范围0~1999pS/m分辨率: 1pS/m精度:2%(测量值)校准:内部自动校准显示:LCD超测量范围指示:屏幕的左边显示“1”操作:两键,M 测量,C 校正可选温度范围:32—165F (0— 75℃)电源:3个6伏碱性电池供电。携带仪器箱:硬质、抗溶解、塑料模制主要特点测试便捷、可靠、精确的数字电导率仪。也可适用于其他的标准或非标准测量范围。大屏幕数字液晶显示。采用先进可靠的集成电路技术。具有场调整,实现了自动校准功能。超测量范围或低电流时自动显示。可以使用短的电缆或电缆盘,测试贮罐和贮罐车中的物料。电导率仪内置于表面粗糙、涂有防锈涂料的铝制外壳中,配有可分离的不锈钢探头。本质安全,可在危险防爆区域内使用,通过了Underwriters Laboratories (UL)、Canadian Standards Association (CSA)和LCIE等机构的安全认证
  • GsBP-Bio-Ethanol 变性燃料乙醇专用柱
    订货信息:货号名称规格7425-3010-AlC3GsBP-Bio-Ethanol 30 mx 0.25 mm x 1.00 μm变性燃料乙醇是以玉米等淀粉质原料,经发酵、蒸馏加工出乙醇,并进一步脱水,再加入适量变性剂(车用无铅汽油)变性的燃料乙醇。是由多种物质组成的,属于混合物,正是由于汽油是非常复杂的混合物,含有很多的低沸点的化合物可能和甲醇,乙醇共同洗脱出来,所以常规气相色谱柱很难对甲醇和乙醇完全分离。GsBP-Bio-Ethanol气相色谱柱是专门为快速、 准确分析变性燃料中的甲醇和乙醇而制造生产,完全可以基线分离甲醇和乙醇以及其他的干扰物。大大缩短了分析时间,提高了实验效率而且符合 ASTM D5501 的要求。 仪器: Agilent 7890 w/ FID色谱柱: GsBP-Bio-Ethanol 30 mx 0.25 mm x 1.00 μm 货号 7425-3010-ALC3货号: 7625-3010-AlC3柱温: 40 °C (5 min) 25 °C/min -300 °C (1min)载气: 氢气 1.5 mL/min 恒流模式进样口: 分流比 30:1 275 °C, 0.1 μL检测器: FID 325 °C图 1. GsBP-Bio-Ethanol气相色谱柱的分析谱图样品中含有汽油中的常见杂质,从图中可以看出,甲醇和乙醇与其他的潜在干扰物实现了很好的分离.表1:化合物名称,保留时间和分离度的数据序号化合物保留时间(min)分离度1Methanol | 甲醇1.5362Ethanol |乙醇1.9073Acetone | 丙酮2.0604Isopropyl alcohol | 异丙醇2.1703.565Pentane | 戊烷2.2993.896n-Propanol | 正丙醇2.87072-Butanol | 2-丁醇3.6518Ethyl acetate | 乙酸乙酯3.9349Hexane | 正己烷3.9340.0010Benzene | 苯5.43211Heptane | 正庚烷6.57912Acetal | 乙缩醛6.97813Toluene | 甲苯7.50914Xylene | 二甲苯8.786 以上数据表明使用GsBP-Bio-Ethanol 气相色谱柱得到了良好的分辨率和峰型。对于乙酸乙酯和正己烷共同洗脱的现象,目前各个厂家仍然没有解决方案。如果样品中还有一些其他杂质,可以通过调整实验条件如柱温,流速等来改善分离结果。
  • Tygon® 燃料和润滑剂管
    Tygon® 燃料和润滑剂管Tygon® 燃料和润滑剂管材质:Tygon F-4040-A应用范围:燃料和工业润滑剂--汽油、煤油、燃料油、切削液及乙二醇类冷却液的处理。可处理绝大多数烃类。特点:不易脆化和膨化,抗臭氧和紫外线,低萃取率。半透明黄色。温度范围:-35 至 165°F(-37 至 74°C)灭菌:不推荐。Tygon® 燃料和润滑剂管订购信息尺寸:in. (mm)70°F 时的最大 压力psi(21°C 时的 bar)产品目录号长度内径外径壁厚3/32 (2.4)3/16 (4.8)3/64 (1.2)52 (3.6)95633-0050ft/包 1/8 (3.2)1/4 (6.4)1/16 (1.6)52 (3.6)95633-013/16 (4.8)5/16 (8.0)1/16 (1.6)37 (2.6)95633-021/4 (6.4)3/8 (9.6)1/16 (1.6)30 (2.1)95633-035/16 (8.0)7/16 (11.2)1/16 (1.6)25 (1.7)95633-043/8 (9.6)1/2 (12.8)1/16 (1.6)21 (1.4)95633-051/2 (12.8)3/4 (19.1)1/8 (3.2)30 (2.4)95633-083/4 (19.1)1 (25.4)1/8 (3.2)21 (1.4)95633-10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制