当前位置: 仪器信息网 > 行业主题 > >

燃料冰定仪

仪器信息网燃料冰定仪专题为您提供2024年最新燃料冰定仪价格报价、厂家品牌的相关信息, 包括燃料冰定仪参数、型号等,不管是国产,还是进口品牌的燃料冰定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合燃料冰定仪相关的耗材配件、试剂标物,还有燃料冰定仪相关的最新资讯、资料,以及燃料冰定仪相关的解决方案。

燃料冰定仪相关的论坛

  • 喷气燃料冰点测定仪适用于GB/T2430,突出特点有哪些?

    GB/T2430喷气燃料冰点测定仪突出特点:1、数码控温、操作方便。2、采用进口压缩机Danfoss(Secop),制冷快速、稳定可靠。3、自动搅拌,大大降低工作强度。4、双层真空玻璃浴,控温准,便于观察。5、德国进口温度传感器(PT100)。[font=&]得利特产品有:馏程测定仪、辛烷值测定仪、冷滤点测定仪、饱和蒸气压测定仪、硫氮测定仪、实际胶质测定仪、石油烃类测定仪、冰点测定仪、石油产品热值测定仪、X荧光硫元素分析仪、轻质石油产品硫含量测定仪、石油产品色度测定仪等多种燃料油分析仪器、绝缘油分析仪器、润滑油分析仪器 ,水质分析检测仪器、气体检测仪器,型号多,质量保证,可定制。[/font][font=&][/font]

  • 航空燃料水分离指数测定仪

    由于喷气燃料特殊的应用场所和使用环境,国内外对于喷气燃料性能要求十分苛刻。3号喷气燃料国家标准(GB 6537 - 2006)以及ASTM D7566-2012A标准,从外观、颜色、组成、挥发性、密度、流动性、燃烧性、腐蚀性、安定性、洁净性、导电性、水分离指数和润滑性等方面对喷气燃料提出了近30项指标要求。喷气燃料是石油产品中控制指标最多、质量要求最严的产品之一。喷气燃料在生产、储运过程中混入的微量水分若不易分离,则在高空低温状态下,极易导致燃料结冰,堵塞油路,从而使飞机失去动力,造成空难。水分离指数是喷气燃料的质量指标之一,其表示水从燃料中分离的难易程度以及加入的表面活性物质对油水分离的影响程度。因此3号喷气燃料国家标准(GB 6537 - 2006)以及ASTM D7566-2012A标准,对喷气燃料的水分离指数作出了明确的指标要求。A、适用标准:GB/T 11129-1989,ASTM D3948-2011,SH/T 0616-1995B、仪器参数:样品温度18-29℃,测量范围:50-100,分辩率:1;C、仪器性能:数字显示测试结果重复性高便携式设计,设备齐全自动计时操作简单,低成本,速度快本人有ASTM D7566 2011-2012版的中文英文标准文件,但是不敢上传。新手,不明白。有懂的的请回复。

  • 【转帖】化学固体燃料的制取和应用

    化学固体燃料的制取和应用1 前言  化学固体燃料可由乌洛托品(六亚甲基四胺)和硬脂酸或石蜡,也可由低沸点醇、羧酸脂、烷烃、芳香烃或它们的混合物与胶凝剂、火焰调节剂、膨松体等制成呈三维网状结构固体燃料,具有容易点燃、火焰大小均匀、热值高、火焰偏差小(火焰从初燃到燃完时大小均一)、携带方便,燃烧时无毒、无异味、无污染,安全又成本低,适用于宾馆、饭店、餐车、船只、旅游、医院、学校、军队、野外作业、地质勘探、野营、家庭生活取暖用火及煤炭和木材等引火燃料。2 制造方法  因原料及配比不同而有多品种:  a 把工业品(GB9015-88)乌洛托品粉碎、烘干、筛选,并把工业品硬脂酸或蜡切成薄片,称取乌洛托品98~99份,硬脂酸(或石蜡)1~2份,二种原料充分混合,于压片成型机中压制成每片10g,适作饮食燃料及手炉取暖燃料。所用石蜡因精制深度不同而有黄蜡及白蜡之分,又因蜡熔点不同而分48、50、52、54、56、58、60等型号,以选白蜡可燃时无烟为好,如携带及使用环境温度高,则用高标号58~60为好。  b 取乌洛托品89份,乙醇石蜡乳化液11份,充分混合、热熔、冷却成型即可。  c 蜂巢煤引火用化学固体燃料,火柴一点即着火:用工业品一级或二级品轻质MgO(视比容5~6ml/g)4份与工业酒精22份充分混合,然后与硬脂酸1份,木粉或煤粉73份混合,压制成型。取40目木粉6.3份、80目木炭分32份、石蜡58份、95%工业酒精4份,充分混合,压制成型。用具空隙大高度分散(视比容为5~25ml/g)的SiO2nH2O(又名白炭黑)或CaSO3与可燃性液体醇类(甲醇、乙醇、丙醇、异丙醇、乙二醇)、酮类、酯类或是它们的回收品混合而成。固体与液体配比为5~8∶1。取木粉12份与95%工业酒精8份充分混合,然后与石蜡12份、无烟煤60份(水份10%)混合均匀,压制成型。把乌洛托品4份、乙醇石蜡乳液7份、稿杆粉末(麦杆、棉杆、稻杆、高梁杆等都可)89份,充分混合并压制成型。  d 醋酸钙法:取95%工业酒精1kg及适量水于容器中,在热水浴中加热到45-50℃,逐步加入于0.1kg事先配制的饱和醋酸钙水溶液[(Ca(CH3COO)2]于水中溶解度40℃为24.9%,(Ca(CH3COO)2H2O于40℃水中溶解度为33.22%)]中,边搅拌边逐步加入,物料会迅速凝结成粒状固体,冷却后即可包装。该法制取的产品久置软化为糊状物,所以应在制成后短期内用完。  e 硝化纤维法:取硝化纤维4.3kg、醋酸乙酯4.3kg、丙酮13kg,置于热水浴中带回流冷却器的容器内,充分溶解均匀,然后在搅拌情况下,逐步加到温度在40℃的装有95%工业酒精78.4kg及适量水的另一容器中,迅速成胶后,冷却包装为成品。该燃料在燃烧时有小火炸裂状。  f 其他纤维素法:本法胶凝剂有羧甲基纤维素(CMC)、甲基纤维素(MC)、羟乙基纤维素(HEC)、羟丙基纤维素(HPMC)及聚酰氨纤维。取110g甲基纤维素和150g丙酮搅拌混合溶解,逐步加入到有95%工业酒精1kg和适量水的另一容器中(40~50℃),会立即成固体燃料。该法纤维素价格较贵,丙酮气味较大。  g 硬脂酸盐作胶凝剂法:常用的是硬脂酸的钾、钠、铝盐。用固碱28g、适量水、石蜡15g于70~75℃的热水浴容器中熔化反应,热回流情况下加入1kg95%工业酒精回流30min,冷却到60℃,于搅拌下加入火焰调节剂CuNO38g,搅拌10min,冷至50℃入模具,为半透明固体燃料。取火碱10~30g,水150g,溶解后,于另一容器内放硬脂酸40g,95%工业酒精800g,在水浴上加热,回流到60℃停止加热,将上述二容器内物料合并混合搅拌,45℃以上将物料倒入模具,冷却得半透明固体燃料。固体汽油的制造:把5%~10%的硬脂酸铝放入热水浴中加热的容器中,加热到60℃,倒入汽油,搅拌20min,冷却倒入模具,或以5%-10%硬脂酸的汽油放入热水浴中加热的容器内,加热到60℃,再加入为硬脂酸重量的1/3的50%浓度的液碱,搅拌30min,冷却入模,取出即为成品。用硬脂酸5份,浓度为30%的液碱水6份,异丙醇89份,或甲醇89份,或乙醇20份,甲醇20份,异丙醇30份,水19份,或丙酮20份,95%工业酒精50份,甲苯19份,或乙酸乙酯40份,95%工业酒精49份,或上述任何可燃物混合物或它们回收的下脚料在适当配比下都可成固体燃料。用硬脂酸与动物脂肪酸或氢化植物油与碱水同上述可燃物于适当配比及反应条件下都可成固体燃料。取甲醇12g,乙二醇3g,水5g混合,并用作胶凝剂的丙烯酸——乙烯醇共聚物0.05g,甲基纤维素0.05g,硅酸物0.3g,膨松体为聚乙烯发泡体5cm3,包装于聚乙烯薄膜封顶的聚乙烯与纸复合的薄膜杯内。用火柴于杯顶点着,即得均匀火焰。把甲醇40g,乙醇20g,水40g,异丁烯马来酸共聚物的交联产物为胶凝剂0.2g,硅酸物10g,膨松性纸浆30cm3,混合包装于填充无机质的聚乙烯筒杯子中,用聚乙烯膜封杯顶,可延长燃烧时间。把乙醇50g,玻璃棉(气孔率95~99%)为膨松体20g,封装于聚乙烯膜封杯口顶的聚乙烯镀铝质杯子中。3 结果及讨论  用低沸点可燃性单元醇、二元醇、烷烃、芳香烃、酯类、酮类、乌洛托品或它们的混合物与胶凝剂、膨松体,火焰调节剂等混合在一起,在一定条件下都可成化学固体燃料。火柴一点即着,可作取暖及引火燃料,携带方便,使用安全,成本又低,一般为2000~3000元/吨,而市场售价为4800-7000元/吨。如建年200吨产品的设备投资为2~5万元,净利40~50万元,经济效益可观。  上述各生产方法中,在特定条件下都有生产实用性。以醋酸钙法、玻璃棉法、白炭黑法、硅酸钙法成本较低 可燃物以汽油货源充足,价格又便宜,尤以直馏汽油中含不饱和烃及芳香烃少,烟少,如在火焰处加铁丝网,则可获得燃烧均匀而无烟,热值又高,用醇类与烷烃类混合制得的化学固体燃料,燃烧时既无烟,热值又理想。

  • 【转帖】薄层色谱展开剂——各类染料应用举例

    1.分散染料 偶氮型的分散染料采用硅胶板,蒽醌型最好用氧化铝。①硅胶G 氯仿∶丙酮=9 ∶1②硅胶G 苯∶丙酮=9 ∶1③硅胶G 甲苯∶醋酸=85 ∶15④硅胶G 苯∶氯仿∶丙酮=5 ∶2 ∶1⑤硅胶G 甲苯∶丙酮=20 ∶12.阳离子染料①苯∶甲苯=9 ∶1 硅胶G②氯仿∶甲醇=8 ∶1 硅胶G③硅胶G 正丁醇∶乙醇∶水=9 ∶1 ∶1④硅胶G 丁醇∶醋酸∶水=4 ∶1 ∶5⑤硅胶G 丁酮∶醋酸∶异丙醇=2 ∶2 ∶1⑥硅胶G 丙醇∶甲酸=8 ∶2 氧杂蒽系3.酸性染料①硅胶G 正丁醇∶醋酸乙酯∶水=6 ∶1 ∶3②硅胶G 正丁醇∶吡啶∶水∶氨水=4 ∶5 ∶4 ∶1③硅胶G 醋酸乙酯∶吡啶∶水=6 ∶3 ∶1④BaSO4 DMF ∶水=3 ∶4⑤硅胶 丁醇∶氨水=9 ∶14.活性染料①硅胶 丁醇∶醋酸∶水=16 ∶5 ∶15(16 ∶14 ∶9)②硅胶 丁醇∶水∶DMF=11 ∶11 ∶3③硅胶G 正丙醇∶醋酸乙酯∶水=6 ∶1 ∶3④硅胶G 正丁醇∶吡啶∶水∶氨水(浓)=5 ∶5 ∶3 ∶2 (4 ∶5 ∶4 ∶1)⑤硅胶G 吡啶∶正戊醇∶氨水(浓)=1.1 ∶1 ∶15.直接染料①氧化铝 乙酸∶水(各种比例)②硅胶G 醋酸丁酯∶吡啶∶水=30 ∶45 ∶25氧化铝G③硅胶G 正丙醇∶氨水=2 ∶1 ④硅胶G 正丁醇∶水∶氨水=2 ∶1 ∶1(上层液)6.金属络合染料①硅胶G 苯∶醋酸=4 ∶1②硅胶G 氯仿∶醋酸=9 ∶1③聚酰胺 甲醇∶水∶氨水(浓)=80 ∶16 ∶4④聚酰胺 甲醇∶氨水(浓)=95 ∶5⑤硅胶G 正丁醇∶无水乙醇∶2N氨水=60 ∶20 ∶20

  • 【资料】在线分析仪…电化学篇…燃料电池式分析仪(收集)

    虽然无人说好,我想我还是将我的培训资料发全了,我发的这些内容,基本上就是我的分析室人员培训基本理论,作为一个基本合格分析工,这些东西还是要掌握的。希望这些书上的东西,对我们这行的朋友有用!第三节:燃料电池式氧分析仪燃料电池是指原电池中的一种类型。原电池式氧分析仪中的电化学反应可以自发地进行,不需要外部供电,其综合反应是气样中的氧和阳极发生氧化反应,反应的结果生成阳极氧化物,这种反应类似于氧的燃料反应,所以这类原电池也称为“燃料电池”,以便与其他类型的原电池相区别,安装有这类原电池的分析仪,我们称之为燃料电池分析仪。由于阳极在反应中不断消耗,因而电池需要定期更换。燃料电池式氧分析仪,既可以测量微量氧,也可以测量常量氧。若需要测量常量氧,其测量测量精度和长期使用的稳定性肯定不如顺磁氧效果好,且电池的寿命因与氧浓度有关,所以测量常量氧,其寿命也较短。因此,它测量常量只适合一般要求不高的场合。而测量微量氧,则是这类仪器的优势所在,它测量微量氧的下限为PPM级,而顺磁氧为:0.1%(1000PPM)O2,精度高的顺磁氧也只能达到0.01%(100PPM)O2。过去为,燃料电池的电解质均采用电解液,近20年来,由于固体(糊状)电解质应用于燃料电池,为了便于区分,我们将者称之为液体燃料电池,后者称之为固体燃料电池。两者相比,固体燃料电池比液体燃料电池有一定的优越性,但固体能否取代液体,尚难预料!在液体燃料电池中,我们根据燃料电池的性质,又将液体燃料电池分为碱性燃料电池和酸性燃料电池。

  • 【分享】薄层色谱展开剂——各类染料应用举例

    发一点点资料板油共享薄层色谱展开剂——各类染料应用举例1.分散染料 偶氮型的分散染料采用硅胶板,蒽醌型最好用氧化铝。①硅胶G 氯仿∶丙酮=9 ∶1②硅胶G 苯∶丙酮=9 ∶1③硅胶G 甲苯∶醋酸=85 ∶15④硅胶G 苯∶氯仿∶丙酮=5 ∶2 ∶1⑤硅胶G 甲苯∶丙酮=20 ∶12.阳离子染料①苯∶甲苯=9 ∶1 硅胶G②氯仿∶甲醇=8 ∶1 硅胶G③硅胶G 正丁醇∶乙醇∶水=9 ∶1 ∶1④硅胶G 丁醇∶醋酸∶水=4 ∶1 ∶5⑤硅胶G 丁酮∶醋酸∶异丙醇=2 ∶2 ∶1⑥硅胶G 丙醇∶甲酸=8 ∶2 氧杂蒽系3.酸性染料①硅胶G 正丁醇∶醋酸乙酯∶水=6 ∶1 ∶3②硅胶G 正丁醇∶吡啶∶水∶氨水=4 ∶5 ∶4 ∶1③硅胶G 醋酸乙酯∶吡啶∶水=6 ∶3 ∶1④BaSO4 DMF ∶水=3 ∶4⑤硅胶 丁醇∶氨水=9 ∶14.活性染料①硅胶 丁醇∶醋酸∶水=16 ∶5 ∶15(16 ∶14 ∶9)②硅胶 丁醇∶水∶DMF=11 ∶11 ∶3③硅胶G 正丙醇∶醋酸乙酯∶水=6 ∶1 ∶3④硅胶G 正丁醇∶吡啶∶水∶氨水(浓)=5 ∶5 ∶3 ∶2 (4 ∶5 ∶4 ∶1)⑤硅胶G 吡啶∶正戊醇∶氨水(浓)=1.1 ∶1 ∶15.直接染料①氧化铝 乙酸∶水(各种比例)②硅胶G 醋酸丁酯∶吡啶∶水=30 ∶45 ∶25氧化铝G③硅胶G 正丙醇∶氨水=2 ∶1④硅胶G 正丁醇∶水∶氨水=2 ∶1 ∶1(上层液)6.金属络合染料①硅胶G 苯∶醋酸=4 ∶1②硅胶G 氯仿∶醋酸=9 ∶1③聚酰胺 甲醇∶水∶氨水(浓)=80 ∶16 ∶4④聚酰胺 甲醇∶氨水(浓)=95 ∶5⑤硅胶G 正丁醇∶无水乙醇∶2N氨水=60 ∶20 ∶20

  • 木质纤维素为原料合成可再生航空燃料(JP-10燃料)

    近日,中国科学院大连化学物理研究所催化与新材料研究中心研究员李宁、中科院院士张涛团队,开发了两条通过木质纤维素平台化合物——糠醇制备可再生JP-10高密度燃料的新路线。相关工作发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。  以木质纤维素为原料合成可再生航空燃料是国际生物质催化炼制的研究热点。目前,国内外已有的木质纤维素航空煤油报道主要集中在合成普通航空煤油。JP-10燃料(挂式四氢双环戊二烯)是一种经典单组分高密度航空燃料。与普通航空煤油相比,JP-10燃料在密度、冰点、热安定性等方面都具有明显的性能优势,因而也被称为“超级燃料”。目前,JP-10燃料通常由来自化石资源的环戊二烯制备,价格较高,且由于原料资源有限,因而无法在民航中得以广泛应用。  糠醇是农林废弃物中半纤维素部分获得的一种重要的化学品,迄今已有几十年的工业化生产历史。该工作开发了两条以糠醇为原料合成JP-10燃料的新路线,可获得大约65%的收率(以碳计算)。经过初步的经济分析,该生物质路线可大大降低制备JP-10燃料的成本。  上述研究工作得到国家自然科学基金委、国家重大研发计划、中科院洁净能源创新研究院合作基金、中科院战略性先导科技专项和大连市杰出青年科技人才项目等资助。

  • 【转帖】用于纺织行业的化学试剂-不溶性偶氮染料

    不溶性偶氮染料 又称为冰染料。是一类在冰冷却下﹐在织物上生成的不溶于水的偶氮染料。最早于1880年由英国人霍立代发明。冰染染料色泽鲜艳,水洗及日晒坚牢度均较好,色谱齐全,合成路线简单,价格低廉。主要用于棉织物的染色和印花,也可用于制备有机颜料。 冰染染料的印染过程为: 将织物先用偶合组分(色酚)溶液打底,再通过冰冷却的重氮组分(色基重氮盐)溶液,使其在织物上直接发生偶合反应而显色,生成固着的不溶于水的偶氮染料,从而达到上染目的。 色酚 冰染染料的偶合组分,又称打底剂。大多数是一些含羟基的化合物(不含磺酸基或羟基等水溶性基团),主要为邻羟基萘甲酰胺类,此外还有稠环、杂环的邻羟基酰芳胺类以及少数的乙酰基乙酰胺类。它们按《染料索引》统一命名。 色基 又称显色剂,是冰染染料的重氮组分,是不含磺酸基或羧基等水溶性基团而带有氯、硝基、氰基、三氟甲基、芳胺基、甲砜基、乙砜基或磺酰胺基等取代基的芳胺类化合物。色基常以它与色酚AS生成的颜色命名。 这些色基必须经过重氮化反应才能用于显色,使用不够方便。如将色基重氮化后制成稳定重氮盐即色盐,则印染时只需将色盐溶解,便可直接用来显色。 快色素类冰染染料 由特制的稳定重氮盐与色酚组成的混合物,不需经过打底和显色,而能直接用于印花。工业上生产的有快色素、快磺素、快胺素三类。 快色素 呈亚硝酸胺形式的稳定重氮盐和色酚的混合物。如红色基KB的重氮盐用碱处理转变成亚硝酸胺后和色酚AS-D混合配成快色素红FGH(C.I.冰染红6)。应用快色素印花要用汽蒸以后,在酸性浴中显色,也可通过含酸的蒸汽来显色。快色素的缺点是稳定性差,不易贮存,对酸非常敏感,甚至连空气中的二氧化碳也会影响其显色作用。 快磺素 呈重氮磺酸盐形式的稳定重氮盐和色酚的混合物。如蓝色基 B重氮化后和亚硫酸钠作用形成蓝色基 B的重氮磺酸钠稳定盐与色酚AS-D配成快磺素盐G(C.I.冰染蓝12),印花后需用重铬酸钠作氧化剂处理,再用汽蒸显色。 快胺素 稳定的重氮氨基化合物和色酚的混合物。如红色基KB的重氮盐加到2-氨基-4-磺酸苯甲酸稳定剂溶液中,经盐析干燥,即可制成稳定的重氮氨基化合物与色酚AS-D配成快胺素G(C.I.冰染红6)。在应用时和快色素一样,也需用汽蒸和酸处理显色。快胺素比快色素稳定,有时选用更适宜的稳定剂,形成重氮氨基化合物和色酚配成中性素,印花时只需用中性汽蒸即可显色,使用较为方便。

  • 醇基油料大卡热值仪-测试醇基燃料热值仪

    [color=#ff0000]醇基油料大卡热值仪-测试醇基燃料热值仪咨询电话:186.3920.3323[/color]微信号meijiaoyiqi锅炉醇基燃料油热值化验仪,醇基燃料油热值大卡机、醇基油品燃料热值测定仪设备,锅炉醇基燃料油热值化验仪、醇基燃料检测仪、  醇基油料大卡热值仪-测试醇基燃料热值仪主要涉及到的领域有:玻璃厂、纸厂、板厂、食品、生物制药、石油化工、农业等。  工作原理  1、液晶屏显示,全中文操作菜单,更适合国内企业使用和操作。  2、采用两线制连接,不区分正负极接线,安装布线方便同时也降低了布线成本。  3、内置大容量数据存储,能记录999条报警信息以及100条开关机时间信息,更方面.  维护保养与注意事项  1、按顺序开启计算机和仪器电源,运行量热仪测试程序。  2、根据季节及气温的变化,及时标定仪器热容量;更换测热系统大的部件后,需要重新标定热容量。  3、室温控制在15℃~30℃,相对湿度小于80%,每次测热室温变化不能超过1℃。  4、恒温水箱要求使用蒸馏水或去离子水,不得使用自来水,定期检查水箱水量,一般三个月左右更换一次水  服务支持:  服务响应:2小时  解决问题:24小时,若24小时不能排除的故障,我方免费提供备机使用,直到故障排除。  企业使命:为顾客提供优质的产品及优良的服务,一定条件下,充分满足顾客的需要并争取超越他们的期望。  经营愿景:成为国内优秀的仪器制造企业  醇基油料大卡热值仪-测试醇基燃料热值仪基本方针:  1.以品质为优先,进而创造出公司的利润。  2.重大问题视研究发展,不断开发新产品进军其它市场。

  • 美国对机动车辆燃料节能标签的修订和补充

    美国环境保护局(EPA)和国家公路交通安全管理局(NHTSA)发布了一项联合法规,此法规针对在美国出售的省油和环保标签做出了新要求,这些标签将贴在所有新机动车辆上。该标签规定适用于2013年度车型,以及制造商自愿选择的2012年度车型后的车辆。该标签规定适用于轿车、轻型卡车和诸如较大的SUV和大篷货车的中型轿车。重新设计的标签为美国消费者提供了更广泛的信息:新车辆燃料节能性和燃料消耗量,温室气体和形成的烟雾的排放量,预计能耗和节约能耗,还包括一个允许直接访问其他网络资源的智能手机互动代码。为汽油、柴油、乙醇混合燃料、压缩天然气、电力、插电式混合动力以及氢燃料电池车辆等设计了特殊的标签。 该法规自2011年9月6日起实施。

  • 燃料油基本知识

    (1)什么是燃料油?绝大部分石油产品均可用作燃料,但燃料油在不同的地区却有不同的解释。欧洲对燃料油的概念一般是指原油经蒸馏而留下的黑色粘稠残余物,或它与较轻组分的惨合物,主要用作蒸汽炉及各种加热炉的燃料或作为大型慢速柴油燃料及作为各种工业燃料。但在美国则指任何闪点不低于37.8°C的可燃烧的液态或可液化的石油产品,它既可以是残渣燃料油(Residual Fuel 011,亦称Heavy Fuel 011)也可是馏分燃料油(Healing 011)。馏分燃料油不仅可直接由蒸馏原油得到(即直馏馏分),也可由其它加工过程如裂化等再经蒸馏得到。燃料油的性质主要取决于原油本性以及加工方式,而决定燃料油品质的主要规格指标包括粘度(Viscosity),硫含量(Sulfur Content),倾点(Pour Point)等供发电厂等使用的燃料油还对钒(Vanadium)、钠(Sodium)含量作有规定.1、 燃料油的自然属性燃料油是成品油的一种,广泛用于电厂发电、船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。燃料油主要由石油的裂化残渣油和直馏残渣油制成的,其特点是粘度大,含非烃化合物、胶质、沥青质多。(1) 粘度粘度是燃料油最重要的性能指标,是划分燃料油等级的主要依据。它是对流动性阻抗能力的度量,它的大小表示燃料油的易流性、易泵送性和易雾化性能的好坏。对于高粘度的燃料油,一般需经预热,使粘度降至一定水平,然后进入燃烧器以使在喷嘴处易于喷散雾化。粘度的测定方法,表示方法很多。在英国常用雷氏粘度(Redwood Viscosity),美国惯用赛氏粘度(Saybolt Viscosity),欧洲大陆则往往使用恩氏粘度(Engler Viscosity),但各国正逐步更广泛地采用运动粘度(Kinemetic Viscosity),因其测定的准确度较上述诸法均高,且样品用量少,测定迅速。各种粘度间的换算通常可通过已预先制好的转换表查得近似值。目前国内较常用的是40°C运动粘度(馏分型燃料油)和100°C运动粘度(残渣型燃料油)。我国过去的燃料油行业标准用恩氏粘度(80°C、100°C)作为质量控制指标,用80°C运动粘度来划分牌号。油品运动粘度是油品的动力粘度和密度的比值。运动粘度的单位是Stokes,即斯托克斯,简称斯。当流体的动力粘度为1泊,密度为1g/cm3时的运动粘度为1斯托克斯。CST是Centistokes的缩写,意思是厘斯,即1斯托克斯的百分之一。(2) 含硫量燃料油中的硫含量过高会引起金属设备腐蚀的和环境污染。根据含硫量的高低,燃料油可以划分为高硫、中硫、低硫燃料油。在石油的组分中除碳、氢外,硫是第三个主要组分,虽然在含量上远低于前两者,但是其含量仍然是很重要的一个指标。按含硫量的多少,燃料油一般又有低硫(LSFO)与高硫(HSFO)之分,前者含硫在1%以下,后者通常高达3.5%甚至4.5%或以上。另外还有低蜡油(Low Sulfur Waxy Residual缩写LSWR),含蜡量高有高倾点(如40至50°C)。在上海期货交易所交易的是高硫燃料油(HSFO)。(3) 密度为油品的质量(Mass)与具体积的比值。常用单位——克/立方厘米、千克/立方米或公砘/立方米等。由于体积随温度的变化而变化,故密度不能脱离温度而独立存在。为便于比较,西方规定以15°C下之密度作为石油的标准密度。(4) 闪点是油品安全性的指标。油品在特定的标准条件下加热至某一温度,令由其表面逸出的蒸气刚够与周围的空气形成一可燃性混合物,当以一标准测试火源与该混合物接触时即会引致瞬时的闪火,此时油品的温度即定义为其闪点。其特点是火焰一闪即灭,达到闪点温度的油品尚未能提供足够的可燃蒸气以维持持续的燃烧,仅当其再行受热而达到另一更高的温度时,一旦与火源相遇方构成持续燃烧,此时的温度称燃点或着火点(Fire Point或Ignition Point)。虽然如此,但闪点已足以表征一油品着火燃烧的危险程度,习惯上也正是根据闪点对危险品进行分级。显然闪点愈低愈危险,愈高愈安全。(5) 水分水分的存在会影响燃料油的凝点,随着含水量的增加,燃料油的凝点逐渐上升。此外,水分还会影响燃料机械的燃烧性能,可能会造成炉膛熄火、停炉等事故。(6) 灰分灰分是燃烧后剩余不能燃烧的部分,特别是催化裂化循环油和油浆渗入燃料油后,硅铝催化剂粉末会使泵、阀磨损加速。另外,灰分还会覆盖在锅炉受热面上,使传热性变坏。(7) 机械杂质机械杂质会堵塞过滤网,造成抽油泵磨损和喷油嘴堵塞,影响正常燃烧。2、 燃料油的分类燃料油作为炼油工艺过程中的最后一种产品,产品质量控制有着较强的特殊性,最终燃料油产品形成受到原油品种、加工工艺、加工深度等许多因素的制约。根据不同的标准,燃料油可以进行以下分类:(1) 根据出厂时是否形成商品,燃料油可以分为商品燃料油和自用燃料油。商品燃料油指在出厂环节形成商品的燃料油;自用燃料油指用于炼厂生产的原料或燃料而未在出厂环节形成商品的燃料油。(2) 根据加工工艺流程,燃料油可以分为常压重油、减压重油、催化重油和混合重油。常压重油指炼厂催化、裂化装置分馏出的重油(俗称油浆);混合重油一般指减压重油和催化重油的混合。(3) 根据用途,燃料油分为船用内燃机燃料油和炉用燃料油两大类。前者是由直馏重油和一定比例的柴油混合而成,用于大型低速船用柴油机(转速小于150转/分)。后者又称为重油,主要是减压渣油、或裂化残油或二者的混合物,或调入适量裂化轻油制成的重质石油燃料油,供各种工业炉或锅炉作为燃料。船用内燃机燃料油是大型低速柴油机的燃料油,其主要使用性能是要求燃料能够喷油雾化良好,以便燃烧完全,降低耗油量,减少积炭和发动机的磨损,因而要求燃料油具有一定的黏度,以保证在预热温度下能达到高压油泵和喷油嘴所需要的黏度(约为21-27厘斯),通常使用较多的是38°C。雷氏1号黏度为1000和1500秒的两种。由于燃料油在使用时必须预热以降低黏度,为了确保使用安全预热温度必须比燃料油的闪点低约20°C,燃料油的闪点一般在70-150°C之间。重油主要作为各种锅炉和工业用炉的燃料油。各种工业炉燃料系统的工作过程大体相同,即抽油泵把重油从储油罐中抽出,经粗、细分离器除去机械杂质,再经预热器预热到70-120°C,预热后的重油黏度降低,再经过调节阀在8-20天大气压下,由喷油嘴喷入炉膛,雾状的重油与空气混合后燃烧,燃烧废气通过烟囱排入大气。

  • 【第三届原创大赛】ASTMD1142译文-通过露点温度测定燃料气中水蒸汽含量的标准方法

    本文出自huacai翻译的标准和论文都可以投,那我翻译过好几个标准都拿来投了吧,D1142-90(1999)通过露点温度测定燃料气中水蒸汽含量的标准方法 本标准以固定名称D1142发行;紧跟在名称标号后的数字表示最初采用此标准的年份,或者如有修订,则为最后一次修订的年份。括号中的数字表明此标准最后一次重新获得批准的年份。上标(ε)表示自从最后一次修订或再次获准后的编辑变化。1.范围1.1 本方法规定了通过测露点温度,计算水蒸汽含量确定气态燃料中水蒸汽含量的标准方法。注1—有些气态燃料含有碳氢化物或其它组分的蒸汽容易冷凝成液体有时会干扰或挡住水露点。这种现象产生时,给仪器补充一个图1所示的一光学附件照亮露点镜面而且放大镜面上的冷凝物。在有些情况下,用此附件可能可以分别观察到水蒸汽、碳氢化合物、乙二醇类的冷凝点以及冰点。然而如果碳氢化合物的露点高于水的露点,且碳氢化合物的量较大时,它们会冲刷镜面并使镜面模糊或冲掉水的露点。它们间隔不是太近时可以辨别多个组分露点。注2露点镜面上水蒸汽的冷凝物可能在0~-10℉出现液态水。温度现低就可能观察到冰点而非水露点。任何蒸汽的最低可观测露点受限于设备的机械部件。用液氮作冷却剂,附热电偶温度计代替温度计连到镜面,可测温度最低达-150℉。1.2本方法并非旨在解决所有与使用有关的安全问题,本标准的使用者有责任建立适当的安全健康措施并使用前确定应用的规定限制。2. 术语2.1本标准术语的定义:2.1.1标准水蒸汽或平衡水蒸汽含量--混合气体中水蒸汽含量处于饱和状态,与纯水的液相处于平衡。当含水蒸汽的气体处在露点温度时,则认为在当时压力下是饱和的。2.1.2比体积—针对气体燃料,气体体积按立方英尺每磅2.1.3水露点温度--针对气体燃料,在一定压力下,气体含饱和水蒸汽时的温度。3. 意义和应用3.1 通常,控制管输天然气的合同包含最大允许含水量的限制。超量的水可引起腐蚀,损坏管线和设备。还可能冷凝并结冻或形成甲烷水合物引起堵塞现象。水蒸汽含量还影响天然气的热值,因此影响天然气的质量。本标准方法使天然气中水含量的测定成为可能。4.仪器4.1 任何能满足基本要求的结构合适的露点仪都可以使用,也即必须:4.1.1仪器在气体露点以上至少3℉温度时,允许控制气体流进和流出仪器的速度。4.1.2可以冷却和控制仪器的一部分(一小部分)的冷却速率,这样气体流入后接触到低得足以从气相冷凝的温度。4.1.3观察仪器的冷却部位露珠的沉降。4.1.4测量仪器露珠沉降的冷却部位的温度,并4.1.5测量仪器内气体的压力或与当时已知大气压的偏离。4.1.6仪器构造应有冷点,即露珠能在其上沉降的冷却部位。冷点避免其它非受测气体接触。仪器可以设计在高压下或不在高压下使用。4.2图1是矿场型露点仪 。它符合4.1的要求。在第1章条件范围内,此仪器满足测定气体燃料露点。简单说,此仪器由一个金属腔组成。通过控制阀A和阀D允许测试气体流入和流出金属腔。气体通过阀A进入仪器被喷嘴B转向仪器的冷却部位C。气体流过C表面,通过阀D流出仪器。C部位是一个高度刨光不锈钢目标镜,通过铜冷却杆F冷却。C镜是铜的温度计井装配I上焊银的一个小块。铜温度井装配I是软焊在冷却杆F上的。温度计井与装配I是一整体。冷却杆F是通过致冷剂如液态丁烷、丙烷、二氧化碳或其它液化气在冷却器G蒸发进行冷却。致冷剂通过阀H节流进入冷却器,从阀J出来。冷却器是铜制的在另一端有一青铜头。下头与上头通过冷却器内无数小孔相连,这些小孔供蒸发的致冷剂穿过。冷却器通过锥形连接器连在冷却杆F上。目标镜C的温度由一个校正过的玻璃水银温度计K指示。温度计的水银泡恰好套在温度计井。通过耐压透明窗观察露珠沉降。4.2.1注意只有不锈钢目标镜C中心部位是热连到装配I并通过I得以冷却。由于不锈钢传热性相对差,所以镜C中心部位温度保持在稍微低于外部的温度。这样露珠首先出现在镜C中心部位并通过对比助于测定。还应注意目标镜C温度的测定组织安排。温度通过玻璃水银温度计K读出。温度计插入冷却杆F以便水银泡完全套在装配I的温度计井。焊银不锈钢镜头是温度计井基础的一部分。因为温度计井与冷却管间无金属接触,不通过它的基础体。温度计K指示镜C温度而非沿冷却管变化的温度影响的折衷温度。如果不用此类型结构则出现沿冷却管变化的温度。4.2.2 矿场型露点仪做的测试报告允许±0.2℉再现性,且露点温度范围从室温到32℉准确性在±0.2℉。假定测定过程不形成冰晶。水露点测定范围从室温到32℉时准确性在±0.5℉。5.步骤[/

  • 【转帖】美国研究人员利用纳米技术生产生物燃料

    美国路易斯安那理工大学日前发表新闻公报说,该大学研究人员在生产生物燃料工艺过程中采用纳米技术,从而大大节省了生产成本。  公报说,秸秆等农林废弃物作为生物燃料的原料具有巨大潜力,用它们生产的生物燃料被称为第二代生物燃料。但是将这些生物原料转化成可以燃烧的乙醇等需要多种酶对其中的纤维素进行分解,成本很高。路易斯安那理工大学从事化学工程研究的帕尔梅及其同事最近开发出一种纳米技术,能将参与反应的多种酶固定成几种酶,并且这些酶能重复使用多次,这大大降低了第二代生物质燃料的生产成本。这一技术可以被应用到大规模商业生产中。  第二代生物燃料包括利用秸秆、稻草等农林废弃物生产的燃料乙醇和生物柴油,它可以替代传统的汽油和柴油,能大大减少温室气体排放,同时避免了第一代生物燃料以玉米等粮食作物为原料,因此受到广泛青睐。

  • 致癌的纺织品染料:偶氮染料

    致癌的纺织品染料:偶氮染料  纺织服装在使用了含有禁用芳香胺的偶氮染料之后,在与人体的长期接触中可能被皮肤吸收,并在人体内扩散。这些染料在人体正常代谢所发生的生化反应条件下,可能发生还原反应,进而分解出致癌芳香胺。致癌芳香胺经过活化作用,改变人体的DNA的结构,最终引起人体病变和诱发癌症。  1994年7月,德国政府首次以立法的形式,禁止生产、使用和销售可还原出致癌芳香胺的偶氮染料以及使用这些染料的产品,随后,荷兰政府和奥地利政府也发布了相应的法令。我国于2003年发布了GB18401-2003《国家纺织产品基本安全技术规范》,正式将禁用偶氮染料列入其中。目前,禁用偶氮染料的监控已成为国际纺织品服装贸易中最重要的品质控制项目之一,也是生态纺织品最基本的质量指标之一。  偶氮染料的发展历史  早在l834年.Mitseherlich就用氢氧化钾与硝基苯在乙醇溶液中作用,制备了偶氮苯。但是偶氮染料的产生并使用还是在1858年之后,经过重氮化反应制备出了偶氮染料。  1863年,首例商品化偶氮染料Bismark Brown问世之后.偶氮染料开始了工业化生产。  1884年,刚果红的合成,可以说是偶氮染料发展史上的一个里程碑。第一,用刚果红作为染料,可以不用加入触媒,印染工艺被大大简化;第二,这类偶氮染料可以通过它的不同结构得到不同的颜色;第三,它的合成工艺更为简单,成本更加低廉,染色的性能也更为优越。  偶氮染料的致癌问题  20世纪30年代,日本人Yoshida发现溶剂黄可以引起老鼠的肝细胞癌变后.人们才意识到偶氮染料及其中间体在生产与使用过程中的危险性。实际上,1905年德国卫生部门已经从染料品红、金胺和萘胺中确认了一些芳香胺的致癌作用。随着染料化工的高速发展,这种情况进一步恶化。据不完全统计,到20世纪60年代,世界各国因从事染料化工工作而患上膀胱癌的病例超过了3000例。  自20世纪70年代开始.世界上主要的染料制造商自发地签订议,停止在市场上销售联苯胺及以联苯胺为母体的偶氮染料。德国政府在1958年成立了MAK(Maximum Arbeitplaz Konzentrations已知对人体健康构成威胁的化学物质在工作场所的最大允许浓度)委员会,从此开始每年发l份MAK表。根据对人体致癌性的不同,MAK表分为三个不同的级别:MAK(Ⅲ)Al:按经验,这类物质可引起人类恶性肿瘤。MAK(Ⅲ)A2:迄今为止,已得到这类物质引起癌症的确切证明,但这些证明是通过模拟人类工作场所条件,对动物实验得到的。MAK(Ⅲ)A3:被怀疑极具潜在致癌倾向的物质,并急需进行进一步调研;并且指出用这些致癌芳香胺合成的偶氮染料受到人体肠道细菌以及偶氮还原酶的作用而易于发生偶氮还原裂解,重新释放出致癌芳香胺,从而产生致癌作用。  目前市场上大部分(约占60%)的合成染料是以偶氮化学为基础的。所渭致癌性问题,是人们经过长期研究和临床试验证明某些偶氮染料中可还原出的芳香胺对人体或动物有潜在的致癌性。纺织品上的偶氮染料在与皮肤的长期接触中,在某些特殊的条件下,特别是在染色牢度不佳时,会从纺织上转移到人的皮肤上。经人体的正常代谢过程,在分泌物的生物催化作用下发生分解还原,并释放出某些有致癌性的芳香胺,这些芳香胺被人体皮肤吸收后,在体内通过代谢作用而使细胞的脱氧核糖核酸(DNA)发生变化,具有潜在的致癌致敏性。  偶氮染料的分类  偶氮染料是指分子结构中含有偶氮基(-N=“N-)的染料,是品种最多、应用最广的一类合成染料。根据含有偶氮基的数目不同可分为:(1)单偶氮染料,如酸性大红G;(2)双偶氮染料,如直接大红4B;(3)多偶氯染料,如直接黑BN。根据溶解度的不同可分为:(1)可溶性偶氮染料,指一般能溶解在水中的染料;(2)不溶性偶氮染料,包括冰染染料和其他不溶于水的偶氮染料。  偶氮染料用于各种纤维的染色和印花,并用于皮革、纸张、肥皂、蜡烛、木材、麦秆、羽毛等的染色以及油漆、油墨、塑料、橡胶、食品等的着色。

  • 航空燃料油傾点的测定介绍

    燃料油随着温度的降低,流动性会越来越差,甚至达到某一温度时它就会凝固而失去流动性。通常讲,燃料油在低温度下的流动性有两个影响因素:一个燃料油的粘度随温度下降会增高;另外一个是燃料油中原来呈液态的石蜡在温度下降到一定程度后会以固体的结晶形式出现。所以我们平时说的倾点有时也称之为“含蜡倾点”。根据定义描述我们可以看出,倾点越高,自然温度下该燃料油的流动性就越差。我们在实际中也可以通过添加适量的倾点下降剂来改善燃料油倾点。由于燃料油很多都是要经过长途运送才能达到目的地,所以说倾点也是燃料油检测非常重要的一个技术指标。

  • 【分享】生物燃料--将草变成油

    科学家正致力于研究,怎样将农业废弃物、木材及生长更为迅速的草本植物,转化为种类繁多的生物燃料(甚至是航空燃油)。然而在这些新一代生物燃料完全替代传统化石能源之前,它们必须具备与60美元/桶的原油竞价的能力。生物燃料可以用植物或植物制品为原材料。目前,第一代生物燃料以可食用作物为原料,主要包括玉米、大豆(美国)、甘蔗(巴西)。用可食用作物制造生物燃料是最简单可行的,因为把这些可食用作物转化为燃料的技术是现成的。然而,第一代生物燃料并非长久之计,原因很简单:没有足够的耕地能够满足发达国家10%的液态燃油原料需求。这种对粮食作物的额外需求还使2008年家畜饲料价格大幅上升,虽然没有达到去年媒体所预言的、近似歇斯底里的高价,但部分粮食价格还是有一定上涨。一旦将玉米生长、收获及加工期间的所有排放纳入经济成本预算,第一代生物燃料显然并不是我们所期望的、对环境安全具有积极影响的能源形式。第二代生物燃料主要以纤维素质材料为原料,如富含纤维素、生长迅速的草本植物,因此将英文汽油 (gasoline)单词中前缀“gas”去掉,引入“grass”(草),就组成了形象生动的专有名词“草油”(grassoline)。可转化为草油的原料有很多,从木材废料(锯木屑 、木质建筑残片)到农业废弃物(玉米秸秆、小麦茎秆),再到“能源作物”[生长迅速、纤维含量高、专门种植用作草油原料的草本和木本植物]。这些原料作物耕作成本低(与每桶石油有等价能效的草油为10到40美元)、量大,更关键的是,这些作物的种植生产不会干扰和危及粮食生产。大多数能源作物能够在不能用作农田的边际土地上快速生长。还有一些能够在被废水或者重金属污染的土壤中生长并净化土壤,如生长周期较短的灌木柳树(short-rotation willow coppice)。

  • 船用燃料油分类和质量标准

    我国船用燃料油国家标准GB/T17411-2015是按照国际标准ISO8217执行的,是强制性国家标准。根据我国国家标准规定,船用燃料油分为两类产品,一是馏分型船用燃料,二是残渣型船用燃料。馏分型燃料包括DMX(相当-10#轻柴油)、DMA(相当0#普通柴油)、DMZ、DMB等,主要在高速柴油机及中速柴油机中使用,主要是为短距离航行的中小型船舶提供动力,例如在长江、运河航行的运沙土船、渔船、干散货船等等,或用于船舶的辅机发电使用等。馏分型燃料油的称谓上还有MGO和MDO等不同的说法,都是柴油馏分,粘度不同,MGO(MarineGasOil)是轻柴油,适用于高速柴油机使用。MDO(MarineDieselOil)是重柴油,适用于中速柴油机。残渣型燃料包括船用残渣燃料油RMD80、RME180、RMG380等。主要用于低速柴油机,或者与馏分型燃料混合后用于低速柴油机。船用燃料油根据50℃时运动粘度的差异,通常分为180CST、380CST、500CST等,主要用在国际运输船舶,以及在沿海、沿江运输的较大船型上,发动机马力大的要求的粘度高,最高可达到700CST。目前180CST、380CST是市场上的主流品种。1980年,ISO设立了ISO/TC28/SC4/WG6(石油关系技术委员会/分类、标准分技术委员会/船用燃料油的分类、规程标准工作小组),在1979年,英国标准协会拟定了船用燃料油规格标准的草案,ISO以此参考对船用燃料油的标准进行了探讨。ISO于1982年举办的第五次工作会议上,将船用燃料油标准的原案,提交技术标准委员会报批,在1987年形成了ISO8217标准稿。此标准针对当时船用燃料油的劣质趋向,对相关指标提出了标准化的规定,同时对未来的油品指标特性做出了限制[8]。国际船用燃料油规格标准(初版)与1987年制定,1996年经过修订,颁布第二版,为ISO8217-1996。由于燃料油的粘度并不是唯一可靠的质量指标,所以在ISO8217-1996标准中,对船用燃料油的质量特性评价包括了粘度、密度、灰分、倾点、残炭、硫含量、钒含量等多项参数。ISO8217系列发布之后,有效的控制了船用燃料油品质的劣质化情况。标准经过不断修订于2012年颁布了ISO8217-2012,见表2-1和2-2,这是ISO船用燃料油标准第五版,替代ISO8217-2010[2] 。2015年12月31日中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会颁布船用燃料油标准最新版本GB 17411-2015, 替代GB/T 17411-2012

  • 【转帖】未来超音速飞机有望以煤衍生物为燃料

    科学家最近在美国旧金山举行的化学协会年会上宣称,未来的喷气式飞机有望在以煤的衍生物为燃料的高速 引擎推进下,能以9倍于音速的速度安全飞行,使得从纽约到东京的飞行时间只需两个小时。   目前商用飞机使用的燃料以石油为基础,引擎工作温度必须控制在300℃以下。如果飞行速度加快,引擎周围的温度也随之上升,以石油为基础的燃料将变得不稳定。最终在引擎和输油管中形成固体沉淀,并有可能引发灾难性后果。这是在开发高速喷气引擎过程中研究人员遇到的最大困难。 美国宾州大学能源研究所研究员约翰、安德烈森等人在试验煤的衍生产品后指出,用煤衍生物作燃料能够克 傀这一障碍。这些煤的衍生物与煤具有相同的环状烃结构,它在高温下比石油衍生物的直链烃结构更加稳定。实验室研究表明,当模拟引擎的温度高达800℃时,煤基燃料的状态仍保持正常。   研究人员接下来将研究煤基燃料在真实引擎中的表现。如果进展顺利,使用煤基燃料的引擎样品将在2008年 研制成功。

  • 【资料】不使用白金触媒的燃料电池

    【资料】不使用白金触媒的燃料电池

    不使用白金触媒的燃料电池   日本大发工业开发出了使用液体燃料联氨作为燃料的新型燃料电池的基础技术(图7)。这种燃料电池的特点是,无需目前汽车用主流燃料电池——PEFC(高分子固体电解质型燃料电池)所需的Pt触媒。与以往PEFC为H+(氢离子)在电解质中移动的方式不同,新型燃料电池改为OH-(氢氧根)在电解质中移动的方式。 [img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903061049_137008_1604910_3.jpg[/img] 图7 大发工业开发的不含贵金属的新型燃料电池(a) 位于中央的四方形装置为燃料电池箱。向燃料极注入水合联氨,则开始发电。(b)为无色透明的水合联氨的外观(右)、以及与树脂固化后提高了安全性的状态(左)。   即便将电解质膜改为OH-移动的方式,但如果采用氢气作为燃料,则仍需要Pt触媒,因此,该公司决定采用反应性较高的液体燃料——联氨作为燃料。这样一来,便可采用Ni作为触媒。另外,如果直接使用联氨,由于毒性及引火性较高,所以决定使用加水稳定后的水合联氨(N2H4H2O)。

  • 一个关于锅炉燃料的问题

    为了更好地进行大气污染防治工作,最近各地都在开展锅炉整治活动,我看到在表格的锅炉燃料一栏里,有烟煤、无烟煤、电、重油、生物质等,别的好理解,我就想知道‘生物质’是个什么类型的燃料?跟其他燃料相比有何优势?

  • 测定燃料油饱和蒸汽压的意义

    ①根据蒸气压,可以判断液体燃料蒸气性大小。 通常发动机燃料的饱和蒸气压越大,表明燃料中轻质成分含最较多,蒸气 性越强,在燃烧时易与空气形成可燃混合气而易于燃烧,发动机容易启动 与加速,并减少磨损,降低油耗。因此,液体燃料要求具有良好的蒸发性。②根据蒸气压,可以判断发动机燃料在使用时有无形成气阻倾向。 发动机燃料的蒸气压愈大,则在高温或低压情况下,形成气阻的可能性就 愈大,气阻的产生会造成供油不足或中断,导致发动机工作不正常或停止 工作。因此,对发动机燃料特别是航空燃料都要求有一定的饱和蒸气压, 我国国家标准规定车用汽油的蒸气压夏季不大于 66.7kPa,冬季不大于 80.04kPa,航空汽油为 27.0-48.OkPa。SH8017B 自动饱和蒸汽压测定仪山东盛泰仪器有限公司研发生产③根据蒸气压,可以估计燃料在储存和运输过程中的损失程度。 燃料在储存、加注及运输过程中,轻质馏分总会损失。通常蒸气压越大, 馏分越轻,损失越大,形成火灾危险性也越大。 纯物质的饱和蒸气压只与物质性质和温度有关,由于石油产品化学组成复 杂,无法准确测定,通常采用 GB/T8017 石油产品燕气压测定法(雷德法) 测定。本方法是将经冷却的试样充人蒸气压测定器的汽油室,并将汽油室 与 37.8℃的空气室相连接。将测定器浸人恒温浴(37.8℃±0.1℃)中,并定期 振荡,直至安装在测定器上的压力表的压力恒定,压力表读数经修正后即 为雷德蒸气压。

  • 测定燃料油饱和蒸汽压的意义

    ①根据蒸气压,可以判断液体燃料蒸气性大小。 通常发动机燃料的饱和蒸气压越大,表明燃料中轻质成分含最较多,蒸气 性越强,在燃烧时易与空气形成可燃混合气而易于燃烧,发动机容易启动 与加速,并减少磨损,降低油耗。因此,液体燃料要求具有良好的蒸发性。②根据蒸气压,可以判断发动机燃料在使用时有无形成气阻倾向。 发动机燃料的蒸气压愈大,则在高温或低压情况下,形成气阻的可能性就 愈大,气阻的产生会造成供油不足或中断,导致发动机工作不正常或停止 工作。因此,对发动机燃料特别是航空燃料都要求有一定的饱和蒸气压, 我国国家标准规定车用汽油的蒸气压夏季不大于 66.7kPa,冬季不大于 80.04kPa,航空汽油为 27.0-48.OkPa。SH8017B 自动饱和蒸汽压测定仪山东盛泰仪器有限公司研发生产③根据蒸气压,可以估计燃料在储存和运输过程中的损失程度。 燃料在储存、加注及运输过程中,轻质馏分总会损失。通常蒸气压越大, 馏分越轻,损失越大,形成火灾危险性也越大。 纯物质的饱和蒸气压只与物质性质和温度有关,由于石油产品化学组成复 杂,无法准确测定,通常采用 GB/T8017 石油产品燕气压测定法(雷德法) 测定。本方法是将经冷却的试样充人蒸气压测定器的汽油室,并将汽油室 与 37.8℃的空气室相连接。将测定器浸人恒温浴(37.8℃±0.1℃)中,并定期 振荡,直至安装在测定器上的压力表的压力恒定,压力表读数经修正后即 为雷德蒸气压。

  • 染料中多环芳烃前处理

    最近实验室要开展染料中多环芳烃的检测,查找了多方法资料,买了18种PAHs 标准品,以及SPE 小柱 就着手做实验了: 问题来了: 萃取溶剂 刚开始用正己烷和丙酮 混合液,超声萃取的时候溶剂挥发的很快,需加冷凝管接冷凝水才能解决,所以后面萃取溶剂更换为甲苯才好点:染料是溶解在甲苯中,里面还有助剂一些其他成分的东西在,所以萃取后根本无法达到过滤后直接进样,那就继续浓缩吧,不管是旋蒸还是氮吹,因为颜色太深,观测不到瓶内溶剂状况,经常性蒸干,加正己烷溶解,瓶璧上会有恨多染料, 硅胶固相萃取柱,用5ML正己烷活化,然后上样,5ML正己烷淋洗,最后用5ml 二氯甲烷:正己烷(1:4 V:V)洗脱,氮吹至0.5ml 用二氯甲烷定容2ML 上机分析,这样前处理有什么问题吗? 经常测试同一个样品 数值偏差很大;

  • 【转帖】科学家开发出有机金属燃料电池

    据美国物理学家组织网12月16日报道,瑞士苏黎世联邦理工学院和意大利研究人员联合开发出一种新奇的有机金属燃料电池,该电池在发电同时还能用可再生原材料生产出优质化学产品。这种新有机金属燃料电池的工作原理与以往的电池完全不同。它基于一种含铑元素的特殊分子络合物,这种络合物以分子形式嵌入阳极材料,阳极的支持材料为碳粉,使分子络合物能分布均匀。阳极吸收自由电荷,将它们转移到阴极重新释放,这一过程生成了电流。其特别之处在于,它是用阳极上的分子络合物作催化剂,有很多优势功能。苏黎世联邦理工学院教授汉斯乔格·格鲁茨曼彻说,这种燃料电池在发电的同时,还能用可再生原料产出优质化工产品,并且毫无浪费,这是一个巨大的进步。格鲁茨曼彻认为,这种有机金属燃料电池的潜在用途很广。比如在实验中,1,2-丙二醇(来自可再生原料)能被转化成多种乳酸,乳酸可用来制造生物降解高分子材料,而大部分传统工艺,生产1吨乳酸要产生约1吨的硫酸钙,处理这些硫酸钙成本很高。而新的燃料电池在转化原料之后不留残余。此外,还可以将有机金属燃料电池微型化,给心脏起搏器供电。它还能减少制作催化剂时对稀土和贵重金属的需求。格鲁茨曼彻还在研发不需要金属电极的燃料电池,或者只用很少的锰、铁或钴等金属,而目前的有机金属燃料电池还用了铑。

  • 什么叫油品的浊点、冰点、倾点和凝点

    浊点是指油品在试验条件下,开始出现烃类的微晶粒或水雾而使油品呈现浑浊时的高温度。油品出现浊点后,继续冷却,直到油中呈现出肉眼能看得见的晶体,此时的温度就是油品的结晶点,俗称冰点。倾点是指石油产品在冷却过程中能从标准型式的容器中流出的低温度。凝点是指油品在规定的仪器中,按一定的试验条件测得油品失去流动性(试管倾斜45°角,经一分钟后,肉眼看不到油面有所移动)时的温度。凝点的实质是油品低温下粘度增大,形成无定形的玻璃状物质而失去流动性或含蜡的油品蜡大量结晶,连接成网状结构,结晶骨架把液态的油包在其中,使其失去流动性。同一油品的浊点要高于冰点,冰点高于凝点。 浊点和结晶点高,说明燃料的低温性较差,在较高温度下就会析出结晶,堵塞过滤器,妨碍甚至中断供油。因此,航空汽油和航空煤油规格对浊点和结晶点均有严格规定。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制