当前位置: 仪器信息网 > 行业主题 > >

分辨率检测

仪器信息网分辨率检测专题为您提供2024年最新分辨率检测价格报价、厂家品牌的相关信息, 包括分辨率检测参数、型号等,不管是国产,还是进口品牌的分辨率检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分辨率检测相关的耗材配件、试剂标物,还有分辨率检测相关的最新资讯、资料,以及分辨率检测相关的解决方案。

分辨率检测相关的资讯

  • 精确跟踪芯片蚀刻过程,用高分辨率光谱仪监测等离子体
    在半导体行业,晶圆是用光刻技术制造和操作的。蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体是一种被激发的、类似气体的状态,其中一部分原子已经被激发或电离,形成自由电子和离子。当被激发的中性原子的电子返回到基态时,等离子体中存在的原子就会发射特有波长的辐射光,其光谱图可用来确定等离子体的组成。等离子体是用一系列高能方法使原子电离而形成的,包括热、高能激光、微波、电和无线电频率。实时等离子体监测以改进工艺等离子体有一系列的应用,包括元素分析、薄膜沉积、等离子体蚀刻和表面清洁。通过对等离子体样品的发射光谱进行监测,可以为样品提供详细的元素分析,并能够确定控制基于等离子体的过程所需的关键等离子体参数。发射线的波长被用来识别等离子体中存在的元素,发射线的强度被用来实时量化粒子和电子密度,以便进行工艺控制。像气体混合物、等离子体温度和粒子密度等参数都是控制等离子体过程的关键。通过在等离子体室中引入各种气体或粒子来改变这些参数,会改变等离子体的特性,从而影响等离子体与衬底的相互作用。实时监测和控制等离子体的能力可以改进工艺和产品。一个基于Ocean Insight HR系列高分辨率光谱仪的模块化光谱装置用于监测等离子体室引入不同气体后,氩气等离子体发射的变化。测量是在一个封闭的反应室中进行的,光谱仪连接光纤和余弦校正器,通过室中的一个小窗口观察。这些测量证明了模块化光谱仪从等离子体室中实时获取等离子体发射光谱的可行性。从这些发射光谱中确定的等离子体特征可用于监测和控制基于等离子体的过程。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如Ocean Insight的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。监测真空室中形成的等离子体时,一个重要的考虑因素是与采样室的接口。仪器部件可以被引入到真空室中,或者被设置成通过视窗来观察等离子体。真空通管为承受真空室中的恶劣条件而设计的定制光纤将部件耦合到等离子体室中。对于通过视口监测等离子体,可能需要一个采样附件,如余弦校正器或准直透镜,这取决于要测量的等离子体场的大小。在没有取样附件的情况下,从光纤到等离子体的距离将决定成像的区域。使用准直透镜可以获得更局部的收集区域,或者使用余弦校正器可以在180度的视野内收集光线。测量条件HR系列高分辨率光谱仪被用来测量当其他气体被引入等离子体室时氩等离子体的发射变化。光谱仪、光纤和余弦校正器通过室外的一个小窗口收集发射光谱,对封闭反应室中的等离子体进行光谱数据采集(图1)。图1:一个模块化的光谱仪设置可以被配置为真空室中的等离子体测量。一个HR2000+高分辨率光谱仪(~1.1nm FWHM光学分辨率)被配置为测量200-1100nm的发射(光栅HC-1,SLIT-25),使用抗曝光纤(QP400-1-SR-BX光纤)与一个余弦校正器(CC-3-UV)耦合。选择CC-3-UV余弦校正器采样附件来获取等离子体室的数据,以解决等离子体强度的差异和测量窗口的不均匀问题。其他采样选项包括准直透镜和真空透镜。结果图2显示了通过等离子体室窗口测量的氩等离子体的光谱。690-900纳米的强光谱线是中性氩(Ar I)的发射线,400-650纳米的低强度线是由单电离的氩原子(Ar II)产生的。图2所示的发射光谱是测量等离子体发射的丰富光谱数据的一个例子。这种光谱信息可用于确定一系列关键参数,以监测和控制半导体制造过程中基于等离子体的工艺。图2:通过真空室窗口测量氩气等离子体的发射。氢气是一种辅助气体,可以添加到氩气等离子体中以改变等离子体的特性。在图3中,随着氢气浓度的增加添加到氩气等离子体中的效果。氢气改变氩气等离子体特性的能力清楚地显示在700-900纳米之间的氩气线的强度下降,而氢气浓度的增加反映在350-450纳米之间的氢气线出现。这些光谱显示了实时测量等离子体发射的强度,以监测二次气体对等离子体特性的影响。观察到的光谱变化可用于确保向试验室添加最佳数量的二次气体,以达到预期的等离子体特性。图3:将氢气添加到氩等离子体中会改变其光谱特性。在图 4 和 5 中,显示了在将保护气添加到腔室之前和之后测量的等离子体的发射光谱。 保护气用于减少进样器和样品之间的接触,以减少由于样品沉积和残留引起的问题。 在图 4中,氩等离子体发射光谱显示在加入保护气之前,加入保护气后测得的发射光谱如图5所示。保护气的加入导致了氩气发射光谱的变化,从400纳米以下和~520纳米处的宽光谱线的消失可以看出。图4:加入保护气之前,在真空室中测量氩等离子体的发射。图5:加入保护气后,氩气发射特性在400纳米以下和~520纳米处有明显不同。结论紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。HR2000+高分辨率光谱仪和模块化光谱学方法在测量等离子体室条件改变时,通过等离子体室的窗口测量等离子体发射光谱,效果良好。还有其他的等离子体监测选项,包括Maya2000 Pro,它在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。以上文章作者是海洋光学Yvette Mattley博士,爱蛙科技翻译整理。世界上第一台微型光谱仪的发明者海洋光学OceanInsight,30年来专注于光谱技术和设备的持续创新,在光谱仪这个细分市场精耕细作,打造了丰富而差异化的产品线,展现了光的多样性应用,坚持将紧凑、便携、高集成度以及高灵敏度、高分辨率、高速的不同设备带给客户。2019年,从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。此后,海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTech)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。如需了解更多详情或探讨创新应用,可拨打400-102-1226客服电话。关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 前沿技术 | 当时间分辨率遇上空间分辨率
    4D前沿技术原位动态听客户说 CUSTOMER唯一一款适合实验室的动态显微CT揭秘革命性X射线显微CT显微CT,是现有的唯一一种能够对样品的内部结构和成分进行成像的显微镜方法。如今,显微 CT 的无损成像技术可以随着时间的变化跟踪记录样品的动态行为,时间就是第四维,这是最新的时间分辨显微CT(4D CT)。尽管4D CT向科学界展示了一种全新的研究方法,能够以微米级分辨率从内到外跟踪样品的变化过程,但该方法仍有一些局限性:实验室中的传统显微CT 是一种相对较慢的成像方法。在CT 360度旋转扫描过程中,采集的时间需要快于样品内部发生变化的时间,否则重建出的三维结果会有运动伪影,这意味着传统实验室中的时间分辨 CT 只能用于跟踪监测非常缓慢的过程,例如金属腐蚀,蠕变过程或缓慢结晶现象。在破坏性实验情况下,例如压缩实验,这类实验需要在不同阶段停止,以便进行准静态成像,传统时间分辨CT无法跟踪快速和不间断的变化过程。如今,最快速的解决方案是用同步加速器显微CT,它的时间分辨率远小于每秒一圈。然而,它们的可用范围相当有限、运行成本也十分昂贵。相对以上2种方案,动态显微 CT 解决方案DynaTOM,适用范围更广,性价比更高,目前,是市场上唯一一款介于传统实验室显微 CT 和同步加速器显微 CT 之间的桥梁。DynaTOM动态显微CT不仅具有高读取速度且高功率的 X 射线源和探测器,能够在几秒钟内采集完整的 3D 断层图像。更重要的是可实现样品或射线源-探测器的连续、无限旋转。解决哪些痛点FEATURES终于可实现不间断的3D原位实验的CT系统达到低至0.6微米的空间分辨率能构建出完整的层析图像,以秒为单位终于将实验室的显微CT时间分辨率极限降低到几秒钟应用场景 APPLICATION已经被成功应用于:一、作为验证计算模型的工具动态 CT 被用作数值模型的验证工具,预测和模拟泡沫金属的机械性能。这些泡沫金属是我们日常生活中存在的许多物体和材料的关键材料。它们在轻型车辆中使用但不会影响强度(航空航天、汽车),也可用于减振(作汽车的车前防撞缓冲区)。然而,表征这些泡沫金属并非易事,因为它们是不透明的、复杂的3D 结构。传统的机械测试只能从宏观角度测试材料性能,无法完全了解微观细节。因此,通常将数值建模作为一种新的工具来模拟实验和预测泡沫金属的应力应变行为。但到目前为止,还没有真正的方法可以验证这些数值模型的结果,因此引入了动态显微CT 来评估泡沫金属压缩模拟结果的有效性。(泡沫支柱的屈曲在实验(左)和模拟(右)中展现)二、作为量化药片快速结构变化的工具动态 CT 用于更好地了解药物固体剂型(片剂或胶囊)的溶解过程。剂型是控制患者的活性药物成分的主要形式,通常由压实的粉末和添加的赋形剂组成。为了将活性药物成分输送给患者,压实的片剂需要机械破碎成更小的颗粒。而辅料的混合是必不可少的,因为它可以控制药物在体内的释放过程并确保产品的品质。因此,固体剂型是在不同长度尺度上具有高度异质性的复杂结构。大多数了解片剂溶解行为的定量研究都是基于测量整个片剂或单个颗粒的体积增加。通常,体积增加是由于产品与水接触时的溶胀机制。可以通过液滴方法或直接通过毛细管吸收来添加水,并且通常可以直观地记录体积变化。然而,为了同时研究水在片剂内部的渗透、崩解和溶胀,需要以非破坏性和全 3D 方式可视化该过程。(动态实验在时间轴上的三个不同阶段。水锋在平板电脑上移动得非常快;吸水后,样品中存在大的裂缝和空隙,并且观察到体积增加。)三、更多应用实例,请搜索bilibili视频号:TESCAN中国实验室中的动态显微 CT 是时间分辨、无损成像的新前沿。在实验室显微 CT 系统上快速、不间断地成像的能力为先进材料开辟了新的评估方法,并使工程师能够通过原位实验验证或纠正材料行为。结合使用专业解决方案的数值模型,这种新的分析方法将显着提高新材料和设备的开发速度,同时降低其开发成本。(以上文章已被科技界4大杂志巨头之一Wiley旗下的Wiley Analytical Science收录。具体应用内容请关注下一期“前沿分享”) 敬请期待下一期...
  • 全球超高分辨率傅立叶变换红外光谱仪助力大气污染监测
    为了更好地了解全球气候变化,特别是温室气体(CO2、CH4、N2O、HF、CO、H2O和HDO)在大气和生物圈之间的交换,总碳柱观测网(TCCON)、大气成分变化观测网(NDACC)等研究机构相继成立。这些都是由地基傅立叶变换红外光谱仪(以及其他仪器)组成的网络,它们将太阳作为光源,来记录近红外或中红外光谱范围大气谱。所接收到的高精度数据可以作为重要的地面真实数据,作为对像美国宇航局(NASA)等的卫星测量数据的补充。对于大气污染物的分析,太阳作为红外光源,太阳光经过整个大气层一直到光谱仪的整个光路上不同组分的浓度进行了测量。对于这类场发射测量,需要用到超高分辨率傅立叶变换红外光谱仪。布鲁克IFS 125HR傅立叶变换红外光谱仪凭借准确的仪器谱线函数、出色的波长精度和世界上最高的光谱分辨率,成为该应用和相关研究机构的黄金标准。布鲁克IFS 125HR超高分辨光谱仪采用了令人瞩目的干涉仪设计,可确保光束在长达11米的极长光程差中的完整性。于是,IFS125HR光谱仪全球网络被用于监测全球范围内的大气变化,其中,部分安装在山峰上的观测中心,例如,著名的瑞士少女峰(NDACC);或安装在坐落于美国俄克拉荷马州Lamont的SGP ARM站点设备服务中心(TCCON)。下方图片提供了安装有IFS 125HR光谱仪的全球TCCON观测站点位置,这也凸显了布鲁克在大气污染监测方面做出的重要贡献。注:TCCON: total carbon column observing networkNDACC: network for the detection of atmospheric composition changeSGP: Southern Great PlainsARM: Atmospheric Radiation MeasurementThe Southern Great Plains (SGP) atmospheric observatory was the first field measurement site established by the Atmospheric Radiation Measurement (ARM) user facility. This observatory is the world’s largest and most extensive climate research facility.
  • 打破分子检测昂贵的现状 新型高分辨率多聚SNP技术
    以DNA变异为基础的分子检测技术被广泛应用于生物分子学、基因组学、遗传学和育种等领域。在动植物遗传育种方面,DNA变异被开发为SSR和SNP等不同类型的分子标记,用于遗传图谱构建、多样性分析、标记-性状关联、图位克隆、分子育种、指纹鉴定等方面。各种高通量检测技术设备和高密度DNA芯片的开发,极大地满足了动植物遗传育种对于高通量和高密度分子检测技术的需求。但芯片开发和制作难度大,且需要匹配昂贵的检测设备。国际大型跨国种业公司通过构建高通量分子检测平台,为其全球范围、多物种的应用研发提供支撑,大大提高了分子检测效率并降低单个样本的分析成本,从而推动了分子检测技术在基础和育种研发中的大规模应用,进而加强其在国际种业市场中的竞争优势。然而,在发展中国家、中小种业公司或公共研究机构,无法建立起高效共享的检测平台,导致分子检测成本高昂而难以得到普遍应用。  近日,中国农业科学院作物科学研究所徐云碧团队联合石家庄博瑞迪生物技术有限公司张嘉楠、佛山科学技术学院王蕴波等人,通过整合靶向测序和液相芯片技术,成功开发出一套高分辨率多聚SNP(multiple single-nucleotide-polymorphism cluster,mSNP;或multiple dispersed nucleotide polymorphism,MNP)检测体系,该体系可取代依赖昂贵仪器设备的固相芯片和其他分子检测技术,广泛应用于动、植物遗传育种等多个领域。相关研究成果于8月9日以Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip为题在Plant Communications在线发表。 联合研究小组基于靶向测序基因型检测(genotyping by target sequencing, GBTS)技术,建立和完善了利用单一扩增子检测多个SNP标记的mSNP技术体系,极大地提高了目标位点(扩增子)内变异的检测效率。在玉米中通过筛选和优化,开发了包括40K目标位点的一套标记集(40K mSNP),平均每个位点(扩增子)可以检测到6.6个SNP标记,而同一位点的多个SNP标记,又可构成多种单倍体形式。因此该标记集整体上包含了三类不同的标记,即40K mSNP、260K SNP/Indel和912K单倍型。由于这种mSNP位点和SNP标记检测是通过测序来实现的,通过测序所能捕获的标记位点数与测序深度成正比。因此,根据应用场景对标记密度的需求,通过控制测序深度就可以从同一标记集获得多种不同的标记密度,包括从1K 到40K mSNP任意位点(扩增子)数以及由此衍生的、不同数量的SNP标记和单倍型。 与常规的测序式基因型检测和固相芯片检测相比,基于GBTS的mSNP技术具有平台广适性,不需要借助于特定的昂贵设备,可以采用各种可供利用的测序平台。mSNP标记定制时没有起始样本量和标记数量的限制,测序与标记基因型检测可在同一管内完成;使用时没有单次检测样本量限制;可向体系中随时加入新的引物或对已有引物进行调整;根据同一套高密度标记,可以通过调整测序深度来获得不同数量的标记。所有检测试剂均实现了本地化,从而大大降低了试剂成本,同时利用现有的测序设备降低了检测设备的维护、管理和运营有关的成本。mSNP标记和基因型信息具有高度重复性和可靠性,便于将不同时间、地点和实验所获得的信息进行累加、比较和综合分析。与固相芯片、全基因组重测序和随机的简化基因组测序等技术相比,基于GBTS的mSNP液相芯片检测技术对于平台和支撑系统的要求很低,不需要借助于额外的检测技术或高度专业化的生物信息团队。  基于GBTS的mSNP标记技术体系可广泛应用于生物进化、遗传图谱构建、基因定位克隆、标记性状关联分析、后裔鉴定、基因渐渗、基因累加、品种权保护、产品质量监测、转基因成分/基因编辑/伴生生物检测等领域。联合研究小组以玉米为例,采用288份热带/亚热带自交系、246份甜玉米自交系、333份来自中国、美国和CIMMYT的温带自交系,分别利用代表mSNP位点的标记、所有SNP标记、单倍型标记对这些材料的多样性、群体结构、连锁非平衡衰减进行了分析。同时以玉米轴色为例开展了全基因组关联分析。研究证实,利用mSNP及其单倍型替代固相芯片中的单一SNP标记能够获得额外的检测效率。基于GBTS 的mSNP液相芯片技术具有广泛的物种适应性,可以用于所有动植物和微生物的分子检测。目前已经在13种主要农作物、蔬菜以及部分动物和微生物中开发了基于GBTS的液相芯片50余套,并已在上述有关领域得到广泛应用。  中国农业科学院作物科学研究所郭子锋和佛山科学技术学院杨泉女为论文的第一作者,中国农业科学院作物科学研究所/CIMMYT—中国徐云碧、石家庄博瑞迪生物技术有限公司张嘉楠、佛山科学技术学院王蕴波为通讯作者,国际玉米小麦改良中心、上海市农业科学院、新疆农垦科学院、河北省农林科学院为论文合作单位。
  • Science:低成本的超高分辨率成像
    显微镜一直是生物学研究中的重要工具,随着技术的发展显微镜的分辨率在不断提高。最新的超高分辨率显微镜已经达到了超越衍射极限的分辨率。现在MIT的研究团队通过另一种巧妙的方式达到了同样的目的。  研究人员并没有在显微镜上下功夫,而是从组织样本下手,利用一种吸水膨胀的聚合物将组织样本整体放大。这种方法非常简单成本也很低,能用普通共聚焦显微镜达到超越200nm的分辨率。这项发表在Science上的成果,能使更多科学家接触到超高分辨率成像。  &ldquo 你在常规显微镜下就可以实现超高分辨率成像,不需要购买新设备,&rdquo 文章的资深作者,MIT的副教授Ed Boyden说,Fei Chen和Paul Tillberg是这篇文章的第一作者。  物理放大  衍射极限曾经是光学显微镜的最大障碍之一,使其分辨率无法突破200nm,然而这个尺度恰恰是生物学家最感兴趣的。为了克服这个问题,科学家们开发了超高分辨率显微技术,该技术获得了去年的诺贝尔化学奖。  然而,超高分辨率显微镜最适合用于薄样本,成像大样本的时间比较长。&ldquo 如果想要分析大脑,或者理解肿瘤转移中的癌细胞,或者研究攻击自身的免疫细胞,你需要在高分辨率水平上观察大块的组织,&rdquo Boyden说。  为了使组织样本更容易成像,研究人员使用了聚丙烯酸盐制成的凝胶,这是一种高度吸水的材料,通常用于尿不湿中。  研究人员首先用抗体标记想要研究的细胞组分或蛋白,这种抗体不仅连有荧光染料,还能够将染料连到聚丙烯酸盐上。研究人员向样本添加聚丙烯酸盐并使其形成凝胶,然后消化掉起连接作用的蛋白,允许样本均匀膨胀。样本遇到无盐的水之后膨胀了100倍,但荧光标记在整个组织中的定位并没有改变。  人们一般用普通共聚焦显微镜进行荧光成像,不过它的分辨率只能达到几百纳米。研究人员通过放大样本,用共聚焦显微镜达到了70nm的分辨率。&ldquo 这种膨胀显微技术能够很好的整合到实验室已有的显微系统中,&rdquo Chen补充道。  大样本  MIT的研究团队用这种膨胀显微技术,在常规共聚焦显微镜下成像了500× 200× 100微米的大脑组织切片。而其他超高分辨率技术难以成像这么大的样本。  &ldquo 其他技术目前可以达到更高的分辨率,但使用起来比较难也比较慢,&rdquo Tillberg说。&ldquo 我们这个方法的优势在于,使用简单而且支持大样本。&rdquo   研究人员认为,这一技术对于研究大脑的神经连接非常有用。Boyden的团队将注意力放在大脑研究上,不过这一技术同样适用于肿瘤转移、肿瘤血管生成、自身免疫疾病等研究。
  • CT分辨率知多少—高分辨率微纳CT的精确度量
    在 X 射线 CT 中,空间分辨率是重要的量化参数之一,它被定义为重建图像中两点之间可以区分的最小线性距离。因此,对空间分辨率的适当评估是至关重要的,特别是对于微纳 CT 这种高精度要求的成像系统。目前有两种最常见的空间分辨率评估方法:第一种是利用分辨率测试卡评估,其包含了可进行直接视觉评估的图案结构,在工艺上可制成二维和三维结构,适用于 X 射线断层和 X 射线 CT。测试卡的优势在于操作简单,可直观评估分辨率。但测试卡有一个明确定义的结构分布,只能评估测试卡上所列的图案尺寸;第二种是利用遵守 ASTM E1695-95 标准(Standard Test Method for Measurement of Computed Tomography (CT) System Performance)的斜边法或边缘瞬变法,光源扫描圆柱体或球体边缘,随后基于一套标准的数据处理方法计算空间分辨率。该方法需严格遵守测试标准,能够精确度量空间分辨率且不受测试卡的图案尺寸限制。1Resolution-spirit—微纳 CT 空间分辨率测试捷克CACTUX公司推出的 Resolution-spirit 是按照 ASTM E1695-95 标准制造的微纳 CT 模体,并由超精密三维测量机 nano-CMM 标定。Resolution-spirit 是一个高精度的红宝石球(Φ=0.5~5 mm),粘在一根碳棒上,如下图(左)所示。为评估 XY 平面的分辨率,只需对模体成像,如下图(右)所示,其中绿点为计算的质量中心。用户只需对模体边缘像素的数据进行处理,即两个红色圈内的数据,以质量中心为准,获得不同半径下强度分布—边缘响应函数(ERF)。这里最大挑战是以非常高的精度确定质量中心,如果没有正确地定义中心,那么根据中心对像素进行分组将不准确,错误将导致边缘模糊。然后依次通过求导和傅里叶变换得到点扩散函数(PSF)和调制传递函数(MTF),根据体素大小和 MTF 精确算出空间分辨率。最后类推到其他平面,可获得 CT 系统的三维空间分辨率。例如,布尔诺理工大学的研究人员利用传统 2D 分辨率测试卡和模体对 Heliscan 微米 CT 进行分辨率测试,如下表所示,模体能提供更精确的度量。2 Voxel-spirit—纳米 CT 体素校准在锥束 X 射线 CT 中,光源、样品和探测器之间的距离(SOD和SDD)影响重建体的视觉保真度和体素大小。除了这两个距离的估计存在偏差外,体素大小的真实值还受到 X 射线源漂移、CT 组件热膨胀、探测器和转台倾斜等因素的影响。因此,使用参考样品进行校准是防止在估计体素大小时出现误差的适当工具。对于视场在 10 mm及以上的锥束CT,体素尺寸校准已经很好地建立起来,并且有大量合适的参考样品可用。然而,对于小视场、高分辨率的微纳 CT 来说,很难找到合适的参考样品。CACTUX 的 Voxel-spirit 可以对 SOD 和 SDD 的误差进行精确校准,从而提高重建质量和体素大小的准确性,其适用于视场较小且锥束放大倍率接近 1 的微纳 CT。voxel-spirit由两个高精度的红宝石球(Φ=0.3 mm)组成,它们粘在一根碳棒上,球中心间距(约0.5 mm)并且经过 nano-CMM 严格度量,精度约 70 nm,如下图所示。首先保证两个球体完全在视场内,光源中心与探测器平面正交,两球中心连线平行于探测器平面。在对 Voxel-spirit成像后,可根据下图公式 1 计算体素大小。根据这种关系,在体素大小上的误差可能是由于 SOD 和 SDD 的不精确以及像素大小 p 的不精确造成的,而这些在实验中都是难以精确测量的。因此,在给定的 CT 测量条件下,利用图像中两球中心间距 lCT 和真实度量过的球中心间距 lref,可以获得体素修正因子 cf,算出修正后的体素大小,如下图公式 2、3。3 R1-shadow—微纳 CT 机械误差校正在微纳 CT、双能 CT 或 4D CT中,旋转转台同样会引入误差,即旋转中心的不对准、装台的不稳定或移动等等。尤其是针对颗粒、粉末样品,更容易受到这些机械误差的影响。CACTUX 的 R1-shadow 可以快速直观地纠正这些机械误差,并且提供配套的数据处理软件。R1-shadow是一个由 kapton 制成的样品基底(Φ=25~100 um),在中心处有一根碳纤维增强棒(Φ=2.5~10 um)作为机械误差校准的参考基准点,如下图所示。在确保基准点获得较高对比度的图像后,即可开始 CT 测量。下图展示了胶囊颗粒在机械误差修正前后的图像,可以清晰看到修正后的红色区域伪影消除了。 点击获取产品详细信息:捷克 CactuX—致力于提升您微纳 CT 系统的成像质量和测试效率参考文献:1. Standard Test Method for Measurement of Computed Tomography (CT) System Performance: E 1695–95. 1st edition. United States: American Society for Testing and Materials, 2013.2. Bla&zcaron ek P, &Scaron rámek J, Zikmund T, et al. Voxel size and calibration for CT measurements with a small field of view. Proceedings of the 9th Conference on Industrial Computed Tomography (iCT 2019), Padova, Italy. 2019: 13-15.3. Zemek M, Bla&zcaron ek P, &Scaron rámek J, et al. Voxel size calibration for high-resolution CT. 10th Conf. on Industrial Computed Tomography. 2020: 1-8.4. Laznovsky J, Brinek A, Salplachta J, et al. 3D spatial resolution evaluation for helical CT according to ASTM E1695–95. 10th Conference on Industrial Computed Tomography. 2020.5. Laznovsky J, Brinek A, Salplachta J, et al. Comparison of two different approaches for Spatial Resolution determination for X-ray Computed Tomography with helical scanning trajectory.
  • 【鉴知科普】光谱分辨率:揭示光的秘密
    在探索宇宙奥秘和理解地球环境的过程中,光谱分辨率扮演着至关重要的角色。它不仅是科学家们洞察物质世界的一扇窗,更是现代遥感技术中不可或缺的一部分。今天,就让我们一起走进光谱分辨率的世界,揭开它神秘的面纱。光谱分辨率是什么?光谱分辨率是指光谱分析仪可分辨出的最小波长间隔,也是其最小可分辨精度,通常以纳米(nm)或波数(cm-1)表示。例如光谱分辨率为1nm,代表设备可分辨出300以及301nm的光。在同一波谱范围内,分的越细,波段越多,光谱分辨率越高,例如1500nm的光波,可被分为300个波段,光谱分辨率为5nm,也可分为150个波段,光谱分辨率为10nm,越高的光谱分辨率可更容易区分和识别目标性质和组成成分。光谱分辨率的度量方式半峰全宽(Full width at half maximum)英文简称FWHM,也称作半高全宽、或半高宽、半波宽。指达到光谱峰高一半处的光谱宽度。如下图如何提高光谱分辨率呢?光谱分辨率受到多种因素的影响,主要包括:1. 光谱仪的光学系统:包括光栅、透镜、滤光片等,它们的性能直接影响到光谱分辨率。2. 探测器的性能:探测器的灵敏度、噪声水平和响应速度等都会影响光谱分辨率。3. 光源的稳定性:光源的稳定性对光谱分辨率有重要影响,光源的波动会导致光谱线的移动,从而影响分辨率。4. 环境因素:如温度、湿度等环境因素的变化也可能对光谱分辨率产生影响。光谱分辨率对我们有什么意义呢?光谱分辨率在科学研究和工业应用中具有广泛的应用,包括:1. 化学分析:高光谱分辨率的光谱仪可以用于化学物质的定性和定量分析。2. 环境监测:通过分析大气中的光谱线,可以监测大气成分的变化。3. 天文学:在天文学中,光谱分辨率对于研究恒星和行星的化学成分至关重要。4. 材料科学:光谱分辨率可以用来研究材料的光学特性,如反射率、透射率等。总之,光谱分辨率是一种重要的光学参数,用于描述光谱仪器的分辨能力。通过了解光谱分辨率的概念、测量方法和影响因素,可以更好地选择和使用光谱仪器,为各种科学研究和实际应用提供更准确、可靠的数据和结果。北京鉴知技术有限公司,简称“鉴知技术”, 是一家以光谱检测技术为核心的专业公司,产品已广泛应用于缉私缉毒、液体安检、食品安全、药品检测等诸多领域,公司致力于为客户提供更先进的产品和更快捷的物质识别方案。
  • 光学定位计量达到原子级分辨率
    英国和新加坡科学家携手推出一种非侵入性光学测量方法,检测纳米物体位置时达到原子级分辨率,比传统显微镜高出数千倍。最新研究使科学家能以十亿分之一米的比例表征系统或现象,开辟了皮光子学研究新领域,也为其他领域研究提供了令人兴奋的新可能性。相关研究论文刊发于最新一期《自然材料学》杂志。  光学成像和计量技术是生物医学和纳米技术研究领域的关键工具。最新研究负责人之一、南安普敦大学尼古拉哲鲁德夫指出,自19世纪以来,提高显微镜空间分辨率一直是一大趋势,科学家们的梦想是开发出能够用光探测原子级事件的技术。  在最新实验中,哲鲁德夫团队通过收集波长为488纳米的拓扑结构光,散射在17微米长、200纳米宽的悬浮纳米线上的衍射图案的单次拍摄图像,展示了原子尺度的计量学。  随后,他们在纳米线被放置在301个不同位置时出现的散射图案的单次拍摄图像数据集上,训练了一种深度学习算法。经过训练,该算法可根据团队传感器记录的散射光模式来预测给定纳米线的位置。  在该团队的原理验证实验中,他们的光学定位计量方法表现非常好,以92皮米的亚原子精度解析了悬浮纳米线的位置。
  • 冷冻电镜的分辨率革命
    p  精确认识细胞当中的大分子结构对于理解它们的功能至关重要。Amunts等人利用冷冻电镜获得线粒体核糖体大亚基3.2埃的分辨率结构,还有最近利用冷冻电镜获取的其他一些高分辨率结构,这些成就预示着分子生物学研究的新时代,获取近原子分辨率的大分子结构将不再是X射线晶体学和核磁共振的特权。/pp style="text-align: center "img alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/2014912171159.jpg" style="width: 600px height: 350px "//pp  图:利用冷冻电镜获得的近原子分辨率结构:(A)酵母线粒体核糖体大亚基,分辨率3.2 埃。(B) TRPV1离子通道,分辨率3.4 埃。(C)Fsub420/sub-还原[NiFe]氢化酶,分辨率3.36埃。注:该图并不是按比例绘制的。/pp  核糖体是古老的,大规模的蛋白RNA复合物,它将线性遗传密码翻译成三维蛋白质。线粒体——半自主细胞器,为细胞提供能量,拥有它们自己的核糖体,这一点和细菌非常类似。许多抗生素,如红霉素,通过阻止细菌的核糖体翻译机器来抑制细菌的生长。当设计新的抗生素,不能让他们同时阻断线粒体核糖体很重要。因此,认识这两种核糖体的详细结构是很有价值的。其他核糖体的结构已经通过X射线晶体学确定。Amunts等利用冷冻电镜确定了线粒体核糖体的高分辨率结构,这在不到一年前,很少有人会想到可能实现。/pp  不用晶体而能够做到这一点无异于是一场革命。主要是因为采用了新的探测器——具有前所未有的速度和灵敏度的直接电子探测器。直接电子探测器能够直接检测电子,而不是需要先将它们转换成光子,然后再转化为光电子探测进行,目前广泛使用的CCD(电荷耦合器件)相机就是这样,但它们的分辨率不是很好。照相胶片从工作原理上来说,高分辨率成像效果应该更好,但它很难和越来越重要的快速读出电子速度及高数据吞吐量相兼容。/pp  大约10年前,Henderson和Faruqi意识到,应该有可能设计出一种结合了CCD相机和胶片优点的直接探测电子的传感器。他们和两个竞争团队研发的探测器,采用了和大多数手机中的摄像头芯片基本相同的有源像素传感器技术。然而,手机的芯片不能用于电子显微镜,因为强烈的电子束会瞬间破坏它们。因此,首先探测器必须能够抗辐射。第二,探测器所需的像素要大很多,以防止富含能量的电子一次激发多个像素。第三,摄像头采用的芯片必须非常薄,完成每次读出电子160万像素,否则电子散射将会使图像模糊并降低分辨率。目前传感器的厚度大约是一张纸厚度的一半。/pp  冷冻电镜只需要少量的样品,因此那些无法分离得到大量样品,利用X射线晶体学方法进行分析的物质,现在可以利用冷冻电镜得到高分辨率结构。这同样适用于不容易结晶的非均相样品或柔性复合物,因为不同颗粒或构象的物质的冷冻电镜图像在图像处理阶段很容易分离开。/pp  新的检测器提供了另一种决定性的优势:当电子束撞击薄的、不支持冷冻的样品时,它们的快速读出能够补偿小的不可避免地移动。在新的相机问世前,由于电子束诱导移动引起的模糊是一个看似不可逾越的问题。现在,通过快速连续拍摄,可以得到一个区域的数十张图像,并且电子束诱导移动被检测到并反转在电脑上。这种去除模糊的影响戏剧性的和天文学哈勃望远镜相类似,尽管在这两种情况下引起模糊的原因是不同的。/pp  新的相机也促使了低温电子断层扫描成像的重大突破,低温电子断层扫描能够得到全细胞、细胞片、或细胞区室的三维图像,如线粒体。利用断层成像识别分子特征,采用标准CCD相机甚至已达到亚纳米细节,新的探测器问世也必然给断层成像研究带来巨大的变化。/pp  在新相机问世的同时,强大的极大似然图像处理程序也被开发出来。这些程序定义可靠客观的标准,来对几万或几十万个的单粒子图像进行平均处理,为的是要实现高分辨率。先进的检测器和软件相结合,获取的冷冻电镜结构,在相同的标称分辨率下,其清晰度和map definition比采用X射线晶体学解析的结构要好,因为在冷冻电镜图像中包含着高质量的相位信息。/pp  冷冻电镜的分辨率革命是否意味着X射线蛋白质晶体学时代即将结束?当然不是。在可预见的将来,分子量小于100kD的小蛋白,分辨率达到2 Å 或更好将依然是X射线晶体学的领域。但是对于大的,易碎的,或者柔性结构蛋白(如膜蛋白复合物),它们很难形成晶体,但却在生物医学中起着关键的作用,新技术将对此带来重大突破。在未来,对分子量大、已知的蛋白复合物,如核糖体,进行结晶将可能不再是必要的。相反,它们的结构可以从容并迅速的通过冷冻电镜来确定。这真是激动人心的时刻。(编译:秦丽娟)/pp 原文检索:a href="http://www.sciencemag.org/content/343/6178/1443.short"http://www.sciencemag.org/content/343/6178/1443.short/a/p
  • 化学所“超高分辨率荧光显微镜”获得方解石中超高分辨率蛋白图像
    近日,记者从中科院化学所获悉,该所胶体、界面与化学热力学重点实验室李峻柏课题组利用其开发的“超高分辨率荧光显微镜”,观测到生物矿化过程中参与结晶的蛋白质分布信息。论文在《德国应用化学》上刊发。  “超高分辨率荧光显微镜”可以超越远场光学显微镜的分辨率极限,直接检测到几十纳米的精细结构。而与能达到相同或更高分辨率的X光显微镜、各类电子显微镜及原子力显微镜相比,超高分辨荧光成像能在常温常压和基本不损伤生物样本活性的条件下,获得其纳米尺度的图像信息。  研究人员介绍,“超高分辨率荧光显微镜”又称为随机光学重建显微镜(STORM),可达到或好于50纳米分辨率。在前期研究中,李峻柏课题组在超高分辨图像采集和数据分析方面发展了实时单分子定位的程序包SNSMIL,该程序包可广泛应用于高背景成像的数据分析。  他们利用STORM观测到方解石中生物矿化过程中参与结晶的蛋白质分布信息,为研究蛋白质诱导生物矿化的机理提供了数据。
  • 耶拿推出最高分辨率的ICP光谱
    仪器信息网讯 2013年10月25日,德国耶拿公司在北京展览馆举行了&ldquo 高分辨ICP-OES新品发布会&rdquo ,推出目前市场同类产品中最高分辨率的ICP-OES新品&mdash &mdash PQ9000。发布会现场德国耶拿公司在BCEIA 2013上展示的ICP-OES新品&mdash &mdash PQ9000(左一:德国耶拿公司CEO Berka,左二:德国耶拿中国区总经理赵泰)  在新品发布会上,仪器信息网(以下简称:instrument)编辑也就相关问题采访了德国耶拿中国区总经理赵泰。  Instrument:多年来,耶拿公司一直以原子吸收的著名厂家而知名,尤其是2004年推出的划时代的连续光源原子吸收,目前中国的ICP市场已被许多品牌领先占据,德国耶拿公司为什么选择当前推出ICP-OES?  赵泰:大家都知道ICP-OES产品经过多年的发展,在化学分析领域有着非常重要的地位,但是ICP的应用技术还是存在很多难以克服的问题,给我们的分析工作带来很大的障碍。  比如,发射光谱的主要缺陷是发射谱线多、光谱干扰严重,很多分析问题都是源于此,所以对ICP-OES分辨率的要求就非常高,理想目标是分辨率达到发射谱线的自然宽度(1-3pm),而目前市场上ICP-OES都未达到这一目标。  还有ICP-OES很难直接测量高盐,痕量类样品,所以也限制了ICP的分析范围。另外,随着技术的进步大家对仪器研发要求越来越高,大家心目中理想的仪器,不仅性能要好,使用成本也要低。  为了能克服不足,满足当前分析的需求,德国耶拿公司就一直在研发这样的ICP-OES。德国耶拿公司在光学仪器制造行业有非常丰富的经验,已经有160多年的发展历史和经验,具有得天独厚的优势,所以在光谱领域一直以来都能推出品质非凡的产品。耶拿新品ICP-OES PQ9000也是在传承历史,经过多年的研发,针对目前的ICP-OES产品的不足之处,为了满足当前分析需求,为分析者&ldquo 量身定做&rdquo 的,所以选择当前隆重推出。  Instrument:耶拿推出的ICP-OES新品与市场上同类产品相比的在技术方面有哪些新的突破,仪器性能有何显著提高?给分析工作带来哪些优越?  赵泰:首先,借助耶拿特有的光学技术优势,加上设计独特的分光系统,PQ9000的光谱分辨率能达到3pm,达到了相当于发射谱线自然宽度的理想目标,在目前市场上同类产品中是最高分辨率的ICP-OES。用户可以轻松应对很多难分析的、光谱干扰严重的样品。光学性能上也有很大的突破,保证了分析的稳定性和准确性。  第二,PQ9000采用了先进的垂直矩管、双向观测设计方式,消除了高盐和基体的影响,不仅能满足各类样品(有机,高盐)的分析,也能满足不同浓度(µ g/L~%)的同时测量,保证了灵敏度和检测限。另外PQ9000采用冷锥加氩气反吹消除尾焰,无自吸,无空气,降低背景 持续氩气对光室和检测器的吹扫,消除空气和水分等对紫外光的吸收,从而使得PQ9000的检出限比常规降低2~10倍,灵敏度达到µ g/L级。从短波到长波,常用元素的检测限都大幅提高。从而解决了&ldquo 复杂基质&rdquo ,&ldquo 痕量分析&rdquo 的难题。  第三,采用高性能的新一代CCD检测器,产生高量子效率和紫外超高灵敏度,可以自动选择最佳积分时间,同时记录元素线与其直接光谱环境,自动扣除背景,检测器只需致冷到零下6到10度即可稳定工作,大大缩短了预热时间(5分钟),能做到真正的即开即用。  第四,耶拿本着创新的理念,PQ9000在其他部分的设计上也充分体现。比如新颖独特的尾焰消除技术,采用最先进的气路设计,即吹扫和冷却用氩气又巡回到等离子体使用,没有额外消耗,大大地降低了氩气的消耗   另外,组合式炬管,体积小,氩气消耗少,从而最大程度降低氩气的消耗。整个外观设计也很精巧,是世界上体积最小的高分辨率ICP-OES。  Instrument:耶拿新品ICP-OES主要在哪些应用领域推出?如何能获得用户的认可?  赵泰:PQ9000在技术上的创新突破,打破了目前ICP-OES的分析局限,带来分析工作带来更多的自由空间。各种样品中低含量、微量和痕量的金属元素以及部分非金属元素的定性和定量分析 尤其适合分析样品量大,检测结果要求高的用户 可广泛应用于石油化工、农业,质检、环保、钢铁、科研、卫生等行业。凡是追求更好分析性能的用户都能认可该技术。  Instrument:您是如何看待原子吸收与ICP-OES未来发展的关系?ICP-OES的推出对原子吸收业务发展有何影响?耶拿如何制定发展规划?战略目标是?  赵泰:原子吸收和ICP-OES技术都是目前无机分析的主力军,两者一直是即有交叉又有互补的关系,应用上各有所长。  ICP-OES的推出对原子吸收业务发展不会有太大影响,只是一些以往必须用石墨炉原子吸收分析的痕量元素现在有更多可能在高分辨率ICP-OES上完成,有更多分析任务可以全部依靠高分辨率ICP-OES完成,而不必分到两种仪器上才能全部满足分析任务的要求。但很多以往特别适合用原子吸收分析项目,如分析元素种类少,或仅靠火焰原子吸收就能完成的分析仍应采用原子吸收更为合适或更加经济。  PQ9000高分辨率ICP-OES的推出,使耶拿公司的原子光谱仪器家族又增加了新的成员,能满足更多的分析需求,可以为更多的用户提供更多的服务,也为信赖耶拿品质的用户提供更大的合作空间。这也加进一步强了耶拿公司在无机分析领域的技术领先地位和市场影响力。耶拿公司将继续不遗余力的做好售后服务和技术支持,借助此超高分辨率ICP-OES的先进性能为用户解决更多的分析难题,增强实验室分析能力,更加简便、有效的完成高质量的分析任务。  耶拿公司的战略目标是不断创新,用更多先进技术巩固和加强光谱技术领先者的市场地位。  Instrument:谈谈新品ICP-OES PQ9000的市场定位和预期?  赵泰:PQ9000高分辨率ICP-OES的市场定位与其它众多耶拿产品一样,仍然是瞄准高端市场,以技术优势和非凡品质赢得广泛用户的信赖。可以预期,期盼有更好、更强分析性能力装备的用户一定会欢迎这一新品,而耶拿公司的PQ9000绝不会让这样懂行的专业用户失望,将再次为德国耶拿赢得光彩夺目的品牌声誉!  Instrument:2013年,在全球经济依然不景气的情况下,耶拿面对市场变化,取得了怎样的销售业绩?在耶拿中国的业绩情况?  赵泰:2013年,德国耶拿一如继往的取得了骄人的业绩,除日本市场外,全球市场继续有较快增长,尤其生命科学业务,有近2位数的增长。  耶拿中国的业绩继续领先全球,业务总量仍然保持2位数的增长速度,对总增长约推高2个百分点的生命科学业务更是增长了近80%!撰稿人:刘丰秋
  • 网络研讨会:高分辨率CT成像技术与应用
    网络研讨会:高分辨率CT成像技术与应用时间:2016-09-08 14:00 注册方式打开以下链接并报名http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2104 讲座内容概要在过去的几十年中,显微成像技术取得了令人瞩目的发展,涌现出众多新的技术和设备,如光学显微镜,SEM/TEM, AFM等,将显微成像技术的分辨能力不断推向新的高度,从微米到纳米甚至是原子尺度。但是,所有这些技术都只是对样品表面形貌进行观测,对样品制备有严格的要求。而高分辨率CT成功的弥补了这一不足,可在无损的情况下对样品内部组分及三维结构进行精确表征。“高分辨CT技术及其应用”介绍了最新的x射线三维显微成像检测技术及其产品,该技术可对样品内部不同吸收系数的组分及微观结构进行三维高分辨率无损成像,在科研及工业领域有着广泛的应用,如石油地质,材料科学,先进制造等。欢迎各行各业对CT感兴趣的用户参与。
  • 超高分辨率让“不可能”变为“可能”!
    超高分辨率让“不可能”变为“可能”!史晓磊Isotope Abundance同位素丰度,是指自然界中存在的某一元素的各种同位素的相对含量(以原子百分计)。如1H的同位素丰度为99.985%,2H为0.015%。可用于追踪物质的运行和变化规律,借助同位素原子以研究有机反应历程的方法,称之为同位素示踪法。因其所引用的同位素标记化合物的化学量是极微量的,不会对体内生理过程产生影响,获得的分析结果符合生理条件,在代谢组学研究中被广泛应用。想在不受13C干扰的条件下去测量低丰度的2H示踪以用于代谢研究,是几乎不可能的,由于来自四极杆质谱的M+1质量同位素13C丰度很高,约为 18%,严重干扰了测定2H的标记示踪[1]。但实际上,2H(0.015%)的低自然丰度使得示踪剂剂量在理论上小于0.5%是可能的[2],这需要极高分辨率的质谱才能实现完全的基线分离,而Orbitrap Exploris GC 240出现之后,凭借其240000的超高分辨率,让以往在代谢研究中不可能实现的难题变为可能。今天为大家分享一篇美国德克萨斯大学西南医学中心的研究人员利用Orbitrap Exploris GC 240分析棕榈酸中的2H同位素示踪剂的应用。图1.棕榈酸酯C16H31O2的质量同位素分布摘要新生脂肪生成(De novo lipogenesis, DNL)是由碳水化合物等非脂质营养物质合成的脂肪酸,是长期储存热量和维持细胞膜的主要营养物质[3]。监测DNL在细胞器、细胞、组织活检、小鼠模型和人类等环境中的功能,将有助于发现新的分子生理学和许多不同疾病的潜在干预措施。DNL通量通常通过氘水(2H2O)给药后2H掺入脂肪酸来测量。本文利用GC-Orbitrap解析2H和13C脂肪酸质同位素,允许DNL定量使用较低的2H2O剂量和较短的实验周期。NewOrbitrap Exploris™ GC 240科研利器,引领潮流图2. 稳定同位素2H2O是测定DNL的基础 图3.EI模式下的棕榈酸甲酯的质谱图图4.NCI模式下的棕榈酸五氟苯酯质谱图 通过比较棕榈酸甲酯在EI模式和五氟溴代苯衍生棕榈酸酯在NCI模式下的质谱图,NCI测定五氟苯酯产生了未破碎的棕榈酸盐离子(C16H31O2,精确分子量为255.2324),比EI检测甲酯的效率和灵敏度高1000倍(见图3和图4)。 图5. 采用不同条件验证2H在棕榈酸中的示踪标记 针对不同AGC(自动增益控制)目标的靶向选择离子监测(Target-SIM)(2*104, 2*105和3*106),2H1和13C1的M + 1两种方法都能很好地分辨。而但全扫描数据为易受离子损失,特别是在AGC目标值高的情况下,容易产生空间电荷效应。同时,准确度高(94-107%),精度高(变异系数10%)[5-6],Target-SIM在定量时是更为合适的采集模式。 图6.模拟人体水富集到0.3% 2H2O时棕榈酸质量富集作为DNL的函数研究棕榈酸酯13C1和2H1 (M + 1)质量位移需要用165,000的最小分辨率进行分辨,以往用傅立叶变换离子回旋共振质谱法(FT-ICR-MS)可以实现,但扫描时间长,并需要超导磁体[7],不易实现。当GC-Orbitrap商业化之后,成为很多代谢组学实验室进行分辨13C和2H的首选。为了确定这种方法是否比单位分辨率的质谱更有优势,模拟了超高分辨率的质谱0-10%的DNL分数范围和0.3%的体内水富集。结果证明,GC-Orbitrap为检测极低前体和产物富集的DNL提供了主要的理论优势。 图7. 在其他脂肪酸中也可以检测到2H富集 结论 本文介绍了一种HR-Orbitrap-GC-MS方法,该方法解决了其他同位素的2H质谱富集,来研究DNL生成。在棕榈酸中直接检测2H质量同位素可防止在低富集时与13C自然丰度的卷积,实验证明,DNL可以在1小时内检测完成,且2H2O的剂量比以前更低[8]。Orbitrap Exploris GC 240因其超高的24万分辨率解决了代谢组学研究中一直以来的难题,成为代谢组学研究中不可或缺的利器。 参考文献:1. Brunengraber, H., Kelleher, J. K. & Des Rosiers, C. Applications of mass isotopomer analysis to nutritional research. Annu. Rev. Nutr. 17, 559 (1997). 2. Diraison, F., Pachiaudi, C. & Beylot, M. In vivo measurement of plasma cholesterol and fatty acid synthesis with deuterated water: 3. Wallace, M. & Metallo, C. M. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin Cell Dev Biol, https://doi.org/10.1016/j.semcdb.2020.02.012 (2020). 4. Murphy, E. J. Stable isotope methods for the in vivo measurement of lipogenesis and triglyceride metabolism. J. Anim. Sci. 84, E94–E104 (2006). 5. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on orbitraps.Anal. Chem. 89, 5940–5948 (2017). 6. Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H.Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996). determination of the average number of deuterium atoms incorporated. Metabolism 45,817–821 (1996). 7. Herath, K. B. et al. Determination of low levels of 2H-labeling using highresolution mass spectrometry: application in studies of lipid flux and beyond.Rapid Commun. Mass Spectrom. 28, 239–244 (2014). 8. Previs, S. F. et al. Using [(2)H]water to quantify the contribution of de novo palmitate synthesis in plasma: enabling back-to-back studies. Am. J. Physiol.Endocrinol. Metab. 315, E63–E71 (2018).
  • 科学家展示无标记超分辨率显微技术
    研究人员开发了一种新的测量和成像方法,可以解析小于光衍射极限的纳米结构。光与标本相互作用后,新技术可测量光强度以及光场中编码的其他参数。图片来源:约尔格S艾斯曼/奥地利格拉茨大学来自奥地利格拉茨大学的研究人员近日开发了一种新的测量和成像方法,可在不需要任何染料或标签的情况下解析小于光衍射极限的纳米结构。这种激光扫描显微镜新方法弥补了传统显微镜和超分辨率技术之间的差距,有朝一日或可被用来观察复杂样品的精细特征。在国际光学出版集团的高影响力期刊《光学》上描述的这种新方法,是对激光扫描显微镜的改进,它使用强聚焦激光束照射标本。研究人员扩展了这项技术,不仅可以测量光与被研究标本相互作用后的亮度或强度,还可以检测光场中编码的其他参数。“我们的方法可帮助扩展用于研究各种样品中纳米结构的显微工具箱。”研究小组组长彼得班泽说,“与基于类似扫描方法的超分辨率技术相比,我们的方法是完全非侵入性的,这意味着它不需要在成像前向标本中注入任何荧光分子。”研究表明,新方法可测量金纳米颗粒的位置和大小,精度为几纳米,即使在多个颗粒接触的情况下也可做到。在激光扫描显微镜中,光束在样品上扫描,并测量来自样品的透射光、反射光或散射光。大多数显微方法测量来自样品的光强度或亮度,但大量信息存储在光的其他特性中,例如它的相位、偏振和散射角。为了捕捉这些额外信息,研究人员检查了强度和偏振信息的空间分辨率。研究人员表示,光的相位、偏振和强度,在空间上都会发生变化,这种变化方式包含了与之相互作用的样品细节,然而,如果只在相互作用后测量总体光功率,那么大部分信息都会被忽略。研究人员研究了含有不同大小的金属纳米颗粒的简单样品,通过扫描感兴趣的区域,然后记录传输光的偏振和角度分辨图像展示了这种新方法。他们使用一种算法对测量数据进行评估,该算法创建了一个粒子模型,模型可自动调整,以尽可能精确地模拟测量数据。班泽说,尽管这些颗粒及其距离比许多显微镜的分辨率极限要小得多,但新方法能够解决这一问题。更重要的是,该算法能够提供有关标本的其他参数,如颗粒的精确大小和位置。
  • 科学家展示无标记超分辨率显微技术
    来自奥地利格拉茨大学的研究人员近日开发了一种新的测量和成像方法,可在不需要任何染料或标签的情况下解析小于光衍射极限的纳米结构。这种激光扫描显微镜新方法弥补了传统显微镜和超分辨率技术之间的差距,有朝一日或可被用来观察复杂样品的精细特征。在国际光学出版集团的高影响力期刊《光学》上描述的这种新方法,是对激光扫描显微镜的改进,它使用强聚焦激光束照射标本。研究人员扩展了这项技术,不仅可以测量光与被研究标本相互作用后的亮度或强度,还可以检测光场中编码的其他参数。“我们的方法可帮助扩展用于研究各种样品中纳米结构的显微工具箱。”研究小组组长彼得班泽说,“与基于类似扫描方法的超分辨率技术相比,我们的方法是完全非侵入性的,这意味着它不需要在成像前向标本中注入任何荧光分子。”研究表明,新方法可测量金纳米颗粒的位置和大小,精度为几纳米,即使在多个颗粒接触的情况下也可做到。在激光扫描显微镜中,光束在样品上扫描,并测量来自样品的透射光、反射光或散射光。大多数显微方法测量来自样品的光强度或亮度,但大量信息存储在光的其他特性中,例如它的相位、偏振和散射角。为了捕捉这些额外信息,研究人员检查了强度和偏振信息的空间分辨率。研究人员表示,光的相位、偏振和强度,在空间上都会发生变化,这种变化方式包含了与之相互作用的样品细节,然而,如果只在相互作用后测量总体光功率,那么大部分信息都会被忽略。研究人员研究了含有不同大小的金属纳米颗粒的简单样品,通过扫描感兴趣的区域,然后记录传输光的偏振和角度分辨图像展示了这种新方法。他们使用一种算法对测量数据进行评估,该算法创建了一个粒子模型,模型可自动调整,以尽可能精确地模拟测量数据。班泽说,尽管这些颗粒及其距离比许多显微镜的分辨率极限要小得多,但新方法能够解决这一问题。更重要的是,该算法能够提供有关标本的其他参数,如颗粒的精确大小和位置。
  • 亚飞米分辨率双电光梳绝对频率光谱测量
    光学频率梳(Optical frequency comb,简称“光梳”)由大范围、等间隔的梳齿分量构成,每根梳齿均对应绝对频率,如同在光频上的一把梳子(或标尺)。得益于飞秒激光器和非线性光学的发展,1999年美国标准局和德国马普所的研究团队分别在实验上实现了光梳,解决了绝对光频率计量问题,J. L. Hall和T. W. Hänsch因此贡献而分享了2005年诺贝尔物理学奖。光梳的诞生同样给光谱测量领域带来了革命性突破,分辨率提高到皮米量级,光梳光谱学的新技术和新应用也在不断涌现。双光梳光谱学可以充分利用光梳在频率准确度、频率分辨率、光谱范围和脉冲宽度等方面的优势,在诸多基于光梳的测量技术中脱颖而出。在频域上,双光梳光谱学表现为两个有微小重复频率差异光梳的多外差探测,可以将探测光梳记录的待测谱线,如分子吸收谱,从光频转移到射频。双光梳光谱学可以利用光谱交织技术进一步将分辨率提高至几十飞米量级。然而现有方案测量时间大幅增加,使用温度或驱动电流调节时无法提供绝对频率参考,且分辨率仍有进一步提高至光梳梳齿线宽的较大空间。电光调制光频梳(简称“电光梳”)由对连续种子光的电光调制产生,用于构建双光梳系统时其具有天然的互相干性,无需复杂的锁定电路或相位校正算法,可以大幅降低系统复杂度。此外,由于电光梳具有不受谐振腔腔长限制的重复频率以及可自由调节的中心波长,由其构建的更具应用前景的双电光梳系统受到研究人员的广泛关注。上海交通大学何祖源、樊昕昱教授团队提出了一种新型双电光梳光谱测量方案,将光谱测量分辨率进一步提高到亚飞米量级,相较于现有方案提高了两个数量级。该方案利用外调制的稳频光作为扫频电光梳的种子光,可以在实现低频率误差快速光谱交织的同时,提供绝对光频率参考。图1 亚飞米分辨率双电光梳绝对频率光谱测量技术原理示意图研究团队在分析各性能指标的理论限制和相互制约关系的基础上,将光谱测量技术关注的综合性能指标(光谱分辨率、测量带宽以及测量时间)提高至奈奎斯特极限,并且可以通过多次平均提高测量信噪比。该方案用于测量分子吸收谱线和高Q值光纤法布里珀罗腔谐振谱线的实验结果,充分展示了该方案灵活实现超高光谱分辨率、高信噪比和高刷新率的能力。图2 氰化氢(HCN)气体吸收谱线的光谱测量结果图3 光纤法布里珀罗谐振腔反射谱的光谱测量结果该研究成果将推动超精细光梳光谱学的进一步发展,并在温室气体监测、精密光器件测试、生物化学传感,以及诸如电磁诱导透明等物理现象观测中具有非常重要的应用价值。
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
  • 施一公组首次报道人源剪切体原子分辨率结构
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在Science杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。5月11日,施一公教授领导的团队又在Cell杂志上发表了题为“An Atomic Structure of the Human Spliceosome”的论文,这是该研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。该论文的第一作者分别为张晓峰、闫创业和杭婧,施一公教授和闫创业博士为共同通讯作者。特别值得一提的是,这篇Cell论文从投稿到接收只用了11天。鉴于该成果的重要意义,BioArt特别邀请了著名的结构生物学家、清华大学生命科学学院杨茂君教授撰写了该篇特别评论文章,以飨读者。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/4bc262af-0d77-4cd2-9b46-7d997bd2ca4c.jpg" title="微信图片_20170512000929_副本.jpg"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/spanbr//pp  5月11日,清华大学施一公教授研究组在《细胞》杂志发表研究文章,首次报道了人源剪切体C* complex的原子分辨率结构。施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在《科学》杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。这是施一公教授研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。/pp  剪切体催化的前体mRNA剪切过程是生物体内最基础最关键的生命活动之一,是遗传信息从DNA传递给蛋白质的中心法则中关键的一环。在所有真核细胞中,基因表达分为三步进行,分别由RNA聚合酶 (RNA polymerase)、剪接体(Spliceosome)和核糖体 (Ribosome)执行。第一步简称转录(transcription),即储存在遗传物质DNA序列中的遗传信息通过RNA聚合酶的作用转变成前体信使RNA(pre-mRNA) 第二步简称剪接(splicing),即由多个内含子和外显子间隔形成的前体信使RNA通过剪接体的作用去除内含子、连接外显子,转变为成熟的信使RNA 第三步简称翻译(translation),即成熟的信使RNA通过核糖体的作用转变成蛋白质,从而行使生命活动的各种功能。描述这一过程的规律被称为分子生物学的中心法则,多个诺贝尔奖围绕此发现和阐述产生。其中,RNA聚合酶的结构解析获得2006年的诺贝尔化学奖,而核糖体的结构解析获得2009年的诺贝尔化学奖。/pp  由于真核生物中的基因编码区中存在不翻译成蛋白质的序列(称为内含子),染色体DNA转录出来的前体mRNA(pre-mRNA)并不直接参与蛋白质翻译,而是需要先将其中的内含子片段去除,才能进入核糖体进行蛋白质合成。内含子的去除需要通过两步转酯反应来实现:首先,位于内含子序列中下游被称为分支点(branch point sequence)的序列中有一个高度保守的腺嘌呤核苷酸(A),其2’羟基亲核攻击内含子5’末端的鸟嘌呤(G),于是第一步反应发生,形成套索结构 然后,5’外显子末端暴露出的3’-OH向内含子3’末端的鸟嘌呤发起攻击,第二步反应发生,两个外显子连在一起。通过这两步反应,前体信使RNA中数量、长度不等的内含子被剔除,剩下的外显子按照特异顺序连接起来从而形成成熟的信使RNA(mRNA)(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/8c47205d-f67a-471b-b897-662b42995cae.jpg" title="微信图片_20170512001013_副本.jpg"//pp  这两步化学反应在细胞内是由庞大、复杂而动态的分子机器——剪接体催化完成的。对于每一个内含子来说,为了调控反应的各个基团在适当时机呈现合适的构象从而发挥其活性,剪接体各组分按照高度精确的顺序结合和解离,组装成一系列具有不同构象的分子机器,统称为剪接体。根据它们在RNA剪接过程中的生化性质,这些剪接体又被区分为E、A、B、Bact、B*、C、C*、P、ILS等若干状态。剪接体由五个小核核糖核蛋白(snRNP)、十九号复合物(Nineteen Complex,简称NTC)、十九号复合物相关蛋白(NTC Related)和一系列的辅助蛋白所构成,共涉及到100多个蛋白质和至少五条RNA分子。在剪接的过程中,剪接体以前体信使RNA分子为中心,按照高度精确的顺序进行逐步组装并发生大规模结构重组,使之得以完成复杂的剪接任务。剪接是真核细胞进行正常生命活动不可或缺的核心环节,因此具有重大的生物学意义,获取剪接体在组装、激活、催化反应过程中各个状态的结构是最基础也是最富挑战性的结构生物学难题之一。/pp  此前,施一公教授研究组共报道了酵母来源的剪接反应中5个关键状态的剪接体复合物的高分辨率结构,分别是3.8埃的预组装复合物tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex以及3.6埃的内含子套索剪接体ILS complex。这5个酵母来源的高分辨率结构所代表的剪接体状态,基本覆盖了整个剪接通路中关键的催化步骤,提供了迄今为止最为清晰的剪接体不同工作状态下的结构信息,大大推动了RNA剪接研究领域的发展。而最新的这一篇《细胞》论文所报道的3.76埃第二步催化激活状态下的人源C* complex使我们第一次在原子分辨率上看到了人源剪切体的工作状态,并首次详细阐释了人源剪切体催化第二步转酯反应的功能机理。/pp  人源C* complex与酵母来源C* complex在结构上有许多不同。与酿酒酵母来源的复合物结构相比,在这一原子分辨率人源复合物结构中额外鉴定出9个蛋白亚基(Aquarius、Brr2、PPIL1、PRKRIP1、U5-40K、以及EJC的4个蛋白亚基)。另外,第二步反应的关键因子Slu7和Prp17在人源复合物中更加清晰。相反的,酵母复合物中第二步反应的关键因子Prp18在人源复合物中缺失,反映了人和酵母在催化第二步反应过程中功能机理的细微差别。另一个重要的差别是酵母复合物中的Ecm2和Cwc2亚基被人源复合物中的RBM22亚基所取代,使得其周围的蛋白亚基重新排布(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/f0ba68fc-ec88-43f2-b80b-2353dc5f37a3.jpg" title="微信图片_20170512001027_副本.jpg"//pp  此次发表的关于人源剪切体复合物原子分辨率结构的研究承接之前酵母来源剪切体复合物的研究工作,在攻克剪切过程详细反应机理的道路上再进一步。施一公教授这一系列的研究工作具有极为重要的意义,是对中心法则的研究中最为复杂、最为关键的一环。自1993年RNA剪接的发现被授予诺贝尔生理及医学奖以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。剪切体一系列关键状态复合物高分辨率结构的解析,一步一步揭开了RNA剪接这一复杂生化过程神秘的面纱,可以说,这一系列研究工作是当今结构生物学领域里一项里程碑式的、有望获得诺贝尔奖的重量级工作。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/95c0871b-e076-40e5-8e71-19b0f0a22f55.jpg" title="微信图片_20170512001044_副本.jpg"//pp style="text-align: center "图为Cell论文的通讯作者施一公教授和卓越中心创新学者闫创业博士/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "撰文丨杨茂君 (清华大学生命科学学院、结构生物学高精尖创新中心教授,“长江学者”特聘教授,国家“杰青”)/span/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:到目前为止,闫创业博士已发表的53篇SCI论文中,其中在Nature、Science和Cell杂志上以第一作者(包含共同一作)或共同通讯作者身份已发表10篇研究型论文。自闫创业博士2005年进入清华化学系以来到如今成为清华结构生物学高精尖创新中心卓越学者总共已经快12年了。从施一公教授课题组的相继发表的这7篇有关剪接体结构的论文署名来看,闫创业博士是这7篇论文的第一作者(三篇)或共同第一作者(4篇),特别值得一提的是在这篇Cell文章中首次成为共同通讯作者。可以说,整个剪接体系列工作中,闫创业博士起到了中流砥柱般的作用,称得上当今结构生物学领域“夜空中最亮的星”/span。/ppbr//p
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • 活细胞超分辨率显微技术研究获进展
    2016年12月31日,中国科学院生物物理研究所徐平勇课题组、中国科学院计算技术研究所张法课题组以及美国科学院院士HHMI研究员Jennifer Lippincott-Schwartz合作在《细胞研究》(Cell Research)在线发表了题为Live-cell single molecule-guided Bayesian localization super-resolution microscopy 的文章,介绍了一种新型活细胞超分辨率显微技术及其独特优势。  超分辨率荧光显微技术由于打破了传统光学衍射的限制,使得人们能够更深入地理解细胞生物学,获得了2014年诺贝尔化学奖。但是由于设备和时空分辨率的影响,活细胞超分辨率技术仍面临诸多挑战。近年来,贝叶斯定位显微技术(Bayesian analysis of the blinking and bleaching,3B)利用荧光蛋白漂白和闪烁的特性,通过分析整个图像序列的变化得到荧光蛋白的概率分布图,该方法用简单的光学设备就能实现活细胞动态结构的超分辨率成像,成为活细胞超分辨率成像的重要工具之一。作为细胞成像新的重要工具,它仍然有三个关键的问题没有解决:1)在精度方面,存在严重的结构缺失,定位精度不高 2)在速度方面,该方法极其耗时,为了得到1.5μ m的超分辨率结构,大约需要6小时,并且随着图像尺寸的增加,计算时间急剧增长 3)在分析尺度方面,由于速度的限制,该方法很难获得全细胞大尺度长时间的动态变化。针对以上问题,实验人员通过将单分子定位和贝叶斯技术相结合,开发了一种新型活细胞超分辨率显微技术(single molecule guided Bayesian localization microscopy,SIMBA),该技术有以下优点:1)适用范围广,不需要任何额外的硬件设备,就能与主流TIRFM、PALM、STROM和light-sheet显微镜相结合,便于推广和使用 2)时空分辨率高,减少了结构伪迹的同时实现了50nm的空间分辨率和0.5-2s的时间分辨率 3)运行速度快,相比3B,加速比超过100倍,并且随着图像尺度的增大,加速效果更加明显 4)分析尺度大,实现了全细胞大尺度长时间动态变化分析。  活细胞超分辨率显微技术是当前研究的热点,开发新型活细胞超分辨率成像探针和新方法是中科院生物物理所徐平勇课题组的重要研究方向。徐平勇、张法、Jennifer Lippincott-Schwartz为本文的通讯作者 徐帆、张名姝为共同第一作者。该工作受到国家“973”计划 、国家自然科学基金、北京市自然科学基金、中科院基金先导项目等的资助,并申请专利“一种贝叶斯显微成像方法”。SIMBA对于固定细胞actin和活细胞CLC重构结果展示
  • 首个真彩超高分辨率显微镜 打开光谱信息新大门
    美国劳伦斯伯克力国家实验室的科学家们开发了首个真彩(true-color)超高分辨率显微成像技术,为研究细胞结构和相关疾病提供了一个强大的工具。该技术将光谱与超高分辨率显微技术结合起来,在单分子成像时可以达到空前的光谱和空间分辨率。这一突破性成果发表在八月十七日的Nature Methods杂志上。  “我们用这一技术检测每个分子在空间和光谱中的定位,根据其光谱判断分子的颜色,可以说这是首个真彩超高分辨率显微镜,”助理教授Ke Xu说,他将这一技术命名为SR-STORM(spectrally resolved stochastic optical reconstruction microscopy)。  SR-STORM能够给出每个分子的光谱和空间信息,为人们打开了一扇新的大门。该技术不仅能够在细胞中成像多个组分,还能检测局部的化学环境(比如pH变化)。更重要的是,SR-STORM是一种高通量技术,能在大约五分钟内获得大量单分子的空间和光谱信息。  SR-STORM是Xu博士基于自己之前的工作开发出来的,当时他在著名学者庄小威(Xiaowei Zhuang)实验室从事博士后研究。庄小威教授研发的超高分辨率成像技术STORM与诺奖得主Eric Betzig的成果不相伯仲,却和2014年的诺贝尔化学擦肩而过。  现有的超高分辨率显微技术不能给出光谱信息,这样的信息对于理解分子行为是很有帮助的,而且能够对多个靶标实现高质量的多色成像。Xu博士和同事们经过深入探索,终于解决了这一难题。他们用发射波长相近的14种染料对样本进行染色。尽管这些染料的光谱彼此重叠,但SR-STORM能够很好的将其区分开。研究人员还用四种染料对线粒体、微管等四个不同的亚细胞结构进行标记。研究显示,SR-STORM能够根据分子的光谱轻松分辨不同的颜色,每个亚细胞结构都能鲜明的呈现出来。  “我们以大约10nm的高分辨率,成像了细胞内四个生物学组分的空间互作,”Xu说。“目前这一技术主要用于基础研究和细胞生物学领域,我们希望日后也能将其用于医疗。研究者们可以在SR-STORM的帮助下观察细胞结构的建立,以及它们在疾病中发生的变化。”  “细胞骨架包括一系列相互作用的亚细胞结构和蛋白,这一技术可以通过空前的颜色通道和空间分辨率,揭示不同靶标之间的互作。”  Xu博士正在尝试进一步改良这一技术,使它能够用于常规显微系统。他也在开发合适的染料和探针,在纳米尺度上监控细胞内局部环境的变化,比如pH值。  原文链接:Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy
  • 高分辨率激光外差光谱技术新突破!信号探测和测量精度双双大幅提升
    近日,中科院合肥研究院安光所许振宇副研究员课题组科研人员在激光外差光谱技术研究中取得新的突破,相关研究成果发表在《光学通信》(Optics Letters)上,且该论文被编入编辑精选(Editor’s Pick)。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,安光所科研团队邓昊博士后首次提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明所研发的基于半导体光放大的高分辨率激光外差光谱仪相比于传统的高分辨率激光外差光谱仪在弱光信号探测以及气体浓度测量精度方面得到大幅提升。该研究提高了高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大的应用潜力。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果文章链接:https://opg.optica.org/ol/fulltext.cfm?uri=ol-47-17-4335&id=493999
  • 中科院建成高分辨率高能电子成像实验平台
    近日,中国科学院近代物理研究所建成了兰州高能电子成像实验平台(HERPL),基于该平台的成像分辨率达到高能电子透射成像领域的最好水平。高时空分辨的成像技术是惯性约束核聚变和高能量密度物理研究亟待解决的关键诊断问题。高能电子成像提高了探测束的穿透能力、增大了成像视场、提升了系统时空分辨率,将为高能量密度物质诊断提供一种实用的新型诊断方式。高能电子成像项目获得了中国科学院国际合作局国际伙伴计划对外合作重点项目和装置研发项目、国家基金委重点项目、国家重点研发计划政府间合作重点项目的资助,并得到了清华大学、西安交通大学以及国际同行的支持。项目组在深入研究高能电子成像理论的基础上,进行了高能电子成像关键技术攻关,建成了国际首台高能电子成像专用装置——兰州高能电子成像实验平台,取得了高能电子透射成像领域最好的空间分辨能力(小于1μm),能够满足高能量密度物质空间分辨诊断的需求。此外,在平台的研制过程中培养了一支年富力强的电子成像研究团队,加深了与国内外研究同行的合作交流,提升了我国在该领域的国际影响力。HERPL的建成将为国内新型在线实时诊断技术和实验物理领域提供良好的技术支持。基于热阴极微波电子枪的兰州高能电子成像实验平台(研究团队供图)成像结果:分辨率1μm,为目前高能带电粒子成像领域最好的分辨能力(研究团队供图)
  • 中科大实现世界最高分辨率单分子拉曼成像
    在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。  记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作&ldquo 打破了所有的纪录,是该领域创建以来的最大进展&rdquo ,&ldquo 是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地&rdquo ,&ldquo 是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作&rdquo 。  这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。  光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。  上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。&ldquo 迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。&rdquo 董振超说。  微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元&ldquo 天线&rdquo 的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。  &ldquo 可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。&rdquo 董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。
  • 原子图像分辨率再次被刷新,微观世界也要进入高清时代?
    扫描隧道显微镜 Scanning Tunneling Microscope 缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。1亿倍分辨率与再次超越早在2018年,康奈尔大学的研究人员制造了一款高性能的STM隧道扫描探测器,与最新算法驱动的所谓的typchography相结合,将最先进的电子显微镜的分辨率提高了三倍,达到1亿倍的放大率创造了世界纪录。但是尽管取得了这样的成功,但这种方法有一个弱点。它仅适用于几个原子厚的超薄样品。任何较厚的物质都会导致电子以无法解开的方式散射而无法成像。近日,由大卫穆勒(Samuel B. Eckert)的工程学教授再次领导的一个团队利用电子显微镜像素阵列检测器(EMPAD)结合了更复杂的3D重建算法,将自己在2018年创造的记录又提高了两倍。成像分辨率是如此精微,剩下的唯一模糊是原子本身的热抖动!最新放大一亿倍的原子图像“这不仅创造了新纪录,”穆勒说。“已经达到了一种有效地成为分辨率极限的机制。我们现在基本上可以很容易地弄清楚原子的位置。这为我们想要的事物开辟了许多新的测量可能性它可以解决很长一段时间的问题-消除光束在样品中的多重散射(Hans Bethe在1928年提出),这是我们过去无法很好解决的问题。”气相色谱法的工作原理是扫描材料样品中重叠的散射图案,并寻找重叠区域中的变化。穆勒说:“我们正在追寻图案的光点,这很像你的宠物猫对激光笔的光点着迷一样!” “通过查看图案的变化,我们能够计算出引起图案的物体的形状。”检测器略微散焦,使光束模糊,以捕获最大范围的数据。然后,通过复杂的算法重建该数据,从而获得具有皮米(万亿分之一米)精度的超高精度图像。“通过这些新算法,我们现在能够校正显微镜的所有模糊,以至于我们剩下的最大模糊因子是原子本身会振动的事实,因为这是原子在绝对零度之上就会发生的情况”,穆勒说。“当我们谈论温度的高低时,我们实际上是在测量的是原子振动多少的平均强度。”左侧的扫描透射电子显微镜通过样品发射窄束电子,来回扫描以产生图像。右侧的像素阵列检测器读取着陆点,并从该着陆点读取每个电子的散射角,从而提供有关样品原子结构的信息。研究人员可能通过使用一种由较重的原子组成的材料(其振动较少)或冷却样品来再次刷新他们的记录。但是即使在绝对零度下,原子仍然具有量子涨落,因此改善不会很大。这种最新形式的电子谱图分析技术使科学家可以在其他三个成像方法中隐藏单个原子的情况下,在所有三个维度上定位单个原子。研究人员还将能够一次发现异常结构中的杂质原子,并对它们及其振动进行成像。这对成像半导体,催化剂和量子材料(包括用于量子计算的那些材料)以及分析将材料连接在一起的边界处的原子特别有用。这种成像方法也可以应用于厚厚的生物细胞或组织,甚至可以应用于大脑中的突触连接,穆勒称之为“按需连接基因组学”。尽管该方法既耗时又计算量大,但可以使用功能更强大的计算机结合机器学习和更快的检测器来使其效率更高。“我们希望将其应用到我们所做的一切中,”穆勒说,他是康奈尔大学纳米科学部Kavli研究所的共同负责人,并且是康奈尔大学激进协作计划的一部分,纳米科学与微系统工程(NEXT Nano)工作组的联合主席。“直到现在,我们所有人都一直戴着非常糟糕的眼镜。现在我们实际上已经拥有了一副非常好的眼镜。为什么您不想要摘下旧眼镜,戴上新眼镜并一直使用呢? ”
  • 深圳先进院高分辨率超声成像研究获系列进展
    p  近期,中国科学院深圳先进技术研究院劳特伯医学成像研究中心郑海荣团队在高分辨率超声成像研究中取得一系列进展。/pp  高分辨率超声主要采用大于15MHz的超声频率进行成像,可获得几十微米量级的成像分辨率。在临床中主要应用于浅表、内窥和眼科等方面的疾病检测。高频超声换能器是成像系统的关键部件,主要基于压电材料进行设计加工。但传统压电材料介电常数较小(夹持介电常数小于1500),造成压电阵元尺寸小的高频换能器的电阻抗会大幅度提升,进而导致换能器成像性能不佳。郑海荣团队邱维宝课题组利用新开发的一种高介电常数、高压电性能的改性PMN-PT陶瓷(夹持介电常数为3500)设计制备了性能优异的40MHz高频超声换能器(阵元尺寸可为0.4mm× 0.4mm),使得制备的高频超声换能器的电阻抗大幅度降低,更容易与电子系统的阻抗相匹配,实现较高的成像灵敏度(-13dB)。此外,该研究中设计制备的超声换能器具有较高的成像带宽(80%)和信噪比,并在高分辨率医学成像领域中展现出应用潜力。相关研究成果已被IEEE Trans Ultrason Ferroelectr Freq Control接收。/pp  邱维宝课题组在高分辨率超声成像方法和电子系统方面也取得了研究进展。高频超声获得高分辨率医学图像存在衰减系数增大导致成像穿透深度降低的问题。据此,课题组提出了基于编码超声的高频超声成像方法,在激励换能器时,采用带有一定编码的超声信号进行激励,回波接收时通过算法解码恢复出高分辨率图像,使得在成像中既可以维持图像的分辨率,也可以提升超声成像的穿透深度。该技术在浅表和内窥等成像中具有应用潜力。相关研究成果发表于IEEE Trans Biomed Eng。/pp  在进行高分辨率超声成像时,电子系统需要具有较高的数据采样率,以获取超声回波的原始数据信息,因此需要大幅度提高模数转换器(ADC)的采样频率。然而,传统超声成像系统的ADC采样频率通常为60MHz或者更低,不能满足大于30MHz的高频成像需要。据此,邱维宝课题组提出了一种延迟激励方法,通过将激励波束的时序进行规律性调整,在多次发送后获取多个数据图像,通过延迟复合处理,即可以获得高采样率的图像。该方法有望使临床用的超声设备,在不改动主要电子器件模数转换器的前提下,实现高分辨率超声成像的功能。相关研究成果发表于IEEE Trans Biomed Eng。/pp  高分辨率超声成像技术在内窥镜领域具有重要的应用潜力,邱维宝课题组在推进血管内超声成像技术的同时,也在尝试新型内窥成像技术。胶囊内窥镜(capsule endoscopy)是一种胶囊形状的内窥镜,它是用来检查人体肠胃的医疗仪器。胶囊内窥镜体积仅有普通胶囊大小,消除了传统检查耐受性差的缺点,能够拍摄食道、胃、小肠、大肠等,从而完成对人体整个消化道的检查。然而目前该技术是采用光学成像方法,仅能观测组织表层的病变信息,不能获得深层次的组织情况。由于超声成像技术的穿透性较好,因此课题组拟尝试进行超声胶囊内窥镜的设计验证,提出了基于高分辨率超声的内窥成像控制方案,采用40MHz的超声频率获得了小于60微米的肠道组织成像分辨率。相关研究成果发表于IEEE Trans Med Imaging。/pp  以上研究得到了国家自然科学基金、中科院前沿科学重点研究计划、广东省杰出青年基金、深圳市孔雀计划等项目的资助,以及美国南加州大学、宾夕法尼亚州立大学,英国格拉斯哥大学,东北大学等高校的支持与合作。/pp  论文题目:High Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic with Ultrahigh Clamped Dielectric Permittivity/pp style="text-align: center "img title="01.png" src="http://img1.17img.cn/17img/images/201712/insimg/76653693-b0cd-480d-ab1c-d835a6a2f035.jpg"//pp style="text-align: center "strong图1.(a)高频超声换能器技术参数对比 (b)高频超声换能器结构示意图和实物图 (c)成像性能测试图/strong/pp style="text-align: center "img title="02.png" src="http://img1.17img.cn/17img/images/201712/insimg/c0246a6c-4345-4ee5-b1a2-fe74a5030a04.jpg"//pp style="text-align: center "strong图2.(a-c)编码成像原理示意图 (d)编码成像技术可以大幅度提高血管内超声成像的穿透深度/strong/pp style="text-align: center "img title="03.png" src="http://img1.17img.cn/17img/images/201712/insimg/86bdbf66-cabb-484d-92d3-d2dc22d62b25.jpg"//pp style="text-align: center "strong图3.左:延迟激励成像原理示意图 右:眼睛组织超声成像图/strong/pp style="text-align: center "img title="04.png" src="http://img1.17img.cn/17img/images/201712/insimg/90b38fc1-6ef0-4192-83b1-723cacb12d4c.jpg"//pp style="text-align: center "strong图4.(a-b)胶囊超声内窥镜设想方案示意图 (b)高分辨率肠道组织超声成像图/strong/pp /p
  • 半导体所完成水下高分辨率光学成像海试
    近期,中国科学院半导体研究所研发的“水睛”水下高分辨率环视摄像机完成了针对水下礁盘的摸底海试工作。海洋观测是开发海洋资源、保护海洋生态的关键技术,受到全球的关注,但是目前海洋生物群落及环境变化监测技术仍无法满足海洋大时空数据获取的需求,特别是深海。光学成像技术可提供高分辨率、符合人眼视觉特征的图像,但是在保障高分辨率的前提下存在视场小的问题,难以实现大范围的海底详查的需求。针对此种情况,半导体所周燕、王新伟及其科研团队研制了水下高分辨率环视摄像机“水睛”,可实现水下高分辨率大视角的光学成像,具备180°下视走航观测和360°原位环视观测两种模式(图1)。本次海试中,“水睛”搭载半导体所海面移动光学试验平台“冲浪者”号(图2),在约1000平方米海域进行了水下高分辨观测,完成了海上走航式观测、定点原位观测等摸底性观测试验,验证了设备具备5900万像素下良好的实时彩色成像功能。图1 水下环视摄像机的下视及环视工作模式(上图下视模式,下图环视模式)图2 搭载冲浪者号走航式观测过程中的“水睛”摄像机此次海试,研究人员利用水下摄像机多次完成了礁盘生态系统的观测,拍摄了大量的珊瑚、海星、贝类、鱼类等,形成了水下光学彩色图像库(图3),可用于海洋光学图像处理、目标识别等算法研究。图3海域美丽的珊瑚、鱼类、海星、砗磲等除珊瑚及鱼类等生物要素外,本次海试中,在海底还发现了生物附着的碗和盘子各一只(图4)。图4 生物附着的盘子和碗此次海试由半导体所和南开大学共同组织完成,除“水睛”摄像机外,还利用多参量海洋水体测量系统完成了海洋温盐深、核素、水体光学衰减系数等海洋水体多物理化学参量采集。相关工作得到了南方海洋实验室、中科院青促会项目的经费支持。 图5 项目团队及设备在海试现场
  • 发布超高分辨率显微镜新品
    微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。创新点:微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。  微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。  通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。  定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。
  • 超高分辨率荧光显微镜的应用
    超高分辨率荧光显微镜正在不断改变我们对细胞内部结构及运作的认识。不过在现阶段,显微镜技术还是存在着种种不足,如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。  光学显微镜的出现及其影响  自荷兰博物学家、显微镜创制者Antonie van Leeuwenhoek(1632-1723)在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物(microorganisms or animalcule)以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了Leeuwenhoek的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。  此后,研究人员对显微镜技术的追求从未停歇过,他们总是希望能得到分辨率更高的显微镜,从而更好地观察细胞内部更细微的结构。最近,《自然-方法》(Nature Methods)杂志上报道的超高分辨率成像技术(super-resolution imaging, SR imaging)终于使得人们可以在单分子水平上进行观察研究。  SR技术的发展过程  在达到今天SR技术水平的过程中,承载了许许多多研究人员辛勤劳动的汗水,也面临着诸多亟待解决的难题。  在以上这些光学SR成像技术中有两种技术&mdash &mdash 受激发射减损显微镜(stimulated emission depletion microscopy, STED)和饱和结构光学显微镜(saturated structured illumination microscopy,SSIM)最受关注。  最近,基于探针SR成像技术的光敏定位显微镜(PALM)和随机光学重建显微镜(STORM),以及借助荧光基团随机激活特性的荧光光敏定位显微镜(FPALM)都已经取得了成功。  通过基于探针的SR成像技术,可以获得多张原始图像。在每一张原始图像中,细胞内只有一部分被荧光标记的分子能发出荧光,即这些荧光分子都处于不断激活和灭活的交替状态,每一次都只有部分分子能被观察并成像。而且由于每次发出荧光的分子都分散得较为稀疏,因此相互之间不会受到影响,也就避免了因相邻分子发出荧光而无法分辨的问题。最后将这些原始图片叠加、重合在一起就得到了最终的高分辨率图像。这样,就能使得那些以前由于荧光点太密以至于无法成像的结构的分辨率达到纳米级水平,而且成像的分子密度也相当高,可以达到105个分子/&mu m2。  这种分辨率对于生物学家来说,意味着现在可以在分子水平上观察细胞内的结构及其动态过程了。  虽然显微镜技术已经发展到了如此高度,但它仍然只是生物学家研究中使用的一种工具。因此还需要将显微镜获得的图像与其它的试验结果互相参照,才能获得准确的结果。人们需要认清SR显微镜的优势与劣势,为操作以及判断SR图像制定出标准化的操作规范,只有这样才能最大限度地发挥SR显微镜的作用。  现在,由于人们对细胞内各组份的组织结构以及它们的动态变化过程都只有一个概念上的认识,因此,借助显微镜从纳米水平上对这些结构及过程进行真实的观察能让人们发现许多以往所不了解的东西。例如,以前人们通过电镜发现细胞骨架是由大量丝状网格样组织构成时,就有人对此现象持怀疑态度。那些认为细胞骨架是一种用来稀释细胞内生化物质浓汤这样一种结构的细胞生物学家把这种观测结果称作僵化的人为试验结果。  除非最新的SR显微镜图像或者其它的试验结果都能证明细胞骨架是由大量的丝状网格样组织构成的,否则还会有人持上述的怀疑观点。不过已经有其它的生化试验结果证实了早期的电镜观察结果是正确的。当然新兴的SR技术也需要其它传统的生化试验结果予以佐证才有价值,同时还需要电镜的辅助。因为电镜能提供纳米级的观察结果,这对于佐证具有同样分辨率的SR显微镜观测结果来说是最有价值的。  今后,大家在逐步了解、接受和广泛使用SR显微镜的同时,需要注意将会出现的各种问题,以下的表格列出了部分与SR显微镜使用相关的缺点及其目前的解决方法。  最近几年,就如何处理图像已经有了非常严格的操作规范。不过迄今为止,对于怎么处理SR图像还没有一个标准的操作规范。尤其需要指出的是,PALM和STORM数据在某些重要因素上,graph方面的共性要多于image方面。在一张SR图像上,分子的不确定性和密度都能用颜色表示出来,这种图像把细胞内该分子有可能出现的任何地点都标示出来了。而且只有被标记的分子按照一定的标准(发出的光子数)判断它的确是一个单分子并且定位准确之后才显示出来。必须对获得的图像进行这样的标准化处理之后才能分析结果。同样,对于试验数据也需要如此进行标准化处理。要提高分辨率不仅需要分子定位、分布得比较好,还需要分子数目够多,以致能达到尼奎斯特判断法(Nyquist criterion)的要求,即分子间的平均距离要小于显微镜分辨率的一半。虽然上述问题都不会影响SR显微镜的应用,但由于存在这些问题,所以我们应该时刻提醒自己,一定要仔细判读、分析SR显微镜的图像结果,只有这样才能得到有价值的生物学结论。  SR荧光显微镜在生物学研究中的应用  到目前为止,人们还很难得知,SR荧光显微镜会对生物学界的哪一个领域带来重大变革,但已经有几个领域出现了明显的改变。这些研究领域是动态及静态的细胞组织结构研究领域、非均质分子组织研究领域、蛋白动态组装研究领域等。这几个领域都有一个共同的特点,那就是它们研究的重点都是分子间如何相互作用、组装形成复合物。因此,能在纳米水平观察这些分子对它们来说具有重大的意义。  通过观察蛋白质之间的组合关系来了解它们的作用,并能为后续的细胞功能试验打下基础  结构生物学研究在这方面已经取得了很大的进展,目前已经发现了4-8纳米大小的分子间相互作用组装成细胞微管、肌丝、中间丝这些超过10微米大小聚合物的机制。不过对于核孔复合体、中心体、着丝点、中间体、粘着斑这些由许多不同蛋白经过复杂的三维组装方式组合起来的复合体,还需要更好的办法来进行研究。目标就是要达到分子水平的分辨率,这样就可以观察大复合体形成过程中的单个分子,也就能对这些分子的化学计量学有所了解了。要得到更多的生物学信息就需要SR显微镜这样的三维成像技术,例如可以使用活体细胞SR成像捕捉细胞骨架的动态重构过程等等。  SR成像有助于人们更好地了解分子间的差异  细胞膜蛋白组织方式的经典模型已经从随机分布的液态镶嵌模型转变成了脂筏模型、穴样内陷模型或特殊蛋白模型。这种差异与细胞不同功能相关,例如在高尔基体、cargo蛋白和高尔基体酶蛋白之间必须发生相互作用,但最终它们会按照各自的功能分开,发挥各自的作用。有很多试验手段,例如免疫电镜技术、荧光共振能量转移技术(FRET)等都已经被用来研究这种膜不均一性问题了。多色PALM技术(Multicolor PALM)为人们提供了一种新的手段用来观察膜蛋白集合、组织的过程,并且还能定量分析不同蛋白间的空间距离关系。因为有了PALM提供的单分子信息,人们就可以清楚地了解蛋白分子间的空间关系,甚至有可能计算出相隔某一距离的分子之间发生相互作用的可能性。这种方法除了用于研究膜蛋白之外,还能用于许多非随机分布的生物系统研究,例如研究微管上的马达蛋白。  SR成像技术还能用于在单分子水平研究蛋白动态组装过程  细胞对外界刺激信号的反应起始于胞膜,在胞膜上受体蛋白之间发生动态的集合,用来调节细胞的反应活性。像HIV这种有被膜病毒也是在细胞膜上完成病毒颗粒组装过程的病毒,也是利用了细胞的物质转运机制。尽管现在蛋白组装的物理模型还远远没有完成,但研究人员知道膜蛋白的动态组装过程是不均一的,所以通常使用荧光试验手段很难获得分子水平上的信息。同样,单分子测量技术(Single molecule measurements)也存在着类似的局限,因为单分子测量技术只能观察细胞内的几个分子,所以缺乏整体的信息。因此由于缺乏空间分辨率,很难动态地研究蛋白质组装过程。SR荧光成像技术与活细胞成像技术和单分子示踪技术(sptPALM)结合就能解决这一问题。我们可以借助分子密度准确地看出PALM图像中的蛋白质簇,蛋白质簇动态的统计数据和形态学数据能帮助我们了解蛋白质动态组装的机制。  上面只是选了生物学研究中的3个方面来说明SR技术的用途,但这已经很好的展示了我们是如何从Leeuwenhoek最初对于生命组成的假设一步一步走到了今天,使用SR显微镜来证实构成生命体的最基本材料&mdash &mdash 分子的组合过程。STED和PALM的商业化产品已经上市了,这标志着SR显微镜的时代来临了。我们相信SR显微镜在充满创造力的生物学家们手中,一定会充分发挥它的作用,帮助我们发现更多生命的奥秘。  原文检索:  Jennifer Lippincott-Schwartz & Suliana Manley. Putting super-resolution fluorescence microscopy to work. Nature Methods, 17 December 2008 doi:10.1038/nmeth.f.233
  • 我国科学家开发微米分辨率的肿瘤组织磁成像技术
    病理组织检测是诊断癌症的“金标准”。传统的光学成像技术容易受到样品光学背景强、检测信号稳定性差、定量不准确和不同光学方法不能共用等问题的影响。中国科学技术大学的研究团队开发了微米分辨率的肿瘤组织磁成像技术,相较于传统的光学成像检测方法,该技术具有高稳定性、低背景和肿瘤标志物绝对定量的特点。相关成果在《PNAS》发表,题为:A generalized linear mixed model association tool for biobank-scale data。  研究团队开发了组织水平的免疫磁标记方法,通过抗原-抗体的特异性识别,将磁颗粒特异标记在肿瘤组织中的靶蛋白分子上,将已完成磁标记的组织样品紧密贴附在磁显微镜的检测器上进行磁场成像,最后通过深度学习模型定量分析检测信号,实现微米分辨率的肿瘤组织磁成像。由于生物样本自身一般都没有磁场背景,而且磁信号的高稳定性便于样品的长期保存和重复检测,所以这项技术在分析含光学背景、光透过差和需要定量分析的生物组织时具备明显优势,是肿瘤组织检测领域的重要突破。  该研究成果不仅在肿瘤临床诊断方面具有广阔的应用前景,也为肿瘤相关研究提供了新的技术支撑。   注:此研究成果摘自《PNAS》,文章内容不代表本网站观点和立场。  论文链接:https://www.pnas.org/content/119/5/e2118876119
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制