当前位置: 仪器信息网 > 行业主题 > >

氢气吸附仪

仪器信息网氢气吸附仪专题为您提供2024年最新氢气吸附仪价格报价、厂家品牌的相关信息, 包括氢气吸附仪参数、型号等,不管是国产,还是进口品牌的氢气吸附仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氢气吸附仪相关的耗材配件、试剂标物,还有氢气吸附仪相关的最新资讯、资料,以及氢气吸附仪相关的解决方案。

氢气吸附仪相关的论坛

  • 【原创大赛】影响制氢装置PSA产品氢气纯度因素研究

    影响制氢装置PSA产品氢气纯度因素研究 国内外蒸汽转化制氢装置的净化工艺主要可分为两种流程,即化学净化(常规净化法)和变压吸附净化法(PSA净化法)。两种流程在国内均已有成功的操作经验,两种净化方法的选择主要取决于原料和燃料价格及技术经济比较结果。由于造气单元采用价格较低而且产氢量高的焦化干气为原料,因此采用PSA净化法的氢气成本要比采用化学净化法的氢气成本低。而且采用PSA净化法制氢装置还具有流程简单,便于生产管理,产品氢纯度高(PSA净化法生产的工业氢纯度大于99.99%)等特点,有利于减少加氢装置的投资和消耗。因此,推荐采用PSA净化法。来自造气单元压力约2.1MPa(G)、温度40℃中变气进入界区后,自塔底进入吸附塔中正处于吸附工况的塔(始终同时有两台),在其中多种吸附剂的依次选择吸附下,一次性除去氢以外的几乎所有杂质,获得纯度大于99.9%的产品氢气,经压力调节系统稳压后送出装置。当吸附剂吸附饱和后,通过程控阀门切换至其它塔吸附,吸附饱和的塔则转入再生过程。在再生过程中,吸附塔首先经过连续四次均压降压过程尽量回收塔内死空间氢气,然后通过顺放步序将剩余的大部分氢气放入顺放气罐(用作以后冲洗步序的冲洗气源),再通过逆放和冲洗两个步序使被吸附杂质解吸出来。逆放解吸气进入解吸气缓冲罐,冲洗解吸气进入解吸气缓冲罐,然后经调节阀调节混合后稳定地送往造气单元的转化炉作为燃料气。因此产品氢的纯度就成了考量装置的重要标准,PSA影响产品氢纯度的因素就成了研究的重点对象。本文对PSA提纯氢气的工艺原理进行了简要概述,并对PSA影响产品氢纯度的因素进行了研究分析,对装置操作进行了合理化建议,以期对合理提高产品氢纯度提供可靠的理论依据。1基本原理1.1.1吸附 吸附按其性质的不同可分为四大类,即:化学吸着、活性吸附、毛细管凝缩、物理吸附。 化学吸附是指吸附剂与吸附质间发生有化学反应,并在吸附剂表面生成化合物的吸附过程。其吸附过程一般进行的很慢,且解吸过程非常困难。 活性吸附是指吸附剂与吸附质间生成有表面络合物的吸附过程。其解吸过程一般也较困难。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(即范德华力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的平衡在瞬间即可完成,并且这种吸附是完全可逆的。PSA制氢装置中的吸附主要为物理吸附。1.1.2吸附剂及吸附力 工业PSA制氢装置所用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、硅胶类、活性炭类和分子筛类。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。1.1.3装置所用吸附剂的特性1).AS吸附剂 在大型PSA氢提纯中的应用结果表明:AS[fo

  • 气相色谱中的氢气发生器

    在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的使用过程中,氢气的用途主要有以下几种:一方面使用氢气作为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析的载气,进行样品分离和分析;另一方面,当使用毛细柱进行分析时,一般需要使用与载[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]同的气体作为尾吹气;再则,使用FID、FPD和NPD做检测器时候,需要使用氢气作为燃气,和空气燃烧以提供火焰;此外,当仪器使用转化炉时候,需要额外的氢气用作反应气体和CO、CO2发生反应生成甲烷。常用的氢气供给方式包括使用钢瓶氢气和使用氢气发生器来提供。钢瓶氢气需要向气体供应商购买;氢气发生器的种类、原理和结构多种多样,从原理上来讲都属于电解制氢,详细的来讲一般分为三种,区别在于电解槽的类型,即:碱性电解槽、基于离子交换技术的聚合物薄膜电解槽和固体氧化物电解槽。在实验室中,使用的一般是碱性电解槽制氢和聚合物薄膜电解槽制氢两种。一 氢气发生器的一般流路一般而言,氢气发生器的工作流程为:碱性电解液在电解池中电解后,潮湿的氢气进入气液分离器分离出氢气,再经过干燥器之后,通过针型阀输入到[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/71/b4/c71b457a40aac8627af7babeb43eacd0.png[/img]下图为SPH-300A型全自动氢气发生器的示意图[img]https://img.antpedia.com/instrument-library/attachments/wxpic/8d/44/28d44a45b46f786e9282c3878113570d.png[/img]也有将电解液储液桶置于发生器外部的,如下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/b0/f6/2b0f6ecb2db36eb18ac200a30da4e862.png[/img]两者只是外观不一样,结构和原理则为一致。二 氢气发生器的电解槽原理氢气发生器从原理上来讲都属于电解制氢,具体的区别在于核心部件电解槽的类型,即:碱性电解槽、基于离子交换技术的聚合物薄膜电解槽和固体氧化物电解槽。以下将介绍在实验室中使用的碱性电解槽制氢和聚合物薄膜电解槽制氢。1 使用碱性电解槽制氢碱性电解槽是最常用、技术最成熟、也最经济的电解槽,并且易于操作,在目前广泛使用,但缺点是其效率最低[img]https://img.antpedia.com/instrument-library/attachments/wxpic/79/e1/779e1f74400a21dcda4a74e42fe90fde.png[/img]碱性电解槽主要由电源、电解槽箱体、电解液、阴极、阳极和横隔膜组成。电解液都是氢氧化钾溶液(KOH),浓度为20%~30%;横隔膜主要由石棉组成,主要起分离气体的作用,而两个电极则主要由金属合金组成。其工作的主要原理是:在阴极,水分子被分解为氢离子(H+)和氢氧根离子(OH-),氢离子得到电子生成氢原子,并进一步生成氢分子(H2);氢氧根离子(OH-)则在阴、阳极之间的电场力作用下穿过多孔的横隔膜,到达阳极,在阳极失去电子生成一个水分子和氧分子。碱性电解槽制氢的特点是:氢氧根离子(OH-)在阴、阳极之间的电场力作用下穿过多孔的横隔膜。2 聚合物薄膜电解槽制氢聚合物薄膜电解槽制氢(PEM),一些地方也称之为固体聚合物电解质(SPE)水电解制氢。该种原理不需电解液,只需纯水,比碱性电解槽安全,电解槽的效率可以达到85%或以上,但由于在电极处使用铂等贵重金属,薄膜材料也是昂贵的材料,故PEM电解槽目前还难以投人大规模的使用。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/c2/57/cc25716fa7e90ae4faf4dbbe91f30086.png[/img]其工作的主要原理是:去离子水被供到膜一电极组件上,在阳极侧反应析出氧气、氢离子和电子;电子通过电路传递到阴极,氢离子以水合的形式(H+XH20)通过离子交换膜到阴极;在阴极,氢离子和电子重新结合形成氢气,同时,部分水也带到了阴极。聚合物薄膜电解槽制氢的特点是:氢离子(H+)在阴、阳极之间的电场力作用下穿过离子交换膜。三 氢气的净化氢气从电解槽电解出来之后,都需要经过净化才能供[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用,常用的净化方式主要有以下几种:1 硅胶/分子筛净化系统硅胶和分子筛净化系统属于氢气发生器常用的净化装置。一般而言,在室温下使用硅胶初步脱水,分子筛进一步脱水。由于硅胶价格便宜、活化再生方便,应此是使用最为广泛的脱水方式。需要注意的是,当硅胶吸附水分之后,会由天蓝色变为粉红色,应当及时更换。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/77/c3/d77c3df3afe5202445c70cf3cf6a17e6.jpeg[/img]2 变压吸附净化系统变压吸附净化方式在氮气发生器中也有使用。变压吸附(PSA)是一项用于气体分离的技术,变压吸附(PSA)技术的基本原理是利用吸附剂及不同压力下对不同物质的吸附容量的不同从而达到气体分离的目的。其基本过程是在高压下吸附剂将气体中的杂质吸附,目标气体(H2)被吸附相对较少,穿过吸附层成为所需的产品气;然后在低压下,被吸附的杂质气解吸出来。这样的过程反复循环,最终的得到足量的产品气(H2)。3 钯薄膜净化系统除了上述两种净化方式之外,有的厂家提供了采用钯薄膜的净化系统,其基本原理是利用高温下只有氢原子才能穿透钯银合金薄膜的特性来进行净化。当氢原子穿透钯银合金薄膜之后,在钯薄膜的另一侧,单原子氢重新组合为双原子氢气。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/4a/f9/84af92ecc960a8d032d547b58856c353.png[/img]根据相关厂家说明,此种方法可以产生超高纯度氢气,几乎无水分或氧气携带,纯度超过 99.99999%四 氢气发生器的简单对比在实际的使用过程中,选择氢气发生器一般原则是选择电解槽的类型和净化的方式。1 从电解槽的类型来看可以参考下表:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ce/e4/bcee459bb4194c1e1000fab498359192.png[/img]相对而言,采用聚合物薄膜电解槽制氢具有较多的优势,但是价格较贵。2 从净化方式来看硅胶/分子筛净化系统可以满足[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]常规分析纯度的一般要求,与其他提纯方法相比,性价比高。变压吸附净化系统和钯薄膜净化系统都可以提供高纯度的氢气,但是价格较贵,也会存在一些操作上需要多加注意的地方。[hr/]目前而言,市面上较多的是采用碱性电解槽+硅胶/分子筛净化系统的氢气发生器,可以满足一般分析的需求

  • 活性氧化铝作为吸附剂的应用

    活性氧化铝作为吸附剂的主要的工业应用包括气体干燥、液体干燥、水质净化、石油工业的选择吸附以及色层分离工艺等。  由于活性氧化铝对水有较强的亲和力,因此在气体干燥中得到了广泛应用。能够用活性氧化铝干燥的气体主要有:乙炔、裂解气、焦炉气、氢气、氧气、空气、乙烷、氯化氢、丙烷、氨气、乙烯、硫化氢、丙烯、氩气、甲烷、二氧化硫、二氧化碳、天然气、氦气、氮气、氯气等。由于活性氧化铝吸附水时放出大量的热,因此,应用时要综合干燥能力、干燥速度、换热及再生方式等进行设计。  活性氧化铝可以干燥的液体主要有:芳香烃类、高分子烯烃类、汽油、煤油、环己烷、丙烯、丁烯以及许多卤化烃类等。这些液体与氧化铝接触时,二者不会发生反应或聚合,同时,干燥的液体中不含有容易吸附在氧化铝表面并且再生时不易去掉的组分。  在水质净化方面,活性氧化铝除主要用于去除饮水中的氟化物外,对工业污水颜色及气味的消除也很有效果。此外,活性氧化铝在碳水化合物的回收和选择性吸附及动力系统油的养护中也有普遍应用。

  • 大流量氢气发生器可以用自来水电解制氢吗?

    [b][导读][/b]大流量氢气发生器内部长寿命的泵使蒸馏水从内部水箱流到PEM电解池中。潮湿的氢气会通过膜,初次是通过气液分离器来干燥,然后通过PSA(变压吸附)。然后氢气发生器将测量氢气的压力水平并控制在恒定的设定压力(11bar)大流量氢气发生器内部长寿命的泵使蒸馏水从内部水箱流到PEM电解池中。潮湿的氢气会通过膜,初次是通过气液分离器来干燥,然后通过PSA(变压吸附)。然后氢气发生器将测量氢气的压力水平并控制在恒定的设定压力(11bar)。干燥的氢气然后通过一个基于PSA原理的免维护的高性能的净化模块。然后氢气发生器的压力是通过一个比例阀来控制。  在实验室中,高纯度的氢气被应用于GC([url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url])、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]),ELSD(蒸发光散射检测器)等仪器上。为确保这些仪器的使用寿命和检测精度,需要实验室提供高纯度的氢气。水由氢元素和氧元素组成,其分子式为H2O。因此,实验室通常采用电解水来生产氢气。  氢气发生器要求使用去离子水作为进水。自来水中的各种杂质离子的含量较高,这些杂质在电解时会产生副产物,影响生产氢气的纯度并减少电极使用寿命。而且自来水通常会采用次氯酸等强氧化剂进行消毒,这些强氧化剂对电极和电解池(特别是质子交换膜)有很大的腐蚀性,会影响氢气生产效率和仪器使用寿命。  常见的电解方法主要是碱性电解水法和质子交换膜法。碱性电解水法在耐腐蚀的电解池中盛有约15%的NaOH或KOH溶液,碱液可以增加水的电导率,提高电解效率,又避免了酸性溶液或盐溶液对电极的腐蚀和副产物的形成。

  • 【求助】关于氢吸附的问题

    看了一篇关于氢在电极表面吸附的问题,里面将adsorption和absorption看做两个过程,请问这两个单词表示的意思具体有什么不同?

  • TDX柱分析氢气出负峰?

    http://ng1.17img.cn/bbsfiles/images/2014/07/201407301114_508331_1829089_3.bmphttp://ng1.17img.cn/bbsfiles/images/2014/07/201407301114_508332_1829089_3.bmp TDX柱分析氢气出负峰,用He为载气,H2出现负峰正常,,是两瓶He供气,切换成另一瓶He后,但另外有个组分出负,切换后以正常是什么原因,载气是99.999%的,负峰可能是什么,是载气的问题吗?常见的H2导热系数最大,出现另一负峰是说还有一个组分比与氢类似,比He的导热系数大的组分吗?出现多余的负峰应是载气的一个组分吧?

  • 【原创大赛】【仪器应用】分析案例 用十通阀进样反吹分析氢气、氧气、丙烯腈

    【原创大赛】【仪器应用】分析案例  用十通阀进样反吹分析氢气、氧气、丙烯腈

    分析案例 用十通阀进样反吹分析氢气、氧气、丙烯腈概述:采用常见的十通进样反吹方法,分析工艺废气中的氢气、氧气和微量丙烯腈。近期接到了某个企业的分析要求,用户需要分析工艺废气(处于常温常压状态下)中的氢气、氧气和微量的丙烯腈。于是大致设计了一下方案:首先是仪器主要硬件结构的设计:选用Shimadzu 的GC-2014C 气相色谱仪,带有TCD检测器,以氩气作为载气,分析样品中的氢气和氧气(浓度大约在数百至数千ppm)。另外带有FID检测器,用来分析样品中的微量丙烯腈。第二是色谱柱选择:为实现分离氢气氧气的目的,一般会选用分子筛色谱柱。丙烯腈(样品中可能还有其他杂质,如水)的分离采用了有机担体固定相。单独测试有机担体色谱柱,丙烯腈色谱峰形较为理想,得到较好的理论塔板数和较好的不对称因子。第三是阀系统的设计:鉴于分子筛柱会吸附微量乙腈,造成色谱柱分离性能下降,于是采用了经典的十通阀进样反吹的方案。样品在预柱上分离进行预分离,将氢氧氮和丙烯腈分离开。预柱后面串联分子筛色谱柱,将氢氧氮进行色谱分离。然后反吹预柱,将丙烯腈等其他杂质反吹到有机担体柱上,进行分离。进样步骤解析:1 下图为系统待机状态,在常见的进样反吹系统出口连接了有机担体柱。预柱中载气流向如图所示。此时,将样品气装载到定量环(Loop)中。http://ng1.17img.cn/bbsfiles/images/2017/10/2015070823525697_01_1604036_3.png2 进样十通阀旋转,系统状态如图所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070823531455_01_1604036_3.pngC1即为分子筛色谱柱,各个气体流向如图中所示。氢气氧气在TCD上依次出峰。3 反吹当氢气氧气完全进入C1柱后,阀再次旋转,恢复到待机状态,此时预柱反吹,丙烯腈在FID上出峰。实验谱图:http://ng1.17img.cn/bbsfiles/images/2015/07/201507082353_554481_1604036_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507082353_554482_1604036_3.png本例使用了Shimadzu 的GC-2014CA主机,带有恒流量输出的流量控制器,所以可以省略掉平衡柱。小结:基本系统的简单扩展。

  • 气相色谱分析氢气中的醋酸+酸酸甲酯(其和小于8ppm)

    氢气中有CO2/CH4/CO/O2/N2/醋酸+酸酸甲酯(其和小于8ppm),现在想测醋酸+酸酸甲酯(其和小于8ppm),因醋酸+酸酸甲酯(其和小于8ppm)含量低,直接测可能不准,想通过吸附浓缩方式测,这样应要求采样器是防爆的,但采样器问了好几个厂家,没有防爆的仪器,这个情况如何解决?取样点的正常是8bar,如果需要,应可以加缓冲罐什么的,这个是甲醇制氢装置,是防爆区。(可能是隔爆,因为是在防爆区,另一个是仪器采样过程中,因为样品气流动,这个过程因为样品气是易燃易爆的,但除了接仪器瞬间,应是不在爆炸极限的,所以样品气流动过程中,不需要考虑防爆安全问题,这个思路不知道对不对)

  • 【国产好仪器讨论】之天津市先权工贸发展有限公司的全自动多用吸附仪(TP-5080)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C181578%2Ejpg&iwidth=200&iHeight=200 天津市先权工贸发展有限公司 的 全自动多用吸附仪(TP-5080)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 概述: TP-5080全自动多用吸附仪是集自动化、智能化、便携化为一体的催化剂动态分析仪,可以在加压(5 Mpa)、常压、正温(0oC至1000oC)、负温(-120oC至0oC)条件下通过程序升温还原(TPR)、程序升温氧化(TPO)、程序升温脱附(TPD)、氢气-氧气滴定(HOT)和程序升温表面反应(TPSR)等系列实验研究催化剂表面性质。该分析仪是全自动化操作仪器,可以完成微量连续流动法和脉冲法两大类反应,配有专用数据处理系统。与质谱、红外、色谱等连接后可以实现在线检测,定性定量反映催化剂在热状态下的动态信息。该分析仪广泛应用于矿藏成份分析,储氢、储氧材料的性能检测,以及物质对有机\无机气体、液体选择性吸附的研究,是各大院校及科研院所教学与研究的首选仪器。 技术优势: (1)全自动,装样后只需启动程序 (2)管路系统和阀门由零吸附、耐腐蚀、绝缘材料组成 (3)适合多种气体吸附质(H2、CO2、 CO、NH3、H2S、SO2等),液体吸附质(苯,甲苯,砒碇等)可以选配蒸发罐 (4)配备真空系统;连接质谱、色谱、红外等可同时得到质谱法、色谱法和化学法结果 (5)耗气量和耗电量分别是同类仪器的1/3、1/2 技术指标: (1)催化剂装样量:0-200 mg(适用于颗粒、粉体状催化剂) (2)程序升温速率:设计值0.5-90oC·min-1(九段程序升温具有独立的PID参数自整定,温度控制精度±0.2% FS) (3)吸附炉温度:室温-1100oC(1000oC以上短暂使用) (4)开机后仪器稳定所需时间:20min 请参阅各高校、研究所采用天津先权公司TP-5080全自动多用吸附仪发表的文章: (1)J.CATAL.2009(266),228-235. (IF=50787) (2)INT. J. HYDROGEN. ENERG. 2012(37), 14133-14142. (IF=3.548) 【了解更多此仪器设备的信息】

  • 重量法蒸汽吸附仪 简介

    重量法蒸汽吸附仪 产品简介重量法动态蒸汽吸附仪DVS系列在测量水和有机蒸汽在粉体表面吸附方面处于世界领先地位,它通过在一定相对湿度下气体通过样品后重量的变化来测定蒸汽吸附,比传统的干燥法测量更快,更节省时间。由于其独特的优势,DVS系列产品世界各地的实验室有广泛的应用,可用于研发部门以及质控部门确定产品结构、产品稳定性、吸湿性、包装和产品开发中固体材料存在的问题。结合了微天平、气体流动和蒸汽的测量技术的优势使用干燥的载气,通常为氮气,可以选择任何两个蒸汽源中的一个质量流量控制和独特的水和有机蒸汽浓度实时监控结合可以精确控制饱和干燥载气流量的比例整个体系的温度可以由选择,并且在闭合环条件下可以精确控制,以保证吸附质的蒸汽压恒定具有极其高的灵敏度和精确度,仅需少量的样品(通常1-30mg),因而可快速达到平衡全自动惰气吹扫装置和有机泄露检测器可在发生有机蒸气泄漏时关闭联锁装置,保证安全 DVS Advantage软件可程序控制仪器,用户界面友好,满足数据完整性和安全性的最高标准待测样品置于微量天平上,已知浓度的蒸汽通过样品,记录式微天平可以测量由蒸汽吸附或脱附引起的质量变化。这种动态流动环境易于快速研究吸附/脱附过程。如果进一步实验选择需要,样品可以首先预热,这样可以加速体相吸附或者无机氧化物干燥过程的分析循环时间。加热过程可独立进行或通过软件来控制升温速率。

  • 燃料电池汽车氢系统氢气泄漏检测传感器

    根据《中国氢能源及燃料电池产业白皮书》,氢能将成为中国能源体系重要组成部分,2050年能源体系中占比约10%,氢气需求量达6000万吨,加氢站10000座以上,氢燃料汽车产量达500万辆/年,行业发展前景广阔。截至2020年底,全球氢燃料电池汽车保有量为32535辆,同比增长38%,韩国保有量达10906辆,位居全球第一,美国为8931辆,我国氢燃料电池汽车保有量为7352辆排第三。[url=http://news.isweek.cn/wp-content/uploads/2022/09/QQ图片20220907092340.png][img=QQ图片20220907092340,447,300]http://news.isweek.cn/wp-content/uploads/2022/09/QQ图片20220907092340-447x300.png[/img][/url]氢燃料电池汽车是利用氢气和氧气的电化学反应产生电能驱动汽车,产物只有水,具有无污染、动力性能高、充气时间短和续驶里程长等优点。基于这些优点,氢燃料电池汽车正在成为各国政府和企业重点布局和探索的未来绿色产业,也是发展新能源汽车的重要技术路线之一。氢燃料电池汽车的核心为燃料电池发动机系统,关系着整车运行的安全性,对燃料电池汽车是否具备成熟、可靠的性能表现具有重要影响。燃料电池发动机主要部件包括电堆、发动机控制器、氢气供给系统、空气供给系统等。燃料电池系统是氢燃料电池汽车的核心单元,存在结构复杂、性能要求高、运行环境恶劣和动态响应能力差等,难免出现各种故障和失效。而氢气具有无色无味、极易燃烧等特性,需要重点关注对于氢气泄漏故障的准确诊断,以免发生严重安全事故。工采网推出了一款专门针对燃料电池系统氢气泄漏检测的传感器TGS6812,该传感器性可靠性好、性价比高,是氢燃料电池H2泄漏检测的好帮手。[img=日本figaro 催化燃烧式可燃气体传感器,300,300]https://www.isweek.cn/Thumbs/300/0161206/58466d62d3342.JPG[/img][b]一、催化燃烧式可燃气体传感器TGS6812描述:[/b]TGS6812-D00是催化燃烧式的可燃气体传感器,可以检测100%LEL水平的氢气,此传感器具有精度高,耐久性与稳定性好,快速响应、线性输出的特点,不仅可监测氢气,还可以用于检测甲烷与LP气体。这对于固定式燃料电池将氢气作为可燃气体时的泄漏检测是个非常优秀的方案。TGS6812-D00的盖帽内有吸附剂,对有机蒸汽的交叉灵敏度很低。此外,此传感器对硅化合物的耐受性更佳,更适应恶劣环境。[b]二、催化燃烧式可燃气体传感器TGS6812特点:[/b]* 线性输出* 使用寿命长* 对酒精灵敏度低* 对氢气、甲烷与LP等物质有较高灵敏度[b]三、催化燃烧式可燃气体传感器TGS6812应用:[/b]* 用于监测燃料电池的氢气与可燃气体泄漏* 工业、商用上的可燃气体泄漏检测

  • 物理化学蒸汽吸附

    能进行物理吸附、化学吸附和蒸汽吸附测试,如果需要联系电话:13235197591QQ:2405917320如此贴违反相关版规,望谅,请删除

  • 关于动态水分吸附仪预测带包装物品保质期的应用

    动态水分吸附法是一种非常适合分析材料水分吸附性能和记录水分吸附等温线的检测方法,适用于粉末,颗粒,碎片、片剂或块状固体。吸附仪常用来进行新材料的稳定性测试,这种长时间的测试可能需要几天、几周甚至是几个月,能够为评估环境温湿度对产品保质期产生的影响提供非常有价值的数据。 更进一步来说,分析研究在某一温湿度条件下有多少水分能够透过包装渗透到内部被材料本身吸附非常重要,被吸附的水分从外界环境中迁移到包装内部是影响带包装物体保质期的主要原因。 采用动态水分吸附仪来检测带包装药品或食品的水蒸气吸附性能,对于产品防潮性的检测和保质期的预测有着重要的指导意义。

  • 富氢水的氢气算加工助剂还是食品配料?

    [font=SimSun, STSong, &]现在市面上流行富氢水,对这类食品我有些困惑:虽然GB 2760食品添加剂允许使用氢气,但这是作为加工助剂,而且原则是尽量减少使用量并在最终产品中尽可能排除,在食品配料中也是不需要标识的。但是富氢水的氢气不是这个功能,而是作为食品配料而存在,甚至作为一种对人体有益健康的配料进行宣传。这两者是不是矛盾的?还请大侠指点......[/font]

  • 【原创大赛】用十通阀进样反吹分析化工排放空气中的微量氢气、氧气、丙烯腈

    【原创大赛】用十通阀进样反吹分析化工排放空气中的微量氢气、氧气、丙烯腈

    [align=center][size=24px]十通阀进样反吹分析化工排放空气中的微量氢气、氧气、丙烯腈[/size][/align][align=center]概述:[/align]采用常见的十通进样反吹方法,分析某化工企业工艺废气中的微量氢气、氧气和微量丙烯腈。[align=center]背景介绍[/align]某化工企业的分析要求:某合成工段排放废气(含量样品基质为空气,进样前处于常温常压状态,个目标组分含量大约数百ppm左右)中的氢气、氧气和微量的丙烯腈。[align=center]分析系统介绍[/align]于是大致设计了一下方案:首先选用Shimadzu公司的GC-2014C[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],安装有TCD检测器,以氩气作为载气,可以定量样品中的氢气、氧气和氮气(浓度范围为数百ppm左右)。色谱仪另外安装有FID检测器,用以分析样品中的微量丙烯腈(浓度范围为10ppm左右)。其次为色谱柱选择:为实现分离氢气、氧气、氮气的目的,一般会选用分子筛色谱柱。丙烯腈(样品中可能还有其他杂质,如水)的分离采用了有机担体固定相。单独测试有机担体色谱柱,丙烯腈色谱峰形较为理想,理论塔板数和不对称因子实验效果较好。阀系统的设计:鉴于分子筛柱会吸附微量丙烯腈,长时间使用会造成色谱柱分离性能下降,于是采用了经典的十通阀进样反吹的方案。样品在预柱上分离进行预分离,将氢氧氮和丙烯腈分离成为两组。预柱后面串联分子筛色谱柱,将氢气、氧气和氮气进行色谱分离。然后反吹预柱,将丙烯腈等其他杂质反吹到有机担体柱上,进行分离。进样步骤解析:1 下图为系统待机状态,在常见的进样反吹系统出口连接了有机担体柱。预柱中载气流向如图所示。此时,将样品气装载到定量环(Loop)中。[img=,690,408]https://ng1.17img.cn/bbsfiles/images/2021/10/202110052325593419_8983_1604036_3.jpg!w690x408.jpg[/img]2 进样十通阀旋转,系统状态如图所示:[img=,690,403]https://ng1.17img.cn/bbsfiles/images/2021/10/202110052326124515_4764_1604036_3.jpg!w690x403.jpg[/img]C1柱为分子筛色谱柱,气体流向如图中所示。氢气、氧气、氮气在TCD上依次出峰。3 反吹当氢气、氧气、氮气完全进入C1柱后,阀再次旋转,恢复到待机状态,此时预柱Pre-C载气反吹,样品中的丙烯腈在FID上出峰。[align=center]系统谱图:[/align][img=,443,424]https://ng1.17img.cn/bbsfiles/images/2021/10/202110052326275630_9806_1604036_3.jpg!w443x424.jpg[/img][img=,448,332]https://ng1.17img.cn/bbsfiles/images/2021/10/202110052326327383_7922_1604036_3.jpg!w448x332.jpg[/img][align=center][/align]

  • 【原创大赛】误将吸附作用当做的仪器故障

    误将吸附作用当做的仪器故障 有这样一个真实的经历,或许是因为没有经验而引起的,现在拿出来跟大家分享一下。那是我刚学会气相色谱法没多久,想着独立检测一批比较复杂的试验,但是在做的时候突然发现不管是对照品还是样品,只有溶剂峰,我们所用的溶剂是二甲亚砜。不出峰是挺伤心的,也挺紧张的,害怕会耽误生产。然后抓住一个同门师兄帮忙解决问题,结果还是一样的,都没有出峰。后来,我们从头到尾逐一排查,先是从进样口,密封垫换新的,衬管拆下来看,感觉没什么问题,石英棉看起来比较干净,而且上次用了还是没问题的(后来查找原因时发现可能是因为石英棉上有吸附剂而导致不出峰),就认为衬管也没有问题。色谱柱也是跟衬管一样的想法,上次使用时没有问题,所以也是相当然的觉得没有问题,只是为了排除各种可能,重新拆卸后再重新安装,结果还是一样。最后就是检测器,将喷嘴拿去用甲醇超声都没有效果。也认为是仪器收到污染了,但是不管进的纯的溶剂还是纯的标准品,都没有太好的效果。因为是新手,所以还不是很清楚应该如何处理,最后暂且将问题总结为检测器的问题,就想这试试ECD,正准备去查找资料的时候,进了一针异丙醇(这个是用于清洗检测器用的),等了大概20分钟左右,结果奇迹居然发生了,之前怎么都不会出峰的居然突然出峰了。好吧,真不知道什么原因,就抱着试试的态度,进了一次混标,好吧,我承认这次真的是瞎蒙,乱搞,居然搞对了,好吧,我只能说我是瞎猫撞到死老鼠,死马当活马医,居然收到奇效!总结一下,导致不出峰的原因可能是吸附作用,吸附的位置应该在石英棉上。查找了一下仪器使用台账,果然是因为吸附而导致的(出于保密原则,就不说吸附物质的名称了),但不会吸附在色谱柱上。其实真正吸附于何处应该无从验证了,因为当时的经验上的缺乏,对仪器不熟悉,所以不会去仔细分析,不会想到更换衬管,还是一味的寻找检测器的问题。最后想说一下,经过后来更多的试验后积累了一些经验,试验失败有各种可能,只针对一个怀疑对象,很难找出其中真正的原因所在。后来还有一次,试验失败了,以为是一起的问题的,通过查找资料,最后得出结论,是前处理的问题,所用的试剂达不到相应的要求(氢碘酸浓度低于57%),浓度达不到要求,就导致反应不充分,对于含量的检测,当然就不准确了。当然,实际情况实际分析,不能一出问题就盲目的从源头查找,例如有一次,进样后突然有一针不出峰,当时排查了很久,就是找不到原因,结果经过工程师的提醒,确认是自动进样针堵了,更换进样针之后问题解决。在做实验遇到问题时,应多向有经验的人请教,或许他也不懂你的问题到底出在哪,但是经过分析,结合你做实验的过程,自己都可以发现问题所在。例如有一次,升级了系统之后,按照原来的程序设置,一切都没有问题,只是色谱柱的信息需要重新输入,当我将正确的色谱柱信息输入后,按照以前的方法进行操作,结果发现出峰时间延后了(因为是程序升温,所以运行时间是固定的),在这做必要的说明,因为我们是做质检的,需要严格的按照程序设置程序,所以不会增加运行的时间。整个程序运行完毕之后,还有两个峰没有分离完成,降温过程中出峰了,属于异常情况,根据平时的经验,每个环节都检查一遍,发现没什么问题,结果请教工程师,其实工程师也不知道是什么原因,将怀疑的地方都检查了一遍,没发现问题。最后通过一次很随意的讨论发现,原来是因为我将流量设置错误而导致的。用一句话概括就是,用原来本应该是错误的方法(也不能说是错误的,只是相对于而言)来应用于一个正确的色谱柱信息(以前的色谱柱信息就没对上号)上,从而导致一个失败的试验发生。以上是我的一些经验总结,或许很简单,很多大师都觉得不应该出现这样的低级错误,但是偏偏我遇到了,作为一个新手,我只能说我太笨了,好吧,就这样,谢谢大家。

  • 【求助】氢气做载气分析煤气中的氧气含量

    之前用氩气做载气分析煤气中的氧气含量,因可忽略煤气中氩气的影响,现因分析成本问题,想采用氢气做载气分析煤气中的氧气和氩气总含量,想到一问题,氢气是否在一定温度条件下和氧气反应,造成分析结果偏低?有没有相关师傅做过该实验的请求支援,多谢!

  • 氢气发生器电解池发生故障是什么造成的原因

    [b][导读][/b]氢气发生器采用双压力控制系统,增加了可视式防返碱装置,可以及时提醒返碱处理,防返碱系数更高,为用气设备提供安全保证。氢气发生器的工作原理是以电解法产生氢气,他以KOH水溶液为电解液以贵金属做电极,采用膜分离技术,将氢气和氧气彻底分离并在电解池中采用了过度金属催化技术,使产生氢纯度含氧量小于3PPM。氢气发生器增加了报警功能,当液体低于设定值时,会发出警示音,同时液位视窗会闪烁红色光,提醒操作人员需加液体。当液位低于极限值时,仪器将自动停止产气。此时需关机后加入蒸馏水,然后再开机操作。防止机器中昂贵的电解池烧毁。为氢气发生器的安全使用提供更高保障。  氢气发生器根据点催化法进行空气分离原理制成的。其中电解池是利用燃料电池的逆过程设计而成。当作为压力稳定且纯净的原料空气进入到电解池中,空气中的氧在阳极被吸附而获得电子并与水作用生成氢氧根离子并迁移到阳极,在阳极处失去电子析出氧气,因此空气中的氧不断被分离只留下氮气。并随气路输出。氢气发生器可以广泛应用于冶金、石油、化工、矿业、医药、电力、市政、环保、船舶等行业。氢气发生器采用隔爆型设计,4~20mA或RS485或无线信号输出,可远距离传输,可直接进入DCS系统,检测传感器具有灵敏度高、反应迅速、寿命长、极化时间短等特点。  在氢气发生器的日常使用中,偶尔会出现电解池不电解的情况,遇到这个情况该如何处理呢,下面给大家分析下方法。  水的处理时是重要的,向水中加入一些氢氧化钠或稀硫酸,但不可以加盐,实在不行可以用纯碱替代。其次电极,考虑到寿命问题就用石墨电极(干电池里都有),如果找不到就用硬币代替吧,虽然说可能没有石墨寿命长,但也不太容易被氧化的。电解池要可以把电解产生的氢气和氧气隔开,否则混在一起会爆炸,另外想要提高氢气产生速率可以加大电压,不过相应的热损耗会更多。  氢气发生器由电解池、纯水箱、氢/水分离器、收集器、干燥器、传感器、压力调节阀、开关电源等部件组成。只电解纯水即可产氢。通电后,电解池阴极产氢气,阳极产氧气,氢气进入氢/水分离器。氧气排入大气。氢气发生器将氢气和水分离。氢气进入干燥器除湿后,经稳压阀、调节阀调整到额定压力(0.02~0.45Mpa可调)由出口输出。电解池的产氢压力由传感器控制在0.45Mpa左右,当压力达到设定值时,电解池电源供应切断;压力下降,低于设定值时电源恢复供电。

  • 低温除水标气吸附

    有没有做低温除水的前处理的大神啊,现在遇到一个问题,就是标气通过低温的玻璃管后有明显的吸附这个有知道怎么处理的吗?我们是利用冷冻低温出去环境空气中的水分对环境空气进行分析处理。目前在用标气测试。

  • 热解吸仪与吸附管老化仪?

    各位大侠,刚才去网上仪器展发现有吸附管老化仪卖,现实中虽没用过,但也见过几家公司的热脱附,我就想知道热解吸仪带不带老化功能呢,还是需要再单独购买吸附管老化仪呢?使用过的大侠告知一下,越详细越好。thank you ~!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制