当前位置: 仪器信息网 > 行业主题 > >

放射分析仪

仪器信息网放射分析仪专题为您提供2024年最新放射分析仪价格报价、厂家品牌的相关信息, 包括放射分析仪参数、型号等,不管是国产,还是进口品牌的放射分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合放射分析仪相关的耗材配件、试剂标物,还有放射分析仪相关的最新资讯、资料,以及放射分析仪相关的解决方案。

放射分析仪相关的资讯

  • 珀金埃尔默面向放射性检测领域推出先进的TRI-CARB 液体闪烁分析仪系列
    首次集成条形码读取器技术以改进样品跟踪马萨诸塞沃尔瑟姆 – 生命科学研究、新药研究和细胞科学领域的全球技术领先者珀金埃尔默生命与分析科学部,推出 Tri-Carb 液体闪烁分析仪 (LSA) 产品新家族,该系列仪器是需要进行放射性检测的学术界、新药研究、环境分析和政府研究人员的必备设备。Tri-Carb LSA 新产品家族在液体闪烁分析仪行业中第一个使用条形码读取器系统,在样品自动跟踪方面向前迈出了重要的一步。 “将先进的条形码读取器技术集成到新型 Tri-Carb LSA 中,增强了样品筛选和事后处理数据分析能力,从而减少了样品跟踪误差并提高了实验室工作效率,”珀金埃尔默生命与分析科学部分子药物业务总裁 Richard Eglen 博士说道。“此外,我们已获得专利并已经过实践证明的时间分辨液体闪烁计数 (TR-LSC) 技术消除了电子背景干扰,从而增强了放射性检测的灵敏度。”研究实验室将液体闪烁分析用作需要放射性同位素示踪剂的应用环境中的必备测量工具。利用这些新产品技术创新,研究人员可按目标污染物阈值进行筛选,并以更有把握(更可靠)的数据准确性和完整性来跟踪每天采集的数千个样品。Tri-Carb LSA 的新产品家族将使各行各业的客户和应用领域提高生产力 − 从需要监测水中由反应堆产生的氚含量水平的核电厂,到筛查污染事件中的尿液和食物的国家安全基地,再到主张活性辐射安全计划的学术机构。 Tri-Carb LSA 具有四种型号,提供了从基本功能到高级功能的选择空间,并可以容纳附加选件: • 2810 基础型号可用于多种基础研究应用领域• 2910 型号可实现更高的通量和更卓越的功能,包括额外的流程容量、 Replay 样品回收与再处理以及单/双颜色校正 DPM• 3110 型号提供了多种标准功能,包括高灵敏度计数模式、样品预览和区域优化• 3180 完全装载型号提供了最高灵敏度计数,尤其适用于环境分析珀金埃尔默还推出了新型 WIZARD2™ 自动伽玛计数仪,进一步体现了在放射检测行业领域所做出的努力。这个新一代伽玛计数仪面向的是学术(科研)、核医疗学(核医学)和制药学(新药学)的研究人员,具备便于用户操作的界面系统和一整套先进的技术亮点,包括接触(触摸)屏式操作、增强型安全选件、具有 LAN 与 USB 接头的内置计算机,以及 Windows 操作平台。 有关 Tri-Carb LSA 产品家族上市的详细信息,请访问 http://www.perkinelmer.com
  • 印度科学家获国际核化学和放射分析化学最高奖
    据印度教徒报载,印度萨哈核物理研究所化学科学部教授Susanta Lahiri,在第十届放射分析化学方法及应用国际会议上,因在重离子诱导的放射性同位素生产、示踪技术(tracer technique)、靶向变流和绿色化学领域做出的杰出贡献,荣获2015年赫维西奖章(Hevesy Medal Award即George von Hevesy奖,是国际核化学和放射分析化学最高奖)。同获此殊荣的还有美国哥伦比亚大学放射研究中心的Kattesh V. Katti教授。 Lahiri教授同时兼任霍米巴巴研究所的教授,在物理评论等期刊发表了近180篇论文,同时也是第117号元素的联合发现人(该元素于2014年5月7日被公布发现)。该教授积极参加国际领先的物理和化学领域合作研发,包括CERN(欧洲核子研究中心),特别是EURISOL(欧洲同位素分离在线放射性核束)的设计研究,以及放射性药物和超重元素的相关研究。 目前,Lahiri教授正在和他的团队使用低成本技术和少量化学制剂生成一种黄金纳米粒子,该研究属于绿色化学项目。他们使用极低的辐射量触发辐照分解,通过类似连锁反应使辐照分解得以扩展,最终形成纳米颗粒,从而实现“炼金术”,将廉价的铅转换为黄金。目前,大多数同类“炼金师”都在使用数十亿美元的粒子加速器,通过在无载体的放射性核素——微量汞、铊、铅、铋和钋中加入一定量的锂和碳离子,经辐照形成黄金。Lahiri教授和他的同事制造了一种“示踪包”(tracer packet),内含锰、铜、锌、钆、锗、砷和硒等微量元素,作为无载体放射性的示踪剂,在加速器中与一定比例氧的同位素、锂和碳离子相混合后,使用厚钴片进行照射。Lahiri教授称,除了一个项目是在CERN(由印方主导)中进行,其他项目都在印度BARC-TIFR Pelletron与可变能量回旋加速器中心(Variable Energy Cyclotron Centre)进行。 注:我国中科院高能物理研究所的柴之芳院士,因长期从事放射化学和核分析方法研究,建立了多种元素的先进放射化学分离流程,曾于2005年获得该奖,成为发展中国家第一位获得此奖项的人。
  • 标准|《生物样品中放射性核素的γ 能谱分析方法》国家标准发布
    p 近日,国家标准化管理委员会在2020年第8号中国国家标准公告中发布了《生物样品中放射性核素的γ能谱分析方法》(GB/T 16145—2020)。该标准将代替GB/T 16145—1995。新标准将在span style="color: rgb(255, 0, 0) "strong2020年11月1日/strong/span实施。归口国家卫生健康委员会。/pp 该标准规定了用锗[HPGe,Ge(Li)]或碘化钠[NaI(Tl)] γ能谱仪分析生物样品中放射性γ核素的方法。标准中规定了strong生物样品 /strong(strongB/strongstrongiological Sample/strong) 的概念以及样品处理的一般方法。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 356px height: 243px " src="https://img1.17img.cn/17img/images/202005/uepic/2fbb8aed-e222-432e-8d7c-c5fc528c8527.jpg" title="GEORADiS RT-30.jpg" alt="GEORADiS RT-30.jpg" width="356" vspace="0" height="243" border="0"//pp style="text-align: center "span style="font-size: 14px color: rgb(0, 112, 192) "strong图为GEORADiS RT-30 手持放射性伽马能谱仪/strong/span/pp γ能谱仪设计用于监测和检测各种金属制品、建筑材料、地质样品、环境采样样品及食品中可能存在的放射性辐射。例如:钢铁厂内钢、尘、渣的快速辐射分析;建筑材料、岩石中钾、铀和钍的浓度检测以及食品、动物饲料和环境样品中可能存在的放射性辐射。/pp 仪器有台式机型和手持机型。手持版本便携、体积小、操作方便,在实验室外也可以轻松完成检测。br//pp span style="color: rgb(255, 0, 0) "strong标准原文/strong/spanspan style="color: rgb(165, 165, 165) "待国家标准化委员会正式发布后上传。/span/pp-------------#会议预报#-------------------/pp style="text-align: center "strong style="color: rgb(255, 0, 0) text-align: center "span style="background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px "欢迎报名“药品微生物检测技术”/span/strongstrong style="color: rgb(255, 0, 0) text-align: center "span style="background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px "专题网络研讨会/span/strong/pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/meetings/Drug2020/" target="_blank" title="微生物大会链接"img style="max-width: 100% max-height: 100% width: 400px height: 300px " src="https://img1.17img.cn/17img/images/202005/uepic/dfdb8120-0b79-41bd-b6f2-f2fc9417648b.jpg" title="微生物检测技术大会.jpg" alt="微生物检测技术大会.jpg" width="400" vspace="0" height="300" border="0"//a/ppstrong报名链接/strong:a href="https://www.instrument.com.cn/webinar/meetings/Drug2020/" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "stronghttps://www.instrument.com.cn/webinar/meetings/Drug2020//strong/span/a/p
  • 一企业气相色谱仪中镍-63放射源获批豁免管理
    p  近日,环保部发函,对滕州市经纬分析仪器有限责任公司GC8100型气相色谱仪中镍-63放射源实行豁免管理进行复函。复函内容显示,滕州市经纬分析仪器有限责任公司生产并销售的GC8100型气相色谱仪内含有一枚活度不大于3.7E+8贝可的镍-63放射源,为Ⅴ类放射源。鉴于该类放射源活度低,且上述型号仪器的固有安全性较高,对环境、公众和工作人员的影响很小,环保部同意对该型号仪器中使用的镍-63放射源实行豁免管理。br//pp  ECD检测器是气相色谱仪检测器之一,是一种放射性离子化检测器,主要利用放射性同位素,在衰变过程中放射的具有一定能力的-粒子作为电离源,对载气进行轰击,依据正、负离子和电子的移动速度、复合几率等不同形成的粒子流发生的变化,输出一个负极性的电信号,进而达到检测目的。镍-63放射源常常被用作该类检测器的放射源。/pp  复函具体内容如下:/pp style="text-align: center "strong关于滕州市经纬分析仪器有限责任公司GC8100型气相色谱仪中镍-63放射源实行豁免管理的复函/strong/pp  滕州市经纬分析仪器有限责任公司:/pp  你单位《关于含Ni-63放射源GC8100型气相色谱仪实行最终用户使用豁免管理的申请》(2017年第〔3〕号)收悉。根据《放射性同位素与射线装置安全和防护条例》(国务院令第449号)及《放射性同位素与射线装置安全和防护管理办法》(环境保护部令第18号)的有关规定,现函复如下:/pp  一、你单位生产并销售的GC8100型气相色谱仪内含有一枚活度不大于3.7E+8贝可的镍-63放射源,为Ⅴ类放射源。鉴于该类放射源活度低,且上述型号仪器的固有安全性较高,对环境、公众和工作人员的影响很小,我部同意对该型号仪器中使用的镍-63放射源实行豁免管理。/pp  二、使用该型号仪器的单位可以免于办理辐射安全许可证 你单位销售该型号仪器给最终用户也无需办理放射性同位素转让审批及备案手续。/pp  三、该型号仪器中使用的镍-63放射源不作为放射性物质进行管理。如发生个别镍-63放射源失控,也不作为辐射事故处理。/pp  四、你单位应健全相关制度,加强对所售仪器中镍-63放射源的跟踪管理。在产品说明书和销售合同中明确告知产品中含有放射源,同时告知有关放射源的危害和防护知识及售后管理要求。负责对仪器报废后其中的废放射源进行管理,承担送贮到有资质的放射性废物收贮单位的责任。/pp  五、你单位应制定该型号仪器销售台账、售出仪器跟踪管理及废源处理记录,并在每年1月底前汇总上一年的有关情况报告山东省环境保护厅。/pp  特此函复。/pp style="text-align: right "  环境保护部办公厅/pp style="text-align: right "  2017年10月11日/pp  抄送:商务部、海关总署办公厅,各省、自治区、直辖市环境保护厅(局)。/ppbr//p
  • 一公司气相色谱仪中镍-63放射源获豁免管理
    p  生态环境部日前发布通知,对滕州市滕海分析仪器有限公司GC-6890型气相色谱仪中镍-63放射源实行豁免管理,详情如下:/pp style="text-align: center "strong关于滕州市滕海分析仪器有限公司GC-6890型气相色谱仪中镍-63放射源实行豁免管理的复函/strong/pp滕州市滕海分析仪器有限公司:/pp  你公司《关于气相色谱仪电子捕获检测器63Ni放射源使用活动实行豁免管理的申请报告》(滕海仪字[2018]005号)收悉。根据《放射性同位素与射线装置安全和防护条例》(国务院令第449号)及《放射性同位素与射线装置安全和防护管理办法》(环境保护部令第18号)的有关规定,函复如下:/pp  一、你公司生产、销售的GC-6890型气相色谱仪内含有一枚活度不大于3.7E+8贝可的镍-63放射源,为Ⅴ类放射源。鉴于该类放射源活度低,且上述型号仪器的固有安全性较高,对环境、公众和工作人员的影响很小,我部同意对上述型号仪器中使用的镍-63放射源实行豁免管理。/pp  二、使用上述型号仪器的单位可以免于办理辐射安全许可证 你公司销售上述型号仪器给最终用户无需办理放射性同位素转让审批及备案手续。/pp  三、上述型号仪器中使用的镍-63放射源不作为放射性物质进行管理。如发生个别镍-63放射源失控,也不作为辐射事故处理。/pp  四、你公司应健全相关制度,加强对所售仪器中镍-63放射源的跟踪管理。在产品说明书和销售合同中明确告知产品中含有放射源,同时告知有关放射源的危害和防护知识及售后管理要求。负责对仪器报废后其中的废放射源进行管理,承担送贮到有资质的放射性废物收贮单位的责任。/pp  五、你公司应制定上述型号仪器销售台账、售出仪器跟踪管理及废源处理记录,并在每年1月底前汇总上一年的有关情况报告山东省环境保护厅。/pp  特此函复。/pp style="text-align: right "  生态环境部办公厅/pp style="text-align: right "  2018年6月8日/ppbr//p
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。我们对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。研究者对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 中国医科院放射所1500万仪器大单揭晓
    中国医学科学院放射医学研究所2012年公共卫生突发事件应急处理与安全保障支撑体系—核辐射受照人员与放射工作人员安全健康监护平台设备购置项目(A)政府采购中标公告  受中国医学科学院放射医学研究所的委托,天津市泛亚工程机电设备咨询有限公司于2012年4月16日以公开招标方式,对2012年公共卫生突发事件应急处理与安全保障支撑体系—核辐射受照人员与放射工作人员安全健康监护平台设备购置项目(A)(项目编号:FZK2012-1-089)实施了政府采购。现将中标结果公布如下:  一、中标设备  3标段:发酵罐壹个  中标单位:天津志卓生物科技有限公司  中标价格: 153000元  交货期:90天 质量:合格  5标段:高通量电泳系统壹套  中标单位:群星集团公司  中标价格: 200000元  交货期: 90天 质量:合格  6标段:梯度实时荧光定量PCR仪壹台  中标单位:群星集团公司  中标价格: 429000元  交货期: 90天 质量:合格  7标段:分析天平壹台  中标单位:群星集团公司  中标价格: 38000元  交货期: 90天 质量:合格  9标段:倒置荧光显微镜壹台  中标单位:群星集团公司  中标价格: 265000元  交货期: 90天 质量:合格  10标段:化学发光分析仪壹台  中标单位:群星集团公司  中标价格: 163000元  交货期: 90天 质量:合格  11标段:原位分子杂交仪壹台  中标单位:群星集团公司  中标价格: 76000元  交货期: 90天 质量:合格  12标段:γ辐照仪壹台  中标单位:中国同福股份有限公司  中标价格: 7190000元  交货期:90 天 质量:合格  14标段:放射性核素活度仪壹台  中标单位:卡迪诺科技贸易(北京)有限公司  中标价格: 78000元  交货期: 30天 质量:合格  二、评审小组成员:吴青、张兆伟、杨惠、王林森、殷鸿图、杜东 、康泰琪。  三、监督员:赵世勇  四、采购代理机构:天津市泛亚工程机电设备咨询有限公司  联系地址:天津市河西区广东路广顺道2号  邮政编码:300204 联系电话:022-28258176  传真电话:022-28258176 联 系 人: 刘兆存  特此公告。  采购单位:中国医学科学院放射医学研究所  采购代理机构:天津市泛亚工程机电设备咨询有限公司2012年4月16日中国医学科学院放射医学研究所2012年公共卫生突发事件应急处理与安全保障支撑体系—核辐射受照人员与放射工作人员安全健康监护平台设备购置项目(B)货物中标公告  受中国医学科学院放射医学研究所的委托,天津市泛亚工程机电设备咨询有限公司于2012年4月17日以公开招标方式,对2012年公共卫生突发事件应急处理与安全保障支撑体系—核辐射受照人员与放射工作人员安全健康监护平台设备购置项目(B)(项目编号:FZK2012-1-090)实施了政府采购。现将中标结果公布如下:  一、中标设备  1标段:医学检查和辐射应急专用车壹台、DR摄影系统壹套  中标单位:邦盛医疗装备(天津)股份有限公司  中标价格: 2106000元  交货期: 75天 质量: 合格  2标段:便携式彩超壹台、电测听室壹间、纯音听力计壹台、原子吸收分光光度仪壹台、声阻抗测量仪壹台  中标单位:天津市金春合才商贸有限公司  中标价格: 1666000元  交货期: 60天 质量: 合格  3标段:红外线热成像仪壹台  中标单位:群星集团公司  中标价格: 258000元  交货期: 90天 质量: 合格  4标段:细胞遗传学FISH和核型自动扫描分析系统壹台  中标单位:群星集团公司  中标价格: 1460000元  交货期: 90天 质量: 合格  5标段:高通量核酸扩增系统壹套  中标单位:北京元业伯乐科技发展有限公司  中标价格: 85500元  交货期: 60天 质量: 合格  6标段:微量电泳及分析系统壹套  中标单位:北京元业伯乐科技发展有限公司  中标价格: 199500元  交货期: 60天 质量: 合格  7标段:流式细胞仪壹台  中标单位:天津市金春合才商贸有限公司  中标价格: 480000元  交货期: 60天 质量: 合格  8标段:荧光分光光度计检测系统壹套  中标单位:北京元业伯乐科技发展有限公司  中标价格: 133000元  交货期: 60天 质量: 合格  二、评审小组成员:吴青、张兆伟、宓怀风、王林森、殷鸿图、杜东 、康泰琪。  三、监督员:赵世勇  四、采购代理机构:天津市泛亚工程机电设备咨询有限公司  联系地址:天津市河西区广东路广顺道2号  邮政编码:300204 联系电话:022-28258176  传真电话:022-28258176 联 系 人: 刘兆存  特此公告。  采购单位:中国医学科学院放射医学研究所  采购代理机构:天津市泛亚工程机电设备咨询有限公司2012年4月17日
  • 美研制出放射性物质监测新设备
    新华网洛杉矶1月2日电(记者高原)美国俄勒冈州立大学研究人员日前研制出一种监测放射性物质的辐射谱分析仪,它有助于缩短监控人员对放射性物质超标的反应和清理时间。  研究人员在一份报告中说,这种新设备能迅速检测放射性物质的类型和辐射量,比如核反应堆工作时产生的铯137和锶90,还能区分放射性物质衰变产生的伽马射线和贝塔射线,协助确定核污染程度。  负责这项研究的戴维汉比教授说,与目前普遍使用的探测设备不同,新设备的探测效率更高,过程更快且更加准确。他举例说,新设备只需15分钟就能确定伽马射线和贝塔射线以及它们的辐射量,而过去这一工作可能需要半天时间。  汉比说,该设备可用于监测核工业设施的放射性物质,或用来监测医院放射性治疗的安全性。
  • 卫健委发布GBZ 115-2023《低能射线装置放射防护标准》
    近日,卫健委发布强制性国家职业卫生标准——GBZ 115-2023《低能射线装置放射防护标准》。该标准规定了非医用低能射线装置的放射防护要求,适用于能量从豁免值至1MeV的X射线衍射仪、X射线荧光分析仪、离子注入装置、电子束焊机、静电消除器、电子显微镜和测厚、称重、测孔径、测密度用的射线装置。该标准自2024年3月1日起实施,GBZ 115-2002《X射线衍射仪和荧光分析仪卫生防护标准》同时废止。标准下载链接:GBZ 115-2023 低能射线装置放射防护标准.pdf
  • 技术干货 | 无惧干扰,快速分析土壤中放射性核素污染
    锶-90(90Sr)是铀和钚的裂变产物,是核泄漏的主要污染物之一。其半衰期为29 年,因此能够在环境中留存相当长的时间。90Sr 本身可以衰变为钇-90(90Y),然后再衰变成稳定的锆-90(90Zr)。当生物体摄入90Sr 时,该元素在骨骼中积累并持续产生辐射,可能对生物体产生危害。因此,评估环境中的90Sr 污染对当地人类和环境健康问题至关重要。常规的90Sr 测定技术通常耗时长(数天)、成本高,并且效率较低,无法实现大量样品的分析,从而快速确定源于核反应堆的90Sr 污染程度。利用电感耦合等离子体质谱仪(ICP-MS)进行分析能够解决上述问题,但同样存在巨大的挑战:90Sr 与锆(Zr)主要同位素的质量数相同(51.45% 高丰度),会造成质谱干扰;同时Zr 在正常环境样品例如土壤中的含量比90Sr 高约十二个数量级(Zr 含量在ppm 级,Sr 含量在sub-ppq 级)。必须克服上述挑战才能有效利用ICP-MS 测量土壤中的90Sr。样品在福岛第一核电站西北方向10 到20km 存在强辐射的区域内,在2cm 深的位置采集表层土样本(100-150g),并用塑料容器搜集、储存样本。样品前处理每个聚四氟乙烯微波消解罐中放一克干燥土壤,之后加入10mL 浓度为10% 的硝酸。按照表1 所示的微波消解程序进行消解,然后冷却至室温并保持20 分钟。之后将溶液转移至塑料离心管中,并以2500rpm 的转速进行10 分钟的离心操作。在进行ICP-MS 分析前,利用孔径为0.45μm 的滤膜过滤样品,留存上清液、去除沉淀物。可将同一采样地点采集的土壤样品同时消解和过滤后,将上清液混合在一起以增加总样品量。表1 微波消解程序由于90Sr 含量较低,所以采用珀金埃尔默FIAS 400 流动注射系统和50mm × 4.6 mm 色谱柱(Eicrhom Technology,Lisle,IL,USA,填料为锶离子选择性树脂,粒径50-100 μm)对Sr 富集并去除其他基体元素。先利用1.9 mL/min 的流速使样品流经色谱柱,然后以0.75mL/min 的流速将浓度为20% 的HNO3 泵入色谱柱,持续90 秒,以去除质谱柱中除Sr 之外质荷比为90 的全部其他同质异位素。最后,用流速为1.9 mL/min 的去离子水冲洗色谱柱90 秒,从而洗脱Sr。在去除基体和洗脱Sr 步骤之间,利用浓度为20% 的HNO3 冲洗整个系统(不包括色谱柱),以清洗阀门。FIAS流动注射系统经前处理后的样品溶液直接注入超声雾化器中,雾化后的气溶胶被导入珀金埃尔默ICP-MS 中,并利用氧气作为反应池气在DRC 模式下检测90Sr;仪器参数如表2 所示。每个样品的总分析时间是14.6 分钟,其中大部分时间主要用于预富集程序。表2 ICP-MS参数氧气反应消除干扰的原理Sr、Zr、Y 和氧气的反应速率常数如下所示: Sr+不能与氧气发生反应,而Zr+ 和Y+ 均可与氧气快速反应,这说明氧气可以将干扰物90Zr+ 和 90Y+ 从90Sr+中有效消除。虽然这些反应似乎可以解决干扰问题且无需进行基质分离,但土壤中90Zr 和90Sr 之间显著的含量差异(6.5-11 μg/g 的Zr 与ppq 含量的90Sr)构成了挑战:在反应池中用O2 除去所有90Zr+ 时,与O2 分子的碰撞会导致90Sr+动能损失。鉴于90Sr+ 含量极低,这种动能损失足以造成90Sr+灵敏度过低从而无法检测。为了克服这一问题,在前处理中特采用基质分离方法。然而,进一步研究表明,在基质分离步骤之后仍然存在显着的Zr 信号(分离之后色谱柱上仍有0.23% 的Zr 残留)。这此种低含量的Zr用氧气反应模式,则可以轻松去除,并且不会影响90Sr的灵敏度。因此,在预富集和基体分离之后利用反应池进行氧气反应去除干扰是最佳的解决方案。可用以下方程式将质量浓度转化为放射性: 表3 记录了从福岛核电站西北10 到20 公里处所取三个土壤样品的分析结果(均取四个测量值的平均值)。运用本文所述方法分离样品后进行分析,同时采用常规方法进行90Sr 测定。两种方法的结果在95% 的置信水平上显示一致。之所以结果出现了少许不吻合现象,是因为90Sr 在土壤中分布不均。表3 土壤中90Sr 分析结果此项研究证实了采用ICP-MS 方法测量土壤中90Sr 含量的有效性;由于土壤中90Sr 含量低、Zr 含量高,因而此项分析工作颇具挑战性。运用基质分离/ 预富集步骤,可将大部分基质元素去除并对90Sr 进行预富集。然而,此步骤后仍存在基质干扰,需用动态反应池进行反应模式消除干扰。与传统的90Sr 分析方法相比,本分析方法在分析效率上具有非常明显的优势。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 内地21省份已监测到放射物 川渝陕首次测到
    针对日本福岛第一核电站事故可能对我国产生的影响,国家核事故应急协调委员会3月30日权威发布:根据国际原子能机构通报的最新信息分析,日本福岛第一核电站事故情况趋于稳定,周围环境放射性水平呈继续下降趋势。  3月30日,工作人员对装载海豚的箱子外壁进行消毒。4只日本海豚落户长沙海底世界公园,抵达机场后接受核辐射检测。新华社记者李尕 摄  3月30日,在我国上海、天津、重庆、河北、山西、内蒙古、吉林、黑龙江、江苏、安徽、浙江、福建、河南、广东、广西、四川、陕西、宁夏部分地区空气中监测到来自日本核事故释放出的极微量人工放射性核素碘-131,其对公众可能产生的附加辐射剂量小于岩石、土壤、建筑物、食物、太阳等自然辐射源的天然本底辐射剂量的十万分之一,相当于乘坐飞机飞行2千公里所受的宇宙射线照射量的千分之一,对环境和公众健康不会产生影响,无需采取任何防护措施。  综合世界气象组织和国际原子能机构北京区域环境紧急响应中心、国家海洋局、环境保护部(国家核安全局)监测分析认为,日本福岛核电站事故不会对我国环境及境内公众健康造成危害。  26日起共21省份测到放射物  上海、天津、重庆、河北、山西、内蒙古、吉林、安徽、浙江、福建、河南、广东、广西、四川、陕西、宁夏、黑龙江、江苏、山东、北京、河南  ■ 分析  世界气象组织和国际原子能机构北京区域环境紧急响应中心组织专家会商,对28日在我国华东、华南部分地区监测到的极微量核放射性物质情况进行了研判,并分析表明,未来三天福岛核电站释放的核放射性物质对我国环境和公众健康无影响。  华东放射物由北方“空降”  经专家分析:华东部分地区出现的核污染物很可能是沉降所致:25日至27日流经中国上空的气流主要有3支,一支是经新疆到东部沿海的偏西气流,另一支是经贝加尔湖到东部沿海的西北气流,第三支是经库页岛、俄罗斯东部回流到中国东北部的偏北气流。  经过对低层大气散度演变分析发现:25日08时和27日08时曾在上海等周边附近出现过弱辐散,即有大气下沉运动,其余时间为弱辐合(上升运动)。来自北方的极微量核放射性物质可能从高空随气流下沉到底层空气中,致使华东各省28日监测到了极微量的核放射性物质。  华南放射物从日本“直达”  华南部分地区出现的核污染物可能是污染物沿日本以南洋面上底层偏东风气流扩散至我国华南沿海所致:自福岛核电站事故发生以来,日本上空大气环流方向一直是由西往东的强劲西风,主要的核放射性物质是向日本偏东太平洋区域扩散,前期气象条件不利于核放射性物质从日本扩散至我国东部沿海地区。  3月26日,底层大气环流发生一些变化,26日至28日,日本南部洋面上大气底层维持偏北风至东北风,我国台湾以东洋面则以东北风为主。受其影响,前期福岛核电站事故扩散至日本以南太平洋区域的放射性物质可能沿偏东气流扩散至我国东南沿海区域,但量级极微小。本报记者林文龙  ■ 部门动态  气象局预测放射物扩散  中国气象局副局长许小峰昨日介绍说,气象部门主要是监测大气环流,也就是利用天气的变化来判断核辐射扩散的一个大概去向。而在我国,气象部门只是做扩散的研究预测,海洋局会对海洋的情况进行检测,环保部会对大气的情况进行检测。  “风向、风力、降水等,是核污染会向何方扩散的重要指标,也是我们的主要关注点。”国家卫星气象中心主任杨军介绍,对于境外的天气变化观测,一般是两种方式,一个是不同国家之间的气象资料交换,一个是自主监测,其手段主要是靠卫星。目前,我国已经成功发射了11颗气象卫星,6颗卫星在轨运行,成为国际上同时拥有静止气象卫星和极轨气象卫星的少数国家和地区之一。本报记者 林文龙  环保部编书解读核辐射  记者昨天获悉,为普及核与辐射安全相关知识,环境保护部(国家核安全局)第一时间组织编写的《核与辐射应对防护99问》,已由中国环境科学出版社发行。满足公众对核与辐射安全问题的知识需求。  出版社相关负责人介绍说,《核与辐射应对防护99问》是目前核与辐射安全方面权威性的防护应对手册书。核辐射事故发生时,需要如何采取个人防护措施?什么情况下服用稳定性碘?这些问题在书中都能找到答案。
  • 日开发吸附土壤放射性物质新方法
    新华社东京7月14日电 人工沸石在水质净化和土壤改良等领域早有应用,它还有吸附放射性铯的功能。日本研究人员日前宣布,他们在人工沸石的这一性能基础上,通过化学合成使其带有磁性,这一技术可在清除土壤放射性物质时派上用场。  据日本《每日新闻》报道,人工沸石可由火电站发电副产品粉煤灰制成,原料价廉易得。爱媛大学农学部教授逸见彰男等研究人员在人工沸石的合成过程中混入铁化合物,成功地获得了带有磁性的人工沸石。将这种沸石铺敷在被放射性物质污染的土壤上,沸石会吸附放射性物质,由于这种沸石带有磁性,最后可用磁铁将吸附了放射性物质的沸石与土壤分离。  据介绍,这一技术可以将每千克被污染土壤中的放射物污染程度从数千至1万贝克勒尔降低到每千克500贝克勒尔以下。他们期望两年内将这一技术实用化。
  • 【霍尔德新品】放射性低本底γ能谱检测仪的功能特点
    【放射性低本底γ能谱检测仪←点击此处可直接转到产品界面,咨询更方便】环境辐射污染是一种潜在的重大污染源,其危害不亚于显性污染。一旦失控,将对周边居民的生活质量造成不可逆转的影响。比方说,放射源周边的生物或传播媒介被放射性核素污染后,就像带着致命毒素的蛇一样,通过食物链由低级向高级攀升,并在这一过程中不断将毒素富集。这些放射性污染物一旦进入人体,便像埋在人体内部的定时炸弹,时刻威胁着我们的健康。因此,我们必须高度重视环境辐射污染问题,坚决遏制其对我们健康的影响。放射性低本底γ能谱检测仪应用领域:医院放射性核素γ能谱测量分析;建材、土壤、生物、地质样品等γ能谱测量分析;建筑材料的快速无损检测;铀矿地质样品镭(铀)、钍、钾含量分析;可按用户要求配备铀、铯、钴、碘等人工核素分析软件。放射性低本底γ能谱检测仪功能特点:1、具备实时快速低能γ射线稳谱技术的低本底数字化能谱仪,可保证开机快速测量以及长期稳定性;传统低本底数字化能谱仪需要人工反复调整谱仪参数才能够工作,且无法长时间稳定工作;2、自带数字化稳谱功能,可选择本底镅源γ射线稳谱、天然特征峰稳谱等数字化稳谱方式;3、支持粒子图谱、能谱曲线、梯形成形信号与原始脉冲信号显示;4、数字化能谱仪具备LIST-MODE模式,可实现粒子事件信息(时间、位置、幅度等)的实时采集,各通道数字化谱仪具备时钟同步功能,同步精度不低于15ns;粒子事件信息可传输到计算机上成谱,从而满足快速移动测量的要求;5、双谱测量:支持能谱与时间谱测量;6、高分辨率:采用16位80MSPS高速高精度模数转换器;7、高数字成形频率:数字成形频率高达80MHz
  • 金属矿产品放射性监测实现无人值守
    江苏检验检疫局工业品中心完成的&ldquo 进口有色金属矿产品放射性监测及远程放射性监控技术的研究&rdquo ,近期通过鉴定委员会鉴定。各位专家对该课题所取得的成果给予了高度肯定和积极评价,一致认为该课题的研究成果具有很高的推广应用价值。目前,工业品中心正在进一步完善该远程放射性监控系统,拟在相关口岸大力推广应用。  超标矿产品难于有效监测  随着我国进一步实施改革开放政策和国际间贸易的迅速发展,我国矿产品贸易迅速增长,品种涉及到金矿粉、银矿粉、铜矿砂、铁矿石、锌矿、铅矿、锆矿砂等210种。近年来,一些国外不法商人见利忘义,将放射性超标或受放射性污染的物品掺杂在矿产品中出口至我国,尤以集装箱运载的矿产品为害较重。近年来对江苏口岸进口矿产品监管情况表明:多批矿产品放射性严重超标,有些矿产品的放射性水平超过国家标准的几倍、几十倍,甚至几百倍,部分矿产品中甚至夹带有人工放射性核素。由于这些放射性超标的矿产品进口时往往没有任何危险标识,也没有采取任何防护措施,如果这些放射性超标的矿产品得不到有效的监测(检测),导致其进入生产和流通领域,将会给我国工业生产和人民生命健康带来不可估量的损害。  然而,口岸长期以来对进口有色金属矿产品的放射性是以手持伽马剂量率仪进行现场检测的方式进行的,这样的检测方式存在威胁检测人员健康、检测效率低下以及容易漏检等弊端。远程放射性监控技术的实施无疑可以很好地解决这些问题。然而,国内外在远程监控技术领域的研究多集中于视频的远程监控系统的开发,还没有针对进口有色金属矿产品的远程放射性监控技术的研究报道,国内在进口商品的远程放射性监控方面还停留于概念阶段。  为了实现口岸对进口有色金属矿产品的远程放射性监控,江苏检验检疫局工业品中心在中心主任李建军研究员的引导下,于2009年争取到国家质检总局科技项目《进口有色金属矿产品放射性监测及远程放射性监控技术的研究》(编号2009IK121)的立项支持,并由此展开了基于进口有色金属矿产品放射性监测及远程放射性监控技术的一系列研究工作。  远程监控技术取得突破  在大量文献调研的基础上,课题组发现,2006年颁布实施的《有色金属矿产品的天然放射性限值》(GB 20664-2006)标准中对于剂量率400nGy/h(包括环境本底&gamma 剂量率)以及天然放射性核素238U、226Ra、232Th衰变系中的任一核素比活度&le 1Bq/g,40K&le 10Bq/g的规定不尽合理。基于此,课题组首先对进口有色金属矿产品的放射性限值进行了研究,制定了根据年剂量率限值1mSv来反推核素的比活度限值的更为科学的推算方法,并最终给出了相对于原标准更为合理、科学的有色金属矿产品的天然放射性限值计算公式。  对进口有色金属矿产品放射性的监测应当尽可能的节约成本,兼顾实用性和经济性两方面的原则。毫无疑问,研究进口有色金属矿产品放射性的风险分析方法和预警机制,可以为口岸对进口有色金属矿产品放射性的监测提供参考,做到有针对性的重点监测,在节约仪器和人力成本的同时提高检出率和准确性。经过多方面的综合考察和论证,课题组从进口有色金属矿产品的矿种、产地和包装运输方式三方面着手,建立了放射性风险分析方法和预警机制。  探测器的安装是整个监测过程的重中之重,探测器安装的地点合理,可以最大限度地发挥监测过程的作用,否则将事倍功半。经过实地调研,课题组将到港的进口有色金属矿产品在口岸的存在状态分解为泊位停靠、卸货过程和堆场停放三个环节,在风险分析的基础上,制定了将探测器分别安装于这三个环节以达到对每个环节进行监测的目的。同时,通过相应放射源的模拟实验,确认监控方案可行。在此基础上,要实现远程放射性的监控,须开发远程监控所必需的软硬件系统。课题组将远程放射性监控所需实现的功能逐一分解,拆分为数据采集、数据传输和存储、数据分析和监控终端等几部分,在拆分的每一部分都有针对性的研发了相应的硬件和软件系统作为实现相关功能的支撑,由此研发了一整套适用于进口有色金属矿产品远程放射性监控的软硬件系统。  进口矿产品实现安全防控  该课题建立了新的适用于进口有色金属矿产品放射性监控的剂量限值标准和核素的比活度限值公式,为口岸对进口有色金属矿产品放射性的有效监管提供了基础支撑。  从矿种、产地以及运输包装方式三方面着手,研究了进口有色金属矿产品放射性的风险分析方法和预警机制,并运用风险分析的结果,建立了适用于进口有色金属矿产品放射性的全覆盖式监测方案,所提出的&ldquo 在风险分析的基础上实施放射性的重点而全面的监控&rdquo 的思路在实际的监管中具有重要的现实意义,可以为口岸对进口废物原料、机电产品等其他的工业产品的放射性监测所借鉴。  课题组针对进口有色金属矿产品的特点,自主研发了适用于进口有色金属矿产品远程放射性监控的硬件系统,包括:数据解码设备、数据存储和无线发送设备、GPS定位系统以及电源系统等。开发的&ldquo 核辐射云软件平台&rdquo ,实现了放射性剂量率的实时显示、数据地图模式回放、数据自动存储与波动分析、自动报警以及自动发送报警信息等功能,实现了口岸对进口有色金属矿产品的远程放射性监控,极大地加强了口岸对进口有色金属矿产品放射性的安全防控,可实现口岸对进口有色金属矿产品放射性监测的无人值守,克服了传统的人工检测效率低下并可能危及检测人员健康等弊端,对保护检测人员的健康具有较高的应用指导性,具有较大的社会效益。
  • “天圆地方”牌 放射性核素检测仪器系列喜获“湖北名牌产品”荣誉称号
    热烈祝贺湖北方圆环保科技有限公司生产的“天圆地方”牌“放射性核素检测仪器系列”被评为“湖北名牌产品”。 湖北方圆环保科技有限公司生产的放射性核素检测仪器系列产品包含全自动低本底多道γ能谱仪,低本底α、β测量仪,便携式γ能谱仪,便携式测氡仪,氡钍分析仪等。 根据湖北省2017年湖北名牌产品申报的规定,共有纺织、化工、设备制造、冶金压延加工等23个行业的产品,以及节能环保、信息技术、新材料等战略性新兴产业的高新技术产品均纳入了《2017年湖北名牌产品评价目录及申报标准》,申报产品范围和产品种类都较往年有大幅增加。经过了企业自愿申请、市州和行业初审、申报企业主要申报数据公示、委托第三方机构进行顾客(用户)满意度测评、委托省标准化与质量研究院组织专家委员会评价认定、湖北省质量强省工作委员会相关单位审核共六个环节的角逐,湖北方圆环保科技有限公司的放射性核素检测仪器系列产品喜获殊荣! 打造名牌,是提升“湖北造”美誉度的一个重要举措,也是企业提升产品质量的自我激励。
  • 京津豫菠菜现极微量放射物
    1日,环保部人员在密云水库新增设的气溶胶(液态或固态微粒悬浮物)监测站采样。  抽检发现放射性碘-131,卫生部称对公众健康无影响  针对日本福岛第一核电站事故可能对我国产生的影响,国家核事故应急协调委员会4月6日权威发布:  4月6日,我国内地31个省、自治区、直辖市部分地区空气中监测到来自日本核事故释放出的极微量人工放射性核素碘-131。其中,北京、上海、天津、重庆、河北、山西、内蒙古、辽宁、吉林、黑龙江、江苏、浙江、安徽、江西、山东、河南、湖北、湖南、贵州、宁夏和新疆等21个省、自治区和直辖市空气中同时监测到更加微量的人工放射性核素铯-137和铯-134。  4月5日,从北京、天津、河南等地区抽检的菠菜表面发现了极微量的放射性碘-131,其含量仅相当于《国家辐射防护和辐射源安全基本标准》(GB18871-2002)规定水平的千分之一至千分之三。各地环境辐射水平较昨日没有明显变化。  综合世界气象组织和国际原子能机构北京区域环境紧急响应中心、国家海洋局、环境保护部(国家核安全局)、卫生部监测分析认为,日本福岛核电站事故不会对我国环境及境内公众健康造成危害,无需采取任何防护措施。  ■ 释疑  北京、天津和河南地区露天种植的菠菜中,抽检发现微量的放射性碘—131。卫生部称,由于检出的碘—131微量,目前情况对公众健康无影响,无需采取防护措施。  1 菠菜测出放射物能否食用?  含量1-3Bq/kg,相当于安全标准的1%。至3%。,无碍健康  昨日,卫生部发出《食品放射性污染有关知识问答》中称,从北京、天津和河南地区露天种植的菠菜中抽检发现微量的放射性碘—131,含量分别为1-3Bq/kg。  中国疾控中心辐射安全所所长苏旭曾对本报表示,国际原子能机构和各个国家都有相关的标准,比如日本对“碘-131”的规定是,饮用水每公斤不能超过300Bq,婴儿饮用水不能超过100Bq,牛奶也是300Bq,蔬菜每公斤为2000Bq。  他说,我国的标准与国际原子能机构的标准一致,比日本的标准更加严格,更偏安全性。  苏旭曾对本报说,摄入少量受到辐射污染的食品不会对健康造成明显影响,但应避免食用辐射污染超标食物。  卫生部强调,此次检出的碘—131微量,含量仅相当于《国家辐射防护和辐射源安全基本标准》(GB18871-2002)规定水平的千分之一至千分之三,目前情况对公众健康无影响。  2 如何减少蔬菜表面放射物?  实践证明,用水冲洗即可有效减少放射性物质  此次在露天菠菜中检出碘-131,恰好出现在降雨之后,对于两者的关系,卫生部称,空气中的放射性物质最终会沉降到地面上。但由于目前我国境内空气中放射性物质浓度极微量,其沉降导致的蔬菜放射性污染一般难以检出。  不过,近日北京、天津地区出现小雨,降雨加速了空气中放射性物质的沉降,而且小雨又使这些物质可以存留在菠菜表面未被冲走,所以在菠菜样品中检出了微量碘-131。  此前新华社曾报道称,香港特区政府食物及卫生局副局长梁卓伟表示,他们发现从日本进口的菠菜样本中“碘-131”含量超标。  为何菠菜容易被“污染”?卫生部解释说,既往核事故中蔬菜放射性污染监测经验表明,露天生长的大叶、表面有微小绒毛的蔬菜,容易吸附空气中沉降的放射性物质。因此,选择菠菜检测可以较早地发现蔬菜是否被放射性物质污染。  但卫生部同时表示,实践证明,用水冲洗可以有效地减少蔬菜表面的放射性物质。  3 雨季食品放射物会否增多?  雨雪天气可加速空气中放射性物质的沉降  据卫生部发出的说明,空气中的放射性物质沉降可污染地面和露天生长的蔬菜等食品。空气中放射性物质的浓度越高,沉降到地面和露天生长的蔬菜表面的放射性物质越多。雨雪天气可加速空气中放射性物质的沉降。  对于各地降雨逐渐增加,食品和水中放射性核素污染会不会越来越严重的问题,卫生部表示,这取决于空气中放射性物质的浓度。  但是,空气中放射性物质的浓度,取决于日本福岛核电站释放的放射性物质的量和持续时间,以及风向、风速及大气环流等气象条件。  同时,下雨时间长短和雨量大小,都会直接影响蔬菜放射性物质的污染水平。  不过,目前食品中放射性核素的监测结果微量,不会影响公众的健康,无需采取防护措施。  据悉,卫生部已经委托中国疾病预防控制中心,在辽宁、河北、江苏、浙江、北京、上海、广东、山东等14个省市开展了食品和饮用水放射性监测工作。
  • 紧急叫停!日本进口食品发现放射物铯
    据韩媒报道,韩国食品药品安全部(MFDS)8日表示,在一款来自日本静冈县的进口糖果中检测出少量铯(一种放射性物质)。报道说,涉事进口商原本打算从日本进口122公斤该款糖果,但在检测结果公布后,目前已取消进口计划。据悉,这已经不是第一次日本产品发现放射性污染。韩联社称,据韩国食品药品安全部消息,韩国去年在从日本进口的产品中四次发现铯痕迹,每次都导致相关进口计划取消。据海外网2023年4月援引韩国《韩民族日报》报道,韩国民间环保组织“环境运动联合”当时公布了日本农林水产品放射性污染实际情况分析报告,称福岛县及其周边7个县的放射性铯检出率比其它地区高出7倍。放射性铯通过食物链进入人体后,会在全身均匀分布,最容易引起造血组织损伤。如果放射性铯滞留在骨骼和肌肉组织中,可能会引起软组织肿瘤,导致癌症。韩国“环境运动联合”在记者会上表示,韩国应持续禁止进口来自日本的水产品。中国海关总署去年宣布全面暂停进口日本水产品日本于2023年8月24日单方面强行启动福岛核污染水排海,我国海关总署当日宣布全面暂停进口日本水产品。根据海关总署公告2023年第103号(关于全面暂停进口日本水产品的公告):为全面防范日本福岛核污染水排海对食品安全造成的放射性污染风险,保护中国消费者健康,确保进口食品安全,依据《中华人民共和国食品安全法》及其实施条例、《中华人民共和国进出口食品安全管理办法》有关规定,以及世界贸易组织《实施卫生与植物卫生措施协定》有关规定,海关总署决定自2023年8月24日(含)起全面暂停进口原产地为日本的水产品(含食用水生动物)。2016年食品安全国家标准审评委员会审查通过GB 14883.1-2016《食品中放射性物质检验 总则》,2021年生态环境部发布实施《辐射环境监测技术规范》((HJ 61—2021)、2022年发布了GB/T 16145-2022 《环境及生物样品中放射性核素的γ能谱分析方法》等系列标准,保障了我国环境和食品安全。GB 14883.10-2016 《食品安全国家标准 食品中放射性物质铯-137的测定》
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁 530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)。图2 海洋核安全评估的技术路线与展望Fig. 2 Technical route and prospect of marine nuclear safety assessment寻找人类核活动历史的可靠“档案馆”。海洋放射性核素的本底基线存在复杂的时空演化特征。然而,海洋放射性核素实际观测数据的时间和空间分辨率均十分欠缺,特别是在我国广大海域。冰芯、树轮、黄土、沉积柱、珊瑚礁是记录不同时空尺度环境变化的天然档案馆。特别指出,海洋中珊瑚礁具有年轮清晰、分辨率高、连续记录、固定生长等优点[48],是记录海洋放射性核素本底基线时空演化历史和追踪人类核活动历史的十分理想的档案馆[29, 49]。健全海洋放射性核素的基准/标准限值。活度限值是海洋核安全评估和管理的重要依据。出于人类健康的需求,国际上更多关注饮用水和食品中放射性核素的活度限值[40]。海洋为人类提供丰富的生物资源和重要的生态服务功能。出于海洋中非人类物种的保护与人类健康的综合需求,未来我国需要加强海洋中非人类物种的放射性核素基准/标准限值研究和制定工作[39]。探索长期低剂量生物辐射效应与风险。国际上对于低剂量辐射效应和危害仍然存在争议[50],较为缺乏实验室内受控观测和流行病学现场调查等证据[51],直接影响人类和非人类物种的剂量限值规定和管理。此外,海洋生物辐射剂量模型的构建和计算,还涉及代表生物的筛选、海洋生物富集和海洋食物链/网的传递等过程。在巨大且复杂的海洋生态环境系统中,这些过程又往往存在较大的物种差异性和海域特异性。因此,在海洋核安全技术与管理需求背景下,亟需开展适用于我国海域现状与发展需求的长期低剂量海洋生物辐射效应与风险研究。作为海洋大国,新时代中国明确提出加快建设海洋强国。海洋核安全是我国维护国家安全和人民生命健康、深度参与全球海洋治理以及构建海洋命运共同体的关键领域,亟需投入与滨海核电发展及应对海上核风险能力需求相匹配的研发力度, 以保障新时期我国海洋核安全,进一步丰富和完善现代化核安全监管体系,践行全面推进美丽中国建设需求。参考文献:[1] 于大鹏, 梁晔, 徐晓娟, 等. 我国核与辐射安全现状研究与探讨 [J]. 核安全, 2022, 21 (4): 12-18.[2] Sverdrup K, Kudela R. Investigating oceanography, 4th edition [M]. New York: McGraw Hill, 2023.[3] Buesseler K O. Fukushima and ocean radioactivity [J]. Oceanography, 2014, 27 (1): 92-105.[4] Lin W H, Mo M T, Yu K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018 [J]. Marine Pollution Bulletin, 2022, 176: 113476.[5] Smith J T, Wright S M, Cross M A, et al. Global analysis of the riverine transport of 90Sr and 137Cs [J]. Environmental science & technology, 2004, 38 (3): 850-857.[6] Lin W H, Chen L Q, Yu W, et al. Radioactive source terms for the Fukushima nuclear accident [J]. Science China: Earth Sciences, 2016, 59 (1): 214-222.[7] Casacuberta N, Smith J N. Nuclear reprocessing tracers illuminate flow features and connectivity between the arctic and subpolar north atlantic oceans [J]. Annual Review of Marine Science, 2022, 15(1): 203-221.[8] Song J M. Biogeochemical processes of biogenic elements in China marginal seas [M]. Berlin: Springer, 2010.[9] 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测的关键核素研究 [J]. 核安全, 2020, 19(5): 27-34.[10] 王茂杰, 郝丽娜, 徐晋, 等. 核电厂流出物监督性监测实践 [J]. 核安全, 2021, 20(3): 12-16.[11] Machida M, Iwata A, Yamada S, et al. Estimation of temporal variation of tritium inventory discharged from the port of Fukushima dai-ichi nuclear powerplant:analysis of the temporal variation and comparison with released tritium inventories from Japan and world major nuclear facilities [J]. Journal of Nuclear Science and Technology, 2023, 60(3): 258-276.[12] 林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对 [J]. 科学通报, 2021, 66(35): 4500-4509.[13] Wang F F, Men W, Yu T, et al. Intrusion of Fukushima-derived radiocesium into the East China Sea and the Northeast South China Sea in 2011–2015 [J]. Chemosphere, 2022: 133546.[14] Smith J, Marks N, Irwin T. The risks of radioactive wastewater release [J]. Science, 2023, 382(6666): 31-33.[15] 林武辉, 张翊邦, 余克服, 等. 2023年日本福岛核污水站在历史的十字路口 [J]. 环球财经, 2023, 267(2/3): 46-50.[16] Zhao C, Wang G, Zhang M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima daiichi nuclear plant [J]. Marine Pollution Bulletin, 2021, 169: 112515.[17] Liu Y, Guo X-Q, Li S-W, et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations [J]. National science review, 2022, 9(1): 209.[18] Hu Q-H, Weng J-Q, Wang J-S. Sources of anthropogenic radionuclides in the environment: a review [J]. Journal of Environmental Radioactivity, 2010, 101(6): 426-437.[19] 林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展 [J]. 中国环境科学, 2015, 35(1): 269-276.[20] Waters C N, Syvitski J P M, Ga&lstrok uszka A, et al. Can nuclear weapons fallout mark the beginning of the anthropocene epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.[21] Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern baltic sea ecosystem [J]. Oceanologia, 2013, 55(3): 485-517.[22] IAEA. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.[23] He P, Aldahan A, Possnert G, et al. A summary of global 129I in marine waters [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.[24] Wu J W, Sun J, Xiao X Y. An overview of current knowledge concerning the inventory and sources of plutonium in the China seas [J]. Marine Pollution Bulletin, 2020, 150: 110599.[25] Lin W H, Ma H, Chen L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater [J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.[26] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean [J]. Scientific Reports, 2016, 6: 27069.[27] Lin W H, Feng Y, Yu K F, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway [J]. Marine Geology, 2020, 424: 106157.[28] Lin W H, Yu K F, Wang Y, et al. Assessing the feasibility of the 228Th/228Ra dating method for young corals (10 a) by gamma spectrometry [J]. Quaternary Geochronology, 2021, 61: 101125.[29] 林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估 [J]. 地球科学进展, 2023, 38(3): 286-295.[30] Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results [J]. Journal of environmental radioactivity, 2005, 81(1): 63-87.[31] Povinec P P, Hirose K, Honda T, et al. Spatial distribution of 3H, 90Sr, 137Cs and (239,240) Pu in surface waters of the Pacific and Indian Oceans--GLOMARD database [J]. Journal of environmental radioactivity, 2004, 76(1): 113-137.[32] Aoyama M, Hirose K. Artificial radionuclides database in the Pacific Ocean: HAM database [J]. The Scientific World Journal, 2004, 4: 200-215.[33] Inomata Y, Aoyama M, Hirose K. Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database [J]. Journal of Environmental Monitoring, 2009, 11(1): 116-125.[34] Inomata Y, Aoyama M. Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer [J]. Earth Syst. Sci. Data, 2023, 15(5): 1969-2007.[35] 李培泉. 海洋放射性及其污染 [M]. 北京: 科学出版社, 1983.[36] 蔡福龙. 海洋放射生态学 [M]. 北京: 原子能出版社, 1997.[37] 李树庆, 祝汉民, 吴复寿, 等. 中国近海放射性水平 [M]. 北京: 海洋出版社, 1987.[38] 唐森铭, 商照荣. 中国近海海域环境放射性水平调查 [J]. 核安全, 2005, 4(2): 21-30.[39] 杜金秋, 王震, 林武辉, 等. 放射性核素水环境质量标准研究进展 [J]. 生态毒理学报, 2018, 13(5): 27-36.[40] Bradley F J, Pratt R M. Regulations. Poschl M, Nollet L M L. Radionuclide concentrations in food and the environment [M]. Boca Raton: CRC Press. 377-410, 2007. [41] Brown J, Alfonso B, Avila R, et al. The ERICA tool [J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371-1383.[42] 林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用 [C]. 福建平潭: 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会, 2014: 326-334.[43] TEPCO. Analysis of seafood [EB/OL]. (2023-6-5) [2023-6-13]. https://www.tepco.co.jp/decommission/data/analysis/pdf_csv/2023/2q/fish01_230605-j.pdf.[44] IAEA. Marine radioactivity information system (MARIS) [EB/OL]. (2014-12-28) [2023-11-13]. https://maris.iaea.org/explore.[45] NRA. Readings of seawater monitoring in off-shore sea area [EB/OL]. (2023-11-7) [2023-11-13]. https://radioactivity.nra.go.jp/en/list/292/list-1.html.[46] TEPCO. Analysis of radioactive substances around Fukushima daiichi nuclear power plant [EB/OL]. (2014-7-31) [2023-11-13]. https://www.tepco.co.jp/nu/fukushima-np/f1/smp/indexold-j.html. [47] METI. Progress status reports [EB/OL]. (2023-10-26) [2023-11-13]. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/progress_status.html.[48] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应 [J]. 中国科学: 地球科学, 2012, 42(8): 1160-1172.[49] 林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比 [J]. 海洋学报, 2020, 42(10): 47-58.[50] Sutou S. Low-dose radiation effects [J]. Current Opinion in Toxicology, 2022, 30: 100329.[51] Lowe D, Roy L, Tabocchini M A, et al. Radiation dose rate effects: what is new and what is needed? [J]. Radiation and Environmental Biophysics, 2022, 61(4): 507-543.
  • 国标不再检测天然大理石放射性
    近日,《民用建筑工程室内环境污染控制规范》(GB50325-2010)(2013版)中已经不再要求天然大理石出具放射性检测报告。这一国家标准的出台肯定了天然大理石的安全性。这为天然大理石更多的进入家装市场扫除了障碍。  质检确认辐射可忽略  近些年来,石材产品装修不时爆出负面消息,加上一些&ldquo 辐射说&rdquo 、&ldquo 石材放射说&rdquo 盛行,消费者对于大理石消费总觉得不放心。社会上普遍流传的天然大理石有放射性,对人体有害的说法其实是一种误解。中国石材协会、国家石材质量监督检验中心、全国石材标准化技术委员会联合发布了《关于大理石产品对人体无放射性危害的通告》。通告解释,大理石属于沉积岩,主要由碳酸盐矿物组成,从天然大理石形成的地质过程分析,天然大理石的形成均与放射性物质没有直接关联,对于人体不具有放射性危害。  国家石材质量监督检验中心近10年来对市场上常用的100余种国产及进口大理石样品进行的放射性检验结果显示,所有被检大理石样品放射性核素比活度平均为0.02,仅为国家标准《建筑材料放射性核素限量》中A类指标(产销与使用范围不受限制)的五十分之一,完全可以忽略不计。  为正名国标提前修订  据了解,早在2008年12月14日,国家质量监督检验检疫总局发布了《关于调整出入境检验检疫机构实施检验检疫的进出口商品名录(2009年)》,其中规定,从2009年1月1日起,大理石及其相关产品调出《法检目录》,不再实施出入境检验检疫监管,即不再进行放射性强制检验。但建筑装饰工程领域涉及建材产品放射性检验的标准中依然有关于放射性的要求。此类国标一共有两个,《建筑装饰装修工程质量验收规范》虽没有要求检测,但《民用建筑工程室内环境污染控制规范》5.2.1条规定:&ldquo 民用建筑工程中所采用的无机非金属建筑材料和装修材料必须有放射性指标检测报告。&rdquo   该标准本来2014年要重新修订,在获得了天然大理石放射性的真实情况后,相关领导认为&ldquo 影响了石材行业的健康发展&rdquo 。于是今年6月,《民用建筑工程室内环境污染控制规范》(GB50325-2010)(2013版)专门为天然大理石出版了局部修订版,将原标准中5.2.1条规定改为&ldquo 民用建筑工程,建筑主体采用的无机非金属材料和建筑装修采用花岗岩、瓷质砖、磷石膏必须有放射性指标检测报告,并应符合设计要求和本规范第三章、第四章要求&rdquo 。至此,天然大理石被剔出检测范围,可以放心使用这一事实得到了国标和行业的全面支持。
  • 日本明治奶粉检测出放射性铯 国内在售
    继蔬菜、牛奶、牛肉被检查出含有放射性物质铯之后,日本明治公司生产销售的&ldquo 明治STEP&rdquo 奶粉中也被检测出放射性核素铯。   【中国经营网综合报道】继蔬菜、牛奶、牛肉被检查出含有放射性物质铯之后,日本明治公司6日公布的调查结果显示,该公司生产销售的&ldquo 明治STEP&rdquo 奶粉中也被检测出放射性核素铯。这一消息传出后,明治股价一度大跌13 %,截止当地时间下午2:28,该股下挫9.6%,至每股3,025日元,创30个月来的最低点。日本原装明治奶粉目前在我国市场有卖。  放射性铯是核爆料和反应堆运行产生的主要裂变产物。环境中铯-137进入人体后易被吸收,均匀分布于全身 由于铯-137能释放&gamma 射线,很容易在体外测出。进入体内的放射性铯主要滞留在全身软组织中,尤其是肌肉中,在骨和脂肪中浓度较低 较大量放射性铯摄入体内后可引起急、慢性损伤。  日本食品巨头明治公司6日公布的调查结果显示,该公司生产销售的&ldquo 明治STEP&rdquo 奶粉中检测出最高每千克30.8贝克勒尔的放射性核素铯。检测出铯的是保质期为2012年10月4日、21日、22日、24日的奶粉。保质期显示在奶粉罐底部。  日本厚生劳动省称,这是核电站事故后首次从奶粉中检测出铯。明治计划对约40万罐奶粉实施免费更换。  日本政府规定的奶粉暂定标准上限是每千克200贝克勒尔,此次明治奶粉检测结果未超标。但有意见指出婴儿比成人更容易受到放射性物质的影响,厚劳省已决定将于近期为&ldquo 婴儿食品&rdquo 设定不同的标准。  目前,明治公司在日本国内的奶粉销售市场占有率达到约40%,为业内第一。  链接:日本放射性铯污染扩大到&ldquo 首都圈&rdquo   新华网东京9月30日电,日本文部科学省日前公布了核泄漏事故中放射性铯的最新分布地图,显示在福岛第一核电站西南方向,铯污染地区呈带状分布,虽然污染程度随距离渐远而减弱,但污染范围已扩大到&ldquo 首都圈&rdquo 。  日本的&ldquo 首都圈&rdquo 是指以东京都为中心,涵盖周围埼玉、神奈川、栃木、群马、千叶、茨城及山梨7个县的区域。  文部科学省说,受风向影响,从福岛第一核电站向西北扩散的放射性物质,到了福岛市西部山区后,改为向西南方向扩散,核污染一直扩散到群马县西部。  核电站以南,在茨城县北部,风一度改为吹向海洋方向,但近日又再次吹向陆地,核污染一直到达千叶县西北部。千叶县柏市和松户市等地土壤中放射性铯达到每平方米6万至10万贝克勒尔,放射线量达每小时0.2至0.5微希沃特。在埼玉县秩父市等一些地区的放射线量也很高。  9月8日至12日,文部科学省用直升机搭载检测放射线的仪器在&ldquo 首都圈&rdquo 上空进行了检测。  福岛含铯牛肉流通至11个都道府县 部分被食用  日本核泄漏污染范围不断扩大,继蔬菜牛奶之后,7月福岛县的牛肉首次被检查出含有放射性物质铯。日本政府正在积极应对&ldquo 含铯牛肉&rdquo 危机。2011年7月14日,受放射性元素铯污染的牛肉之前被送至日本12个都道府县的商店和餐馆,可能已有约373公斤牛肉在其中8个都道府县被食用。  最初发现&ldquo 含铯牛肉&rdquo 的地方是东京芝浦屠宰场,其来源是福岛县南相马市某养牛农户7月7日出栏的11头肉牛。经调查发现,这家养牛农户前两个月出栏的肉牛已进入市场流通。福岛县政府对问题牛产地牧场的饲料和水进行了采样分析,结果从草料中检测出辐射强度为每千克数万贝克勒尔的铯。这些草料在福岛第一核电站事故发生时堆放在室外。据介绍,通过补充适量水分使草料恢复到干燥前状态后检测的结果发现,其数值约相当于暂定标准值(每千克500贝克勒尔)的56倍。饲养问题牛的农户居住在福岛第一核电站半径30公里内的&ldquo 紧急时疏散准备区&rdquo ,曾将去年秋季收割的草料保管在室外,从核电站事故发生后的4月上旬起每天向每头牛喂1.5千克饲料。  调查显示,福岛第一核电站周边地区的肉牛在出栏前都要进行体表放射性物质检查。问题是,牛在食用了核污染草料后受到体内辐射,并非体表检查就可查出。通过牛肉随身携带的条形码查明,除了上述11头牛外,还有6头牛出自同一农户。这6头含铯牛的肉已经进入东京都等地的批发商和零售商手中。政府方面表示,牛肉的流通地不大可能再扩大至其他地方,流通地&ldquo 基本已经查明&rdquo 。  福岛县从7月11日起对260家食用牛农户进行了紧急调查。厚生劳动省官员表示,中央政府曾在3月19日下发通知,要求养殖户不要给家畜喂食放置在室外的饲料,希望继续严格执行。农林水产省11日宣布,为确保肉制品的食用安全,将加强对与福岛县相邻6县的牛肉监测。福岛县政府12日表示,相关区域出栏的肉牛除了同以前一样实施体表检测外,还计划对宰杀后牛肉进行全面检测
  • 江苏配备先进检测仪器加强进口石材放射性检测
    据江苏检验检疫局日前发布的消息,2015年至今年8月,江苏口岸在对进口石材的检验检疫中共检出11批、3159吨花岗岩放射性超标,其中2批分别来自巴西和马达加斯加的进口花岗岩荒料因为超标严重被退运处理。  江苏口岸近年来进口石材增长迅猛,2014年以前年均在3万吨左右,2015年猛增至6.15万吨,货值1073.2万美元,其中主要进口品种花岗岩荒料达6.07万吨、货值1029.5万美元。针对江苏口岸进口花岗岩品种杂、数量多和放射性超标风险高的特点,江苏局在主要进口口岸配备了先进的检测仪器设备,并依托全省系统重点实验室加强检测把关。同时,加强检验检疫部门放射性检测人员的技能培训,规范检测仪器使用和保养,规范检验检疫操作规程,对经检测需限制使用场合的建筑用花岗岩石材品种及时出具《检验检疫处理通知书》告知进口商,约谈相关企业负责人,建立台帐做好后续监管工作等措施,对经检测需退运的批次,严格按照相关法律法规实施退运,把进口石材放射性风险杜绝于国门之外,切实保护人民的健康和安全。今年3月,常熟检验检疫局在对一批来自巴西的品名为“雪山银狐”的花岗岩荒料进行放射性检测时,发现其现场放射性检测值当量剂量率超过本底值6倍多,远超我国强制性国家标准《建筑材料放射性核素限量》中C类装饰装修材料外照射指数限量。7月,江苏连云港再次退运1批、重约22吨放射性超标的进口自马达加斯加花岗岩。连云港检验检疫局检验发现其γ 射线剂量当量率超过天然本底值47倍,远超国家标准的限值。  江苏局检验鉴定监管部门负责人提醒说,花岗岩为火成岩,由于其独特的形成特点,往往会含有铀、钍、镭等放射性元素并有放射性超标的可能。由于放射性超标石材产生的射线看不见、摸不着,长时间居住在放射性超标的环境中,人会出现头晕、呕吐等症状,发生癌症及基因变异的概率也会增大。还可能会由于其自然衰变过程中形成微小的放射性物质和雨水的冲刮,对周边环境造成难以根除的生态污染。  目前,我国国家标准《建筑材料放射性核素限量》将用作装修装饰材料的石材按照其放射性核素分析结果分为A、B、C三类:A类装修装饰材料在使用上不受限制,可以用于任何场合 B类装修装饰材料除了不能用于家居等部分民用建筑的内饰面外,可用于其他建筑的内饰面和所有建筑的外饰面 C类装修装饰材料则只能用于建筑外饰面等室外场合 对放射性核素超过国C类的进口石材,则必须按规定作退货处理。因此,普通消费者在选购进口花岗石尤其是准备用作室内装修材料的时候,可以要求商家出示检验检疫部门出具的检验证书,以确定其分类等级及使用场合,防止放射性超标的花岗石被违规使用。
  • 放射性药品检验实验室:药监局建议配置28种基本仪器设备
    为落实《国家药监局关于改革完善放射性药品审评审批管理体系的意见》,鼓励有能力和条件的药品检验机构开展锝标记及正电子类放射性药品检验能力的建设,增加有资质的检验机构,国家药监局组织制定了锝标记及正电子类放射性药品检验机构评定程序,2024年3月7日发布,自发布之日起施行。在实验仪器设备方面,《国家药监局锝标记及正电子类放射性药品检验机构评定程序》对药品检验机构的要求如下:(1)应配备与放射性药品检验工作相适应的仪器设备,仪器设备应按检验项目进行功能划分,合理布局,避免不同检验项目相互干扰。放射性药品检验实验室配置的主要仪器设备可参考表1。(2)实验室应制定检验设备和辐射防护监测设备的操作规程、使用记录、维护保养、校准方案等相关文件。应确保设备功能正常并防止污染或性能退化。(3)放射性药品检验用仪器应进行检定、校准或核查。应配备仪器期间核查相关的放射性标准源,并定期进行复核和必要的调整,以保持对校准状态的可信度。(4)放射性药品检验用仪器的检定、校准或核查项目应满足检验要求。(5)放射性校准源应由具备能力的标准物质生产者提供(满足ISO17034要求的标准物质生产者被视为是有能力的)。应确保放射性标准源满足检验要求,如γ谱仪标准源的γ光子能量应涵盖待测核素的主要光子能量,大小、体积、介质和容器材料应与样品相同。表1:锝标记及正电子类放射性药品检验实验室建议配置的主要仪器设备序号仪器设备名称1放射性活度计2放射性薄层色谱扫描仪3γ能谱仪4γ计数器5液体闪烁计数器6铅防护手套箱7辐射剂量监测仪8表面污染监测仪9紫外可见分光光度计10气相色谱仪11高效液相色谱仪(含放射性检测器)12电子分析天平13酸度计14微量渗透压测定仪15可见异物测定仪16照相显微镜17电热干燥箱18超净工作台或隔离器19精密恒温水浴箱(或其他具备相同功能的设备)20离心机21低温冰箱22蒸汽灭菌锅23生物安全柜24恒温培养箱25浮游菌采样器26尘埃粒子计数器27旋涡混合器28超纯水机注:上述仪器设备为锝标记及正电子类放射性药品检验所需要的基本配备。
  • 第四批放射性同位素与射线装置豁免备案文件发布 赛默飞、聚光部分产品在列
    p  近日,环保部发布关于放射性同位素与射线装置豁免备案证明文件(第四批)公告,公告显示,赛默飞世儿公司的i系列自动空气颗粒监测仪、聚光科技的Synspec PM-200型颗粒物在线监测系统、武汉怡特环保科技的YT-301P型PM10自动监测仪、YT-301PB型PM2.5自动监测仪及YT-5100型扬尘在线监测系统等9家企业的相关产品中含有的放射源获的有关省份豁免备案证明文件。具体通知如下:/pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong关于放射性同位素与射线装置豁免备案证明文件(第四批)的公告/strong/span/pp  根据《放射性同位素与射线装置安全和防护管理办法》(环境保护部令 第18号)第五十四条的相关规定,现将各有关省份已获得豁免备案证明文件的活动或活动中的射线装置、放射源或者非密封放射性物质(第四批)予以公告(详见附件1、2)。/pp  经我部公告的活动或活动中的射线装置、放射源或者非密封放射性物质,其豁免备案证明文书在全国有效,可不再逐一办理豁免备案证明文件。/pp  附件:1.第四批已获各有关省份豁免备案证明文件的放射性同位素汇总表/pp  2.第四批已获各有关省份豁免备案证明文件的射线装置汇总表/pp style="text-align: right "  环境保护部/pp style="text-align: right "  2018年1月15日/pp style="text-align: right "  抄送:各省、自治区、直辖市环境保护厅(局)/pp style="text-align: right "  环境保护部办公厅2018年1月16日印发/pp  附件1/pp style="text-align: center "第四批已获各有关省份豁免备案证明文件的放射性同位素汇总表/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytr class="firstRow"td width="36"p style="text-align:center "strong序号/strong/p/tdtd width="135"p style="text-align:center "strong申请备案单位/strong/p/tdtd width="81"p style="text-align:center "strong申请备案/strong br/ strong单位类型/strong/p/tdtd width="383"p style="text-align:center "strong备 案 明 细/strong/p/tdtd width="101"p style="text-align:center "strong豁免单位类型/strong/p/tdtd width="160"p style="text-align:center "strong备案文号/strong/p/td/trtrtd width="36"p style="text-align:center "1/p/tdtd width="135"p style="text-align:center "赛默飞世尔(上海)仪器有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "i系列自动空气颗粒监测仪中含有1枚活度小于3.7E+6Bq的碳-14放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "沪环保函〔2017〕76号 br/ 沪环保函〔2017〕95号 br/ 沪环保辐〔2017〕157号 br/ 沪环保辐〔2017〕210号/p/td/trtrtd width="36"p style="text-align:center "2/p/tdtd width="135"p style="text-align:center "聚光科技(杭州) br/ 股份有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "Synspec PM-200型颗粒物在线监测系统,每套内含1枚活度为3.7E+5Bq的C-14放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "浙环辐备〔2017〕1101号/p/td/trtrtd width="36"p style="text-align:center "3/p/tdtd width="135"p style="text-align:center "山东海能科学仪器有限公司/p/tdtd width="81"p style="text-align:center "销售单位/p/tdtd width="383"p style="text-align:left "FlavourSpec食品风味与质量控制系统(内含1枚活度为3.7E+8Bq的H-3放射源),GC-IMS气相色谱-离子迁移谱联用系统(内含1枚活度为3.7E+8Bq的H-3放射源),AIMS离子迁移谱分析仪(内含1枚活度为3.0E+8Bq的H-3放射源),BreathSpec呼吸气体分析系统(内含1枚活度为3.0E+8Bq的H-3放射源)/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "鲁环函〔2017〕481号/p/td/trtrtd width="36"p style="text-align:center "4/p/tdtd width="135"p style="text-align:center "武汉怡特环保科技有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "YT-301P型PM10自动监测仪、YT-301PB型PM2.5自动监测仪及YT-5100型扬尘在线监测系统,其中各含1枚活度为3.7E+6Bq的14C放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "鄂环函〔2017〕111号/p/td/trtrtd width="36"p style="text-align:center "5/p/tdtd width="135"p style="text-align:center "北京金德创业测控技术有限公司/p/tdtd width="81"p style="text-align:center "销售单位/p/tdtd width="383"p style="text-align:left "BPU-1KM型物位开关、IPB-1K型密度计和IUB-1K型物位计中各含1枚活度为9E+5Bq的Na-22放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "鲁环函〔2016〕971号/p/td/trtrtd width="36"p style="text-align:center "6/p/tdtd width="135"p style="text-align:center "贰陆红外激光 br/ (苏州)有限公司/p/tdtd width="81"p style="text-align:center "销售单位/p/tdtd width="383"p style="text-align:left "红外光学镜片,单片内含活度小于1000Bq的钍-232放射性核素/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "苏辐豁〔2017〕014号/p/td/trtrtd width="36"p style="text-align:center "7/p/tdtd width="135"p style="text-align:center "山东海强环保科技有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "WIN-8A型低本底α、β测量仪使用活度为49.3Bq的Pu-239标准平面源和活度为38.1Bq的Sr/Y-90标准平面源各10枚,活度浓度为16.3Bq/g的Am-241粉末标准源和活度浓度为10.3Bq/g的K-40粉末标准源各10瓶,用于仪器的性能测试和刻度/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "鲁环函〔2017〕480号/p/td/trtrtd width="36"p style="text-align:center "8/p/tdtd width="135"p style="text-align:center "成都迈为核监测 br/ 科技有限公司/p/tdtd width="81"p style="text-align:center "生产单位/p/tdtd width="383"p style="text-align:left "便携式数字化核素识别仪NaI探测器,每台内含1枚活度为2003Bq的Cs-137放射源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "川环函〔2017〕1263号/p/td/trtrtd width="36"p style="text-align:center "9/p/tdtd width="135"p style="text-align:center "成都西核仪器有限公司/p/tdtd width="81"p style="text-align:center "销售单位/p/tdtd width="383"p style="text-align:left "活度为2000Bq的137Cs+239Pu平面标准源/p/tdtd width="101"p style="text-align:center "最终用户/p/tdtd width="160"p style="text-align:left "川环函〔2017〕1725号/p/td/tr/tbody/tablepbr//p
  • 买鱼先测核辐射,便携式放射性检测仪在韩销售火爆!
    首尔东区为学校食堂提供的便携式放射性检测仪日本宣布将向海洋排放福岛第一核电站核污染水,引发韩国民众强烈的担忧焦虑情绪。据报道,因为担心各类海产品会受到核辐射影响,危害身体健康,不少韩国民众选择购入“便携式放射性检测仪”。市面上检测仪多种多样商家称需求在不断增加韩国一公司职员A近日在网上购入了一台价值3万韩元(约167元人民币)的便携式放射性检测仪。随着日本福岛第一核电站核污染水排放日期临近,A对食用生鱼片产生了担忧。A说,看到广告宣传用检测仪可以检测鱼身上是否有辐射,于是选择了购入该仪器,“如果能够检测出没有辐射,就可以放心食用”。经营生鱼片店的B最近也花费300万韩元购买了便携式放射性检测仪。因为福岛核污染水事件引发的争议,光顾的客人越来越少,B一直在考虑转行。后来,B在社交平台上看到一则视频,称一家生鱼片店在用便携式检测仪对鱼进行放射性检查后,顾客增加了。于是B购入了检测仪,将其视为“最后一根稻草”。B还认为,应该向客人们也广泛宣传使用放射性检测仪。在韩国,对放射性检测仪等设备的需求还在不断增加。首尔铜雀区鹭梁津水产市场方面表示,正在配备便携式放射性检测仪来进行水产品检查。首尔城东区也向区内35所学校食堂投入300万韩元预算,用以购买便携式放射性检测仪。某销售放射性检测仪的企业表示,由于担心福岛核电站污水排放带来的影响,有关水产品放射性检测仪的购买咨询大幅增加,“特别是生鱼片店经营者和水产业者,需求很大”。对鱼类等各种水产品产生的食品安全担忧在韩国蔓延,不少市民和个体户都开始在网上购买便携式放射性检测仪等检测辐射的产品。但有专家警告说,这可能是一种市场营销手段,借不安心理来销售未经验证的产品。目前,韩国的网上购物平台正在销售多款便携式放射性检测仪。商家称,这些检测仪不仅可以测出服装、食品,甚至可以检测出空气中是否有放射性物质。市面上的检测仪从圆珠笔盖到手机大小,大部分都可以随身携带,价格在3万韩元至300万韩元不等。销售检测仪的相关人士解释说,把检测仪靠近水产品,就可以检测出放射性物质,也就是说,如果检测结果正常,就可以放心食用。韩国仁川综合鱼市场,买者寥寥专家解释:便携式检测仪无法检测鱼类内部辐射市面上销售的放射性检测仪真的能检测出水产品中的辐射吗?实际上,被核污染水浸透的鱼,在带皮的情况下,也有可能无法检测出辐射。韩国食品药品安全处在检测放射性元素时,也要去除鱼皮,将样品切碎后放入专门检测仪器中3小时左右的时间。有人指出,只是把便携式放射性检测仪放在鱼身上,很难准确检测出结果。有专家解释,如果想用便携式放射性检测仪检测出水产品受到核污染,被检测的水产品至少要受到每公斤5000贝克勒尔(衡量放射性物质或放射源的计量单位)的辐射污染。而食品药品安全处规定的标准值则是每公斤100贝克勒尔。另外,这些便携式检测仪只能检测出物体表面以及空气中不具有危险性的辐射。专家还指出,这些检测仪的更换周期也很短,使用6个月到1年时间就需要重新校准仪器。通过二手交易购买的仪器有可能无法正常启动。韩国民众对食品安全的担忧已持续一个月之久。人们大量囤积食盐已导致食盐供应短缺严重。韩国政府被迫释放食盐库存,来稳定食盐价格。据报道,除了食盐,韩国民众还开始囤积紫菜、裙带菜、凤尾鱼等水产品。尽管韩国政府自2013年起就禁止进口福岛地区的海产品,并于最近宣布维持禁令,但消费者仍然担心这些核污染水会流入日本领海并影响海洋生物。与此同时,也有些企业见缝插针,利用消费者的不安心理来营销。近日,韩国一保险公司以“因污水排放,国内癌症发病率将提高”为宣传,推销癌症保险。销售食盐、海带等水产品的企业也在增加,他们称自己销售的是“核污染水排放前的最后一批”,来引起消费者的不安。对此,韩国政府表示,将密切关注那些没有科学依据、制造消费者焦虑的商业行为,一旦在此过程中发现有违反消费者保护法的行为,将采取严厉措施。
  • 首次!检测出放射性物质!
    日本东京电力公司发布消息称自福岛核污染水排海后日本方面8月31日于排放口附近取样的海水中首次检测出放射性物质氚据日本共同社9月1日报道,本次取样海水中的放射性物质氚浓度为每升10贝克勒尔。工作人员在福岛第一核电站方圆3公里设置了10个取样点,本次检出氚的海水取自最靠近排放口的取样点,该取样点于8月24日取样的海水中氚浓度为2.6贝克勒尔,当时的常规分析未达到检出下限。对于短短几天内,氚浓度出现大幅上升,东电方面承认这是核污染水排海造成的影响,但他们坚称这一浓度“在安全上完全没有问题”。图/视觉中国岸田文雄被检举据央视新闻援引共同社9月1日报道——针对福岛第一核电站核污染水排海问题,日本一市民团体当日向东京地检提交检举信,指控日本首相岸田文雄和东京电力公司总裁小早川智明涉嫌空置建筑浸毁和业务过失致死。该市民团体名为“反对核电站核污染水排海全国联络会”。在提交检举信后,他们在东京市内召开了新闻发布会。该市民团体共同代表岩田薫表示,日本“采取的排海行为极为严重”。在日本排放核污染水大约一周后,海上拖网捕鱼季于9月1日在福岛县开始。图/视觉中国韩国石斑鱼大量死亡受日本核污染水排海影响越来越多的韩国人不愿意再购买水产品给当地渔业带来巨大损失以下视频来源于央视财经,时长01:37△央视财经《经济信息联播》栏目视频最近韩国不少养殖场内石斑鱼出现大量死亡话题冲上热搜第一↓韩国全罗南道的丽水市,是这一次石斑鱼集体死亡受灾最严重的地方之一。受福岛核污染水排海影响,石斑鱼卖不出去、无法按时正常出货,再加上水温升高,出现集体死亡。据统计,仅全罗南道丽水市已经有超100万条鱼死亡,相当于这里总饲养量的两成多,损失金额约合人民币8400万元。日本福岛核污染水排海,给韩国水产从业者们带来的影响不仅是卖不出去,而且卖不上好价钱。平时,每公斤3万韩元石斑鱼,现在已经跌至不到2万韩元。此外,韩国济州岛地区特产东洋鲈是当地数一数二的高级生鱼片原材料,近期拍卖价格环比暴跌近六成。根据韩国政府8月29日公布的2024年度财政预算案,为应对日本核污染水排海,政府编制相关预算7380亿韩元,约合人民币40.71亿元,较本财年增加约四成,其中用于进行海域、水产品放射性物质浓度检测的预算达576亿韩元。当地时间2023年8月30日,韩国木浦,举行“日本福岛核电站核污染水排海投机谴责大会”。图/视觉中国
  • 6个机组4个已爆炸 放射物质在日本扩散
    日本政府表示,当地时间15日晨6时10分左右,福岛第一核电站2号反应堆附近传来爆炸声。早些时候的报道指出,福岛第一核电站2号反应堆容器出现部分破损,这表明可能导致更为严重的核泄漏。  中新网3月16日电 综合外电报道,16日,日本311特大地震和海啸进入到第六天,救援人员仍然在灾区搜寻幸存者。但与此同时,世界却将关切的目光集中到日本福岛核电站,接二连三的事故令人对日本核危机愈演愈烈的现状感到担忧。  2号机组发生爆炸  15日清晨,日本政府表示,福岛第一核电站2号反应堆容器出现部分破损。这表明可能导致更为严重的核泄漏。  日本内阁官房长官枝野幸男(Yukio Edano)在记者会上称,反应堆用于盛装冷却水和控制内部气压的容器底部“抑制池”出现部分破损。但他同时强调,目前尚未检测到核辐射量有任何剧增的迹象。  到15日晨6时10分左右,福岛第一核电站2号反应堆附近传来爆炸声。  据悉,2号反应堆的压力控制控制池可能在这次爆炸中遭到损坏,反应堆散发出的辐射量“相当危险”,辐射量已超过法定标准。当地工作人员随州撤离现场。报道同时指出,福岛第一核电站2号机组燃料再次完全露出水面。  4号机组先失火后爆炸  日本官房长官枝野幸男15日早些时候在记者会上说,第一核电站的四号机组也发生火情,放射性物质辐射量有所上升。  东京电力公司官员称,15日上午起火的福岛第一核电站四号机组乏燃料池可能正在沸腾,导致里面冷却水位下当天稍早时候,日本表示已扑灭了该乏燃料储存池的大火。但东京电力公司后又称,无法将水注入福岛第一核电站4号反应堆的废燃料储存池。  15日中午12时(北京时间15日上午11时)左右,4号机组发生爆炸。据称,这是一次与一、二、三号机组类似的氢气爆炸。  核辐射物质飘至东京  日本福岛第一核电站发生放射性物质泄漏后,东京等地检测到辐射量超标的情况。消息称,15日,日本千叶县的辐射量达到正常标准的2到4倍。  据报道,15日,东京市检测到辐射微量超出正常标准。东京市一名政府官员表示,这样的辐射量不会对人体健康造成危害。  日本东京都当地时间15日下午13时发表核辐射监测报告说,福岛第一核电站泄漏的核物质已经飘至东京,东京地区的放射线量已经超过了往常的20倍,而且继续处于上升的趋势。另外,与东京都相邻埼玉县政府也发表报告说,埼玉县的核辐射量也比平时增加了20倍。东京度知事石原慎太郎发表谈话说,目前的这些核辐射量不会对健康构成危险。  菅直人发表告国民书  当地时间15日上午11时,日本首相菅直人就日本大地震和海啸引发的核电站危机发表告国民书。  菅直人说,受损核电站还有进一步放射性物质泄漏的可能性。菅直人再次呼吁福岛第一核电站附近20公里半径的居民离开避难,并表示绝大多数人已经疏散避难,  菅直人还表示,超过20公里半径、30公里半径的居民根据今后核反应堆的情况,不要外出,在家或办公室待命。福岛第二核电站已经向方圆10公里内的居民发出避难要求,希望所有居民避难。  菅直人称,我们正全力避免更多的爆炸发生和放射性能量物质的泄漏。东京电力公司和其他相关机构的人员正在注水,他们奋不顾身,全力以赴,我们将尽全力避免事态进一步扩大。
  • 从原理到应用,6大类元素分析仪大比拼
    p  元素定义:是strongspan style="color: rgb(0, 0, 0) "具有相同质子数(核电荷数)的同一类原子的总称/span/strong,到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种./pp  元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。/pp  明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。/pp style="text-align: center "strongspan style="text-align: center color: rgb(0, 112, 192) "主要元素分析仪器/span/strong/pp  strongspan style="color: rgb(0, 0, 0) "1.紫外\可见光分光光度计(UV) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  2.原子吸收分光光度计(AAS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  3.原子荧光分光光度计(AFS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  4.原子发射分光光度计(AES) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  5.质谱(MS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  6.X射线分光光度计(XRF ) /span/strong/pp  常见分析仪器的归属类型:/pp  ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES /pp  ICP-MS: 无机质谱(MS),用于分析元素含量,也用于同位素分析 /pp  FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收,都属于原子吸收一类。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "各种元素分析仪器分析过程、特点及应用/span/strong/pp  strongspan style="color: rgb(192, 0, 0) "紫外\可见光分光光度计(UV)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/e2fdc87e-0993-48a6-befd-0ce8f87e01a0.jpg" title="1.jpg" alt="1.jpg"//pp  strong2.原理:/strong/pp  利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数 b为样品厚度 C为样品浓度 A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。/pp  strong3.主要特点/strongstrong:/strong/pp  (1)灵敏度高/pp  (2)选择性好/pp  (3)准确度高/pp  (4)适用浓度范围广/pp  (5)分析成本低、操作简便、快速、应用广泛/pp  strongspan style="color: rgb(192, 0, 0) "原子吸收和荧光分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4893d001-558b-4388-a325-5cf4e753ce51.jpg" title="2.jpg" alt="2.jpg"//pp  strong2.原子吸收光谱法原理:/strong/pp  原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。/pp  公式:A=KC/pp  式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。/pp  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。/pp  strong3.原子吸收主要特点:/strong/pp  (1)灵敏度高FAAS可以测试ppm-ppb级的金属 /pp  (2)原子吸收谱线简单,选择性好,干扰少。/pp  (3)操作简单、快速,自动进样每小时可测定数百个样品 /pp  (4)测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10%/pp  (5)测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。/pp  strong4.原子荧光主要特点:/strong/pp  (1)有较低的检出限,灵敏度高。/pp  (2)干扰较少,谱线比较简单。/pp  (3)仪器结构简单,价格便宜。/pp  (4)分析校准曲线线性范围宽,可达3~5个数量级。/pp  (5)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。/pp  strongspan style="color: rgb(192, 0, 0) "原子发射分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/3f0e5fdc-f945-4e01-9c4f-7238f511c132.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em "strong2.原理/strong/pp  原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。/pp  发射的光波长为:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/465515c6-4eaa-4a6b-b16a-785849c6c925.jpg" title="0.png" alt="0.png"//pp  每个元素有自己独特的特征光谱,从而进行元素定性分析。/pp  strong3.主要特点/strong/pp  (1)高温,104K /pp  (2)环状通道,具有较高的稳定性 /pp  (3)惰性气氛,电极放电较稳定 /pp  (4)具有好的检出限,一些元素可达到10-3~10-5ppm /pp  (5)ICP稳定性好,精密度高,相对标准偏差约1% /pp  (6)基体效应小 /pp  (7)光谱背景小 /pp  (8)自吸效应小 /pp  (9)线性范围宽。/pp  span style="color: rgb(192, 0, 0) "strong质谱分析法/strong/span/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/389e5ec2-0606-4be5-bad8-d1e0e9dd7a52.jpg" title="4.jpg" alt="4.jpg"//pp  strong2.原理/strong/pp  使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,进入质量分析器,通过电磁场按不同m/e的变化,分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息。/pp  strong3.主要特点:/strong/pp  (1)质量测定范围广泛 /pp  (2)分辨高 /pp  (3)绝对灵敏度,可检测的最小样品量。/pp  strongspan style="color: rgb(192, 0, 0) "X荧光光度计(XRF)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/908c4b76-7454-4801-876b-f21696fadca4.jpg" title="5.jpg" alt="5.jpg"//pp  strong2.原理:/strong/pp  受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。/pp  strong3.主要特点:/strong/pp  (1)快速,测试一个样品只需2min-3min /pp  (2)无损,测试过程中无需损坏样品,直接测试 /pp  (3)含量范围广 /pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "几种元素分析仪器对比/span/strong/pp  strong1.工作范围/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/1eceb58a-ba37-4cb0-b29a-24f3ef593b8a.jpg" title="6.jpg" alt="6.jpg"//pp  strong2.无机分析产品的检出限/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/d55d223e-1a23-4835-af62-3185baa3e6b5.jpg" title="7.jpg" alt="7.jpg"//pp  strong3.干扰/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4958e1cd-ea8c-4447-bf43-4ce9ce5b38b4.jpg" title="8.jpg" alt="8.jpg"//pp  strong4.费用/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201902/uepic/72e71f99-335a-49ba-85f8-7a850e6b86e4.jpg" title="9.jpg" alt="9.jpg"/  /pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/818.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "医用原子吸收光谱仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/646.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "金属多元素分析仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/476.html" target="_self" style="text-decoration: underline color: rgb(192, 0, 0) "span style="color: rgb(192, 0, 0) "有机元素分析仪会场/span/a/p
  • 福立公司镍-63放射源实行豁免管理申请获得批准
    浙江福立分析仪器有限公司气相色谱仪电子捕获检测器中的镍-63放射源实行豁免管理申请获得浙江环境保护局批准.
  • 核安全与放射性污染防治十二五规划发布 投资达798亿元
    核安全与放射性污染防治“十二五”规划及2020年远景目标  核安全事关核能与核技术利用事业发展,事关环境安全,事关公众利益。党中央、国务院历来高度重视核安全与放射性污染防治工作,有关部门和企事业单位认真贯彻落实国家确定的方针政策,我国核能与核技术利用事业多年来保持了良好的安全业绩。日本福岛核事故发生后,国务院立即做出重要部署,明确要求抓紧编制核安全规划。  本规划结合全国核设施综合安全检查和日常持续开展的安全评价结果,深入分析当前核安全工作中存在的薄弱环节,以确保核安全、环境安全、公众健康为目标,坚持“安全第一、质量第一”的根本方针,遵循“预防为主、纵深防御 新老并重、防治结合 依靠科技、持续改进 坚持法治、严格监管 公开透明、协调发展”的基本原则,统筹规划了9项重点任务、5项重点工程、8项保障措施,力争至“十二五”末我国核能与核技术利用安全水平进一步提高,辐射环境安全风险明显降低 到2020年,核电安全保持国际先进水平,核安全与放射性污染防治水平全面提升,辐射环境质量保持良好,为保障我国核能与核技术利用事业安全、健康、可持续发展提供坚实有力的支撑。  一、现状与形势  半个多世纪以来,我国核能与核技术利用事业稳步发展。目前,我国已经形成较为完整的核工业体系,核能在优化能源结构、保障能源安全、促进污染减排和应对气候变化等方面发挥了重要作用 核技术在工业、农业、国防、医疗和科研等领域得到广泛应用,有力地推动了经济社会发展。  核安全是核能与核技术利用事业发展的生命线。我国核能与核技术利用始终坚持“安全第一、质量第一”的根本方针,贯彻纵深防御等安全理念,采取有效措施,保障了核安全。2011 年3月日本福岛核事故后,进一步保障核安全与防治放射性污染任务更加艰巨和紧迫,相关工作面临新的形势和挑战。  (一)核安全与放射性污染防治取得积极进展。  1。核安全保障体系渐趋完善。在深入总结国内外经验和教训的基础上,参考国际原子能机构和核能先进国家有关安全标准,我国已基本建立了覆盖各类核设施和核活动的核安全法规标准体系。2003年以来,先后颁布并实施了《中华人民共和国放射性污染防治法》、《放射性同位素与射线装置安全和防护条例》、《民用核安全设备监督管理条例》、《放射性物品运输安全管理条例》和《放射性废物安全管理条例》,制定了一系列部门规章、导则和标准等文件,为保障核安全奠定了良好基础。初步形成了以营运单位、集团公司、行业主管部门和核安全监管部门为主的核安全管理体系,以及由国家、省、营运单位构成的核电厂核事故应急三级管理体系。  核安全文化建设不断深入,专业人才队伍配置渐趋齐全,质量保证体系不断完善。核安全监管部门审评和监督能力逐步提高,运行核电厂及周边环境辐射监测网络基本建立。在汶川地震等重特大灾害应急抢险中,我国政府决策果断、行动高效,有效化解了次生自然灾害带来的核安全风险,核安全保障体系发挥了重大作用。  2。核安全水平不断提高。  我国核电厂采用国际通行标准,按照纵深防御的理念进行设计、建造和运行,具有较高的安全水平。截至2011年12月,我国大陆地区运行的15台核电机组安全业绩良好,未发生国际核事件分级表2级及以上事件和事故,气态和液态流出物排放远低于国家标准限值。在建的26台核电机组质量保证体系运转有效,工程建造技术水平与国际保持同步。大型先进压水堆和高温气冷堆核电站科技重大专项工作有序推进。2011年实施的核设施综合安全检查结果表明,我国运行和在建核电机组基本满足我国现行核安全法规和国际原子能机构最新标准的要求,安全和质量是有保障的。  研究堆安全整改活动持续开展,现有研究堆处于安全运行或安全停闭状态。核燃料生产、加工、贮存和后处理设施保持安全运行,未发生过影响环境或公众健康的核临界事故和运输安全事故。核材料管制体系有效。放射源实施全过程管控,辐照装置防卡源专项整治工作取得成效,安全管理水平逐步提高,放射源辐射事故年发生率由上世纪90 年代的每万枚6.2起下降至“十一五”期间的每万枚2.5起。核安全设备的设计、制造、安装和无损检验活动全面纳入核安全监管,设备质量和可靠性不断提高。  3。放射性污染防治稳步推进。近年来,国家不断加大放射性污染防治力度,早期核设施退役和历史遗留放射性废物治理稳步推进。多个微堆及放化实验室的退役已经完成。一批中、低放废物处理设施已建成。2座中、低放废物处置场已投入运行,1座中、低放废物处置场开始建设。完成一批铀矿地质勘探、矿冶设施的退役及环境整治项目,尾矿库垮坝事故风险降低,污染得到控制,环境质量得到改善。废旧放射源得到及时回收,一批老旧辐照装置完成退役。国家废放射源集中贮存库及各省(区、市)放射性废物暂存库基本建成。全国辐射环境质量良好,辐射水平保持在天然本底涨落范围 从业人员平均辐照剂量远低于国家限值。  (二)核安全与放射性污染防治面临挑战。  1。安全形势不容乐观。我国核电多种堆型、多种技术、多类标准并存的局面给安全管理带来一定难度,运行和在建核电厂预防和缓解严重事故的能力仍需进一步提高。部分研究堆和核燃料循环设施抵御外部事件能力较弱。早期核设施退役进程尚待进一步加快,历史遗留放射性废物需要妥善处置。铀矿冶开发过程中环境问题依然存在。放射源和射线装置量大面广,安全管理任务重。  2。科技研发需要加强。核安全科学技术研发缺乏总体规划。现有资源分散、人才匮乏、研发能力不足。法规标准的制(修)订缺少科技支撑,基础科学和应用技术研究与国际先进水平总体差距仍然较大,制约了我国核安全水平的进一步提高。  3。应急体系需要完善。核事故应急管理体系需要进一步完善,核电集团公司在核事故应急工作中的职责需要进一步细化。核电集团公司内部及各核电集团公司之间缺乏有效的应急支援机制,应急资源储备和调配能力不足。地方政府应急指挥、响应、监测和技术支持能力仍需提升。核事故应急预案可实施性仍需提高。  4。监管能力需要提升。核安全监管能力与核能发展的规模和速度不相适应。核安全监管缺乏独立的分析评价、校核计算和实验验证手段,现场监督执法装备不足。全国辐射环境监测体系尚不完善,监测能力需大力提升。核安全公众宣传和教育力量薄弱,核安全国际合作、信息公开工作有待加强,公众参与机制需要完善。核安全监管人才缺乏,能力建设投入不足。  日本福岛核事故的经验教训十分深刻,要进一步提高对核安全的极端重要性和基本规律的认识,提升核安全文化素养和水平 进一步提高核安全标准要求和设施固有安全水平 进一步完善事故应急响应机制,提升应急响应能力 进一步增强营运单位自身的管理、技术能力及资源支撑能力 进一步提升核安全监管部门的独立性、权威性、有效性 进一步加强核安全技术研发,依靠科技创新推动核安全水平持续提高和进步 进一步加强核安全经验和能力的共享 进一步强化公共宣传和信息公开。  二、指导思想、原则和目标  (一)指导思想。  以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,坚持“安全第一、质量第一”的根本方针,以法规标准为准绳,以科技进步为先导,以基础能力为支撑,进一步明确责任、优化机制、严格管理、持续改进、消除隐患,不断提高我国核安全与放射性污染防治水平,确保核安全、环境安全和公众健康,推动核能与核技术利用事业安全、健康、可持续发展。  (二)基本原则。  预防为主,纵深防御。采取所有合理可行的技术和管理手段,确保核设施各种防御措施的有效性和多道屏障的完整性,防止发生核事故,并在一旦发生事故时减轻其后果。  新老并重,防治结合。多还旧账,积极推进早期核设施退役,开展历史遗留放射性污染治理,恢复和改善环境。不欠新账,按照新标准建设各类核设施,从源头防止或减少放射性废物产生,及时处理处置新产生的放射性废物。  依靠科技,持续改进。发挥科技在核安全工作中的支撑和引领作用,注重经验积累和反馈,及时查找和消除安全隐患,不断改进和提升安全水平。坚持法治,严格监管。完善核安全法规标准体系,与国际先进水平保持一致。贯彻“独立、公开、法治、理性、有效”的监管理念,严格依法开展审评、许可、监督和执法,严厉查处违法违规行为。  公开透明,协调发展。完善公众参与机制,保障公众对核安全相关信息的知情权。加强宣传教育,增强公众对核安全的了解和信心。坚持核安全监管与核能、核技术利用事业同步发展,推动核能与核技术利用事业和社会、环境的协调发展。  (三)规划目标。  总体目标:进一步提高核设施与核技术利用装置安全水平,明显降低辐射环境安全风险,基本形成事故防御、污染治理、科技创新、应急响应和安全监管能力,保障核安全、环境安全和公众健康,辐射环境质量保持良好。  具体目标:在核设施安全水平提高方面,运行核电机组安全性能指标保持在良好状态,避免发生2级事件,确保不发生3级及以上事件和事故 新建核电机组具备较完善的严重事故预防和缓解措施,每堆年发生严重堆芯损坏事件的概率低于十万分之一,每堆年发生大量放射性物质释放事件的概率低于百万分之一 消除研究堆、核燃料循环设施重大安全隐患,确保运行安全。  在核技术利用装置安全水平提高方面,放射性同位素和射线装置100%落实许可证管理 放射源辐射事故年发生率低于每万枚2.0 起 有效控制重特大辐射事故的发生。  在辐射环境安全风险降低方面,基本消除历史遗留中、低放废物的安全风险 基本完成铀矿冶环境综合治理。在事故防御方面,完成运行和在建核电厂、研究堆、核燃料循环设施的安全改造,提高核设施抵御外部事件、预防和缓解严重事故的能力。  在污染治理方面,建设与核工业发展水平相适应的、先进高效的放射性污染治理和废物处理体系,基本建成与核工业发展配套的中、低放废物处置场。  在科技创新方面,完善核安全与放射性污染防治科技创新平台,培养一批领军人才,突破一批关键技术。  在应急响应方面,强化各级政府和有关单位的应急指挥、应急响应、应急监测、应急技术支持能力建设,形成统一调度的核事故应急工程抢险力量,充实应急物资及装备配置。  在安全监管方面,基本建成国家核与辐射安全监管技术研发基地,构建监管技术支撑平台,初步具备相对独立、较为完整的安全分析评价、校核计算和实验验证能力 建成全国辐射环境监测网络,国家、省级辐射环境监测能力100%达到能力建设标准。  2020年远景目标:运行和在建核设施安全水平持续提高,“十三五”及以后新建核电机组力争实现从设计上实际消除大量放射性物质释放的可能性。全面开展放射性污染治理,早期核设施退役取得明显成效,基本消除历史遗留放射性废物的安全风险,完成高放废物处理处置顶层设计并建成地下实验室。全面建成国家核与辐射安全监管技术研发基地和全国辐射环境监测体系。形成功能齐全、反应灵敏、运转高效的核与辐射事故应急响应体系。到2020年,核电安全保持国际先进水平,核安全与放射性污染防治水平全面提升,辐射环境质量保持良好。  三、重点任务  坚持以提高核能与核技术利用安全水平、加快放射性污染防治为核心,以加强科技研发、提升应急响应和核安全监管能力为依托,全面加强我国核安全与放射性污染防治工作。  (一)强化纵深防御,确保核电厂运行安全。  运行和在建核电厂营运单位根据核设施综合安全检查的评价结论和改进要求,从技术、管理和工程等方面采取切实有效措施,提升预防和缓解事故及严重事故后果的能力。  对运行核电厂,开展应对事故及严重事故的安全分析、技术评估和工程改造,并制定完善相应的管理规定和应对预案,开展定期安全审查,加强设备维修维护,深化安全文化培育。  专栏1 提升运行核电厂安全水平  近期  1。逐项排查并完成有关门窗、通风口、电缆贯穿和工艺管道贯穿等的防水封堵。  2。综合考虑全厂断电工况下满足反应堆堆芯冷却、乏燃料水池冷却、防止反应堆冷却剂泵发生轴封小破口失水事故和保持必要的事故后监测能力的要求,采取设置移动电源、移动泵和增设相匹配的接口等措施。3。确保核电厂地震监测记录系统的有效性,提高核电厂抗震响应能力。  2013年底前:  4。结合各核电厂可能遭遇水淹情况的评估结果,落实各核电厂防水淹措施 完成秦山核电厂防洪改造工程。  5。完成沿海核电厂地震、海啸影响的复核、评估及必要的改造。  6。制定并实施严重事故管理导则。  7。对在严重事故下用于缓解事故的设备和系统的可用性以及可能发生的氢气爆炸进行评估,并根据评估结果实施相应改进。  8。开展抗外部事件安全裕量分析评估。  9。研究制订核电基地多机组同时进入应急状态后的响应方案。  2015年底前:  10。开展外部事件概率安全分析。  对在建核电厂,依据我国现行核安全法规和国际原子能机构最新标准,完成设计安全水平再评估,修订建造许可证条件。在建核电厂营运单位在首次装料前落实全部许可证条件要求。全过程、全方位控制核电工程建造质量和安全,落实独立第三方监理,执行核电建造队伍准入制度,提高核电工程建造专业化水平,继续完善核电工程建造质量保证体系,加强调试监管,严格执行事件报告制度和不符合项管理制度。  专栏2 提升在建核电厂安全水平  首次装料前:  1。结合各核电厂可能遭遇水淹情况的评估,逐项排查并完成管沟、廊道、门窗和贯穿等的防水封堵。  2。综合考虑全厂断电工况下满足反应堆堆芯冷却、乏燃料水池冷却、防止反应堆冷却剂泵发生轴封小破口失水事故和保持必要的事故后监测能力的要求,采取设置移动电源、移动泵和增设相匹配的接口等措施。  3。增强乏燃料水池的补水和监测能力。  4。制定并实施严重事故管理导则。考虑各类事故工况和多堆厂址共因失效工况,分析评估严重事故下重要设备、监测仪表的可用性和可达性。  5。完善严重事故下安全壳或其他厂房内消氢系统的分析评估,并实施必要的改进。  6。分析评价双机组布置的核电机组缓解严重事故后果的能力和可靠性。  7。进一步加强对环境监测布点的合理性和代表性的分析评估,完善严重事故下应急监测方案,确保在各种事故工况下有可用的应急监测手段。  8。完善应急控制中心功能及可居留性的分析评估,并实施必要的改进。  9。开展抗外部事件安全裕量分析评估。  10。加强与气象、海洋部门之间的实时联系,以及与地震部门间的信息交流,进一步完善防灾预案和相关管理程序,提高外部灾害发生时的预警和应对能力。  11。研究核电基地多机组同时进入应急状态后电厂的应急响应方案,并评估应急指挥能力及应急抢险人员和物资的配备、协调方案。  2015年底前:  12。从设计、验证和故障分析等方面分析评估安全级数字化控制系统的可靠性,查找薄弱环节并实施相应的改进。  13。进一步开展二级概率安全分析、外部事件概率安全分析工作。  14。进一步改进放射性废物处理系统 开展严重事故下废物处理系统的有效性研究。  坚持在确保安全的前提下发展核电,并把握好发展节奏。对于新申请建造许可证的核电项目,按照我国和国际原子能机构最新的核安全法规标准进行选址和设计,采用技术更加成熟和先进的堆型,提高固有安全性。在符合最先进安全指标的核电技术得到充分验证之前,合理控制核电建设规模和速度。通过科学选址和采取更加高效、可靠的工程措施,确保气态和液态流出物在核电机组正常运行和事故情况下对环境和公众均不会造成不可接受的影响。积极发展具有我国自主知识产权的安全性能高的先进核电技术。力争“十三五”及以后新建核电机组从设计上实际消除大量放射性物质释放的可能性。  (二)加强整改,消除研究堆和核燃料循环设施安全隐患。根据核设施综合安全检查结论和改进要求,对存在安全隐患的研究堆和核燃料循环设施实施安全改进,对于无法满足安全标准的,予以限制运行或逐步关停。完成研究堆分类名录,明确管理要求,实施分类管理。完善研究堆许可证管理模式和定期安全审查方法。确定研究堆在停闭状态下的安全保障和管理方法。对大型研究堆实施严重事故管理。开展研究堆概率安全分析和老化评估。完成快中子增殖堆等新堆型技术法规和技术审评原则及其下层技术文件的编制。完成部分研究堆内乏燃料组件向集中贮存设施的转移。  2012年底前:  专栏3 提升研究堆安全水平  1。根据调整后的地震区划图,完成对所涉及研究堆的抗震校核及必要的改造工作,并重新优化其运行管理程序。  2。为大、中型研究堆增设事故后堆芯监测装置。  3。评价研究堆构筑物抵御极端外部事件的能力,根据评估结果完成相应的加固工作。  2013年底前:  4。为研究堆增设可靠电源、移动电源、移动泵、消防车辆和应急水源。对核燃料循环设施的安全重要构筑物、系统和设备进行分级管理。加强核燃料循环设施工艺和安全研究,不断提高固有安全水平。建立核燃料循环设施运行经验反馈体系,强化核临界安全风险管理。规范和完善早期核设施的安全管理,尽快解决历史遗留问题。根据核电发展的方向、规模与速度,配套开展核燃料循环发展顶层设计,加强“三废”处理等配套设施的建设和运行管理,强化流出物监测和环境监测。  专栏4 提升核燃料循环设施安全水平  2012年底前:  1。按照现行标准对核燃料循环设施老旧厂房进行抗震校核,并根据校核结果进行加固或限期退役。  2。根据核燃料循环设施厂址特点,建立外部应急支援接口,完善应急预案,提高抵御极端自然灾害的能力。  2015年底前:  3。开展核燃料循环设施的应急和“三废”等配套建设,确保其与主工艺建设同步。  4。制定贫化六氟化铀的处理规划,加强贫化六氟化铀贮存的安全管理,必要时进行稳定化处理。调查在役放射性物品运输容器的安全状况,完成运输容器安全评价。建设一、二类放射性物品运输的在线实时监控系统。强化放射性物品运输容器制造和运输活动的安全监督。加强实物保护系统建设,对各核设施实物保护系统实施改进和升级。  (三)严格安全管理,规范核技术利用。  2012年底前完成全国核技术利用单位综合安全检查。针对发现的安全隐患,采取有效整改措施。对存在较大安全隐患的高风险核技术利用装置实施强制退役,彻底消除安全隐患。健全核技术利用辐射安全管理信息系统,完善放射源的全过程动态管理。建立高危险移动放射源跟踪监控体系。对辐照加工、科研、医疗等领域Ⅰ类放射源和Ⅰ类射线装置实施在线监控。全面开展对废旧金属回收熔炼的辐射监测,加强进出境口岸放射性物品安全管理。强化核技术利用单位的辐射环境和个人剂量监测。加强从业人员辐射安全培训。  城市放射性废物库配备放射性物质鉴别、分类、处理等配套设施,完成3-5个区域性移动式废旧放射源整备设施的研制和建设。加大闲置、废弃放射源的收贮力度,确保新产生的废旧放射源依法及时送贮,推动已到寿期的Ⅲ类及以上进口放射源返回原出口方。推动废旧放射源的再利用和放射性同位素的循环使用技术研究,倡导并支持废旧放射源回收再利用。  制定和完善核技术利用行业的准入制度,提高核技术利用装置安全水平。鼓励除科研用途外设计活度小于1.11×1016贝可(30万居里)的静态辐照装置关停退役或转型升级。  (四)加强铀矿冶治理,保障环境安全。  “十二五”中期,完成铀矿冶企业尾矿(渣)坝的风险评估,建立尾矿(渣)坝监测与预警系统,采取必要措施降低垮坝风险,关停不符合安全要求的铀矿冶设施。“十二五”末,完成地浸采场地下水去污恢复技术研究。建设事故废水收集池,避免超标废水直接向环境排放。建立铀矿冶退役治理工程长期监护机制。  对历史遗留铀矿地质勘探设施进行调查与评价,在2020年前完成位于社会和环境敏感地区的铀矿地质勘探设施环境整治工程。继续开展退役矿山的环境治理,在2020年前全部完成2010年前关停的铀矿冶设施的退役治理和环境恢复工作。  贯彻清洁生产和循环经济的理念,加大废水处理技术的科研力度,逐步提高水的重复利用率,降低废水产生量并实施达标排放。“十二五”中期,保证水冶工艺废水的重复利用率达到75%以上。  进一步完善铀矿冶辐射防护体系,降低采冶过程中的职业照射水平,保护工作人员健康。到“十二五”末,铀矿冶行业的职业照射水平管理目标值控制在15毫希沃特/年以内。  进一步开展主要伴生放射性矿的辐射水平调查工作,完善伴生放射性矿监管名录和办法,明确管理要求,制定废物处置的相关环境政策,开展污染防治工作。  (五)加快早期设施退役和废物治理,降低安全风险。  加强对已停运核设施的监管和维护,及时实施已关停或已决定关停核设施的退役,推进早期核活动遗留的放射性污确保放射性废物的安全贮存,加快放射性废物处理、处置。对全国放射性废物处理处置能力进行统一布局,推动地方政府及核能相关企业加快放射性废物贮存、处理、处置能力建设。以高风险放射性废物治理为重点,加快放射性废液固化处理进程。  在核设施设计中采用先进的废物处理工艺。鼓励营运单位在核设施运行中采用先进的技术和管理手段减少废物产生量。推动核电厂妥善处置现存废物。建立放射性废物治理管理信息系统。推动高放废物地质处置预选区研究。  专栏5 早期核设施退役及放射性废物治理  “十二五”末:  1。全面推进重点单位的核设施退役活动。2。完善中、低放废物处理、处置手段。3。完成全国放射性污染现状调查与评价,开展放射性污染治理。4。开展核设施退役和放射性废物治理关键技术研究。  至2020年:  5。已停运的核设施全部安全关闭,早期核设施退役和污染治理取得明显成效。6。形成全国中低放固体废物近地表处置场的统一布局。  7。建成高放废物处置地下实验室。  (六)强化质量保证,提高设备可靠性。  完善核安全设备相关法规要求和管理体系,进一步明确营运单位、工程总承包单位和核安全设备许可证持证单位的安全责任。强化核安全设备设计、制造、安装和无损检验单位资质加强核安全设备设计验证和鉴定试验的评价和监督,制定核安全设备验证和鉴定的管理制度。加强核安全设备制造过程的管理和监督,完善驻厂监督制度。完善进口核安全设备的注册登记和安检制度,加强对进口核安全设备的监管。强化核安全设备焊工、焊接操作工和无损检验人员等特种工艺人员考核评价活动的监督和人员资格管理。对在役设备进行有效的老化与寿命管理,确保设备在整个服役期内满足安全要求。建立独立于营运单位和检验单位的无损检验能力验证体系。  (七)推动科技进步,促进安全持续升级。  鼓励企业开展核安全技术创新,加强新技术和新工艺开发和使用,不断提高设施安全水平。支持核安全技术科研单位基础能力建设,充分整合、利用现有科研资源和重大专项渠道,在此基础上建立一批核安全相关技术研发平台。  有针对性地开展核安全技术研发,集中力量突破制约发展的核安全关键技术,提升我国核安全整体水平。积极推进大型压水堆、高温气冷堆和乏燃料后处理重大专项安全技术科学研究和成果应用。重点开展反应堆安全、核电厂厂址安全、核电厂防止和缓解飞行物撞击措施、核安全设备质量可靠性、核燃料循环设施安全、核技术利用安全、放射性物品运输和实物保护、核应急与反恐、辐射环境影响评价及辐射照射控制、放射性废物治理和核设施退役安全等领域的技术  (八)完善应急体系,有效应对突发事件。  根据常备不懈、积极兼容、平战结合原则,完善应急管理体系,建立综合协调、功能齐全、反应灵敏、运转高效的应急准备和响应体系。加强严重事故应急准备和响应的研究,2012年底前,完成各级各类核事故应急计划(预案)的修订及评估工作,完善应急状态终止后恢复行动的内容,加强演练,突出实战,提高各级各类应急计划(预案)的可实施性。  充实核事故监测、预警、信息、后果评价、决策和指挥能力。加强核应急救援体系建设,建立统一指挥、统一调度的核事故应急响应专业队伍,进一步提高核事故应急响应能力,2012年底前,完成国家核与辐射事故应急物资及装备配置需求研究,2013年底前完成相关配备。“十二五”末建成核电机组事故工况下堆芯损伤状况的实时评价专家系统。  合理规范核电厂核事故应急计划区范围。强化地方政府的应急指挥、应急响应、应急监测、应急技术支持能力建设,制定并实施应急能力建设标准,配备必要应急物资及装备,提高地方政府应急水平。明确核电集团公司的应急职责,完善集团公司内部的应急支援制度。建立和完善集团公司应急支援制度。2012年底前完成企业集团公司层面核应急资源储备和调配能力建设。  针对长时间失去电源以及同一厂址多机组发生事故的工况,重新评估各类核设施场内应急能力,完善应急计划,调整和充实核设施营运单位就地应急响应能力,加强场内外应急计划的协调。  (九)夯实基础能力,提升监管水平。  加强核与辐射安全监管基础能力。建设国家核与辐射安全监管技术研发基地,配备必要的研究手段和技术装备,形成相对独立、较为完整的核与辐射安全分析评价、校核计算和实验验证能力。加强相关基础建设,基本具备开展国际合作、公众宣传和人员培训的能力。强化核与辐射安全现场监督执法能力,配齐必要的检查和执法技术装备。  加强全国辐射监测网络建设,完善全国辐射环境质量监测、污染源监督性监测及辐射环境应急监测体系,具备全面掌握全国辐射环境质量水平并开展评价的能力,具备应对核事故的辐射环境应急监测能力。  四、重点工程  为实现规划目标,推动核能与核技术利用的技术升级和进步,进一步消除安全隐患,提高核安全水平,计划实施安全改进、污染治理、科技创新、应急保障和监管能力建设等重点工程。为提高重点工程实施效果,环境保护部会同有关部门建立重点项目库,实行动态管理,由各相关部门按职能分工指导各地区分别在年度计划中予以落实。“十二五”期间重点项目投资需求约798亿元。各级政府按照事权划分,重点对公益性科研教育设施的核安全改进、应急保障和核安全监管能力建设、环境放射性污染治理、核安全科技研发等方面给予支持。  (一)核安全改进工程。  通过技术升级、工程改造、运行经验反馈体系建设等项目的实施,开展安全评价,排除安全隐患,持续提高核电厂、研究堆等核设施的固有安全水平和预防与缓解严重事故的能力,提高核技术利用、铀矿冶安全管理水平,保障核与辐射安全。  专栏6 核能与核技术利用安全改进工程  1。运行核电厂安全改造项目,主要内容包括持续改进核电厂抵御外部自然灾害、缓解严重事故的能力,进一步提高安全水平。  2。在建核电厂安全改造项目,主要内容包括核设施防水淹、抗震、消氢等措施及全厂断电工况下的应急措施的安全改进,事故后堆芯状态监测系统优化、升级。乏燃料水池供水能力改造,应急指挥中心等构筑物安全技术改造,严重事故应对技术改造。  3。研究堆和核燃料循环设施安全改进项目,主要内容包括为大、中型研究堆增设事故后堆芯监测装置。  4。研究堆和核燃料循环设施实物保护系统改造建设项目,主要内容包括改造研究堆和核燃料循环设施的厂区围栏、出入口控制系统、防入侵探测系统、保安通信及监控管理系统等实物保护系统。  5。辐射防护改造工程项目,主要内容包括根据辐射防护最优化原则,实施铀矿冶设施、早期研究堆和核燃料循环设施辐射防护最优化改造工程,开展核技术利用装置辐射防护升级改造。  6。核技术利用安全改造项目,主要内容包括针对核技术利用装置存在的安全隐患,实施安全改造。加强金属熔炼企业辐射监测能力建设。  7。经验反馈体系建设项目,主要内容包括开展核设施、核技术利用装置的建造、运行经验反馈体系建设。  (二)放射性污染治理工程。  大力推进核设施退役及放射性污染和废物治理,加快铀矿地质勘探与矿冶设施、伴生矿退役治理,积极建设区域放射性废物处置场,实施辐照装置退役及废放射源回收,开展铀矿冶、伴生矿尾矿(渣)坝监测预警系统示范等项目,解决影响环境安全、公众健康的突出问题。  专栏7 放射性污染治理工程  1。核设施退役及放射性污染和废物治理项目,主要内容包括历史遗留的核设施退役及放射性污染和废物治理,及其他核设施退役及放射性废物治理等。  2。区域废物处置场建设项目,主要内容包括建设2-3个区域中低放固体废物处置场。  3。铀矿地质勘探与矿冶设施、伴生矿退役及污染治理项目,主要内容包括开展铀矿地质勘探与矿冶设施、伴生矿退役、放射性废物治理及放射性污染环境整治等。  4。铀矿冶、伴生矿尾矿(渣)坝监测预警系统示范项目。  5。辐照装置退役及废放射源回收项目,主要内容包括开展辐照装置退役及污染治理,收贮闲置、废旧放射源等。  (三)科技研发创新工程。  围绕核能与核技术利用安全、核安全设备质量可靠性、铀矿和伴生矿放射性污染治理、放射性废物处理处置等领域基础科学研究落后、技术保障薄弱的突出问题,全面加强核安全技术研发条件建设,改造或建设一批核安全技术研发中心,提高研发能力。组织开展核安全基础科学研究和关键技术攻关,完成一批重大项目,不断提高核安全科技创新水平。  专栏8 核安全科技研发创新工程  1。核安全技术研发能力建设项目,主要内容包括建设核电厂安全设计与分析技术研发中心、核电厂超设计基准事故研发中心、核电厂安全级设备鉴定检验中心、核电厂运行安全与维护技术研发中心、核电厂设备安全与可靠性研发中心、先进燃料元件和核级设备材料研发中心、核设施退役及放射性废物治理工程研发中心。  2。核安全技术研究项目,主要内容包括开展一批为管理决策服务的基础科学和工程技术研究。开展10个方面119项关键技术研究,包括12项反应堆安全技术研究,7项核电厂厂址安全技术研究,10项核安全设备质量可靠性技术研究,10项核燃料循环设施安全技术研究,7项核技术利用安全技术研究,8项放射性物品运输和实物保护技术研究,24项核应急与反恐技术研究,10项辐射环境影响评价及辐射照射控制技术研究,19项放射性废物治理和核设施退役安全技术研究,12项核与辐射安全管理技术和法规标准基础技术研究,制(修)订约150项核安全法律法规文件,完成约250项核电相关标准制(修)订。  (四)事故应急保障工程。  通过环境应急监测能力建设等项目的实施,加强核设施风险分析和预测预警能力建设,为应对核与辐射事故提供决策依据和技术支持,同时保证在任何情况下的核与辐射事故应急均有充足、可用的应急物资储备,并能及时、有效供应。  专栏9 核与辐射事故应急保障工程  1。核与辐射环境应急监测能力建设项目,主要内容包括开展国家级、省级、地市级以及覆盖我国管辖海域及周边海域的核与辐射事故应急监测系统和能力建设 建立航空应急监测能力。  2。核与辐射事故应急及事故后果评价能力建设项目,建设核与辐射事故应急技术支持平台,建设涵盖核电厂、研究堆、核燃料循环设施、放射源、铀矿冶等应急目标的应急数据平台及核与辐射事故预测、后果评价和决策支持系统。建设核设施现场监测数据采集与传输系统,建设应急决策、指挥调度系统。建立或完善6个区域性和31个省级核与辐射安全监控和应急指挥中心。建设反应堆事故工况及堆芯损伤状况的实时评价专家系统。  3。完成重点核基地的应急能力建设项目,主要内容包括建设秦山、大亚湾、连云港等重点区域核应急基地。  4。核应急物资储备和抢险能力建设项目,主要内容包括开展国家、区域、省级的应急物资储备和抢险能力建设 开展核电基地、核设施营运单位的应急物资储备和抢险能力建设。  5。进出境口岸应对核与辐射事故应急放射性检测能力建设项目,主要内容包括增加口岸放射性检测设备,实验室放射性检测仪器及个人防护用品等。  6。事故应急医学保障项目,主要内容包括开展应急救治能力建设,形成覆盖全国的核应急救治网络。  7。世界气象组织和国际原子能机构北京区域环境紧急响应应急能力建设项目,主要内容包括建设一体化的多尺度精细化核应急业务数值模式系统,开展放射性污染物扩散预报以及核事故长期影响评估。  (五)监管能力建设工程。  以国家核与辐射安全监管技术研发基地建设为重点,构建核与辐射安全监管技术支撑平台,全面加强核与辐射安全审评、监督、监测、教育、国际合作等能力,不断提升我国核与辐射安全监管水平。  专栏10 核安全监管能力建设工程  1。国家核与辐射安全监管技术研发基地建设工程。主要内容包括核电厂安全验证能力建设 核安全设备安全性能验证能力建设 核电厂运行安全仿真分析能力建设 放射性废物安全管理及核设施退役安全验证能力建设 辐射环境监测技术能力建设 辐射防护研究能力建设 核与辐射安全监控和应急响应能力建设 核与辐射安全中心综合楼建设 中国核与辐射安全国际联合研究平台建设。  2。全国辐射环境监测体系能力建设工程。主要内容包括国家、省和地市级三级辐射环境监测体系能力建设 全国辐射环境质量监测国控网点建设 国家重点监管的核与辐射设施监督性监测系统建设 全国辐射环境监测信息汇总及发布系统建设。  3。核与辐射安全监督站能力建设工程。主要内容包括6个地区核与辐射安全监督站基本能力建设,配套必要的业务用房、执法仪器及装备。  五、保障措施  (一)健全法规标准,夯实安全基础。  抓紧研究制订原子能法和核安全法,加快制修订核安全行政法规、部门规章和标准,力争到“十二五”末建成比较完整的核与辐射安全法规标准体系。完善核安全监管部门对相关工业标准的认可制度,强化相关工业标准与核安全法规导则的衔接。加强核安全管理和政策研究,适时发布核安全政策。  (二)优化管理机制,提升管控效率。  进一步增强核安全监管部门的独立性、权威性、有效性。明确和强化核行业主管部门、核电行业主管部门的核安全管理责任,加大核行业主管部门对包括科研院校在内的全行业管理力度。完善应急机制,把应急管理与日常监管紧密结合,充分发挥各涉核部门的职能作用和核企业集团公司的专业技术优势,细化涉核企事业单位的主体责任。加强政策引导,形成由国家投入为牵引、企业投入为主体的核安全技术创新机制。加大研究费用的投入力度,纳入国家科技发展管理体系。  行业主管部门将核安全要求作为制定相关产业和行业发展决策的重要依据,确保发展与安全的协调统一。完善核安全监管部门与行业主管部门在制定行业发展战略、规划,项目前期审批和安全监管中的协调机制。建立行业主管部门、核安全监管部门与气象、海洋、地震等部门的自然灾害预警和应急联动机制。优化核安全国际合作体系,实现国际国内工作的协调统一,进一步加强和深化核安全领域与国际组织的交流与合作。  (三)完善政策制度,弥补薄弱环节。  完善核安全许可证制度,进一步明确核电集团公司、业主公司、专业化公司的核安全责任。完善核燃料循环、核设施退役和放射性废物处理处置的管理制度和政策,制定核设施退役费用和放射性废物处理处置费用的提取和管理办法。建立健全相关准入和执业资格制度,建立民用核设施“三废”处置经费筹措和使用制度,制定民用核设施退役管理办法。研究并制定废旧放射源和核技术利用废物处理处置相关管理办法。推动核电集团研究建立核赔偿基金,核设施营运单位购买第三方核责任险。研究建立高危放射源退役保证金制度。落实规划环评制度,依法开展规划环评工作。建立政府、行业组织和企业等各个层面间的经验交流和反馈制度。建立并完善良好核安全实践的激励制度。  (四)培育安全文化,提高责任意识。  建立核安全文化评价体系,开展核安全文化评价活动 强化核能与核技术利用相关企事业单位的安全主体责任 大力培育核安全文化,提高全员责任意识,使各部门和单位的所有核活动相关单位要建立并有效实施质量保证体系,按照核安全重要性对物项、服务或工艺进行分级管理,使所有影响质量和安全的活动得到有效控制。  (五)加快人才培养,促进均衡流动。  制定满足核能与核技术利用需要的人力资源保障规划,加大人才培养力度。搭建由政府、高校、社会培训机构及用人单位共同参与的人才教育和培训体系,加强培训基础条件建设,实现人才培养集约化、规模化。在核安全相关专业领域开展工程教育专业认证工作,加强高校核安全相关专业建设,进一步密切高校与行业、企业的联系,加快急需专业人才培养。完善注册核安全工程师制度,加强核安全关键岗位人员继续教育和培训工作。完善核安全监督和审评人员资格管理制度和培训体系。完善人才激励和考核评价体系,提高核安全从业人员的薪酬待遇,吸引优秀人才进入核安全监管部门和核行业安全关键岗位,促进人才均衡流动,保证核安全监督、评价和科研的智力资源。  (六)加强国际合作,借鉴先进经验。  密切跟踪国际核安全发展趋势,汲取国外先进的核安全管理和监督经验,促进我国核安全管理水平不断提高。加强合作研究、信息共享、经验反馈、培训交流、同行评估、应急响应与援助等领域的国际合作 加强核安全技术引进与合作开发 积极参与统一的国际核安全标准的研究与制定,参照边、多边和区域核安全交流与合作。积极履行《核安全公约》和《乏燃料管理安全和放射性废物管理安全联合公约》等相关国际公约。  (七)深化公众参与,增强社会信心。  构建公开透明的信息交流平台,增加行业透明度。制定核设施信息公开制度,明确政府部门和营运单位信息发布的范围、责任和程序。提高公众在核设施选址、建造、运行和退役等过程中的参与程度。在基础教育中增加核与辐射安全科普知识。建立长效的核安全教育宣传机制,满足公众对核安全相关信息的需求,增强公众对核能与核技术利用安全的了解和信心。完善核安全突发事件公共关系应对体系,及时权威发布相关信息,释疑解惑,消除不实信息的误导,维护社会稳定。  (八)加大经费投入,落实资金保障。  充分发挥政府导向作用,建立有效的经费保障机制,加大对核安全与放射性污染防治的财政投入,推动规划项目落实。落实好相关税收优惠政策,建立多元化投入机制,积极拓展融资渠道。完善核安全管理的资金管控模式,对涉及核应急、核保险与核赔偿、民用核设施放射性污染防治、公益性核安全基础设施建设等需要政府和企业共同承担的费用,明确规定资金来源、出资方式、审批流程、资金用途,严格审查资金流向,确保资金筹集和使用到位。  六、规划实施与评估  加强协调联动。国务院各有关部门要加强沟通协调,按照职责分工,明确责任主体,完善行业主管部门、核安全监管部门之间的合作协调机制,共同推进规划实施。  落实工作责任。各部门、各级地方政府和相关企事业单位要按照职责分工和规划确定的目标要求,将工作任务纳入到年度工作计划中,制定具体实施方案,把任务逐级分解,做到量化目标、分步实施、严格管理、加强考核。  严格督促检查。国务院有关部门要定期对规划实施情况组织督查,及时研究解决规划实施中出现的问题,总结推广好的经验做法 对规划实施效果进行跟踪评价,重大情况及时向国务院报告。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制