当前位置: 仪器信息网 > 行业主题 > >

气体热定仪

仪器信息网气体热定仪专题为您提供2024年最新气体热定仪价格报价、厂家品牌的相关信息, 包括气体热定仪参数、型号等,不管是国产,还是进口品牌的气体热定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气体热定仪相关的耗材配件、试剂标物,还有气体热定仪相关的最新资讯、资料,以及气体热定仪相关的解决方案。

气体热定仪相关的论坛

  • 半导体热沉恒温台降温效果差原因说明

    半导体热沉恒温台是半导体行业进行控温的设备之一,如果降温效果不好的话,就会影响无锡冠亚半导体热沉恒温台的使用,那么有哪些因素影响半导体热沉恒温台的降温效果呢?  这种情况的发生和半导体热沉恒温台冷量损失大有关。由于半导体热沉恒温台设备、管路的隔热厚度不够或隔热层受到损坏,导致半导体热沉恒温台冷量损失增大,影响降温效果。在半导体热沉恒温台运行中,一旦发现隔热层外表面有湿润或结霜的部位,就说明半导体热沉恒温台隔热材料的厚度不够或已经受潮,这时要及时增加或更换半导体热沉恒温台隔热材料。此外,半导体热沉恒温台蒸发器水箱盖不严密,空气处理室或密封门封条损坏,送风管道及房间门窗泄漏等。都会使冷量损失增大,要及时采取应对措施。  每一台半导体热沉恒温台安装的时候,在蒸发器以及管道上都会包一层保温棉,以防冷量损失。如果半导体热沉恒温台机组在制冷速度慢的情况下,企业先要检查管道隔热层的厚度是否不够,或者隔热层是否有损坏。一定要记得包保温棉,并且保证厚度足够!  检查半导体热沉恒温台 制冷系统中是否存在空气。在安装半导体热沉恒温台时,不管是机组内部,还是水泵,或者是管道,不可以存在有空气,哪怕只有一点点空气,那半导体热沉恒温台是无法正常运行的。此外,水泵的内部有一层膜,安装前一定要记得全部撕掉。不然,水没有办法流通或者流通很慢,直接影响半导体热沉恒温台 运行。    检查半导体热沉恒温台压缩机的运动部件是否有磨损,或者是间隙增大,导致输气量下降。压缩机是半导体热沉恒温台 的心脏,压缩机一旦出现问题,半导体热沉恒温台无法运转。因此,压缩机的定期检查及保养工作不可忽略。  半导体热沉恒温台压缩机效率差也是一方面原因。半导体热沉恒温台在长期运行中,运动部件的磨损、配合间隙增大或密封不严,都会使压缩机实际输气量下降,制冷量减小。要检查制冷压缩机。如果维修不好要及时更换。系统内有空气也会导致这一情况的发生。这时排气压力、温度升高,耗电量增加,制冷量下降。    半导体热沉恒温台的降温效果和各个因素息息相关,在运行无锡冠亚半导体热沉恒温台的时候尽量避免这些故障为好。

  • 【分享】有毒气体检测仪在工业中的应用

    在现实情况中,安全和卫生方面的遇到的气体很多都是有机无机气体的混合物。只是由于各种原因,目前我们对于有毒有害气体的认识还更多地集中于可燃气体、可以引起急性中毒的气体(硫化氢、氰氢酸等)、以及某些常见的有毒气体(一氧化碳)、氧气等检测仪上,因此,本文将首先着重介绍这类检测仪,并综合目前的情况对各类有毒有害(无机/有机)气体检测仪的应用提出建议。  气体检测仪的关键部件是气体传感器,气体传感器从原理上可以分为三大类: A) 利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。 B) 利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。 C) 利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。

  • 热导式气体传感器应用于氦气泄漏场合检测

    热导式气体传感器应用于氦气泄漏场合检测

    [align=center]在正常室温以及大气压下,氦是一种无色无味的气体。其在空气中的体积含量为5.24×10-6,它是人类发现临界温度最(ZUI)低的物质。氦是重要的工业气体之一,氦气广泛用于军事工业  研究  石化  制冷  医疗  半导体  管道泄漏检测等领域,其具体应用如下:[/align]检验和分析应用:核磁共振分析仪的超导磁体需要使用液氦冷却。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中,氦气通常用作载气,氦气渗透性良好,不易燃,它还能用于真空泄漏检测。用作保护气体:氦气具有非活泼的化学性质,常用于保护镁  锆  铝  钛等金属焊接。在航空航天技术中,氦气可用作卫星、火箭的挤压和姿态控制发动机空气源。[img=,348,310]https://ng1.17img.cn/bbsfiles/images/2019/06/201906051610066391_5463_3422752_3.png!w348x310.jpg[/img]虽然氦气是无毒的,表面上对人体无害,但是大量吸入会引起窒息甚至死亡!这是因为过度吸入窒息会导致人体缺氧,轻者人会感到疲倦,严重的人可能会突然变黑并在眩晕中窒息!因此在使用氦气的环境中必须实时监测氦气的浓度,OFweek Mall推荐使用热导式气体传感器MTCS2601来进行氦气泄露检测。 法国Endetec的热导式气体传感器MTCS2601由基于 MEMS 技术的 4 个 Ni-Pt 电阻组成的微机械的热电导率传感器。此热导式气体传感器安装在小型的 SMD 封装内。同时结合了低功耗 CMOS 标准集成电路,非常适合 OEC厂商的泄漏检测,或者基于帕拉尼原理的真空度检测,需要超低功耗,长寿命和免维护的产品。适用于恶劣环境下初级压力控制,需要功耗和尺寸的限制,或者是气体泄漏或者水分,或者侵入。[b] 法国Endetec热导式气体传感器 MTCS2601特点:[img=,339,295]https://ng1.17img.cn/bbsfiles/images/2019/06/201906051609017071_7955_3422752_3.jpg!w339x295.jpg[/img][/b]MEMS 热导式气体传感器遵循没有化学反应的物理皮拉尼原理,基于气体热导率变化对于压力测量范围:0.0001~1000mbar,卓越的可重复性。硅晶片上有加热电阻,并且有优异的温度补偿。超小的传感器气体体积例如0.1cm3 。

  • 热导式气体传感器用于检测金属焊接中保护气浓度

    热导式气体传感器用于检测金属焊接中保护气浓度

    [font=微软雅黑][size=10.5000pt]通常,为了解决[/size][/font][font=微软雅黑][size=10.5000pt]金属[/size][/font][font=微软雅黑][size=10.5000pt]焊接时空气中的氧气对[/size][/font][font=微软雅黑][size=10.5000pt]金属[/size][/font][font=微软雅黑][size=10.5000pt]的影响,[/size][/font][font=微软雅黑][size=10.5000pt]都会[/size][/font][font=微软雅黑][size=10.5000pt]采用气体保护焊。气体保护焊使用电弧作为热源,气体作为保护介质。保护气体的主要功能是在焊接过程中保护熔融金属免受空气污染。[/size][/font][font=微软雅黑][size=10.5000pt]简而言之,使用焊接保护气体的目的是提高焊接质量,减小焊接加热区的宽度,并避免材料氧化。[/size][/font][font=微软雅黑][size=10.5000pt]工采网了解到用作保护气的气体有这几种:[/size][/font][font=微软雅黑][size=10.5000pt]单[/size][/font][font=微软雅黑][size=10.5000pt]元[/size][/font][font=微软雅黑][size=10.5000pt]气体包括氩气和二氧化碳[/size][/font][font=微软雅黑][size=10.5000pt];[/size][/font][font=微软雅黑][size=10.5000pt]二元混合物包括氩气和氧气[/size][/font][font=微软雅黑][size=10.5000pt],[/size][/font][font=微软雅黑][size=10.5000pt]氩气和二氧化碳[/size][/font][font=微软雅黑][size=10.5000pt],[/size][/font][font=微软雅黑][size=10.5000pt]氩气和氦气[/size][/font][font=微软雅黑][size=10.5000pt],[/size][/font][font=微软雅黑][size=10.5000pt]氩气和氢气[/size][/font][font=微软雅黑][size=10.5000pt];[/size][/font][font=微软雅黑][size=10.5000pt][img=,422,285]https://ng1.17img.cn/bbsfiles/images/2020/06/202006051025309192_8596_3422752_3.png!w422x285.jpg[/img][/size][/font][font=微软雅黑][size=10.5000pt]三元混合物由氦、氩和二氧化碳组成。[/size][/font][font=微软雅黑][size=10.5000pt]在应用中,根据不同的焊接材料选择不同比例的焊接混合料。用混合气体代替单一气体作为保护气体,可以有效细化熔滴,减少飞溅,改善成形,控制熔深,防止缺陷,降低气孔生产率,从而显著提高焊接质量。[/size][/font][font=微软雅黑][size=10.5000pt]以上保护气中,[/size][/font][font=微软雅黑][size=10.5000pt]通过使用富氩混合物,即使焊接电流增加,飞溅仍然可以得到很好的控制。由此带来的优势是焊接速度的提高,尤其是自动焊接,大大提高了生产效率。在相同的焊接操作参数下,富氩混合物比二氧化碳大大减少了焊接烟尘[/size][/font][font=微软雅黑][size=10.5000pt],相比较而言[/size][/font][font=微软雅黑][size=10.5000pt]用硬件和设备改善焊接操作环境,富氩混合物是减少源污染的附加优势。[/size][/font][img=,306,301]https://ng1.17img.cn/bbsfiles/images/2020/06/202006051025302610_2562_3422752_3.png!w306x301.jpg[/img][font=微软雅黑][size=10.5000pt]目前,氩气混合气体已广泛应用于许多行业,[/size][/font][font=微软雅黑][size=10.5000pt]不过[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]国内大多数企业使用[/font]80%的氩气[/size][/font][font=微软雅黑][size=10.5000pt]。[/size][/font][font=微软雅黑][size=10.5000pt]在许多应用中,保护气体不能给出最佳效果,因为选择最佳保护气体的最重要标准是能够最大程度地满足实际焊接要求。另外,合适的气体流量是保证焊接质量的前提,过大或过小的流量都不利于焊接。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]工采网建议在金属焊接过程中使用[url=https://www.isweek.cn/2181.htmlhttp://]热导式气体传感器[/url]来实时监测保护气的浓度,确保在标准浓度内进行焊接,提高焊接产品质量。其中,瑞士[/font]Neroxis 热导式气体传感器 - MTCS2601就是一个不错的选择,超低功耗,可以使用在串扰气体环境中;另外,该传感器遵循没有化学反应的物理皮拉尼原理,基于气体热导率变化对于压力。[/size][/font]

  • 真空热重分析仪多种气体低气压高精度控制解决方案

    真空热重分析仪多种气体低气压高精度控制解决方案

    [align=center][size=16px] [img=真空热重分析仪多种气体低气压高精度控制解决方案,550,383]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170921522574_4489_3221506_3.jpg!w690x481.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:针对目前国内外各种真空热重分析仪普遍不具备低压压力精密控制能力,无法进行不同真空气氛环境下材料热重分析的问题,并根据用户提出的热重分析仪真空度精密控制技术改造要求,本文提出了技术改造解决方案。解决方案基于动态平衡法采用了上游和下游控制方式,通过配备的多路进气混合装置、高精度电容真空计、电控针阀和双通道PID真空压力控制器,可实现热重分析仪在10Pa~100kPa范围内多种气体气氛下的真空度精密控制。[/b][/color][/size][align=center][size=16px][color=#339999][b]==========================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 项目背景[/b][/color][/size][size=16px] 热重分析(Thermogravimetric Analysis,TG或TGA)是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组分。而真空热重分析(Vac-TGA)则是在普通热重分析中增加了真空变量,允许在低至1Pa的绝对压力条件下对样品进行分析,适用于在使用中需要减压条件的客户应用。真空热重分析技术用于解决在工作中遇到低气压的专业化检测分析,Vac-TGA还可以实现更准确地观察薄膜、复合材料、环氧树脂等材料的挥发物、降解和排气等情况。[/size][size=16px] 真空热重分析仪一般都配备真空密闭的炉体和精确控制保护气和吹扫气流量的气体质量流量控制器(MFC),为TG与FTIR或[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]等联用提供了便利。密闭系统的真空度最高可达1Pa(绝对压力),一般都包括两路吹扫气和一路保护气,由此可进行各种气氛环境下的热重分析,如惰性、氧化性、还原性、静态和动态气氛环境。[/size][size=16px] 目前常见的真空热重分析仪只能实现抽真空功能,普遍无法对密闭炉体内的气体压力进行准确控制,只有最先进的磁悬浮热重分析仪具有压力控制功能,但也仅适用于大于一个大气压的高压控制,其结构如图1所示,还是无法对低于一个大气压的低压环境进行调节控制,无法提供低压环境的模拟。[/size][align=center][size=16px][color=#339999][b][img=国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图,450,464]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170923427525_9766_3221506_3.jpg!w690x712.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 由于现有真空热重分析仪无法提供低压环境的真空控制,客户希望能对现有V-TGA进行技术改造,增加真空度控制功能,以对高原地区低氧、低气压条件下的煤燃烧过程开展研究。[/size][size=16px] 为了彻底真空热重分析仪的真空压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节热重分析仪的进气和排气流量,使内部气压快速达到动态平衡状态而恒定在设定真空度上,为热重分析仪提供可任意设定低气压值的精密控制,本文将提出以下技术改造实施方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 首先,根据客户要求以及今后真空热重分析仪的低压应用,本解决方案拟达到的指标如下:[/size][size=16px] (1)真空度控制范围:10Pa~100kPa(绝对压力)。[/size][size=16px] (2)真空度控制精度:±1%(读数)。[/size][size=16px] (3)气氛:真空、单一气体和多种气体混合。[/size][size=16px] 为达到上述技术指标,解决方案设计的热重分析仪真空压力控制系统结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=真空热重分析仪低气压精密控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170924200752_5900_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 真空热重分析仪低气压精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,为了实现10Pa~100kPa全量程内的真空度控制,控制系统的具体内容如下:[/size][size=16px] (1)配备了两只电容真空计,量程分别是10Torr和1000Torr,精度都为读数的±0.2%。[/size][size=16px] (2)采用了动态平衡法进行控制,其中在真空度10Pa~1kPa范围内采用上游(进气端)控制模式,而在1kPa~100kPa真空度范围内采用下游(排气端)控制模式。[/size][size=16px] (3)上游控制模式:上游控制模式是固定排气流量(真空泵全开,电动针阀2固定某一开度),通过自动调节电动针阀1开度来改变进气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施上游控制模式的闭环控制回路包括10Torr真空计1、电动针阀1和真空压力控制器的第一通道,如图2中的蓝色虚线所示。[/size][size=16px] (4)下游控制模式:下游控制模式是固定进气流量(电动针阀1固定某一开度),通过自动调节电动针阀2开度来改变排气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施下游控制模式的闭环控制回路包括1000Torr真空计2、电动针阀2和真空压力控制器的第二通道,如图2中的红色虚线所示。[/size][size=16px] (5)双通道真空压力控制器:所配备的VPC2021-2真空压力控制器具有两路独立的PID控制通道,与相应的真空计和电动针阀配合可组成上游和下游控制回路。在进行上游自动控制过程中,上游控制回路进行自动PID控制,而下游控制回路设置为手动控制并设定固定输出值以使得电控针阀2的开度固定。在进行下游自动控制过程中,下游控制回路进行自动PID控制,而上游控制回路设置为手动控制并设定固定输出值以使得电控针阀1的开度固定。[/size][size=16px] (6)电动针阀:所配备的NCNV系列电动针阀是一种步进电机驱动的高速针型阀,可在一秒时间内完成从关到开的高速线性变化,具有很好的线性度和重复性精度,具有极低的磁滞,可采用模拟信号(0-10V、4-20mA)和RS485进行控制,可对小流量气体流量进行精密调节。[/size][size=16px] (7)进气装置:图2所示的控制系统进气装置可实现多种气体的精密配比混合,每种气体的流量通过气体质量流量控制器进行调节和控制,多路气体在混气罐内进行混合,混合后的气体作为进入真空热重分析仪的进气。[/size][size=16px] (8)控制精度:由于整个控制系统采用了高精度的真空计、电动针阀和PID控制器,可实现全量程的真空度精密控制,考核试验结果证明控制可轻松达到±1%读数的高精度。[/size][size=16px] (9)控制软件:双通道真空压力控制器配备有计算机控制软件,通过控制器上的RS485通讯接口,计算机可远程操作真空压力控制器实现控制运行、参数设置和过程参数的采集、存储和曲线显示。[/size][b][size=18px][color=#339999]3. 总结[/color][/size][/b][size=16px] 本解决方案彻底解决了真空热重分析仪中存在的真空度精密控制问题,在满足用户所提的真空热重分析仪技术改造要求之外,本解决方案还具有以下优势和特点:[/size][size=16px] (1)本解决方案具有很强的实用性,并经过了试验考核和大量应用,按照解决方案可很快完成真空热重分析仪高精度真空压力控制系统的搭建和技术改造,无需对热重分析仪进行改动。[/size][size=16px] (2)本解决方案具有很强的适用性,通过改变其中的相关部件参数指标就可适用于不同范围和不同规格型号真空热重分析仪的真空压力控制,可满足各种真空热重分析仪的多种低气压控制需求。[/size][size=16px] (3)本解决方案可以通过增减高压气源来实现不同气体气氛环境的低压控制,也可进行多种气体混合后的低压控制,具有很大的灵活性。[/size][size=16px] (4)本解决方案还为后续的热重分析仪与其他热分析联用留有接口,如可以通过在排气端增加微小流量可变泄漏阀实现与质谱仪的联用。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【求助】【已应助】关于气体采集管热解析时应用问题

    最近初次做TVOC检测,关于气体采集管的使用中关于气体吹扫方向疑问,从网上找了一些方法,现在是如下操作的,希望大侠们能够给以指正解析仪器是中惠普的JX2热解析仪,使用玻璃气体采样管1、 活化:方向由A口至B口2、 进标样:氮气吹扫方向同活化方向,由A口至B口3、 热解析:将注入标样的采样管以活化时相反的方向接入热解析仪,随后进行进样,氮气流向与活化和注入标样方向相反,即由B口至A口不知氮气吹扫方向是否正确?

  • 【分享】有毒有害气体检测仪在工业中的应用

    在现实情况中,安全和卫生方面的遇到的气体很多都是有机无机气体的混合物。只是由于各种原因,目前我们对于有毒有害气体的认识还更多地集中于可燃气体、可以引起急性中毒的气体(硫化氢、氰氢酸等)、以及某些常见的有毒气体(一氧化碳)、氧气等检测仪上,因此,本文将首先着重介绍这类检测仪,并综合目前的情况对各类有毒有害(无机/有机)气体检测仪的应用提出建议。 有毒有害气体检测仪的分类和原理: 气体检测仪的关键部件是气体传感器。 气体传感器从原理上可以分为三大类: A) 利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。 B) 利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。 C) 利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。 根据危害,我们将有毒有害气体分为可燃气体和有毒气体两大类。 由于它们性质和危害不同,其检测手段也有所不同。 可燃气体是石油化工等工业场合遇到最多的危险气体,它主要是烷烃等有机气体和某些无机气体:如一氧化碳等。 可燃气体发生爆炸必须具备一定的条件,那就是:一定浓度的可燃气体,一定量的氧气以及足够热量点燃它们的火源,这就是爆炸三要素(如上左图所示的爆炸三角形),缺一不可,也就是说,缺少其中任何一个条件都不会引起火灾和爆炸。 当可燃气体(蒸汽、粉尘)和氧气混合并达到一定浓度时,遇具有一定温度的火源就会发生爆炸。我们把可燃气体遇火源发生爆炸的浓度称为爆炸浓度极限,简称爆炸极限,一般用%表示。实际上,这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围。 如上右图所示的阴影部分。当可燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸。不同的可燃气体的LEL和UEL都各不相同(参见第八期的介绍),这一点在标定仪器时要十分注意。为安全起见,一般我们应当在可燃气体浓度在LEL的10%和20%时发出警报,这里,10%LEL称。作警告警报,而20%LEL称作危险警报。这也就是我们将可燃气体检测仪又称作LEL检测仪的原因。 需要说明的是,LEL检测仪上显示的100%不是可燃气体的浓度达到气体体积的100%,而是达到了LEL的100%,即相当于可燃气体的最低爆炸下限,如果是甲烷,100%LEL=4%体积浓度(VOL).在工作中,以LEL方式测量这些气体的检测仪是我们常见的催化燃烧式检测仪。它的原理是一个双路电桥(一般称作惠斯通电桥)检测单元。在这其中的一个铂金丝电桥上涂有催化燃烧物质,不论何种易燃气体,只要它能够被电极引燃,铂金丝电桥的电阻就会由于温度变化发生改变,这种电阻变化同可燃气体的浓度成一定比例,通过仪器的电路系统和微处理机可以计算出可燃气体的浓度。 直接测量可燃气体的体积浓度的热导式VOL检测器也可以在市场上得到,同时,也已经有了LEL/VOL合二为一的检测器。VOL可燃检测器特别适合于在缺氧(氧气不足)的环境中测量可燃气体的体积(VOL)浓度。 有毒气体既可以存在于生产原料中,如大多数的有机化学物质(VOC),也可能存在于生产过程的各个环节的副产品中,如氨、一氧化碳、硫化氢等等。它们是对工作人员造成危害最大的危险因素。这种危害不仅包括立即的伤害,如身体不适、发病、死亡等等,而且包括对于人体长期的危害,如致残、癌变等等。对于这些有毒有害气体的检测是我们发展中国家应当开始引起充分重视的问题。 表 常见有毒有害气体的TWA(8小时统计权重平均值)、STEL(15分钟短期暴露水平)、IDLH(立即致死量)(ppm)和MAC(车间最大允许浓度)mg/m3。 有毒气体 TWA STEL IDLH MAC 氨气 (NH3) 25 35 500 30 一氧化碳(CO) 25 -- 1500 30 氯气 (Cl2) 0.5 1 30 1 氰化氢 (HCN) 10 4.7 50 0.3 硫化氢(H2S) 10 15 300 10 一氧化氮 (NO) 25 -- 100 -- 二氧化硫(SO2) 2 5 100 15 VOC* 50 100 -- -- 随气体种类不同,其TWA、STEL、IDLH、MAC等值会有一定的不同 目前,对于特定的有毒气体的检测,我们使用最多的是专用气体传感器。它可以包括上面。所列的所有气体传感器,也包括前两章所介绍的光离子化检测仪。其中,检测无机气体最为普遍、技术相对成熟、综合指标最好的方法是定电位电解式方法,也就是我们常说的电化学传感器。 电化学传感器的构成是:将两个反应电极--工作电极和对电极以及一个参比电极放置在特定电解液中(如上图如示),然后在反应电极之间加上足够的电压,使透过涂有重金属催化剂薄膜的待测气体进行氧化还原反应,再通过仪器中的电路系统测量气体电解时产生的电流,然后由其中的微处理器计算出气体的浓度。 目前,可以检测到特定气体的电化学传感器包括:一氧化碳、硫化氢、二氧化硫、一氧化氮、二氧化氮、氨气、氯气、氰氢酸、环氧乙烷、氯化氢等等。 检测VOC检测 器可以使用前章介绍的光离子化检测器。氧气也是在工业环境中,尤其是密闭环境中需要十分注意因素。一般我们将氧气含量超过23.5%称为氧气过量(富氧),此时很容易发生爆炸的危险;而氧气含量低于19.5%为氧气不足(缺氧),此时很容易发生工人窒息、昏迷以至死亡的危险。正常的氧气含量应当在20.9%左右。氧气检测仪也是电化学传感器的一种。 目前在选择有毒有害气体检测仪时的问题: 在我国,由于历史和认识上的原因,我们在选用各类检测仪时存在的问题还比较多,具体体现在: 1) 对可燃气体的检测重于对有毒气体的检测。 2) 对可能引起急性中毒气体的检测重于对可能引起慢性中毒的气体的检测。 由于众多可燃气体泄漏所引起的爆炸事故的血的教训,使人们对于可燃气体检测十分重视,可以讲,任何一个石化、化工厂,绝大多数的危险气体检测仪都是LEL检测仪。但仅配备LEL检测仪对于真正保护工人的安全和健康还是远远不够的。 不可否认的是,大多数的挥发性危险气体都是可燃气体,但是,催化燃烧式的可燃气体检测仪(LEL)并不是对所有的可燃气体检测都是最佳选择。它是专门为检测甲烷设计的,而对其它物质的检测性能比较差。所以,它们可以检测出的除甲烷以外的可燃气体的下限浓度要远远高于它们的允许浓度。 比如:对于苯、氨气等危险有毒气体,单纯使用可燃气体检测仪就是一个十分危险的做法。比如,苯的爆炸下限是1.2%,它在LEL检测仪上的校正系数是2.51,也就是说,苯在一个用甲烷标定的LEL检测仪上的显示的浓度只是其实际浓度的40%!!这样,用LEL可以检测到的苯的最低警报浓度是10%LEL=10%*1.2%*2.51=3.0*10-3,这个浓度同苯的允许浓度5*10-6相比要高近600倍!!。同样,氨在LEL检测仪上得到的警报浓度1.5*10-2也要比其允许浓度2.5*10-5高大约600倍。因此根据所检测气体的不同,选择特定有毒气体检测仪要比单纯选择LEL检测仪更加安全可靠得多。 另外,目前我们对于可以引起急性中毒的气体,比如硫化氢、氰氢酸等的检测较为重视,但对于可以引起慢性中毒的气体,比如芳香烃、醇类等的检测重视不够,其实后者对于工人健康和安全的危害丝毫不逊于可以引起急性中毒的气体!它们可能引起癌变和其它的隐形病症,影响工人的寿命和健康。这种现象的出现,除了认识上的原因以外,以前市场上缺乏合适的、可以检测较低浓度的有机气体检测仪也是一个重要的原因。 随着科学技术水平的发展和人们健康认识的提高,人们已经不满足于仅仅"高高兴兴上班来,平平安安回家去",而是追求着更高的生活质量和生活条件。人们不仅关心着今日的工作,更关心着明天----退休以后的生活。 因此在工业卫生和工业安全工作中要不断地引入新观念、新思路才能不仅要避免眼前的危险发生,而更要注意避免日后悲剧的发生,所有这些,都需要通过法规制定和人们素质的提高得到不断地改善和提高。我们将在下节内容中探讨如何选择和维护各类有毒有害气体传感器。

  • 二箱气体式冷热冲击机规范化操作要点

    二箱气体式冷热冲击机规范化操作要点

    1. 二箱气体式冷热冲击机在做环境试验时,对所需试验的样品性能、试验条件、试验程序和试验技术要熟悉,对设备的构造要有所了解,尤其是对控制器的操作及性能要熟悉。  2. 合理选择试验设备。为保证试验正常进行,应该根据试验样品的不同情况,选择合适的二箱气体式冷热冲击机试验设备,试验样品和试验箱的有效容积之间也要保持一个合理的比例。对于发热试验样品的试验,其体积应不大于试验箱有效容积的十分之一。对于不发热试验样品其体积应不大于试验箱有效容积的五分之一。比如,一台21寸彩电在做温度储存试验时,选用一个一立方体积的试验箱就能满足要求,而在通电工作时,它就不能满足要求了,应该换一个更大一些的试验箱,因为电视机在工作时要发散热量。  3. 正确放置试验样品。试验样品的安放位置,应离开二箱气体式冷热冲击机箱壁10cm以上,对多个样品应尽量放在同一平面上。样品放置应不堵塞出风口和回风口,给温湿度传感器也应留出一定距离。以保证试验温度的正确。  4. 对于试验中所需加入介质的环境试验,应根据试验要求正确添加。如湿热试验箱用水是有一定要求的,试验箱用水电阻率不得低于500欧.米,一般自来水电阻率10--100欧.米,蒸馏水电阻率100--10000欧.米,去离子水电阻率10000-100000欧.米,因此湿热试验用水要用蒸馏水或去离子水,而且一定要用新鲜的,因为水与空气接触后,易受到二氧化碳和灰尘污染,水有能溶多种物质的性质,时间长了后,电阻率要下降。现在市面上有的纯净水比较经济,而且方便,它的电阻率相当于蒸馏水。  5、 对二箱气体式冷热冲击机的使用。二箱气体式冷热冲击机用湿球纱布(湿球纸)是有一定要求,不是任何纱布都能代用,因为相对湿度的读数是根距是温湿度之差,严格说还与当地当时的大气压力、风速有关。http://ng1.17img.cn/bbsfiles/images/2017/04/201704261636_01_3081755_3.jpg

  • 求助:热导测定无机气体

    现在用的GC-14C,热导监测器向测定气体中含乙炔,氯化氢还有氮含氧,可是各种条件都是了,标气,样品,都未出峰,而且用乙炔标气时,出一个峰,但与进空气时出的峰几乎一样的时间,面积。找不出问题在那?请大家多指教啊!

  • ICP光谱仪工作气体-氩

    [url=http://www.huaketiancheng.com/][b]ICP光谱仪[/b][/url]工作气体-氩,今天我们就来简单的了解一下吧。  氩在空气中含量仅为0.93%。ICP光源所用的氩气纯度需要99.99%以上。而目前商品ICP光谱仪均用氩气作为工作气体,未采价廉的分子气体如氮气和空气等。其原因有两个:一是氩ICP光源有良好的分析性能,分析灵敏度高且光谱背景较低 二是用氩作等离子体易于形成稳定ICP,所需的高频功率也较低。  在ICP光谱技术发展过程中,曾多次探讨用分子气体(氮气,空气,氧气,氩-氮混合气)代替氩气作工作气体。分子气体虽然在较高功率下也能形成等离子体焰炬,所形成的等离子体激发温度也较氩等离子体低。  首先看单原子气体和分子气体的电离所需能量与气体温度的关系。把气体加热到同样温度,分子气体氮气和氢气所消耗的热能远高于氩气和氦气。可以看出分子气体形成离子的过程分两步,第一步分子状态N2受热理解为原子,然后第二步才能进行电离反应。N2分子离解所需能量为873KJ/mol,电离过程所需的能量为1402kj/mol。而惰性气体氩以原子态存在,只给予电离能即可。Ar的电离能为1506KJ/mol,所需的能量低于分子气体氮气的离解能和电离能之和。  工作气体的电阻率,热熔及热导率等物理性质是影响形成稳定等离子体的另一个重要原因。氩的电阻率,热熔和热导率都是最低的。低的热导率可降低由于热导散热而造成的能量损失 提高等离子体的热效率,热导率的高低对于形成稳定等离子体极为重要。据试验表明,当外管气流量为5L/min氩气时,石英矩管热传导分别损耗总能量的60%,43%及20%。由于前述的原因,氩气最易形成稳定的ICP,如高频电源频率为4MHz时,用氩气为工作气体,维持ICP的最低功率为1.5kW 而用氮气时为28kw,用氢气为250kw。当然,提高电源频率可以相应降低维持ICP所需的功率。用分子气体形成的等离子体,其温度比Ar-ICP和He-ICP要低。

  • 冷热冲击试验箱会出现哪些不稳定的因素

    冷热冲击试验箱会出现哪些不稳定的因素

    在[b]冷热冲击试验箱[/b]当中主要的就是温度,在运转的时候如果温度达不到要求就会对后面的操作有影响,所以我们需要提前做好预防工作,确保试验能够正常的进行下去。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/06/202106181531052267_644_1037_3.jpg!w348x348.jpg[/img][/align]  如果冷热冲击试验箱工作室内检测的试验样品是对试验整体热对流有影响的样品的话,就会在一定的程度上干扰温度的均匀性,工作室内的温度就不能保持一个均衡的状态 如果试验样品的体积超出规定之外的话,工作室内的温度也是不能够进行流通的,这样也会产生一定的偏差。工作室的传热系数不一样导致的温度是不一样的,另外还有内壁的结构也有一定的影响,比如温度不均匀、热对流等。  根据以上所描述的这些总结出对冷热冲击试验箱造成影响的因素有哪些了,一方面是上述原因,当然更重要的还是与厂家生产的设备的质量有关,还需要注意试验箱放置的要求。所以你们要更加的注重这些条件。

  • 【资料】热工实验技术与数据处理----气体成份分析

    一、概述二、实验室气体分析设备配置及工作原理 三、几种典型气体分析仪器的综合比较 四、气体成份在分析过程中常见问题及解决方法 五、一种典型的气体分析系统介绍 [color=#DC143C]主讲---李彦(热能实验室)[/color][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=155454]热工实验技术与数据处理----气体成份分析[/url]

  • 【原创】可燃气体测爆仪(氢气)检定方法

    氢气的%LEL和%和PPM的单位换算公式?应该是1%=10000PPM,10%=100000PPM 吗?在线的可燃气体(氢气)测爆仪是用%浓度检定,还是有PPM浓度检定?如果是%浓度可以用PPM检定吗?购买PPM的浓度买那几个,买%浓度又买几个,请各位专家帮我参考一下?

  • ICP光谱仪?用氩气作为工作气体

    氩在空气中含量仅为0.93%。ICP光源所用的氩气纯度需要99.99%以上。而目前商品[url=http://www.huaketiancheng.com/][b]ICP光谱仪[/b][/url]均用氩气作为工作气体,未采价廉的分子气体如氮气和空气等。其原因有两个:一是氩ICP光源有良好的分析性能,分析灵敏度高且光谱背景较低;二是用氩作等离子体易于形成稳定ICP,所需的高频功率也较低。 在ICP光谱技术发展过程中,曾多次探讨用分子气体(氮气,空气,氧气,氩-氮混合气)代替氩气作工作气体。分子气体虽然在较高功率下也能形成等离子体焰炬,所形成的等离子体激发温度也较氩等离子体低。  首先看单原子气体和分子气体的电离所需能量与气体温度的关系。把气体加热到同样温度,分子气体氮气和氢气所消耗的热能远高于氩气和氦气。可以看出分子气体形成离子的过程分两步,第一步分子状态N2受热理解为原子,然后第二步才能进行电离反应。N2分子离解所需能量为873KJ/mol,电离过程所需的能量为1402kj/mol。而惰性气体氩以原子态存在,只给予电离能即可。Ar的电离能为1506KJ/mol,所需的能量低于分子气体氮气的离解能和电离能之和。  工作气体的电阻率,热熔及热导率等物理性质是影响形成稳定等离子体的另一个重要原因。氩的电阻率,热熔和热导率都是最低的。低的热导率可降低由于热导散热而造成的能量损失;提高等离子体的热效率,热导率的高低对于形成稳定等离子体极为重要。据试验表明,当外管气流量为5L/min氩气时,石英矩管热传导分别损耗总能量的60%,43%及20%。由于前述的原因,氩气最易形成稳定的ICP,如高频电源频率为4MHz时,用氩气为工作气体,维持ICP的最低功率为1.5kW;而用氮气时为28kw,用氢气为250kw。当然,提高电源频率可以相应降低维持ICP所需的功率。用分子气体形成的等离子体,其温度比Ar-ICP和He-ICP要低。

  • 热场为什么能减少气体吸附针尖?

    冷场日立S-4800和日本电子J6335F都必须每天做Flashing去除针尖表面气体分子,而“热场工作温度是1800K,能避免气体分子吸附在针尖,所以做Flashing”,为什么温度提高了,就减少了气体分子吸附针尖,?还有冷场中,气体分子为什么总是会吸附在针尖上?

  • 砷定容,产生大量气体?!

    0.3g的植物中加5ml的硝酸,微波消解,赶酸后,我用1%的硫尿和1%的抗坏血酸的盐酸溶液定容时,溶液显红色,并产生大量气体,不知道是怎么一回事,请大家指教!

  • 煤质化验设备--低温干馏仪器原理

    与高温干馏(即焦化)相比,低温干馏的焦油产率较高而煤气产率较低。一般半焦为50%~70%,低温煤焦油8%~25%,煤气80~100m3/t(原料煤)。  沿革 煤低温干馏技术的应用始于19世纪,当时主要用于制取灯油(或称煤油)和蜡。19世纪末,因电灯的发明而趋于衰落。第二次世界大战前夕及大战期间,纳粹德国基于战争的目的,建立了大型低温干馏工厂,生产低温干馏煤焦油,再经高压加氢制取汽油、柴油。战后,大量廉价石油的开采,使煤低温干馏工业再次陷于停滞状态,各种新型低温干馏的方法多处于试验阶段。  历史上曾出现过很多低温干馏方法,但工业上成功的只有几种。这些方法按炉的加热方式可分为外热式、内热式及内热外热混合式。外热式炉的加热介质与原料不直接接触,热量由炉壁传入;内热式炉的加热介质与原料直接接触,因加热介质的不同而有固体热载体法和气体热载体法两种。  内热式气体热载体法 鲁奇-斯皮尔盖斯低温干馏法是工业上已采用的典型方法。此法采用气体热载体内热式垂直连续炉,在中国俗称三段炉,即从上而下包括干燥段、干馏段和冷却段三部分(图1)。褐煤或由褐煤压制成的型块(约25~60mm)由上而下移动,与燃烧气逆流直接接触受热。炉顶原料的含水量约15%时,在干燥段脱除水分至 1.0%以下,逆流而上的约250℃热气体冷至80~100℃。干燥后原料在干馏段被600~700℃不含氧的燃烧气加热至约500℃,发生热分解;热气体冷至约250℃,生成的半焦进入冷却段被冷气体冷却。半焦排出后进一步用水和空气冷却。从干馏段逸出的挥发物经过冷凝、冷却等步骤,得到焦油和热解水。德国、美国、苏联、捷克斯洛伐克、新西兰和日本都曾建有此类炉型。中国东北也曾建此种炉。60年代初,在中国曾采用的气燃式炉也属此类型,后因大量廉价天然石油的开采而停产。  内热式固体热载体法 鲁奇-鲁尔盖斯低温干馏法(简称L-R法)是固体热载体内热式的典型方法。原料为褐煤、非粘结性煤、弱粘结性煤以及油页岩。20世纪50年代,在联邦德国多尔斯滕建有一套处理能力为10t/h煤的中间试验装置,使用的热载体是固体颗粒(小瓷球、砂子或半焦)。由于过程产品气体不含废气,因此后处理系统的设备尺寸较小,煤气热值较高,可达20.5~40.6MJ/m3。此法由于温差大,颗粒小,传热极快,因此具有很大的处理能力。所得液体产品较多、加工高挥发分煤时,产率可达30%。  L-R法工艺流程(图2)是首先将初步预热的小块原料煤,同来自分离器的热半焦在混合器内混合,发生热分解作用。然后落入缓冲器内,停留一定时间,完成热分解。从缓冲器出来的半焦进入提升管底部,由热空气提送,同时在提升管中烧去其中的残碳,使温度升高,然后进入分离器内进行气固分离。半焦再返回混合器,如此循环。从混合器逸出的挥发物,经除尘、冷凝和冷却、回收油类,得到热值较高的煤气

  • 体热的人,有什么保养方法?

    今天在办公室聊天,听一同事说,他家小孩,两岁,每天晚上睡觉从不盖被子大人不穿衣服也要盖被子,他没事,而且睡觉还老出汗。每天晚上几乎还要尿床。不知道是啥毛病,有什么治疗方法吗。大家帮他号号脉。

  • 【转】常用气体分析仪的各种分析原理介绍

    测量气体分析仪的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。   1、热导式气体分析仪   一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。   2、电化学式气体分析仪   一种化学类的气体分析仪表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪(图2)的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪(图3)是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。   3、红外线吸收式分析仪   根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。   一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。   与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

  • 如何把气体样品放入顶空瓶?

    顶空样品也可以是气体,那么如何把气体样品装入20ml顶空瓶,以保证重复性。气体样品中含丙酮,乙酸丁酯 不能用排水法。

  • 【分享】有毒有害气体检测器在劳动安全和工业卫生中的应用

    在这里我们将着重讨论其它无机有毒有害气体检测仪的原理和应用,但实际上,我们很难将有毒有害气体简单地分为有机、无机两大类。因为在现实情况中,安全和卫生方面的遇到的气体很多都是有机无机气体的混合物。只是由于各种原因,目前我们对于有毒有害气体的认识还更多地集中于可燃气体、可以引起急性中毒的气体(硫化氢、氰氢酸等)、以及某些常见的有毒气体(一氧化碳)、氧气等检测仪上,因此,本文将首先着重介绍这类检测仪,并综合目前的情况对各类有毒有害(无机/有机)气体检测仪的应用提出建议。有毒有害气体检测仪的分类和原理: 气体检测仪的关键部件是气体传感器。气体传感器从原理上可以分为三大类:A) 利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。B) 利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。C) 利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。 根据危害,我们将有毒有害气体分为可燃气体和有毒气体两大类。由于它们性质和危害不同,其检测手段也有所不同。 可燃气体是石油化工等工业场合遇到最多的危险气体,它主要是烷烃等有机气体和某些无机气体:如一氧化碳等。 可燃气体发生爆炸必须具备一定的条件,那就是:一定浓度的可燃气体,一定量的氧气以及足够热量点燃它们的火源,这就是爆炸三要素(如上左图所示的爆炸三角形),缺一不可,也就是说,缺少其中任何一个条件都不会引起火灾和爆炸。 当可燃气体(蒸汽、粉尘)和氧气混合并达到一定浓度时,遇具有一定温度的火源就会发生爆炸。我们把可燃气体遇火源发生爆炸的浓度称为爆炸浓度极限,简称爆炸极限,一般用%表示。 实际上,这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围。如上右图所示的阴影部分。当可燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸。不同的可燃气体的LEL和UEL都各不相同(参见第八期的介绍),这一点在标定仪器时要十分注意。 为安全起见,一般我们应当在可燃气体浓度在LEL的10%和20%时发出警报,这里,10%LEL称作警告警报,而20%LEL称作危险警报。这也就是我们将可燃气体检测仪又称作LEL检测仪的原因。需要说明的是,LEL检测仪上显示的100%不是可燃气体的浓度达到气体体积的100%,而是达到了LEL的100%,即相当于可燃气体的最低爆炸下限,如果是甲烷,100%LEL=4%体积浓度(VOL)。 在工作中,以LEL方式测量这些气体的检测仪是我们常见的催化燃烧式检测仪。它的原理是一个双路电桥(一般称作惠斯通电桥)检测单元。在这其中的一个铂金丝电桥上涂有催化燃烧物质,不论何种易燃气体,只要它能够被电极引燃,铂金丝电桥的电阻就会由于温度变化发生改变,这种电阻变化同可燃气体的浓度成一定比例,通过仪器的电路系统和微处理机可以计算出可燃气体的浓度。 直接测量可燃气体的体积浓度的热导式VOL检测器也可以在市场上得到,同时,也已经有了LEL/VOL合二为一的检测器。VOL可燃检测器特别适合于在缺氧(氧气不足)的环境中测量可燃气体的体积(VOL)浓度。 有毒气体既可以存在于生产原料中,如大多数的有机化学物质(VOC),也可能存在于生产过程的各个环节的副产品中,如氨、一氧化碳、硫化氢等等。它们是对工作人员造成危害最大的危险因素。这种危害不仅包括立即的伤害,如身体不适、发病、死亡等等,而且包括对于人体长期的危害,如致残、癌变等等。对于这些有毒有害气体的检测是我们发展中国家应当开始引起充分重视的问题。表 常见有毒有害气体的TWA(8小时统计权重平均值)、STEL(15分钟短期暴露水平)、IDLH(立即致死量)(ppm)和MAC(车间最大允许浓度)mg/m3。有毒气体 TWA STEL IDLH MAC 氨气 (NH3) 25 35 500 30 一氧化碳(CO) 25 -- 1500 30 氯气 (Cl2) 0.5 1 30 1 氰化氢 (HCN) 10 4.7 50 0.3 硫化氢(H2S) 10 15 300 10 一氧化氮 (NO) 25 -- 100 -- 二氧化硫(SO2) 2 5 100 15 VOC* 50 100 -- -- *随气体种类不同,其TWA、STEL、IDLH、MAC等值会有一定的不同 目前,对于特定的有毒气体的检测,我们使用最多的是专用气体传感器。它可以包括上面所列的所有气体传感器,也包括前两章所介绍的光离子化检测仪。其中,检测无机气体最为普遍、技术相对成熟、综合指标最好的方法是定电位电解式方法,也就是我们常说的电化学传感器。 电化学传感器的构成是:将两个反应电极--工作电极和对电极以及一个参比电极放置在特定电解液中(如上图如示),然后在反应电极之间加上足够的电压,使透过涂有重金属催化剂薄膜的待测气体进行氧化还原反应,再通过仪器中的电路系统测量气体电解时产生的电流,然后由其中的微处理器计算出气体的浓度。 目前,可以检测到特定气体的电化学传感器包括:一氧化碳、硫化氢、二氧化硫、一氧化氮、二氧化氮、氨气、氯气、氰氢酸、环氧乙烷、氯化氢等等。 检测VOC检测器可以使用前章介绍的光离子化检测器。 氧气也是在工业环境中,尤其是密闭环境中需要十分注意因素。一般我们将氧气含量超过23.5%称为氧气过量(富氧),此时很容易发生爆炸的危险;而氧气含量低于19.5%为氧气不足(缺氧),此时很容易发生工人窒息、昏迷以至死亡的危险。正常的氧气含量应当在20.9%左右。氧气检测仪也是电化学传感器的一种。目前在选择有毒有害气体检测仪时的问题: 在我国,由于历史和认识上的原因,我们在选用各类检测仪时存在的问题还比较多,具体体现在:1) 对可燃气体的检测重于对有毒气体的检测。2) 对可能引起急性中毒气体的检测重于对可能引起慢性中毒的气体的检测。 由于众多可燃气体泄漏所引起的爆炸事故的血的教训,使人们对于可燃气体检测十分重视,可以讲,任何一个石化、化工厂,绝大多数的危险气体检测仪都是LEL检测仪。但仅配备LEL检测仪对于真正保护工人的安全和健康还是远远不够的。 不可否认的是,大多数的挥发性危险气体都是可燃气体,但是,催化燃烧式的可燃气体检测仪(LEL)并不是对所有的可燃气体检测都是最佳选择。它是专门为检测甲烷设计的,而对其它物质的检测性能比较差。所以,它们可以检测出的除甲烷以外的可燃气体的下限浓度要远远高于它们的允许浓度。比如:对于苯、氨气等危险有毒气体,单纯使用可燃气体检测仪就是一个十分危险的做法。比如,苯的爆炸下限是1.2%,它在LEL检测仪上的校正系数是2.51,也就是说,苯在一个用甲烷标定的LEL检测仪上的显示的浓度只是其实际浓度的40%!!这样,用LEL可以检测到的苯的最低警报浓度是10%LEL=10%*1.2%*2.51=3.0*10-3,这个浓度同苯的允许浓度5*10-6相比要高近600倍!!。同样,氨在LEL检测仪上得到的警报浓度1.5*10-2也要比其允许浓度2.5*10-5高大约600倍。因此根据所检测气体的不同,选择特定有毒气体检测仪要比单纯选择LEL检测仪更加安全可靠得多。 另外,目前我们对于可以引起急性中毒的气体,比如硫化氢、氰氢酸等的检测较为重视,但对于可以引起慢性中毒的气体,比如芳香烃、醇类等的检测重视不够,其实后者对于工人健康和安全的危害丝毫不逊于可以引起急性中毒的气体!它们可能引起癌变和其它的隐形病症,影响工人的寿命和健康。这种现象的出现,除了认识上的原因以外,以前市场上缺乏合适的、可以检测较低浓度的有机气体检测仪也是一个重要的原因。 随着科学技术水平的发展和人们健康认识的提高,人们已经不满足于仅仅"高高兴兴上班来,平平安安回家去",而是追求着更高的生活质量和生活条件。人们不仅关心着今日的工作,更关心着明天----退休以后的生活。因此在工业卫生和工业安全工作中要不断地引入新观念、新思路才能不仅要避免眼前的危险发生,而更要注意避免日后悲剧的发生,所有这些,都需要通过法规制定和人们素质的提高得到不断地改善和提高。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制