当前位置: 仪器信息网 > 行业主题 > >

气体导定仪

仪器信息网气体导定仪专题为您提供2024年最新气体导定仪价格报价、厂家品牌的相关信息, 包括气体导定仪参数、型号等,不管是国产,还是进口品牌的气体导定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气体导定仪相关的耗材配件、试剂标物,还有气体导定仪相关的最新资讯、资料,以及气体导定仪相关的解决方案。

气体导定仪相关的论坛

  • 关于烟道中气体成分检定

    如果我想检测烟道中有什么气体成分,不知道大家都用什么仪器去检测?就是烟道中的气体成分有什么?可以不定量或者可以直接出数的都可以,有可能十几种或者更多种气体,大家都是用什么什么仪器监测?

  • 【原创】可燃气体测爆仪(氢气)检定方法

    氢气的%LEL和%和PPM的单位换算公式?应该是1%=10000PPM,10%=100000PPM 吗?在线的可燃气体(氢气)测爆仪是用%浓度检定,还是有PPM浓度检定?如果是%浓度可以用PPM检定吗?购买PPM的浓度买那几个,买%浓度又买几个,请各位专家帮我参考一下?

  • 求助:热导测定无机气体

    现在用的GC-14C,热导监测器向测定气体中含乙炔,氯化氢还有氮含氧,可是各种条件都是了,标气,样品,都未出峰,而且用乙炔标气时,出一个峰,但与进空气时出的峰几乎一样的时间,面积。找不出问题在那?请大家多指教啊!

  • 砷定容,产生大量气体?!

    0.3g的植物中加5ml的硝酸,微波消解,赶酸后,我用1%的硫尿和1%的抗坏血酸的盐酸溶液定容时,溶液显红色,并产生大量气体,不知道是怎么一回事,请大家指教!

  • ICP光谱仪工作气体-氩

    [url=http://www.huaketiancheng.com/][b]ICP光谱仪[/b][/url]工作气体-氩,今天我们就来简单的了解一下吧。  氩在空气中含量仅为0.93%。ICP光源所用的氩气纯度需要99.99%以上。而目前商品ICP光谱仪均用氩气作为工作气体,未采价廉的分子气体如氮气和空气等。其原因有两个:一是氩ICP光源有良好的分析性能,分析灵敏度高且光谱背景较低 二是用氩作等离子体易于形成稳定ICP,所需的高频功率也较低。  在ICP光谱技术发展过程中,曾多次探讨用分子气体(氮气,空气,氧气,氩-氮混合气)代替氩气作工作气体。分子气体虽然在较高功率下也能形成等离子体焰炬,所形成的等离子体激发温度也较氩等离子体低。  首先看单原子气体和分子气体的电离所需能量与气体温度的关系。把气体加热到同样温度,分子气体氮气和氢气所消耗的热能远高于氩气和氦气。可以看出分子气体形成离子的过程分两步,第一步分子状态N2受热理解为原子,然后第二步才能进行电离反应。N2分子离解所需能量为873KJ/mol,电离过程所需的能量为1402kj/mol。而惰性气体氩以原子态存在,只给予电离能即可。Ar的电离能为1506KJ/mol,所需的能量低于分子气体氮气的离解能和电离能之和。  工作气体的电阻率,热熔及热导率等物理性质是影响形成稳定等离子体的另一个重要原因。氩的电阻率,热熔和热导率都是最低的。低的热导率可降低由于热导散热而造成的能量损失 提高等离子体的热效率,热导率的高低对于形成稳定等离子体极为重要。据试验表明,当外管气流量为5L/min氩气时,石英矩管热传导分别损耗总能量的60%,43%及20%。由于前述的原因,氩气最易形成稳定的ICP,如高频电源频率为4MHz时,用氩气为工作气体,维持ICP的最低功率为1.5kW 而用氮气时为28kw,用氢气为250kw。当然,提高电源频率可以相应降低维持ICP所需的功率。用分子气体形成的等离子体,其温度比Ar-ICP和He-ICP要低。

  • 冷原子吸收测汞仪测气体汞数值不稳定

    我们公司最近买了一台苏州青安公司的QM208B的冷[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测汞仪。我根据HJ543的标准,使用高锰酸钾吸收液采集汞气体样品。然后使用10mL的反应瓶取5mL样品上机测试。发现数值很不稳定。测空白或者样品有时候峰值为0,有时候连续很多针峰值都固定在40左右,有时候同一个空白一针是峰值是0,下一针峰值又是40,再下一针又是0。数值一直突然升高,突然降低,完全没有规律。咨询工程师说我移取到反应瓶的液体量太多,我减少到2ml,问题依然没有解决。也试过用空气或用氮气做载气,依然是这个问题。请问这个问题可能是什么原因?要怎么解决?谢谢

  • 岛津气相色谱仪,开机过会就提示放电气体APC不稳定

    岛津气相色谱仪,开机过会就提示放电气体APC不稳定

    我打开机器后,大约过了20分钟就提示放电气体APC不稳定,一开始会出现,开始点火,然后就直接跳转到这个界面了,无法就绪。我们的载气是高纯氦气。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2021/04/202104211045347321_4019_5250574_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2021/04/202104211045346546_5222_5250574_3.jpg!w690x517.jpg[/img]

  • 如何把气体样品放入顶空瓶?

    顶空样品也可以是气体,那么如何把气体样品装入20ml顶空瓶,以保证重复性。气体样品中含丙酮,乙酸丁酯 不能用排水法。

  • 分析实验室气体分析仪与气体检测仪不同

    1.仪器结构的不同 气体检测仪结构较简单,只包括探头(传感器)及传感器信号转换电路部分。而气体分析仪不仅在内部装有探头(传感器)而且还有一整套气路系统,即将样气引入到仪器内部,并且再引出仪器放空或回收的全套气路系统。 2.检测方式不同 气体检测报警仪利用探头直接暴露在被测的空气中或样气环境中进行检测。而气体分析仪是将被测气体(样气)通过特殊方式引入到仪器内部进行测定,然后再引出仪器外放空。 3.对测定条件的控制方式不同 气体检测报警仪不设有样气工艺技术条件的调整及控制部分,同时它也完全不考虑样气存在的环境条件,直接进行检测。 气体分析仪内部所配套的一整套气路系统及外部配套设备组成了一套较完整的化工工艺流程,气体分析仪内部对样气的工作条件进行全方位调整控制,以达到传感器正常稳定工作的目的,这是气体分析仪能够获得准确测定数据的保证。 4.完成测定全过程的操作方法不同 气体检测报警仪在应用时,只需将仪器放置于被测气氛内,仪器即可显示数值。而气体分析仪必须将样气仔细地引入到仪器内部,再进行工艺技术条件的严格调整,如温度、压力、流量等,只有当操作人员将仪器调整直到实现一个稳定的化工过程后,才能获得准确的测定数据。而在此以前所得到的数据是不正确的,必须弃之不用。 5.在检测过程中,对排除干扰因素考虑的方式不同 气体检测报警仪是将传感器直接置于大环境气氛中测定的,仪器结构设计及在实际使用检测过程中并不考虑大环境气氛中有无干扰测定的因素,并且不具备排除各种干扰因素的设计能力。而气体分析仪在设计选型及使用检测时,必须充分考虑各种影响测定的内部及外部因素,并且,要认真逐一排除,只有这样才能确保检测数据的准确性和真实性。否则,不适当地忽略了某一影响因素,对检测来说都是不被允许的和不能被接受的。 6.数据的准确度不同 气体检测仪只能提供定性分析结果和较为粗略的定量分析数据,这种仪器所显示的数据经不起推敲,不能进行误差分析(因只有分析数据偏离真值很小时才能谈到“误差”),因此,根本不能作为准确的分析数据确定(决定)重要工艺改进调整的措施。而气体分析仪则是一种严格的计量器具,在进行定量分析时,能够提供出十分准确的数据C这种数据可以作为气体生产及安全生产改进和提高的依据,用它来指导及进行生产管理,质量管理及企业管理。甚至于,这种数据可以作为司法刑侦工作的重要依据,利用它来打官司,确定是非界限。

  • 气相色谱,气体进样才是“王道”——关于顶空进样的故事

    气相色谱,气体进样才是“王道”——关于顶空进样的故事

    色谱大家经常用到的是液体进样,可是堂堂“气相”色谱,怎么能落下气体进样这一节呢?所以今天就和大家聊聊气相色谱的气体进样法——顶空分析法。 气相分析时,很多样品不能直接进样,如工业污水中的有机挥发物,需要进行前处理后间接进样,顶空进样本质是一种净化样品的前处理方法。传统的液固萃取、液液萃取等前处理方法,都是用溶剂萃取样品组分,试剂纯度,以及样品组分可能与溶剂形成共萃物,都不可避免引入干扰因素。与之相比,顶空进样是用气体萃取样品组分,如采用高纯且不干扰实验分析的气体,能减少实验的干扰因素,一般高纯气体与高纯溶剂比相对便宜,因此也能降低实验成本。这是顶空进样之所以被广泛应用的重要原因。 顶空分析,是指取样品基质(液体和固体)上方的气相部分进行色谱分析,最早出现在1939年,后来与专门分析气体或样品蒸气的GC结合,即GC顶空进样,如今顶空进样早已经成为一种应用普遍、重要的GC进样技术。 顶空进样是通过样品基质上方的气体成分来测定这些组分在原样品中的含量,是一种间接分析方法。它是基于在一定条件下,气相和凝聚相(液相和固相)之间存在着分配平衡,因此气相的组成能反映凝聚相的组成。根据取样和进样方式的不同,顶空进样分为静态顶空和动态顶空(即吹扫捕集)。 静态顶空,就是将样品密封在一个容器中,在一定温度下放置一段时间使气液两相达到平衡,然后取气相部分进行GC分析。静态顶空,根据一次取样的分析结果,可测定原来样品中挥发性组分的含量,又称为一次气相萃取。如果继续取样分析,分析结果与第一次的分析结果会不同。 而动态顶空,是连续气相萃取,即多次取样,直到将样品中的挥发性组分完全萃取出来。一般是在样品中连续通入惰性气体,挥发性组分即随该萃取气体从样品中逸出,然后通过一个吸附装置(捕集器)将样品浓缩,最后再将样品解吸进入GC分析。 GC顶空进样过程分为:取样、进样、GC 分析。其中取样和进样和顶空过程有关,GC分析影响因素与其他进样方式相同。这里只讨论静态顶空进样和动态顶空进样的顶空过程。 静态顶空进样和动态顶空进样各有特点,下面分类比较。http://ng1.17img.cn/bbsfiles/images/2016/08/201608222209_606207_2384346_3.jpg影响静态顶空分析的因素 样品性质、进样量、进样温度和平衡时间等因素会影响分离度,如果影响因素对分离度的影响是单一的,可以通过单因素考察来确定这些顶空参数,但是影响顶空提取效率的因素很多,这些因素之间常常相互干扰。因此,应综合考虑这些影响因素来选择最佳提取条件,往往采用正交设计的方法进行优选顶空条件。 下面分别介绍单因素方法和正交设计的方法优选顶空条件:①单因素考察确定a. 确定样品量的方法:以固体样品为例,平行制备一定数量的样品。假设一平衡时间(如20min),从0.1g到1g每增加0.1g进样一次,建立以进样量为横坐标、峰面积为纵坐标的趋势图,确定最高效应值,确定最佳样品量。b.确定平衡时间的方法:以平行制备一定数量的目标峰浓度的标样。假设一平衡时间(如20min),从10℃-80℃每增加10℃进样一次,建立以平衡温度为横坐标、峰面积为纵坐标的趋势图,确定最高效应值。另再观察色谱图中除目标峰之外其他峰(如溶剂峰水)的大小变化对检验结果的影响。综合考虑(比如操作性),确定最佳平衡温度。c.确定加热温度方法:平行制备一定数量样品,确定平衡时间和样品量,考察不同加热温度,如100℃、120℃、140℃的进样,建立以进样温度为横坐标,峰面积为纵坐标的趋势图,从而确定最佳加热温度。②正交设计优选:分别以样品量、平衡时间、加热温度作为因素,根据单因素考察结果设置不同的水平,如下表所示,对考察指标的最终结果进行方差分析,从而确定影响顶空提取的主要因素。http://ng1.17img.cn/bbsfiles/images/2016/08/201608222216_606208_2384346_3.jpg 此外,样品瓶的密封性、体积等也是影响分析结果的因素,建议在同一批次实验中选择较为一致的样品瓶与密封盖。影响动态顶空(吹扫-捕集)分析的因素 影响吹扫捕集测定结果的因素基本有两个,一是吹扫-捕集进样器本身,二是GC条件。前者包括解吸温度、吹扫气流速度、吹扫时间和解析条件等,故这些条件都应严格控制其重现性。而后者与普通GC相同。推荐用内标法或标准加入法进行定量,以减少操作条件波动对结果的影响。 在其他方面,如适当使用盐化效应(加入NaCl),以增加萃取效率,但是在样品分析之间必须做适当处理。 使测定结果准确,采用吹扫捕集测定时,必须注意以下因素:①温度作为方法的一部分,可以放入一个磁力搅拌棒在吹扫阶段进行搅拌,瓶子放置在加热套中,使样品达到期望的温度。其中有三个温度需要控制:第一个是吹扫温度,水溶液大多在室温下吹扫,只要吹扫时间足够长,就能满足分析要求。升高温度会增加水分的挥发。对非水溶液,温度可以高些。第二个是捕集器温度,包括吸附温度和解吸温度。吸附温度常为室温,但对不易吸附的气体也可采用低温冷冻捕集技术。解吸温度是吹扫-捕集技术的重要参数,应依据待测组分的性质和吸附剂的性质来优化确定。商品化产品,最高可达450℃,但大部分环境分析的标准均采用200℃左右。第三个是连接管路的温度,它应足够高以防止样品冷凝。环境分析常用的连接管温度为80-150℃。②吹扫气流速吹扫气流速取决于样品中待测样品的浓度、挥发性与样品基质的相互作用(如溶解度);以及其在捕集管中的吸附作用大小。用氦气时,流速范围为20~60mL/min,用氮气时可以稍高一些,但氮气的吹扫效果不及氦气。原因是氮气在水中的溶解度比氦气大。注意,吹扫流速太大时会影响样品的捕集,造成样品组分的损失。吹扫流量对测定结果也有不同的影响,随吹扫流量的增大回收率有降低的趋势,吹扫流量的设置结合其他因素选择。③吹扫时间原则上讲,吹扫时间越长,分析重现性和灵敏度越高。但考虑到分析时间和工作效率,应在满足分析要求的前提下,吹扫时间尽可能短。实际工作中可通过测定标准样品的回收率(通常要求大于90%)。环境分析中吹扫时间一般为10min 左右。④解吸条件的选择解吸时的载气流速主要取决于所用色谱柱。通常用填充柱时为30~40mL/min.用大口径毛细管柱时为5-10mL/min。用毛细管柱时则要按分流或不分流模式来设置载气流速。解吸条件决定解吸效率,影响方法的回收率和稳定性,应通过试验来确定最佳的解吸时间和最高的解析温度。解吸温度的影响:解吸温度过低,解吸缓慢并可能解吸不完全;解吸温度过高,对吸附剂和目标化合物的稳定性均可能有一定影响⑤其他a.适当使用盐析效应(加入盐溶液),以增加萃取效率,但是在两个样品分析之间,吹扫管和传输管线用清洗水清洗三次,可以大大减少腐蚀和盐的沉积。使用最大的样品体积,可使检测器能够检测到最大的样品质量。(如大多数吹扫捕集方法都采用5ml的样品,可以增加样品体积到25ml,并且采用相应的过滤式吹扫管)。一般实验结束后,所有玻璃容器需立即清洗,在105℃烘干备用。b.应尽可能的除去所有的水,可以安装除水装置。将样品基质中所有挥发性组分都进行完全的“气体提取”的方法,适合复杂基质中挥发性高的组分和浓度较低的组分分析。在冷肼捕集分析中水是对测定最大的影响因素,因为水在低温时易结冰堵塞捕集器。c.吹扫气源:氦气、氮气纯度应大于99.995%,压力调节到30~100psi(207~1724kPa),并且连接到吹扫气体入口。气体连接管:管道经过溶剂清洗并且烘焙过。溶剂最好是色谱级。样品如为液体,可用搅拌和加热以改善吹扫效率(加入一个磁力搅拌棒到VOA小瓶中),且在转移过程,尽量使泡沫最少。如检测水样,吹扫气体中的杂质、捕集管中残留的有机物及实验室中溶剂蒸汽都有可能造成污染,避免使用聚四氟乙烯材料管路或含橡胶制品的流速控制器,同时用高纯水进行空白分析,证明分析系统中没有污染;如高浓度、低浓度水样穿插分析时,每次分析后用高纯水清洗吹扫器皿和进样器两次以上。

  • 岛津FID气体直接进样出现倒峰

    岛津FID气体直接进样出现倒峰

    条件:恒温100℃,时间5min气体直接手动进样时在固定的保留时间出现固定大小的倒峰,下图分别是高纯氮气、二氯甲烷(介质是氮气)、氯甲烷(介质是氮气)、甲基丙烯酸甲酯(介质是氮气),都出现了倒峰[img=,690,254]https://ng1.17img.cn/bbsfiles/images/2023/01/202301040907043332_4473_4189382_3.png!w690x254.jpg[/img][img=,690,217]https://ng1.17img.cn/bbsfiles/images/2023/01/202301040907043898_1401_4189382_3.png!w690x217.jpg[/img][img=,690,217]https://ng1.17img.cn/bbsfiles/images/2023/01/202301040907041530_369_4189382_3.png!w690x217.jpg[/img]

  • 科学家在量子气体中观察到“第二声”

    证实了70年前朗道提出的温度波理论2013年05月17日 来源: 科技日报 作者: 常丽君 科技日报讯(记者常丽君)“第二声”也叫温度波或熵波,是一种量子力学现象,目前只在超流液氦中才能观察到。据物理学家组织网5月16日(北京时间)报道,最近,奥地利因斯布鲁克大学和意大利特兰托大学物理学家合作实验,在量子气体中也观察到了这种温度波的传播,证实了列夫·朗道70年前假设的理论。相关论文发表在《自然》杂志上。 在低于临界温度时,一些液体会变成超流体而失去摩擦力。此外,超流状态下液体的导热性能极高,会以一种完全不同的温度波的形式来传输能量。由于这种波很像声波,因此也被称为“第二声”。为了解释超流体的性质,物理学家列夫·朗道1941年发展了双流体力学理论,他假设低温下的液体包含超流液和普通液体两部分,后者随着温度下降而逐渐消失。 迄今为止,人们只能在液氦和超冷量子气体中观察到超流动性。另一种超流系统是中子星,在原子核中也发现有超流现象的证据。超流性与超导性密切相关,后者是在低温下表现的零电阻现象。 超冷量子气体是把几十万个原子在真空容器中冷却到接近绝对零度(零下273.15摄氏度)获得的,利用激光能够对此状态下的粒子进行高精度地控制和操纵,因此是观察量子力学现象,如超流动性的理想模型系统。“十多年来,虽然这一领域已有大量研究,但要在量子气体中探测到第二声现象还很困难。”因斯布鲁克大学实验物理学院、奥地利科学院量子光学与量子信息研究所的鲁道夫·格里姆说,“然而到最后,证明它却容易得让人惊讶。” 在实验室中,格里姆的量子物理学家小组准备了由30万个锂原子构成的量子气体,用调制激光束给雪茄烟形的粒子云加热,然后观察到了温度波的传播。“虽然在超流氦里只产生了一个熵波,但我们的费米子气体也显出了一些热膨胀,由此形成了可检测的密度波。”格里姆解释说,这也是研究人员第一次在量子气体中检测到超流体的不同部分。“在我们之前还无人做到这一点,这填补了费米子气体研究中的一个基本缺口。” 该研究是因斯布鲁克物理学家与意大利科学家长期合作的成果。特兰托大学玻瑟—爱因斯坦凝聚中心小组领导之一是列夫·皮塔伊夫斯基,他也是列夫·朗道的学生。他们修改了朗道关于第二声理论的描述,使之与实验中近乎一维的几何波形更加适应。鲁道夫·格里姆说:“利用这一模型,解释实验的检测结果变得更加容易。这一成果代表了我们合作的顶峰。” 总编辑圈点 这是一种完全缺乏黏性的物质状态,如果将其放置于环状的容器中,由于没有摩擦力,它可以永无止尽地流动。它能以零阻力通过微管,甚至能从碗中向上“滴”出而逃逸。这种超流状态下的液体,导热性能极高,会以“第二声”的形式来传输能量。尽管探测“第二声”非常困难,但证明它却相当容易。此次在量子气体中观察到它,是否意味着,这种神奇的超流体现象离我们的生活越来越近了呢? 《科技日报》 2013-5-17 (一版)

  • 【转】常用气体分析仪的各种分析原理介绍

    测量气体分析仪的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。   1、热导式气体分析仪   一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。   2、电化学式气体分析仪   一种化学类的气体分析仪表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪(图2)的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪(图3)是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。   3、红外线吸收式分析仪   根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。   一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。   与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

  • 【分享】气体分析仪和气体检测报警仪的不同

    气体分析仪主要是分析气体的种类,气体检测报警仪是检测仪器的种类,遇到有毒气体可以发出警报。下面主要从仪器的结构、检测方式和数据的准确度来区分两种仪器的不同之处。仪器结构不同:不同气体检测报警仪结构较简单,只包括传感器及传感器信号转换电路部分,而气体分析仪不仅在内部装有传感器,而且还有一整套气路系统,即将样气引入到仪器内部,并且再引出仪器放空或回收的全套气路系统。 第二,检测方式不同:气体检测报警仪利用探头直接暴露在被测的空气中或样气环境中进行检测;而气体分析仪是将被测气体通过特殊方式引入到仪器内部进行测定,然后再引出仪器外放空。气体检测报警仪在应用时,只需将仪器放置于被测气氛内,仪器即可显示数值;而气体分析仪必须将样气仔细地引入到仪器内部,再进行工艺技术条件的严格调整,如温度、压力、流量等,只有当操作人员将仪器调整直到实现一个稳定的化工过程后,才能获得准确的测定数据。 第三,数据的准确度不同:气体检测报警仪只能提供定性分析结果和较为粗略的定量分析数据,这种仪器所显示的数据经不起推敲,不能进行误差分析,因此,根本不能作为准确的分析数据确定(决定)重要工艺改进调整的措施。而气体分析仪则是一种严格的计量器具,在进行定量分析时,能够提供出十分准确的数据C这种数据可以作为气体生产及安全生产改进和提高的依据,用它来指导及进行生产管理,质量管理及企业管理。甚至于,这种数据可以作为司法刑侦工作的重要依据,利用它来打官司,确定是非界限。

  • 【讨论】关于分析气体时出倒峰的问题,大家聊一聊!

    我们用的是岛津2014分析液氮,FID检测器。出峰顺序是CO2、CH4、CO,载气是氮气。样品中没有CH4。从前天开始,在CH4出峰的位置出现一个倒峰和CO的峰紧挨着,今天基本上确定了是载气不纯的原因造成的(使用的载气纯度要比分析的气体样品纯度高出一个数量级),换上新载气后我将管道里的余压排除干净,重新分析。做标准气正常出峰,可做液氮时还是出倒峰。后来我们推断是纯度低的载气将气体净化器、阻尼器给污染了,也有可能是分子筛已经作废起不到效果了,请朋友们讨论一下。具体原因出在哪?

  • 关于气体压力表的计量检定,请教方家!

    我中心在计量认证时有专家要求应将所用的所有气体压力表进行计量检定,可是计量所的老爷们在计量检定时将我们的压力表头从表体上卸下进行检定,导致压力表再装上后有的产生漏气等故障,类似于破坏。我们实在不想再让他们检了。也有的专家说计量认证时可以不检这类设备。不知哪位老师知道,是不是在计量认证或实验室认可时,象[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]用的气体压力表一类的东西必须进行计量检定?多谢!

  • ICP光谱仪?用氩气作为工作气体

    氩在空气中含量仅为0.93%。ICP光源所用的氩气纯度需要99.99%以上。而目前商品[url=http://www.huaketiancheng.com/][b]ICP光谱仪[/b][/url]均用氩气作为工作气体,未采价廉的分子气体如氮气和空气等。其原因有两个:一是氩ICP光源有良好的分析性能,分析灵敏度高且光谱背景较低;二是用氩作等离子体易于形成稳定ICP,所需的高频功率也较低。 在ICP光谱技术发展过程中,曾多次探讨用分子气体(氮气,空气,氧气,氩-氮混合气)代替氩气作工作气体。分子气体虽然在较高功率下也能形成等离子体焰炬,所形成的等离子体激发温度也较氩等离子体低。  首先看单原子气体和分子气体的电离所需能量与气体温度的关系。把气体加热到同样温度,分子气体氮气和氢气所消耗的热能远高于氩气和氦气。可以看出分子气体形成离子的过程分两步,第一步分子状态N2受热理解为原子,然后第二步才能进行电离反应。N2分子离解所需能量为873KJ/mol,电离过程所需的能量为1402kj/mol。而惰性气体氩以原子态存在,只给予电离能即可。Ar的电离能为1506KJ/mol,所需的能量低于分子气体氮气的离解能和电离能之和。  工作气体的电阻率,热熔及热导率等物理性质是影响形成稳定等离子体的另一个重要原因。氩的电阻率,热熔和热导率都是最低的。低的热导率可降低由于热导散热而造成的能量损失;提高等离子体的热效率,热导率的高低对于形成稳定等离子体极为重要。据试验表明,当外管气流量为5L/min氩气时,石英矩管热传导分别损耗总能量的60%,43%及20%。由于前述的原因,氩气最易形成稳定的ICP,如高频电源频率为4MHz时,用氩气为工作气体,维持ICP的最低功率为1.5kW;而用氮气时为28kw,用氢气为250kw。当然,提高电源频率可以相应降低维持ICP所需的功率。用分子气体形成的等离子体,其温度比Ar-ICP和He-ICP要低。

  • 顶空固相微萃取气质联用,气体进样问题

    网上没有搜索到HS-SPME-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]仪器的使用指南和气体全自动固相微萃取顶空进样系统的protocol,烦请各位大佬指点或分享资料,非常感谢!

  • 【求助】顶空进样测气体

    初次接触顶空,弱问各位,用顶空进样测气体成分,气相色谱是否必须是阀进样的?实验室有一台气-质联用,装的是自动进样器,进液体样品,如果用这台仪器做顶空进样,是否需要改装?望赐教

  • 【资料】有关可燃气体的一些知识

    有关可燃气体的一些知识 一.术语"Parts Per Million"(PPM)浓度测量单位,一般用于气体检测领域。例如:混合空气中含有1PPM的硫化氢意味着每一百万单位体积的气体中含有一个单位体积的硫化氢。 爆炸极限(Flammable limits)其中又分为爆炸下限(Lower Explosive Level)和爆炸上限(Upper Explosive Level)。LEL和UEL的单位通常是百分比,指在空气(或氧化剂)中含有某种气体的百分比。在低于LEL的环境中因可燃气体太少而无法燃烧,当环境中的可燃气体的浓度高于UEL,那么会由于气体太多也不能燃烧。各种可燃气体的LEL值和UEL值可在相关资料中获得。阈值(Threshold Limit Values)(TLV)TLV表示的是当某种气体在空气中的含量小于这一阈值时,充分且持续暴露于该环境中的工人的健康不会受到损害。参考这个值时必须以国家颁布的标准为准,且应采用最新的修正值。TVL包括以下两部分:平均阈值(TLV-TWA)这个值表示环境中以时间加权的平均浓度值。绝大多数工人按8小时每天,40小时每周的安排在这个环境中工作时,不会有健康方面的问题。瞬时阈值(TLV-STEL)这个参数被定义为一个15分钟的加权平均值,在一个工作日的任意时刻工作场所中某种有害气体的浓度都不得超过其指定的阈值,即使在这一天中总的加权平均值达到了平均阈值。一天当中超过平均阈值且低于瞬时阈值的次数不得大于4次,每次的持续时间必须小于15分钟。危险浓度(IDLH)如果工人没戴防毒面具或者缺乏逃生经验,而工作环境中的气体浓度达到了危险浓度,那么30分钟的滞留会对人体造成永久性损害或削弱人体的健康程度(例如视力降低)。RS485串行总线规定了双端电气接口形式,其标准是双端线传输信号。如果其中一条线是逻辑1状态,另一条就为逻辑0。因电压回路是双向差分的,故可抑制传输回路中的共模干扰,大大的改善通信性能。爆炸范围(explosion range)可燃气体与空气的混合气中,可燃气体的爆炸下限与爆炸上限之间的浓度范围称为爆炸范围。城镇燃气一般包括天然气、液化石油气和人工煤气。响应时间在试验条件下,从检测器接触被测气体至达到稳定指示值的时间。通常,读取达到稳定值90%的时间作为响应时间。恢复时间在试验条件下,从检测器脱离被测气体至恢复监视状态的时间。通常,读取恢复到稳定指示值10%的时间作为恢复时间。零气体不含被测气体或其他干扰气体的清洁的空气或氮气。标准气体成分、浓度和精度均为已知的气体。爆炸性环境及防爆电气设备含有爆炸性混合物的环境,称为爆炸性环境。按规定条件设计制造而不会引起周围爆炸性混合物爆炸的电气设备,成为爆炸性环境用防爆电气设备。防爆标志国家对爆炸性环境用防爆电气设备的各种防爆型式都有明确规定,d IICT6中d表示防爆型式为隔爆型,II表示工厂用电气设备,C表示爆炸性气体混合物最大试验安全间隙或最小点燃电流比(A,B,C三级)的最严级别,T6表示允许最高表面温度的最严级别(85℃)总线和分线总线和分线是就控制器与探测器的连接方式而言。如果,每个探测器都需要一根电线才能完成与控制器的通讯,则称此种连接方式为分线连接。如果,几个探测器可以共用一根电线完成与控制器的通讯,则称此种连接方式为总线连接。二进制在总线制系统中,总线上设备的编码采用二进制,8为高位,1为低位,拨向ON侧为0,OFF侧为1,编码公式如下:编码号=1×N1+2×N2+4×N3+8×N4+16×N5传感器预热传感器上电后,输出值不稳定,等待输出值稳定的这段时间成为传感器预热。传感器中毒当传感器在通电状态时,如果接触到浓度远超出其量程的气体时,有可能造成传感器的输出值一直维持在高位。有一些中毒的传感器在一段时间后可恢复,有些不可恢复。二.常见可燃气体有关的性质 气体名称 分子式 比重(空气=1) TLV-TWA(PPM) TLV-STEL(PPM) TLV-IDLH(PPM) LEL(V%) HEL(V%) 氢气 H2 0.0695 4 75 氨气 NH3 0.58 25 35 500 15 28 一氧化碳 C0 0.976 25 1500 12.5 74 硫化氢 H2S 1.115 4.3 45 氯气 CL2 0.5 1 30 甲烷 CH4 0.554 5 15 乙烷 C2H6 1.035 3 12.5 乙烯 C2H5 0.975 2.7 36 丙烷 C3H8 1.56 2 9.5 丙烯 C3H6 1.49 2.4 10.3 丁烷 C3H6 2.01 800 1.9 8.5 丁烯-1 C4H8 1.937 1.6 10 丁烯-2 C4H8 1.94 1.8 9.7 丁二烯 C4H6 1.87 2 20000 2 12 异丁烷 (CH3)3CH 2.068 1.8 8.4 三.可燃气体和空气混合气的爆炸极限可燃气体和空气混合气的爆炸极限与以下因素有关:可燃气体的种类及化学性质;可燃气体的纯度;可燃气体和空气混合气的均匀性;点火源的形式、能量和点火位置;爆炸容器的几何形状和尺寸;可燃气体和空气混合气的温度、压力和湿度。四.气体检测仪分类按检测对象分类,有可燃性气体(含甲烷)检测报警仪、有毒气体检测报警仪、氧气检测报警仪。按检测原理分类,可燃性气体检测有催化燃烧型、半导体型、热导型和红外线吸收型等;有毒气体检测有电化学型、半导体型等;氧气检测有电化学型等。按使用方式分类,有便携式和固定式。按使用场所分类,有常规型和防爆型。按功能分类,有气体检测仪、气体报警仪和气体检测报警仪。按采样方式分类,有扩散式和泵吸式。体的一些知识

  • 【资料】有关可燃气体的一些知识

    有关可燃气体的一些知识 一.术语"Parts Per Million"(PPM)浓度测量单位,一般用于气体检测领域。例如:混合空气中含有1PPM的硫化氢意味着每一百万单位体积的气体中含有一个单位体积的硫化氢。爆炸门限(Flammable limits)其中又分为爆炸下限(Lower Explosive Level)和爆炸上限(Upper Explosive Level)。LEL和UEL的单位通常是百分比,指在空气(或氧化剂)中含有某种气体的百分比。在低于LEL的环境中因可燃气体太少而无法燃烧,当环境中的可燃气体的浓度高于UEL,那么会由于气体太多也不能燃烧。各种可燃气体的LEL值和UEL值可在相关资料中获得。阈值(Threshold Limit Values)(TLV)TLV表示的是当某种气体在空气中的含量小于这一阈值时,充分且持续暴露于该环境中的工人的健康不会受到损害。参考这个值时必须以国家颁布的标准为准,且应采用最新的修正值。TVL包括以下两部分:平均阈值(TLV-TWA)这个值表示环境中以时间加权的平均浓度值。绝大多数工人按8小时每天,40小时每周的安排在这个环境中工作时,不会有健康方面的问题。瞬时阈值(TLV-STEL)这个参数被定义为一个15分钟的加权平均值,在一个工作日的任意时刻工作场所中某种有害气体的浓度都不得超过其指定的阈值,即使在这一天中总的加权平均值达到了平均阈值。一天当中超过平均阈值且低于瞬时阈值的次数不得大于4次,每次的持续时间必须小于15分钟。危险浓度(IDLH)如果工人没戴防毒面具或者缺乏逃生经验,而工作环境中的气体浓度达到了危险浓度,那么30分钟的滞留会对人体造成永久性损害或削弱人体的健康程度(例如视力降低)。RS485串行总线规定了双端电气接口形式,其标准是双端线传输信号。如果其中一条线是逻辑1状态,另一条就为逻辑0。因电压回路是双向差分的,故可抑制传输回路中的共模干扰,大大的改善通信性能。爆炸范围(explosion range)可燃气体与空气的混合气中,可燃气体的爆炸下限与爆炸上限之间的浓度范围称为爆炸范围。城镇燃气一般包括天然气、液化石油气和人工煤气。响应时间在试验条件下,从检测器接触被测气体至达到稳定指示值的时间。通常,读取达到稳定值90%的时间作为响应时间。恢复时间在试验条件下,从检测器脱离被测气体至恢复监视状态的时间。通常,读取恢复到稳定指示值10%的时间作为恢复时间。零气体不含被测气体或其他干扰气体的清洁的空气或氮气。标准气体成分、浓度和精度均为已知的气体。爆炸性环境及防爆电气设备含有爆炸性混合物的环境,称为爆炸性环境。按规定条件设计制造而不会引起周围爆炸性混合物爆炸的电气设备,成为爆炸性环境用防爆电气设备。防爆标志国家对爆炸性环境用防爆电气设备的各种防爆型式都有明确规定,d IICT6中d表示防爆型式为隔爆型,II表示工厂用电气设备,C表示爆炸性气体混合物最大试验安全间隙或最小点燃电流比(A,B,C三级)的最严级别,T6表示允许最高表面温度的最严级别(85℃)总线和分线总线和分线是就控制器与探测器的连接方式而言。如果,每个探测器都需要一根电线才能完成与控制器的通讯,则称此种连接方式为分线连接。如果,几个探测器可以共用一根电线完成与控制器的通讯,则称此种连接方式为总线连接。二进制在总线制系统中,总线上设备的编码采用二进制,8为高位,1为低位,拨向ON侧为0,OFF侧为1,编码公式如下:编码号=1×N1+2×N2+4×N3+8×N4+16×N5传感器预热传感器上电后,输出值不稳定,等待输出值稳定的这段时间成为传感器预热。传感器中毒当传感器在通电状态时,如果接触到浓度远超出其量程的气体时,有可能造成传感器的输出值一直维持在高位。有一些中毒的传感器在一段时间后可恢复,有些不可恢复。二.常见可燃气体有关的性质 气体名称 分子式 比重(空气=1) TLV-TWA(PPM) TLV-STEL(PPM) TLV-IDLH(PPM) LEL(V%) HEL(V%) 氢气 H2 0.0695 4 75 氨气 NH3 0.58 25 35 500 15 28 一氧化碳 C0 0.976 25 1500 12.5 74 硫化氢 H2S 1.115 4.3 45 氯气 CL2 0.5 1 30 甲烷 CH4 0.554 5 15 乙烷 C2H6 1.035 3 12.5 乙烯 C2H5 0.975 2.7 36 丙烷 C3H8 1.56 2 9.5 丙烯 C3H6 1.49 2.4 10.3 丁烷 C3H6 2.01 800 1.9 8.5 丁烯-1 C4H8 1.937 1.6 10 丁烯-2 C4H8 1.94 1.8 9.7 丁二烯 C4H6 1.87 2 20000 2 12 异丁烷 (CH3)3CH 2.068 1.8 8.4 三.可燃气体和空气混合气的爆炸极限可燃气体和空气混合气的爆炸极限与以下因素有关:可燃气体的种类及化学性质;可燃气体的纯度;可燃气体和空气混合气的均匀性;点火源的形式、能量和点火位置;爆炸容器的几何形状和尺寸;可燃气体和空气混合气的温度、压力和湿度。四.气体检测仪分类按检测对象分类,有可燃性气体(含甲烷)检测报警仪、有毒气体检测报警仪、氧气检测报警仪。按检测原理分类,可燃性气体检测有催化燃烧型、半导体型、热导型和红外线吸收型等;有毒气体检测有电化学型、半导体型等;氧气检测有电化学型等。按使用方式分类,有便携式和固定式。按使用场所分类,有常规型和防爆型。按功能分类,有气体检测仪、气体报警仪和气体检测报警仪。按采样方式分类,有扩散式和泵吸式。

  • 玩转7890气相色谱仪之简易判定气体类型,换错氦气瓶的判定好方法

    以安捷伦7890[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]为例,各位观众可以通过仪器面板来初步判定当前载气的类型。在所换的气瓶气体不纯,或者换错气瓶后,可以方便判定气体是否正常。曾经我们的5977因为气体不纯,导致氮气响应600多万,如图。如果当时知道这么方便的判断,我就不用再去开5975,不折腾半天了

  • 热导式气体传感器应用于氦气泄漏场合检测

    热导式气体传感器应用于氦气泄漏场合检测

    [align=center]在正常室温以及大气压下,氦是一种无色无味的气体。其在空气中的体积含量为5.24×10-6,它是人类发现临界温度最(ZUI)低的物质。氦是重要的工业气体之一,氦气广泛用于军事工业  研究  石化  制冷  医疗  半导体  管道泄漏检测等领域,其具体应用如下:[/align]检验和分析应用:核磁共振分析仪的超导磁体需要使用液氦冷却。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中,氦气通常用作载气,氦气渗透性良好,不易燃,它还能用于真空泄漏检测。用作保护气体:氦气具有非活泼的化学性质,常用于保护镁  锆  铝  钛等金属焊接。在航空航天技术中,氦气可用作卫星、火箭的挤压和姿态控制发动机空气源。[img=,348,310]https://ng1.17img.cn/bbsfiles/images/2019/06/201906051610066391_5463_3422752_3.png!w348x310.jpg[/img]虽然氦气是无毒的,表面上对人体无害,但是大量吸入会引起窒息甚至死亡!这是因为过度吸入窒息会导致人体缺氧,轻者人会感到疲倦,严重的人可能会突然变黑并在眩晕中窒息!因此在使用氦气的环境中必须实时监测氦气的浓度,OFweek Mall推荐使用热导式气体传感器MTCS2601来进行氦气泄露检测。 法国Endetec的热导式气体传感器MTCS2601由基于 MEMS 技术的 4 个 Ni-Pt 电阻组成的微机械的热电导率传感器。此热导式气体传感器安装在小型的 SMD 封装内。同时结合了低功耗 CMOS 标准集成电路,非常适合 OEC厂商的泄漏检测,或者基于帕拉尼原理的真空度检测,需要超低功耗,长寿命和免维护的产品。适用于恶劣环境下初级压力控制,需要功耗和尺寸的限制,或者是气体泄漏或者水分,或者侵入。[b] 法国Endetec热导式气体传感器 MTCS2601特点:[img=,339,295]https://ng1.17img.cn/bbsfiles/images/2019/06/201906051609017071_7955_3422752_3.jpg!w339x295.jpg[/img][/b]MEMS 热导式气体传感器遵循没有化学反应的物理皮拉尼原理,基于气体热导率变化对于压力测量范围:0.0001~1000mbar,卓越的可重复性。硅晶片上有加热电阻,并且有优异的温度补偿。超小的传感器气体体积例如0.1cm3 。

  • 【求购】采购数显气体流量计一个

    如题。1、由于测量的气体带有一定的腐蚀性,因此对于气体流量计需有一定的耐蚀性能。2、气体流量速度在2L/h左右,对于气体流量计需要精确到0.01ml。请有符合条件的TX们跟帖留言~QQ:125809344TEL:13970055657Mailbox:[email]huge8675@163.com[/email]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制