当前位置: 仪器信息网 > 行业主题 > >

气动定位器

仪器信息网气动定位器专题为您提供2024年最新气动定位器价格报价、厂家品牌的相关信息, 包括气动定位器参数、型号等,不管是国产,还是进口品牌的气动定位器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气动定位器相关的耗材配件、试剂标物,还有气动定位器相关的最新资讯、资料,以及气动定位器相关的解决方案。

气动定位器相关的论坛

  • ABB定位器一个机械连杆提供位置反馈

    ABB定位器AV1 & AV2应用范围广泛,能提供快速、灵敏、高精度的定位器控制。适用于单、双作用,直行程、角行程执行器。从执行机构到定位器的一个机械连杆提供位置反馈。3个不同的特性化凸轮提供给客户灵活的选择,设定信号和执行器位置之间关系可以选:平方根、线性化、平方。ABB定位器AV1的选择接受外部的气动信号,并转化为一个气动输出。这个气动输出一个推动执行机构的力。ABB定位器AV2的选择接受外部的4-20mA信号并转化为一个气动输出,这个气动输出驱动执行机构动作。ABB定位器AV1 & AV2的产品数据紧凑、坚固的设计适用于高振动的环境快速、精确的校正单双作用通用可使用天然气作为气源可选隔爆型电器转换器ABB定位器电气AV3 & AV4应用范围广泛,适用于单、双作用,直行程、角行程执行器。从执行机构到定位器的一个机械连杆提供位置反馈。3个不同的特性化凸轮提供给客户灵活的选择,设定信号和执行器位置之间关系可以选:平方根、线性化、平方。ABB定位器电气AV3的选择接受外部的4-20mA信号并转化为一个气动输出,这个气动输出驱动执行机构动作。AV3具有失信号保位的功能。ABB定位器电气AV4的选择接受外部的24V脉冲信号并转化为一个气动输出,这个气动输出驱动执行机构动作。AV4具有失信号保位的功能。AV3 & AV4的产品数据紧凑、坚固的设计适用于高振动的环境快速、精确的校正单双作用通用可使用天然气作为气源

  • 萨姆森定位器可以进行智能组态设置

    萨姆森定位器按输入信号分为气动阀门定位器、电气阀门定位器和智能阀门定位器。气动阀门定位器的输入信号是标准气信号,智能电气阀门定位器它将控制室输出的电流信号转换成驱动调节阀的气信号,根据调节阀工作时阀杆摩擦力,抵消介质压力波动而产生的不平衡力,使阀门开度对应于控制室输出的电流信号。并且可以进行智能组态设置相应的参数,达到改善控制阀性能的目的。  萨姆森定位器按动作的方向可分为单向阀门定们器和双向阀门定位器。单向阀门定位器用于活塞式执行机构时,阀门定位器只有一个方向起作用,双向阀门定位器作用在活塞式执行机构气缸的两侧,在两个方向起作用。  按萨姆森定位器输出和输入信号的增益符号分为正作用阀门定位器和反作用阀门定位器。正作用阀门定位器的输入信号增加时,输出信号也增加,因此,增益为正。反作用阀门定位器的输入信号增加时,输出信号减小,因此,增益为负。  按萨姆森定位器输入信号是模拟信号或数字信号,可分为普通阀门定位器和现场总线电气阀门定位器。普通阀门定位器的输入信号是模拟气压或电流、电压信号,现场总线电气阀门定位器的输入信号是现场总线的数字信号。  按萨姆森定位器是否带CPU可分为普通电气阀门定位器和智能电气阀门定位器。普通电气阀门定位器没有CPU,因此,不具有智能,不能处理有关的智能运算。智能电气阀门定位器带CPU,可处理有关智能运算,例如,可进行前向通道的非线性补偿等,现场总线电气阀门定位器还可带PID等功能模块,实现相应的运算。  按反馈信号的检测方法也可进行分类。例如,用机械连杆方式检测阀位信号的阀门定位器:用霍乐效应检测位移的方法检测阀杆位移的阀门定位器:用电磁感应方法检测阀杆位移的萨姆森定位器等。

  • ABB定位器提供高温应用选项

    ABB定位器AV系列主要特点和优点快速简单的设置节省时间的设置:大型凸轮和从动机构具有独立的零点和量程校准功能,提供快速简便的设置。通用设计单作用或双作用:定位器的通用设计使其适用于单作用或双作用于线性或旋转式执行机构,提供各种安装套件。CE认证符合国际标准:经认证可在需要CE认证的国家使用。快速响应时间高风量:ABB定位器AV系列的先导阀机构能够提供27scfm @ 80psi 送风,确保小型到大型控制执行器的快速响应时间。最佳的控制稳定性动态负载的高供应压力:AV定位器设计允许高达150psi 的供应压力,以提供对高动态负载条件和严密截止阀要求的稳定控制。高温选项高达250⁰ F:AV1气动定位器提供高温应用选项,内部零件和组件适用于这些极端过程环境条件。应用灵活性可选择的控制特性:AV定位器的凸轮提供线性,平方和平方根选项,可根据应用场合选择,以及直接或反向选择。高性能气动装置先导阀设计:AV气动系统采用业界公认的先导阀机构,该机制原先由Bailey授予专利并引入。坚固的设计全金属结构:AV定位器适用于任何具有业界公认的性能和长使用寿命的过程应用。行业标准设计En闭合选项:AV定位器提供NEMA4X 外壳选件,适用于恶劣的工艺条件。简化的设计易于维护:[url=http://www.chinaabb-positioner.com/]ABB定位器[/url]AV系列的设计与详细的使用说明书提供了所有信息,便于现场服务和维护。

  • 关于萨姆森定位器如何控制阀门位置

    电气阀门萨姆森定位器是一种从控制器或控制系统中接受4~20mA直流直流电流信号,并向角行程气动执行机构输送空气来控制阀门位置的装置。并且阀位变送器把当前的开启状态等比列转换成4~20mA直流电流信号。定位器输出的电流信号提高了系统的稳定性。不用另装阀位变送器的支架。正向和反向,单作用和双作用之间可方便转换。 对于小型执行机构可通过缩小定位器的节流孔来防止震荡。 空气消耗量少,经济性好。电气阀门萨姆森定位器在5~200Hz范围内无共振现象。 正向和反向,单作用和双作用之间可方便转换。 对于小型执行机构可通过缩小定位器的节流孔来防止震荡。 空气消耗量少,经济性好。 不用更换零件就可以实现1/2范围内的分程控制

  • 阀门定位器的技术演变及其更新换代——电气比例阀

    阀门定位器的技术演变及其更新换代——电气比例阀

    [color=#ff0000]摘要:针对气动调节阀中的阀门调节装置,本文介绍了调节装置的技术发展过程,描述了调节装置从机械阀门定位器发展到电气阀门定位器和电气比例阀压力控制器的技术更新过程和内容。特别是针对目前广泛使用的电气阀门定位器与基于最新技术的电气比例阀压力控制器进行了详细对比,说明了电气比例阀势必会替代目前所使用的各种阀门定位器。本文还详细介绍了基于串级控制方法的电气比例阀压力控制器的典型应用。[/color][align=center][img=阀门定位器的技术发展及其更新换代——电气比例阀,590,395]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150224314813_1592_3221506_3.jpg!w690x462.jpg[/img][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~[/align][b][size=24px][color=#ff0000]1. 阀门定位器的技术发展过程[/color][/size][/b] 为了对气动调节阀进行自动调节以准确控制流体介质的流量和压力,作为气动调节阀的主要配套附件,阀门定位器接受外部调节器的控制信号,通过在气动调节阀顶部输入较大压力使得调节阀阀杆上下移动,从而实现对气动调节阀阀门开度的准确调节。阀门定位器的技术发展经历了以下几个阶段:[b][size=18px][color=#ff0000]1.1 机械阀门定位器[/color][/size][/b] 图1所示为气动调节阀与经典的机械式阀门定位器配套运行的原理图。[align=center][color=#ff0000][img=01.机械阀门定位器,500,434]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150229559032_2716_3221506_3.jpg!w690x600.jpg[/img][/color][/align][align=center][color=#ff0000][b]图1 气动调节阀与机械阀门定位器的工作原理图[/b][/color][/align] 当阀门定位器有信号输入时,力矩马达产生电磁场,杠杆2受电磁场力影响带动挡板靠近喷嘴。喷嘴的背压增加,经过气动放大器放大后,将气源的一部分送入气动薄膜调节阀的顶部气室,随着顶部气室压力的增大,隔膜向下变形使得阀杆带着阀芯向下移动逐渐将阀门开度变小。此时,与阀杆相连的反馈杆(图中摆杆)绕着支点向下移动,使轴的前端向下移动,与其连接的偏心凸轮做逆时针旋转,滚轮顺时针旋转向左移动,从而拉伸反馈弹簧。 由于反馈弹簧拉伸杠杆2下段向左移动,此时就会与力矩马达输出的力矩达到平衡,于是阀门就固定在某个位置不再动作。在阀门定位器运行过程中,它将阀杆上下位移信号作为反馈测量信号,以外部控制器的输入信号作为设定信号,并进行比较,当两者有偏差时,改变其到执行机构的输出信号,使执行机构动作,建立阀杆位移量与外部控制器输出信号之间的一一对应关系。由此可见,阀门定位器是以阀杆位移为测量信号,以外部控制器输入为设定信号,以气体压力输出为执行器的闭环反馈控制系统,即外部控制器的输出信号对应于气动调节阀的开度大小。[b][size=18px][color=#ff0000]1.2 电气阀门定位器[/color][/size][/b] 从上述机械阀门定位器的工作原理可以看出,阀门定位器主要起到两个作用,一是提供与控制电信号成线性关系的气体压力给气动调节阀,从而改变调节阀的开度大小;二是测量和反馈阀杆位置,以准确知道气动调节阀的开度大小。随着技术的进步,出现了如图2所示的电气转换器来代替机械阀门定位器中的喷嘴、挡板调压系统,以实现对输出气体压力的调节控制,从而实现阀门位置的精确定位,其工作原理如图3所示。[align=center][b][color=#ff0000][img=02.电气转换器,300,315]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150230296831_4135_3221506_3.jpg!w690x726.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 电气转换器(I/P或E/P转换器)[/color][/b][/align][align=center][b][color=#ff0000][img=03.电气阀门定位器工作原理图,600,313]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150230490440_5933_3221506_3.jpg!w690x361.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图3 气动阀门定位器的工作原理图[/color][/b][/align] 电气转换器的输入电流/电压信号与输出压力信号成比例关系,如输入信号从4-20mA变化时,电气转换器的输出气体压力会在20-100kPa范围内变化,从而将电流信号转换成了压力信号。电气转换器相当于是一个1:1的放大器,只不过其接收的是电信号。由于电气转换器与气动调节阀没有机械连接,因此比机械阀门定位器具有安装、调试、维修方便等优点。 电气转换器可以直接安装在气动调节阀上来使用,不需要安装反馈阀杆,但因没有反馈环节,无法成为一个闭环控制系统。因此,通常是将电气转换器与阀杆定位功能配套使用,构成电气阀门定位器。 由于组合了电气转换器和阀门定位功能,使得电气阀门定位器的功能和作用有了进一步的扩展,如可用来提高阀门位置的线性度。另外,由于克服了阀杆摩擦力和消除了调节阀不平衡力的影响,电气阀门定位器很适合应用在高压介质、高压差场合、快速调节场合以及想改善调节阀流量特性的场合,也还适用于大口径调节阀和高低温介质调节阀。目前,电气阀门定位器已经在逐步替代机械阀门定位器,是目前市场上的主流阀门定位器。[b][size=18px][color=#ff0000]1.3 电气比例阀压力控制器[/color][/size][/b] 从上述电气阀门定位器工作原理可以看出,电气转换器使用过程中并不知道加载到气动调节阀膜片上的压力值是多少,还需增加阀杆位置反馈装置才能实现阀门开度的准确测量和控制。这也就是说,如果准确已知加载在气动调节阀膜片上的气体压力值,根据此压力与膜片变形量和阀杆的线性关系,就可以准确知道压力与气动调节阀开度的线性关系。由此,此问题就可以归结为气动调节阀顶部气室内的气体压力测量和控制问题。 电气比例阀作为一种高速和准确的压力控制器,是近十年来发展起来的新技术,它使用了两个高速伺服或电磁(或压电)阀来根据需要增加或降低气体压力以实现减压压力控制。与电气转换器技术相比,电气比例阀压力控制器提供了更高的压力和更大的灵活性和鲁棒性。典型的电气比例阀压力控制器及其工作原理如图4所示。[align=center][color=#ff0000][b][img=04.电气比例阀及其工作原理示意图,550,355]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150231124953_2987_3221506_3.jpg!w690x446.jpg[/img][/b][/color][/align][b][/b][align=center][b][color=#ff0000]图4 电气比例阀压力控制器及其工作原理图[/color][/b][/align] 如图4所示,电气比例阀的基本工作原理是一种典型的气体动态平衡法,即通过使用一个高速进气阀和一个高速排气阀使内部压力保持动态平衡,使得位于两阀中间位置处的压力保持在所需的设定值上。一个压力传感器监控输出压力,一个数字或模拟控制器同时调节伺服阀(电磁阀)的快速开启关闭以控制设定点压力。 从结构上来说,电气比例阀是一个完整的闭环控制阀,包括两个高速电磁阀、一个底座、一个积分压力传感器和一个电子PID控制电路。 在电气比例阀压力控制器中,二个高速电磁阀分别控制进气、出气。进气阀门的操控与电子电路供给的压力信号成比例。内置压力传感器测量输出压力并提供反馈信号到PID控制电路。反馈信号与压力控制设定值相比较,当二者之间不同时,使其中一个阀门打开。如果要达到系统所需的压力,就会使进气阀动作,按比例消除比较信号中的差异。 典型电气比例阀通常需要直流电源和代表压力设定点的模拟信号进行工作。控制器通常接受电流(4~20mA)或电压(通常0~10或0~5VDC)输入信号。除了常见的模拟信号标准外,带数字电路的型号还可以接受串口通信(如RS-485或DeviceNet)。电气比例阀还提供代表压力传感器的模拟信号输出。有些型号的电气比例阀还会包含一个小放气阀(向大气排放少量气体),以便在非常低或无流量情况下使用。[b][size=24px][color=#ff0000]2. 电气比例阀与电气转换器的对比[/color][/size][/b] 从上述的介绍可以看出,电气转换器和电气比例阀的基本功能相同,都可用来进行减压控制,都属于电子式减压阀,但所用技术、功能和指标并不相同。表1对这两类压力调节阀进行更详细的对比。[align=center][b][color=#ff0000]表1 电气比例阀和电气转换器性能比较表[/color][/b][/align][align=center][img=T1.电气比例阀和电气转换器比较表,600,451]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150231388150_4925_3221506_3.jpg!w690x519.jpg[/img][/align][align=center][/align] 由此可见,电气比例阀压力控制器可以提供快速高精度的压力控制,并能够提供所控压力的反馈信号,而且电气比例阀压力控制器可以直接连接到气动调节阀上使用,应用和维护更加的简便,可完全替代电气阀门定位器,这也是目前各种流量压力应用领域的发展趋势。[b][size=24px][color=#ff0000]3. 电气比例阀压力控制器的典型应用[/color][/size][/b] 结合各种减压型气动调节阀,结合各种减压型气动调节阀电气比例阀压力控制器可应用于各种流体介质的压力和流量控制,最典型的应用场景是外置压力传感器对减压介质的压力进行准确控制,如图5所示。[align=center][b][color=#ff0000][img=05.电气比例阀压力控制器典型应用,600,397]https://ng1.17img.cn/bbsfiles/images/2022/12/202212150232117234_9508_3221506_3.jpg!w690x457.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图5 电气比例阀结合外置传感器和控制器的压力控制[/color][/b][/align] 对于一般采用电气阀门定位器和电气比例阀压力控制器的气动调节阀控制回路,它们都可以直接安装在气动调节阀上进行控制,但只能与气动调节阀顶部气室形成控制回路,仅相当于一个电子信号控制阀门开度的控制器,无法对被控流体介质压力进行反馈控制,而这恰恰是所有装置希望实现的最终目的。 为了实现工程应用中工艺压力的准确控制,如图5所示,最准确和可靠的方法是增加压力传感器对被控介质压力进行实时测量,传感器压力型号反馈到外置PID控制器,由PID控制器根据设定值或设定程序对电气比例阀进行控制。由此,外置的压力传感器和PID控制器,与电气比例阀和气动减压阀构成一个完整的闭环控制回路,可真正实现介质压力的准确和快速控制。 图5所示的电气比例阀压力控制典型应用,其最大特点是采用了串级控制方法,可充分发挥串级控制的优势,在实现无超调快速控制的同时,还可以达到很高的控制精度。[b][size=24px][color=#ff0000]4. 总结[/color][/size][/b] 从上述技术综述和分析对比可以看出,电气比例阀采用了更新的技术,与现有传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。 另外,由于电气比例阀内置了压力传感器和PID控制器,同时结合串级、比值和分程等复杂控制模式,为电气比例阀提供了极其丰富的拓展应用,可广泛应用于许多压力控制场合,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的控制回路,实现众多工业应用领域中的精密控制功能。[align=center][/align][align=center]~~~~~~~~~~~~~[/align]

  • 萨姆森定位器通过使体积适应执行器尺寸

    操作的设计和原理电动气动定位器已安装在气动控制阀上并用于分配阀门位置(控制变量x)到控制信号(设定点w)。萨姆森定位器比较电控信号控制系统到旅行或开幕控制阀的角度并发出信号压力(输出变量y)用于气动执行器。萨姆森定位器的设计取决于哪些配件选择直接附件SAMSON 3277型执行器或按照附件与执行器连接到NAMUR(IEC 60534-6)。此外,还包括一个耦合轮配件需要转移旋转根据的旋转执行机构的运动VDI / VDE 3845。无弹簧旋转执行器需要倒车放大器包含在附件中允许任何方向的动力操作。萨姆森定位器由一个行程传感器系统组成与电阻成比例,模拟具有下游空气容量的I / P转换器增压器和带微控制器的电子器件。萨姆森定位器配有两个可调节的软件限制联系人作为标准指示阀门的最终位置。阀杆的位置被传送作为旋转角度或行程通过拾取杆到达行程传感器并提供给模拟PD控制器。A / D转换器发送该位置的阀连接到微控制器。PD控制器比较这个实际情况位置为4至20 mA直流控制信号(参考变量)被转换后通过A / D转换器。在系统偏差的情况下,激活i / p模块的状态被改变,控制阀的致动器被加压或相应地在下游排气助推器。这导致了阀门插头移动到确定的位置设定点。供气被提供给助推器压力调节器。一个中间人使用具有固定设置的流量调节器清除定位器,并在同一时间,保证无故障运行助推器。输出信号由压力传感器提供助推器可以通过激活限制在2.4巴P9参数。体积限制用于优化[url=http://www.samson-china.com/]萨姆森定位器[/url]通过使其适应执行器尺寸。紧闭功能:气动执行器完全充满用空气或一旦设定点排气低于1%或超过99%。

  • 小鼠MRI立体定位器

    [url=http://www.f-lab.cn/stereotaxis/srp-6m-ht2.html][b]小鼠MRI立体定位器SRP-6M-HT2[/b][/url]是用于核磁共振环境的[b]小鼠立体定位仪器[/b],它采用兼容MRI的材料制造,是[b]小鼠核磁共振[/b]和显微操作实验的理想选择。[b]小鼠MRI立体定位器SRP-6M-HT2[/b]头部固定器组件是由100%塑料制成,AP框架棒和基板都由金属制成,保证了稳定和精确的立体定位记录,头部固定组件能够从基板拆卸下来,使得MRI可以扫描固定在相应位置的动物,核磁共振扫描之后,相应位置固定着动物的头部固定组件,能够轻易地放回在基板的原有位置,[b]小鼠MRI立体定位器SRP-6M-HT2[/b]能够用于多种多样的应用,只需更换头部固定组件用于小鼠,结合该设备可以注入标记或造影剂,用于MRI扫描,头部固定组件可以进行立体定位,记录对准动物的MRI扫描点。[img=小鼠MRI立体定位器]http://www.f-lab.cn/Upload/srp-6m-ht2_.jpg[/img][b]小鼠MRI立体定位器SRP-6M-HT2特色[/b]自从NARISHIGE的立体定位操作器根据此标准制作后,AP框架具有18.7mm的方形形状。如提供的 SM-15 立体定位显微操作器。需要带显微操作器的版本请访问SRP-6M。SRP-5M-HT2 和 SRP-6M-HT2 之间的差别在于AP框架杆的数目。 SRP-5装配有一个AP框架杆,而SRP-6装配有两个AP框架杆。用于大鼠的版本分别是SRP-5R-HT2 和 SRP-6R-HT2(SRP-5R 和 SRP-6R不带显微操作器)小鼠MRI立体定位器:[url]http://www.f-lab.cn/stereotaxis/srp-6m-ht2.html[/url]

  • 萨姆森定位器所需的安装部件和附件

    萨姆森定位器附着在NAMUR上-所需的安装部件和附件-ries:1. 240系列阀门,执行器尺寸最大1400-60cm2:将两个螺栓拧到阀杆连接器的支架或直接连接到阀杆连接器(取决于在版本上),放置从动盘在顶部并使用螺钉固定它。3251型阀门,350至2800cm2:将较长的从动盘拧到阀杆连接器的支架或直接连接到阀杆连接器(取决于在版本上)。型号3254 Valve,1400-120 to2800cm2:将两个螺栓拧到支架。固定支架在杆连接器上,放置下板在顶部并使用螺钉紧固它。将萨姆森定位器安装在NAMUR罗纹上2.为了连接NAMUR,十个NAMUR连接块使用时直接进入现有的轭孔。螺钉和齿形锁紧垫圈。对齐NAMUR阀门上的标记连接(标记为“1”的一侧)到50%的行程。用于连接杆式阀门使用成形板的轭放在轭周围:拧四个钉入NAMUR连接块。放置NAMUR连接块在杆上并定位成形板在另一边。使用坚果和齿形锁紧垫圈紧固在螺柱上形成板。对齐在NAMUR阀门连接上标记(在标有'1'的一侧)到50%行程。3.将适配器支架放在支架上使用螺钉安装和安装。确保密封正确就位。对于带空气净化的[url=http://www.samson-china.com/]萨姆森定位器[/url],安装前取下塞子定位器。适用于没有空气的定位器吹扫,更换螺塞通气塞。4.选择所需的杆尺寸M,L或XL和根据执行器的销位置。在trav-中列出的阀门尺寸和阀门行程。引脚位置应该是位置35以外的位置。需要标准的M杠杆,或者需要L或XL杠杆尺寸,继续如下:-将从动销拧入指定的位置杠杆孔。只使用更长的跟随安装套件中包含的针脚。-将杠杆放在杆的轴上sitioner并使用磁盘紧固它弹簧和螺母。-一直向前移动杆一直到它会朝两个方向前进。

  • 山武定位器用SFC手操器组态调整

    山武定位器SVP是智能型阀门定位器,SVP 有两种形式,即:整体型和分离型,每种形式中有三种型号,各有不同功能。能连接到调节器的4- 20 mA输出回路上,所有调整有电子模块完成输入信号和调节阀开度之间的关系可任意设置,能容易设置分程和其他特殊的应用。整体型/AVP300:无阀位输出的模拟量信号(4- 20mA)AVP301:有阀位输出的模拟量信号(4- 20mA)AVP302: HART通信协议。分离型/AVP200:无阀位输出的模拟量信号(4- 20mA)AVP201:有阀位输出的模拟量信号(4- 20mA)AVP202: HART 通信协议。山武定位器SVP有三种组态方法,即:手动旋钮、用SFC手操器、用HART手操器。手动旋钮组态调整:只用一把螺丝刀就能完成SVP的内部组态,包括自整定、行程调整、调节阀的特性检测、零位/满度的调整。用SFC手操器组态调整。Yamatake SFC160/260型智能通信器能用于SVP的全部参数组态、调整、SVP的维护。SVP 的具体通信功能详见SFC操作手册。用HART手操器组态调整HART275通讯器能用于AVP302/202型的全部组态、校整、维护。SVP山武智能定位器适用于直行程和角行程的执行机构,重量约2.5kg。安装方式与普通定位器相同。

  • 山武定位器调整到全开位置的步骤

    山武定位器零点量程调整当山武定位器自动设定后,定位器已将其自身标定到阀门的全关(零点)和全开(量程)值。如果阀门不能获得其开度与定位器控制信号之间的正确关系,则按以下步骤手动调整零点-量程。注:只有关闭和全开输入信号(例: 4-20) 与储存在山武定位器中的,或工厂中设定于定位器中的关闭和全开输入信号设定相同,开度开关才会工作。1.将阀门调整到关闭位置(零点)的步骤:a.从控制器输入对应阀门全关位置的电流信号(例: 4mA) b.通过按开度按钮“UP”或°DOWN”,调整阀门全关位置。强制关闭功能默认值设定为0.5%。2.将阀门调整到全开位置(量程)的步骤: a从控制器输入对应阀门全关位置的电流信号(例: 20mA) b.通过按开度按钮“UP”或“DOWN”,调整阀门全关位置。直至调整阀门位置到位。注:[url=http://www.azbil-positioner.com/]山武定位器[/url]完成零点-量程调整后,改变输入信号以确认阀门工作是否准确。

  • 西门子定位器对于控制单元改进的组件

    西门子定位器在易受到强加速作用力或振动场合的使用西门子定位器固定在如分流挡板、猛烈振荡或振动的阀门,或蒸汽喷射装置上会受到强加速力的作用,在极端情况下,会导致摩擦配合的移位。对此,请选用带加强摩擦配合的SIPART PS2。然而增加了扭矩需要更高的力来操作摩擦配合。外部位置传感器。存在上述措施不能涵盖的可能情况,如强大和持续的振动,高的或太低的环境温度,核辐射。对于这种情况,位置传感器和控制单元分开安装是非常有好处的。为此,有适用于直线和旋转型执行器的通用组件。你需要如下组件:• 位置传感器单元(订货号 C73451-A430-D78)。由带有综合摩擦配合的SIPART PS2外壳、内置电位器,和各种盲塞和密封件组成。• 控制单元,各种型号的 SIPART PS2西门子定位器。• 与电缆卡和 M-20 电缆格尽头成套的EMC过滤器板可以使用,订货号C73451-A430-D23。组装6EMC过滤器板必须要安装在 SIPART PS2[url=http://www.siemens-positioner.com/]西门子定位器[/url]上。与EMC过滤器一起提供的安装说明介绍了组件的组装。• 三芯电缆连接到组件。当用电位器(电阻值为 10KΩ)代替位置传感器单元 C73451-A430-D78 安装在执行器上时,对于控制单元必须要使用这些改进的组件。

  • 西门子定位器可使用天然气作气源

    西门子定位器SIPART PS2提供了决定性优点:安装简单,自动初始化(零位和行程范围自动调整)。使用三个按钮和双行显示可进行本地操作(手操)和组态,通过SIMATIC PDM组态。高质量的控制源于在线自适应程序。稳态工作时耗气量可忽略不计,"紧密关闭"功能(确保对阀座最大的定位压力)。通过简单的组态可实现众多功能(例如设置特性曲线和极限值),对阀门和执行机构的扩展诊断功能。直行程和角行程执行机构采用同一型号的西门子定位器。可动部件少,因此对振动不敏感,在极端的外界环境中,可选择外部非接触式位置传感器。"智能电磁阀":同一台定位器中具备部分行程测试及电磁阀功能,部分行程测试,例如可用于安全阀,可使用天然气作气源。西门子主要技术性能输入信号:0~20mA,4~20mA供气压力:1.4~6bar (140~600kPa)无阻流量:进气阀:压力从6bar(600kPa)降至0bar(0kPa)时为5.5N.m/h出气阀:压力从1bar(100kPa)降至0bar(0kPa)时为5N.m/h稳定状态下的耗气量:单作用:3.6×10N.m/h(0.6L/min)双作用:36×10N.m/h(1L/min)响应时间:2.5~40S行 程:10~120mm 0°~90°安装位置:任意电缆入口:M20×1.5电气连接:螺丝端子2.5mm2工作环境温度:-25—+80℃防爆等级:本安型EExia/ib ⅡCT4,T5,T6(符合EN50020),防爆型EExd外壳防护等级:IP65外壳材料:玻璃纤维强化聚脂[url=http://www.siemens-positioner.com/]西门子定位器[/url]SIPART PS2主要用于以下行业:化工/石化电厂造纸和玻璃水和污水食品和制药海上平台

  • 西门子定位器有关安装选件模块的常规信息

    有关安装选件模块的常规信息。只能使用经认证可在预期危险区中使用且具有相应标记的设备。下列选件模块可以安装到隔爆外壳的西门子定位器中:位置反馈模块报警模块内部NCS模块EMC滤波器模块在“隔爆外壳”版本中安装可选模块的常规步骤1.断开电源线连接或断电。2.打开安全锁扣。3.拧下螺帽。4.从执行机构上完全卸下西门子定位器。5.西门子定位器带一个环形齿轮和一个销(反馈杆支架),它们互锁并保证位置反馈无反向间隙。为了保证位置反馈无反向间隙,应小心地卸下适配器。为此,在定位器上旋转反馈轴,直到适配器下方的销(反馈杆支架)在拆卸方向出现。通过观察适配器下方的外壳确定销的位置。现在,可以从环形齿轮上轻松取下销。提示!环形齿轮包含两个相互交错固定的垫圈。这一偏移可以确保通道检测没有反向间隙。切勿机械更改此偏移。6.拧下四个固定螺钉。7.将适配器从外壳上彻底卸下。注意!O形环移位在适配器和外壳之间有数个形环。这些形环在拆卸时可能会脱落。小心地卸下适配器。确保拆卸期间O形环不会丢失。8.取下模块盖板。使用螺丝刀拧下两个螺钉。9.根据各个可选模块相应部分所述安装可选模块。10.现在开始装配。安装模块盖板。为此,逆时针旋转螺钉,直到其螺距已明显处于啮合状态。模块盖板为可选模块提供机械保护和锁定。提示!过早磨损模块盖板通过一个自攻螺钉固定在阀上。为避免阀过早磨损,请按此处所述步骤操作。将两个固定螺钉小心地顺时针拧紧。11.通过执行步骤7到5(反向)继续装配[url=http://www.siemens-positioner.com/]西门子定位器[/url]。检查O形环的位置是否正确。确保外壳中没有干扰装配的松动物件。12.现在,仔细检查反馈轴是否能平滑旋转360°。如果感觉到有阻力,切勿继续旋转,而是将反馈轴转回到拆卸点,确保记住之前执行的步骤。13.成功完成所有上述步骤后,通过执行步骤4至1(反向)继续装配。更多参考西门子定位器http://www.siemens-positioner.com/

  • ABB定位器完成操作步骤后保存设置方法

    ABB定位器怎样进入操作界面?打开气源,减压阀调到铭牌上规定的气源压力。接通4-20mA输入信号(11+、12-) 一直按住MODE键,用“▲”、“▼”键选择模式“1.3”,放开MODE键,用“▲”、“▼”键将阀门从最小到最大行程跑一遍,对于直行程,角度范围为-28°到+28°,对于角行程,角度范围为-57°到+57°。同时按住“▲”和“▼”键,再按一下“ENTER”键,一直等到数字显示从“3”到“0”,然后放开“▲”和“▼”键,此时进入设置菜单“P1…”用“▲”、“▼”键选择“LINEAR”(直行程)或“ROTARY”(角行程),这一步的选择非常重要,以下步骤的参数设定以此步骤为基准。ABB定位器怎样进行自动整定?进行完上述步骤后,一直按住MODE键,用“▲”键选择模式“P1.1”。放开MODE键。一直按住ENTER键直到数字从3到0显示完毕,放开ENTER键。此时自动整定开始,这个过程大约要持续20分钟左右,期间在50%处停留时间较长。注意!对于气开阀,自动整定结果默认为“DIRECT”(正作用)即4-20MA输入对应输出为0-100%,气关阀为“REVERSE”(反作用)即4-20MA输入对应输出为100-0%。对于气关阀为“REVERSE”(反作用)的情况,如果我们要求为4MA对应定位器输出最小,而20MA输出为最大,则在以下的参数设置中应相应的设置为“REVERSE”以达到我们的要求。具体设置方法见后。 自动整定完成后,会显示“COMPLETE”,此时按ENTER键以记住设置。如果还要再一次继续整定,操作方法同第2步。 完成上述步骤后保存设置方法:一直按住MODE键,用“▲”键选择模式“P1.4”(TZIDC型为P1.5),放开MODE键,用“▲”、“▼”键选择“NV-SAVE”,一直按住ENTER键直到数字从3到0显示完毕,放开ENTER键,显示自动切换到平时操作界面。此时设置就保存下来。注意:上述以及以下步骤的进行必须保持输入信号在4MA以上。ABB定位器怎样进入第2菜单设置步骤,即“P 2…”。当完成上述“A:怎样进入操作界面?”步骤后,在显示为P1.0(STANDARD)时,同时按住ENTER键和MODE键,用“▲”键选择,直至显示 “P2…”(SETPOINT)

  • 气动薄膜调节阀安装原理

    (1)气动调节阀安装位置,距地面要求有一定的高度,阀的上下要留有一定空间,以便进行阀的拆装和修理。对于装有气动调节阀定位器和手轮的调节阀,必须保证操作、观察和调整方便。   (2)气动调节阀应安装在水平管道上,并上下与管道垂直, 一般要在阀下加以支撑,保证稳固可靠。对于特殊场合下,需要调节阀水平安装在竖直的管道上时,也应将调节阀进行支撑(小口径调节阀除外)。安装时,要避免给调节阀带来附加应力)。   (3)调节阀的工作环境温度要在(-30~+ 60) 相对湿度不大于95% 95% ,相对湿度不大于95%。   (4)调节阀前后位置应有直管段,长度不小于10倍的管道直径(10D),以避免阀的直管段太短而影响流量特性。   (5)调节阀的口径与工艺管道不相同时,应采用异径管连接。在小口径调节阀安装时,可用螺纹连接。 阀体上流体方向箭头应与流体方向一致。   (6)要设置旁通管道。目的是便于切换或手动操作, 可在不停车情况下对调节阀进行检修。   (7)调节阀在安装前要彻底清除管道内的异物,如污垢、焊渣等。

  • 气动球阀的工作原理及结构特点

    本文介绍了气动球阀的工作原理及结构特点等相关知识,更了解和使用气动球阀。 气动球阀是由旋塞阀演变而来。它具有相同的旋转90度动作,不同的是旋塞体是球体,有圆形通孔或通道通过其轴线。球面和通道口的比例应该是这样的,即当球旋转90度时,在进、出口处应全部呈现球面,从而截断流动。 本类阀门在管道中可任意位置安装。 气动球阀工作原理 气动球阀只需要用气动执行器用气源旋转90度的操作和很小的转动力矩就能关闭严密。完全平等的阀体内腔为介质提供了阻力很小、直通的流道。通常认为球阀最适宜直接做开闭使用,但近来的发展已将球阀设计成使它具有节流和控制流量之用。球阀的主要特点是本身结构紧凑,易于操作和维修,适用于水、溶剂、酸和天然气等一般工作介质,而且还适用于工作条件恶劣的介质,如氧气、过氧化氢、甲烷和乙烯等。球阀阀体可以是整体的,也可以是组合式的。 气动球阀按结构形式可分: 一、浮动气动球球阀 气动球阀的球体是浮动的,在介质压力作用下,球体能产生一定的位移并紧压在出口端的密封面上,保证出口端密封。    浮动气动球球阀的结构简单,密封性好,但球体承受工作介质的载荷全部传给了出口密封圈,因此要考虑密封圈材料能否经受得住球体介质的工作载荷。这种结构,广泛用于中低压球阀。 二、固定球气动球阀   气动球阀的球体是固定的,受压后不产生移动。固定球球阀都带有浮动阀座,受介质压力后,阀座产生移动,使密封圈紧压在球体上,以保证密封。通常在与球体的上、下轴上装有轴承,操作扭距小,适用于高压和大口径的阀门。    为了减少气动球阀的操作扭矩和增加密封的可靠程度,近年来又出现了油封球阀,既在密封面间压注特制的润滑油,以形成一层油膜,即增强了密封性,又减少了操作扭矩,更适用高压大口径的球阀。 三、弹性球气动球阀 气动球阀的球体是弹性的。球体和阀座密封圈都采用金属材料制造,密封比压很大,依靠介质本身的压力已达不到密封的要求,必须施加外力。这种阀门适用于高温高压介质。    弹性球体是在球体内壁的下端开一条弹性槽,而获得弹性。当关闭通道时,用阀杆的楔形头使球体涨开与阀座压紧达到密封。在转动球体之前先松开楔形头,球体随之恢复原原形,使球体与阀座之间出现很小的间隙,可以减少密封面的摩擦和操作扭矩。    气动球阀按其通道位置可分为直通式,三通式和直角式。后两种球阀用于分配介质与改变介质的流向。气动球阀的分类与特点 气动球阀有O型球阀和V型球阀之分。O型球阀采用浮动式结构,球芯为精密铸件,外表镀硬铬处理,阀座采用增强聚四氟乙烯材料,流道口与管道口径相同,流通能力极大,流阻极小,关闭时无泄漏,一般做开关阀使用,特别适用于高粘度、V型球阀采用固定式结构,球芯上开有V型切口,可实现剪切 含纤维、颗粒状介质。   根据工艺设备不同可选用气动或电动执行机构,分别组成气动球阀和电动球阀,其中气动球阀如要实现比例调节须配阀门定位器,电动球阀如要实现比例调节须选电子式电动执行机构或配伺服放大器等。    从材质上,可以分为:碳钢球阀,不锈钢304球阀,316球阀和铜球阀    按压力,可以分为:高压球阀和低压球阀    高压气动球阀: 主要应用在石油、天然气、液压油、工程机械等行业    低压气动球阀:主要应用在介质为水等腐蚀性管路上! 刀型闸阀的启闭件是闸板,闸板的运动方向与流体方向相垂直,手动刀型闸阀只能作全开和全关,不能作调节和节流。闸板有两个密封面,最常用的模式闸板阀的两个密封面形成楔形、楔形角随阀门参数而异,通常为50,楔式刀型闸阀的闸板可以做成一个整体,叫做刚性闸板;也可以做成能产生微量变形的闸板,以改善其工艺性,弥补密封面角度在加工过程中产生的偏差,这种闸板叫做弹性闸板 刀型闸阀关闭时,密封面可以只依靠介质压力来密封,即依靠介质压力将闸板的密封面压向另一侧的阀座来保证密封面的密封,这就是自密封.大部分刀型闸阀是采用强制密封的,即阀门关闭时,要依靠外力强行将闸板压向阀座,以保证密封面的密封性本类阀门在管道中一般应当水平安装。特别说明:请珍惜帐号,勿发广告——疯子哥

  • 超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    [align=center][img=饱和蒸汽温度精密控制,690,315]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160915568591_8820_3221506_3.jpg!w690x315.jpg[/img][/align][size=14px][color=#000099]摘要:在目前的饱和蒸汽轮胎硫化工艺中,普遍还在采用电动定位器和电动执行器形式的减压阀进行温度控制。这种控温方式存在响应时间长、控温波动大和磨损引起寿命短等问题。本文介绍了采用电气比例阀和气动减压阀组合的替代方案,其中还采用了超高精度的串级PID控制器,此串级控制法替代方案可大幅提高蒸汽温度的控制精度和速度,并延长阀门的使用寿命和可在线维护。作为一种新技术,此解决方案还可推广应用到其它蒸汽加热领域。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b][size=14px][/size][size=14px] 硫化是目前轮胎生产过程中的最后一道工序,一般通过热硫化将成型的胎胚变成了轮胎成品。目前的硫化方式基本都是根据硫化内温的介质不同来区分,而外温实现方式(或称热板温度、模温)一般都是注入一定压力的蒸汽进行温度控制。[/size][size=14px][/size][size=14px] 本文将主要讨论轮胎硫化过程中的外温变温控制技术,有关内温调控技术则将在后续报告中再进行详细阐述。[/size][size=14px][/size][size=14px] 外温和外压是轮胎硫化的主要工艺参数,其控制的好坏直接影响硫化轮胎的质量。外温的实现通常使用蒸汽作为加热介质,而蒸汽一般都是饱和蒸汽。饱和蒸汽的一个重要特性是其温度与压力之间一一对应,即饱和蒸汽的温度始终由其压力决定,而轮胎硫化外温蒸汽加热工艺就是利用此特征来调整蒸汽压力以实现对蒸汽温度的精密控制。[/size][size=14px][/size][size=14px] 在目前的大多数蒸汽温度控制过程中,如图1所示,基本都采用的是典型的单闭环PID控制方法,使用了复杂笨重的电动减压阀来控制饱和蒸汽温度,即采用一个温度传感器将信号发送给PID控制器,控制器向电动阀门定位器发送命令信号,阀门定位器控制阀门所需开度以使得温度接近设定温度。这种控制的结果是阀门必须一直工作以保持温度,循环打开和关闭等同于磨损阀门部件,最大的问题是这种带有阀门定位器形式的电动减压阀的运行速度很慢,对PID控制器的控制信号有很大的响应滞后,如果观察热电偶的信号输出,则会在目标温度周围出现正弦波形,而不会出现平滑、平坦的温度信号,因此这种控制方式往往呈现出蒸汽温度波动较大的现场。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=传统单回路蒸汽温度控制结构示意图,690,170]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160917432405_1591_3221506_3.jpg!w690x170.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图1 采用阀门定位器形式的电动减压阀蒸汽温度控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 针对上述目前电动定位器和电动执行器结构形式的减压阀在轮胎硫化蒸汽温度控制中存在响应时间长、控温波动大和磨损引起寿命短等问题,本文将介绍采用电气比例阀和气动减压阀组合的替代方案,通过超高精度的串级控制PID控制器,此替代方案可大幅度提高蒸汽温度的控制速度和精度,并延长减压阀的使用寿命。此解决方案还可以推广应用到其它蒸汽加热设备。[/size][size=14px][/size][b][size=18px][color=#000099]二、解决方案[/color][/size][/b][size=14px][/size][size=14px] 在上述传统的饱和蒸汽温度控制过程中,采用的是一个典型的闭环控制回路,即作为执行机构的带阀门定位器的电动减压阀与PID控制器和温度传感器构成一个闭环控制。[/size][size=14px][/size][size=14px] 新的解决方案则是采用了双闭环PID控制回路组成的串级控制法,其结构如图2所示。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=新型双回路串行控制法蒸汽温度控制结构示意图,690,223]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160918269307_9385_3221506_3.jpg!w690x223.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图2 采用超高精度PID控制器、电气比例阀和气动减压阀的串行控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 在图2所示解决方案中,采用了经典的串级控制结构,即温度传感器、气动减压阀、电气比例阀和串级PID调节器组成一个双回路闭环控制系统。其中自带压力传感器和PID控制板的电气比例阀与气动减压阀构成次回路,用于调节气动减压阀的开度;温度传感器、串级PID控制器和次级回路再构成主回路,主回路采集硫化箱温度,经PID计算后输出控制信号给次回路中的电气比例阀,这里的次回路此时相当于主回路的执行器。[/size][size=14px][/size][size=14px] 与传统单回路控制相比,这种结合了电气比例阀和高精度PID调节器,并采用了串级控制法的蒸汽温度控制系统,充分发挥了串级控制的特点,有以下几方面的优势:[/size][size=14px][/size][size=14px] (1)可明显改善蒸汽温度控制精度和速度,控制温度的变化曲线平摊且与设定曲线非常接近,蒸汽温度达到稳定可节省几十分钟。[/size][size=14px][/size][size=14px] (2)对于高压饱和蒸汽的压力扰动具有较迅速和较强的克服能力。[/size][size=14px][/size][size=14px] (3)可消除次回路(气动减压阀和电气比例阀)的非线性特性的影响。[/size][size=14px][/size][size=14px] (4)气动减压阀可采用不同规格的气动圆顶加载压力调节器,可与各种精度和流量的电气比例阀组合实现不同规格轮胎硫化中任意设定温度的自动控制。[/size][size=14px][/size][size=14px] (5)先进的电气比例阀替代了传统的电气转换器(I/P和E/P),不再需要定期重新校准的繁复操作,不再需要仪表空气而只需加装气体过滤器即可,也不会不断排放空气减少压缩控制的浪费,重要的是控制精度可以达到任何设定点的±0.1%。[/size][size=14px][/size][size=14px] 总之,上述解决方案是目前大多数蒸汽温度控制技术的升级换代,可大幅提高轮胎硫化过程中蒸汽温度的控制精度和速度,此解决方案完全可以推广应用到其它蒸汽加热领域。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • 【资料】控制阀性能差问题分析

    一、控制阀的选择问题: 更多阀门选型知识请点击进入:阀门选型专题。 目前,工程中普遍使用的控制阀主要是:电磁阀系列电磁阀 和电动阀。但在使用中它们均有缺陷,如电磁阀易被异物堵塞、水阻大,须长期专人维护等;而电动阀虽然无水阻,但由于需有必要的控制电路,所以,防水汽侵蚀影响使用寿命也是困扰推广的主要问题。    二、如何解决控制阀性能差的问题    无论是电磁阀还是电动阀,水垢不但会造成阀门泄漏,严重时甚至会影响阀门的正常工作,所以如何消除水垢的影响,已是业内人士普遍关注的问题。 控制阀的工艺要涉及的范围实在太广,不能在这里一一给你说清楚,有关这方面的内容还的自己亲自去查资料了。不过由于设计执行机构和使用填充材料不同造成控制阀性能差还是可以总结出其规律的: 1、工艺过程里死区的存在会使过程变量偏离原设定点。所以控制器凸轮控制器 的输出必须增大到足于克服死区,只有这一纠正性的动作才会发生。 2、 ①影响死区的主要因素。摩擦力、游移、阀轴扭转、放大器的死区。各种控制阀对摩擦里敏感是不一样的,比如旋转阀对于由高的阀座负载引起的摩擦力就非常敏感,故使用时注意到这一点。但是对于有些密封型式,高的阀座负载是为了获得关闭等级所必须的。哈哈,这样,这种阀设计出来就非常差,容易引起很大的死区,这对过程偏差度的影响是显而易见的,简直是决定性的。 ②磨损。阀门在正常使用时出现磨损是在所难免的,但是润滑层的磨损是最厉害的的,根据我们实验证实,润滑旋转阀只经过几百次循环动作,润滑层差不多可以刚刷子使用(夸张点,不然写文章很郁闷)。另外压力引起的负载也会导致密封层的磨损,这些都是导致摩擦力增加主要因素。结果呢?就是给控制阀的性能于毁灭性! ③、填料摩擦力是控制阀摩擦力的主要来源,使用的填料不同,造成的摩擦力有很大的差别。 ④,执行机构的类型不同也对摩擦力有根本性的影响,一般来说弹簧薄膜执行机构比活塞执行机构好。    3、定位器电气动定位器 的设计问题。 从设计的最初思维着想,执行机构与定位器设计必须一起考虑的。怎么来设计一个好的定位器呢?从他的重要特性就知道,必须是个高增益装置。其增益是由两部分组成的:静态增益和动态增益。提高静态增益的方法是设计一个前置放大器。例如喷嘴--挡板装置。那么有朋友要问动态增益怎么获得?是通过一个动力放大器获得的,这个动力放大器是滑阀(一般)。现在有人已经利用微处理器来设置定位器了。看样子阀门以后还会说话告诉咱们他哪里坏了。那时侯做维修的就简单了。言归正传。同时具有高静态和高动态增益的高性能定位器能为任何一个给定的阀门组件提供降低过程偏差度方面的最佳总体性能。

  • 不锈钢球阀的特点

    球阀有O型球阀和V型球阀之分。O型球阀采用浮动式结构,球芯为精密铸件,外表镀硬铬处理,阀座采用增强聚四氟乙烯材料,流道口与管道口径相同,流通能力极大,流阻极小,关闭时无泄漏,一般做开关阀使用,特别适用于高粘度、含纤维、颗粒状介质;V型球阀采用固定式结构,球芯上开有V型切口,可实现比例调节,流量特性为近似等百分比。根据工艺设备不同可选用气动或电动,分别组成气动球阀和电动球阀,其中气动球阀如要实现比例调节须配阀门定位器,电动球阀如要实现比例调节须选电子式电动执行机构或配伺服放大器等。从材质上,可以分为:碳钢球阀,不锈钢304球阀,316球阀和铜球阀用应用上,可以分为:高压球阀和低压球阀高压球阀: 主要应用在石油、天然气、液压油、工程机械等行业低压球阀:主要应用在介质为水等非腐蚀性管路上!

  • 分享两本不错的电子书,关于仪器仪表的

    提供两本不错的书大家参考学习,但要注意,由于书籍出版年份不是很新,所以内容涉及的知识和文件可能与现在的学习实用操作有出入,故仅供参考和自身延伸学习,还要及时上网查找更新的更为全面的资料来深入学习的。(有时候老资料老书籍可能比起现今鱼龙混杂的各色书籍有他的优势,望慎重拉)1)仪表工手册内容简介本书第一版出版后因其内容丰富,实用性、针对性强,深受广大读者的喜爱,并成为仪表工得心应手的工具。本次修订中,作者针对检测与过程控制仪表发展快的特点,力求将最新知识编入其中。本书主要增加了环境监测仪表和现场总线两大部分。这两部分均呈现在自动控制领域的热和重点,其他部分去旧增新。本书主要针对从事自动化工作的工程技术人员及技术工人,对他们有很高的参考价值。本书主要针对从事自动化工作的工程技术人员及技术工人,对他们有很高的参考价值。目录第1篇 基础知识第1章 仪表基础知识1 仪表分类2 仪表主要性能指标第2章 常用图例符号1 常用仪表、控制图形符号2 常用电工与电子学图例符号3 自控常用英文缩写第3章 计量知识1 法定计量单位2 量值传递3 常用计量器具第4章 电工与电子学知识1 电工知识2 常用测量电路3 模拟电路4 数字电路5 稳压电路6 集成电路7 电工电子学常用英文缩写第5章 工艺与安全知识1 工艺知识2 常用化工设备特性3 机械保护系统4 防腐5 安全6 环保知识7 环保监测仪表第2篇 仪表与控制系统第1章 检测仪表1 温度检测与仪表2 压力检测与变送器3 流量检测与变送4 物位检测仪表第2章 分析仪表1 概述2 工业色谱仪3 氧量分析仪4 热导式气体分析器5 红外线分析器6 工业pH计7 工业电导仪8 工业黏度计第3章 显示仪表1 模拟显示仪表2 数字式显示仪表3 无纸记录仪第4章 控制仪表1 概述2 数字单回路调节器第5章 执行器1 概述2 调节阀的选型3 气动调节阀的性能测试4 阀门定位器第6章 控制系统1 概述2 简单控制系统3 复杂控制系统4 新型控制系统5 先进控制技术第3篇 可编程控制器和集散控制系统第1章 可编程控制器1 概述2 MODICON984系列可编程控制器3 富士T40可编程控制器第2章 集散控制系统1 概述2 SUPCON WebField ECS-100控制系统3 CENTUM-XL系统4 Plantscape系统5 Delta V系统6 FB-2000NS分散型控制系统7 DCS系统的接地8 DCS系统的故障诊断第3章 现场总线1 概述2 开放系统互连参考模型3 基金会现场总线4 PROFIBUS现场总线5 WORLDFIP现场总线6 现场总线常用英文缩写第4篇 仪表检定与校准第1章 概述1 检定2 校准第2章 就地校准1 概述2 差压变送器就地校准3 压力变送器就地校准4 显示仪表现场交准5 调节阀(附阀门定位器)现场校准6 调节器现场校准第3章 在检定室检定[b

  • 【求助】仪器定位和定位波长

    为什么我的仪器定位经常要进行多数定位.怎么调整?定位波长和测定波长经常不在一起,有是差别很大.我们一般是用铜灯来恢复.有没有别的办法处理.谢谢!

  • 立体定位微操作器特点规格

    [url=http://www.f-lab.cn/micromanipulators/sm-25b.html][b]立体定位微操作器SM-25B[/b][/url]是NARISHIGE公司专业为[b]微电极操作[/b]而设计的一款具有立体定位功能的薄型[b]显微操作器[/b],可以把数个微电极紧密地放在一起,是理想的[b]微电极操作器[/b]。[b][url=http://www.f-lab.cn/micromanipulators/sm-25b.html]立体定位微操作器SM-25B[/url]特点[/b]用于立体定位仪器的多通道记录,在不损害其稳定性下设计得尽可能薄。配备了一个固定夹持器,用来固定微电极,薄板以同样的方式固定微电极。[img=立体定位微操作器]http://www.f-lab.cn/Upload/SM-25A-L_.jpg[/img]三个平面都配备了旋转机械,水平平面可以用操作手柄转动。使用这种机械可以设置微电极角度,并且容易把微电极紧密地放置在一起。此系列有三种类型(A,B和C),通过Z轴移动单元的排列进行区分。 B型提供了一种简单粗动单元。[b][b]立体定位微操作器[/b]规格[/b][table=491][tr][td=1,2]移动范围[/td][td]粗调[/td][td]X轴40mm, Z轴40mm[/td][/tr][tr][td=2,1]透视角度调整[/td][/tr][tr][td=2,1]尺寸大小/重量[/td][td]W125 x D28 x H157mm, 330g[/td][/tr][/table]

  • 气动执行器

    气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。

  • 第一联动解析气动工具产品发展趋势

    随着生产自动化程度的不断提高,气动技术应用面迅速扩大、气动产品品种规格持续增多,性能、质量不断提高,市场销售产值稳步增长。气动工具的发展趋势主要在下述方面: 一、小型化、集成化 有限的空间要求气动元件的外形尺寸尽量小,小型化是主要发展趋势。现在最小气缸内径仅为f2.5,并配制开关;电磁阀宽度仅10mm,有效截面积达5mm2;接口f4的减压阀也已开发。据调查,小型化元件的需求量,大约每5年增加一倍。 气阀的集成化不仅仅将几只阀合装,还包含了传感器、可编程序控制器等功能。集成化的目的不单是节省空间,还有利于安装、维修和工作的可靠性。 二、组合化、智能化 最简单的元件组合是带阀、带开关气缸。在物料搬运中,已使用了气缸、摆动气缸、气动夹头和真空吸盘的组合体;还有一种移动小件物品的组合体,是将带导向器的两只气缸分别按X和Y轴组合而成,还配有电磁阀、程控器,结构紧凑,占用空间小,行程可调。 日本精器(株)开发的智能阀带有传感器和逻辑回路,是气动和光电技术的结合。不需外部执行器,可直接读取传感器的信号,并由逻辑回路判断以决定智能阀和后续执行元件的工作。 开发功能模块已有十多年历史,现在正在不断地完善。这些通用化的模块可以进行多种方案的组合,以实现不同的机械功能,经济、实用、方便。 三、精密化 为了使气缸的定位更精确,使用了传感器、比例阀等实现反馈控制,定位精度达0.01mm。 在气缸精密方面还开发了0.3mm/s低速气缸和0.01N微小载荷气缸。 在气源处理中,过滤精度0.01mm,过滤效率为99.9999%的过滤器和灵敏度0.001MPa的减压阀已开发出来. 四、高速化 为了提高生产率,自动化的节拍正在加快,高速化是必然趋势。 目前气缸的活塞速度范围为50-750mm/s。要求气缸的活塞速度提高到5m/s,最高达10m/s。据调查,五年后,速度2-5m/s,的气缸需求量将增加2.5倍,5m/s以上的气缸需求量将增加3倍。与此相应,阀的响应速度将加快,要求由现在的1/100秒级提高到1/1000秒级。(本文由第一联动五金商城整理)

  • 气动微量进样器

    [url=http://www.f-lab.cn/microinjectors/im-9c.html][b]气动微量进样器IM-9C[/b][/url]是NARISHIGE设计的气动[b]微进样器[/b],具有免维护操作的独特优势,[b]气动微量进样器IM-9C[/b]是液体微量进样的最佳[b]微量进样器品牌[/b]。[b]气动微量进样器IM-9C特点[/b]通过减少手柄张力的波动达到平稳控制。还能控制大量的液体,可以被气动操作,避免了类似装满油,再填充或除去气泡这样的维护问题。主要建议用于放置细胞保持侧*专用大尺寸注射器合并.[img=气动微量进样器]http://www.f-lab.cn/Upload/IM-9C-L_.jpg[/img][b][url=http://www.f-lab.cn/microinjectors/im-9c.html]气动微量进样器IM-9C[/url]规格[/b][table=613][tr][td]配件[/td][td]IM-H2注射器支架组(*1),O型圈,硅脂,聚乙烯管,硅橡胶垫片[/td][/tr][tr][td]移动范围[/td][td]柱塞53mm,全方位旋转旋钮 约6mm[/td][/tr][tr][td]控制容量[/td][td]总容量4240 UL,全方位旋转旋钮 约 480 UL[/td][/tr][tr][td]尺寸/重量[/td][td]W136- 189 x D55 x H74mm, 0.64kg[/td][/tr][/table](*1)IM-H2是由HI-7,OCT-1和CI-3组成的套件。

  • 【讨论】仪器信息网的定位是什么呢?

    仪器信息网的人气还是非常高的,网站的定位是什么呢?假如定位是仪器,不妨在网站的首页添一些仪器最新技术的详细讲解。其实可以转载,就像21ic网站很多技术文章都是转自各个知名杂志。如果定位是分析化学什么的,那也可以有个专门的板块提供最新的技术文章。目前,网站有仪器资讯非常的不错,但在技术文章上确很少,而且深度不够。主要都是网友辛苦发的。其实,我感觉仪器信息网跟21ic的定位很像,都专注于技术。在21ic网站上,有个设计与应用板块,提供最新的设计应用文章。建议,网站首页设置一个设计与应用板块。一点建议,祝仪器信息网越来越红火。

  • 采用压力串级控制系统实现气动马达的精密调节

    采用压力串级控制系统实现气动马达的精密调节

    [color=#ff0000]摘要:气动马达作为一种将压缩空气的压力能转换为旋转机械能的装置,其运行的关键是要进行驱动气体压力的控制。本文介绍了目前气动马达压力控制装置的技术现状,特别指出了现有技术中使用电空变换器存在的不足,介绍了电空变换器的更新换代产品——电气比例阀。本文对这两种新旧技术进行了详细比较,新一代的电气比例阀技术更能满足今后气动马达对小型化、集成化、智能化、精细化、高寿命和高可靠性等方面的需求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align] 气动马达也称为风动马达,是指将压缩空气的压力能转换为旋转的机械能的装置。气动马达一般作为更复杂装置或机器的旋转动力源,它的作用相当于电动机或液压马达,即输出转矩以驱动机构作旋转运动。气动马达的主要特点有: (1)使用空气作为介质,无供应上的困难,用过的空气不需处理,放到大气中无污染 压缩空气可以集中供应,远距离输送。操纵方便,维护检修较容易。 (2)气马达具有结构简单,体积小,重量轻,马力大,操纵容易,维修方便。 (3)可以无级调速,只要控制进气阀或排气阀的开度,即控制压缩空气的流量,就能调节马达的输出功率和转速。即通过调节气源压力或者改变气流量,也可通过同时调节两者来实现。 (4)能够正转也能反转。大多数气马达只要简单地用操纵阀来改变马达进、排气方向,即能实现气马达输出轴的正转和反转,并且可以瞬时换向。在正反向转换时,冲击很小,而且不需卸负荷。 (5)工作安全,不受振动、高温、电磁、辐射等影响,适用于恶劣的工作环境,在易燃、易爆、高温、振动、潮湿、粉尘等不利条件下均能正常工作。 从上述气动马达的特点可以看出,气动马达运行的关键是压力控制。目前气动马达常用的压力控制装置如图1所,其中主要包括电空变换器(E/P或V/P转换器)和增压器,由此构成压力的开环控制,通过电流或电压信号输入就可以进行气动马达的调节。[align=center][color=#ff0000][img=气动马达常用压力控制装置结构示意图,500,359]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217044251_5561_3221506_3.jpg!w690x496.jpg[/img][/color][/align][align=center][color=#ff0000]图1 气动马达常用压力控制装置结构[/color][/align] 如果增加传感器(如旋转编码器)和PLC控制器,由此可构成闭环控制回路,传感器检测气动马达的转速等参量,PLC控制器通过检测传感器信号并与设定值比较可进行气动马达高精度的自动控制。另外,整个控制装置还可以通过增加双向阀来实现气动马达的正反转自动控制。 在图1所示的气动马达压力控制装置中,所用的电控变换器(电气转换器)是一种比较传统的压力调节装置,目前正逐渐被电气比例阀所代替。图2所示为这两种压力调节装置的对比。[align=center][color=#ff0000][img=电气比例阀和电气转换器比较表,690,520]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217340426_2793_3221506_3.jpg!w690x520.jpg[/img][/color][/align][align=center][color=#ff0000]图2 电气比例阀和电气转换器特性对比表[/color][/align] 从上述对比可以看出,电气比例阀采用了更新的技术,与传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。 另外,由于电气比例阀内置了压力传感器和PID控制器,为很多压力和流量控制应用场合提供了极其丰富的拓展应用,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的串级控制回路,实现更多工业应用领域中的精密控制功能。 特别是采用电气比例阀与超高精度PID控制器结合形成的串级控制回路,可实现超高精度定位、超低速度运转和细小载荷的控制。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • ARL小试样夹具使用

    ARL小试样夹具使用

    http://ng1.17img.cn/bbsfiles/images/2012/05/201205032131_364782_1607403_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/05/201205032131_364783_1607403_3.jpg带14个大小不等的孔的,是磨直径不同的试样的磨具,如果用上端的7个小孔直径的试样,需要换小孔的激发台钨片,应用如下:http://ng1.17img.cn/bbsfiles/images/2012/05/201205031910_364762_2429497_3.jpg首先将你的待测小试样对照磨样器,找到合适的孔http://ng1.17img.cn/bbsfiles/images/2012/05/201205031912_364763_2429497_3.jpg然后将试样插到合适孔中,到砂轮机上磨样http://ng1.17img.cn/bbsfiles/images/2012/05/201205031914_364764_2429497_3.jpg将表面磨好的小试样插入夹具中http://ng1.17img.cn/bbsfiles/images/2012/05/201205031916_364765_2429497_3.jpg使待分析试样插入夹具后,分析面与夹具下表面在一个平面上http://ng1.17img.cn/bbsfiles/images/2012/05/201205031919_364766_2429497_3.jpg激发台上表面安装好定位器http://ng1.17img.cn/bbsfiles/images/2012/05/201205031920_364767_2429497_3.jpg将小试样夹具下端完全嵌入定位器http://ng1.17img.cn/bbsfiles/images/2012/05/201205031922_364768_2429497_3.jpg放好后,要左右晃晃,感觉是否与定位器完全吻合http://ng1.17img.cn/bbsfiles/images/2012/05/201205031923_364769_2429497_3.jpg盖好上盖,防止分析时漏气http://ng1.17img.cn/bbsfiles/images/2012/05/201205031925_364770_2429497_3.jpg用压样杆压好,进行分析,要注意:分析小试样,应该有小试样曲线,否则如果直接用FELAST,FECAIR分析,会因为火花强度过高而使分析结果异常

  • 高等植物启动子研究进展

    高等植物启动子研究进展 启动子是RNA聚合酶能够识别并与之结合,从而起始基因转录的一段DNA序列,通常位于基因上游。一个典型的启 动子包括CAAT-box和TATA-box,它们分别依赖DNA的RNA聚合酶的识别和结合位点,一般位于转录起始位点上游几十个碱基处。在核心启动子上 游通常会有一些特殊的DNA序列,即顺式作用元件,转录因子与之结合从而激活或抑制基因的转录。一旦RNA聚合酶定位并结合在启动子上即可 启动基因转录,因此启动子是基因表达调控的重要元件,它与RNA聚合酶及其他蛋白辅助因子等反式作用因子的相互作用是启动子调控基因转录的实质。 根据启动子的转录模式可将其分为3类:组成型启动子、组织或器官特异性启动子和诱导型启动子。 1 组成型启动子 在组成型启动子调控下,不同组织器官和发育阶段的基因表达没有明显差异,因而称之组成型启动子,双子叶植 物中最常使用的组成型启动子是花椰菜花叶病毒(CaMV)35S启动子,它具多种顺式作用元件。其转录起始位点上游-343~-46bp是转录增强区 ,-343~-208和-208~-90bp是转录激活区,-90~-46bp是进一步增强转录活性的区域,在了解CaMV 35S启动子各种顺式作用元件的基础上,人 们利用它的核心序列构建人工启动子,以得到转录活性更高的启动子,Mitsuhara等利用CaMv 35s核心启动子与CaMV 35S启动子的5'端不同区段 和烟草花叶病毒的5'非转录区(omega序列)相连,发现把两个CaMV 35S启动子-419~-90(E12)序列与omega序列串联,在转基因烟草中GUS有 最大的表达活性,把7个CaMV35S启动子的-290~-90(E7)序列与omega序列串联,非常适合驱动外源基因在水稻中的表达。用这两种结构驱动 GUS基因表达,在转基因烟草和水稻中GUS活性比单用CaMV 35S启动子高20~70倍。 另一种高效的组成型启动子CsVMV是从木薯叶脉花叶病毒(cassava vein mosaic virus )中分离的。该启动子 -222~-173bp负责驱动基因在植物绿色组织和根尖中表达,其中-219/-203是TGACG重复基序,即as1 (activating sequence 1),-183/-180为 GATA(又称为as2),这两个元件的互作对控制基因在绿色组织中表达至关重要。该启动子-178~-63bp包含负责调控基因在维管组织中表达的 元件。CsVMV启动子在转基因葡萄中驱动外源基因的转录能力与使用两个串联的CaMV35S启动子相当,两个串联的CsVMV启动子转录活性更强。 Rance等利用CoYMV(commelina yellow mosaic virus),CsVMV启动子区和CaMV 35S启动子的激活序列(as1,as2)人工构建高效融合启动子,瞬 时表达实验表明该启动子可驱动报告基因在双子叶植物烟草中高效表达,在单子叶植物玉米中其驱动能力比通常使用的γ玉米蛋白启动子高6倍。因此用这种人工构建的高效 启动子驱动抗病基因或目的蛋白基因,在双子叶和单子叶植物中均可达到较理想的效果。 人们高度重视从植物本身克隆组成型启动子,并初见成效,例如肌动蛋白(actin)和泛素(ubiquitin)等基因的启 动子已被克隆。用这些启动子代替CaMV 35S启动子,可以更有效地在单子叶植物中驱动外源基因的转录。Naomi等分别从拟南芥的色氨酸合酶β 亚基基因和植物光敏色素基因中克隆了相应启动子,用其代替CaMV 35S启动子,在转基因烟草中也取得了很好的表达效果。 由于组成型启动子驱动的基因在植物各组织中均有不同程度表达,应用中逐渐暴露出一些问题。例如外源基因在 整株植物中表达,产生大量异源蛋白质或代谢产物在植物体内积累,打破了植物原有的代谢平衡,有些产物对植物并非必需甚至有毒,因而阻 碍了植物的正常生长,甚至导致死亡。另外,重复使用同一种启动子驱动两个或两个以上的外源基因可能引起基因沉默或共抑制现象。因此, 人们寻找更为有效的组织、器官特异性启动子代替组成型启动子,以更好地调控植物基因表达。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制