当前位置: 仪器信息网 > 行业主题 > >

珀罗微型仪

仪器信息网珀罗微型仪专题为您提供2024年最新珀罗微型仪价格报价、厂家品牌的相关信息, 包括珀罗微型仪参数、型号等,不管是国产,还是进口品牌的珀罗微型仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合珀罗微型仪相关的耗材配件、试剂标物,还有珀罗微型仪相关的最新资讯、资料,以及珀罗微型仪相关的解决方案。

珀罗微型仪相关的资讯

  • 卫星网络将实时监测空气污染
    近期,美国科罗拉多州落基山脉东翼陷入了空气污染漩涡。美国国家大气研究中心大气科学家Gabriele Pfister说,确定污染源并逐时了解其动态是非常复杂的。据《科学》报道,美国宇航局(NASA)定于4月7日发射的传感器,将为Pfister提供一幅更清晰的动态画面。Pfister和其他观测者急切等待着安装在商业通信卫星上的对流层排放:污染监测仪器(TEMPO)成功发射。它将停留在北美上空3.6万公里处,在地球同步轨道上运行。TEMPO是组成第一个专门监测北半球大部分地区空气污染情况网络的3个静止轨道仪器之一。另外两个分别是已于2020年发射并运行至今的韩国对地静止环境监测光谱仪(GEMS)和将于2024年发射的欧空局哨兵4号卫星(Sentinel-4)。从前,科学家需要每天从轨道上拍摄一次观测快照,有了TEMPO,他们就能获得北美大部分地区每小时的观测图像。TEMPO的传感器可以检测到阳光照射大气分子时在特定波长下被吸收以及反射的光的微小差异。它将在2.1乘4.5公里的精细网格面积上,测量臭氧、二氧化氮、二氧化硫、甲醛以及气溶胶等污染物,帮助科学家追踪其来源。TEMPO可以帮助空气质量不达标地区改善公共卫生警报预测。比如,丹佛地区在努力控制的与哮喘和其他呼吸道疾病发病率升高有关的近地面臭氧层污染。目前Pfister都是依靠计算机模型、卫星、地面观测站的零散数据来估计污染水平的,她希望TEMPO能填补盲点,改进二氧化氮(臭氧的来源之一)来源的模型。但这3颗卫星组成的网络仍有一个很大的盲点——南半球。哈佛大学大气科学家Daniel Jacob表示,尽管理论上该网络几乎覆盖了全球,但这些仪器是为了放大追踪北半球情况而制造的,这在一定程度上反映了这些国家的局限性。
  • 滨松指尖大微型光谱仪入围“科学仪器优秀新产品”
    经过仪器信息网网络初审以及本届中国科学仪器发展年会新品组委会初评,第十届“科学仪器优秀新产品”入围名单于2月22日经仪器信息网正式发布。滨松C12880MA指尖大微型光谱仪凭借独特的微小尺寸,以及优秀的性能特征,脱颖而出成功入围。滨松微型光谱仪C12880MA于2015年推出,其上代产品为C12666MA,曾获2015年国际光学“棱镜奖”(Prism Awards)、2015年“BCEIA 新产品”,产品一经推出便因其迷你的身姿、优秀的性能以及低成本等特点,受到了热烈关注,从探测器的部分,为便携式仪器、智能可穿戴设备等新兴应用方向开辟了空间。紧接着,滨松在C12666MA的基础上进行了进一步的提升,推出新品C12880MA。新产品拥有和上代产品一样的迷你外形,但其内部使用了新研发的高灵敏度CMOS图像传感器,灵敏度比以往产品高出两个量级,并可满足各种需在暗环境下进行光谱测量的应用需求。此外,C12880MA具有更广的光谱响应范围(340nm~850nm),使其在食物检测、水质监测等领域有了更大的应用空间。查看使用前代产品C12666MA制作的微型光谱仪DEMO演示视频:滨松微型光谱仪是滨松MOEMS技术的产物,该技术融合了滨松光电半导体开发技术和MEMS技术,将光电元器件的体积和成本都进行了大幅度的缩减。除了该类微型光谱仪以外,滨松的MEMS-FTIR(MEMS傅里叶变换红外光谱)、MEMS-FPI(MEMS布里珀罗腔型近红外光谱探测器)等微型化产品也都受到了高度的关注。其中,比C12880MA体积更小的MEMS-FPI(只有笔头大小),也入围了最新的2016年国际光学“棱镜奖”(Prism Awards)。滨松MEMS-FPI 查看DEMO演示视频点击此处,进入滨松微型化产品专题。
  • 会议邀请 | CNHUPO-单细胞蛋白质组学研究专题卫星会
    基于单细胞层面的研究为生物系统中细胞间的同质性和异质性提供了更精准的信息,随着蛋白质组学技术的快速发展,检测技术和灵敏度的提升,使实现单个体细胞的蛋白质组学分析成为可能。 为推动单细胞蛋白质组学的发展,拓展单细胞研究的视野,布鲁克和景杰生物将于2021CNHUPO会议期间联合举办“单细胞蛋白质组学专题卫星会”,线上线下同步进行,诚邀您与会。会议时间:2021年10月14日12:30-13:35 现场参会地点:武汉 东湖宾馆 1楼 晴川厅 网络同步直播:请加微信报名 13370119923特 邀 嘉 宾会 议 日 程12:30 - 12:35 欢迎致辞及公司介绍 何磊 布鲁克道尔顿中国区经理12:35 - 12:50 timsTOF SCP 带您突破单细胞蛋白质组学研究极限 刘先明 布鲁克道尔顿中国区蛋白质组学及生物制药应用经理12:50 - 13:20 单细胞高维度蛋白检测技术及临床应用 丁显廷 教授 上海交通大学生物医学工程学院13:20 - 13:35 真于心,单于一,基于质谱的单细胞蛋白质组学 顾宏博 博士 杭州景杰生物科技股份有限公司线下注册参会:请加微信报名 13370119923* 本次卫星会将为现场参会人员提供午餐和礼品!抽奖活动在线上和线下同步进行! 会议咨询:13370119923 期待您的参与!
  • 宗伟健:新一代微型双光子荧光显微镜(多图)
    p  从石器时代原始部落的祭师对灵魂的崇拜,到中世纪后期哲人对大脑意识的产生溯源,到近代解刨学家发现井然有序的大脑功能分区,再到20世纪初Santiago Cajal得到了人类第一张清晰的大脑皮层神经元的照片,直至现在神经学家通过电生理,电子显微镜,光学显微镜等手段,在亚细胞,分子,基因水平对大脑的结构和功能进行研究,神经科学(neurosciences)这一门古老的学科,直至今日,仍然是全世界投入最大,最活跃的科学研究领域之一。/pp  限制科学家去理解和探索大脑的最主要因素是技术。每一次神经领域的重大突破,都是以技术的一次次革命与飞跃作为基础随之而来。19世纪末高尔基染色和尼斯染色技术的发明,使得单个神经元的结构得意完整清晰的呈现,并由现代神经学之父圣地亚哥· 拉蒙· 卡哈尔(Santiago Ramon y Cajal,1852-1934)总结并开创了神经元理论,至今仍是现代神经科学的基础。计算机体层扫描(CT)、磁共振成像(MRI)、经颅多普勒(TCD)、单光子发射计算机断层(SPECT)、正电子发射断层扫描(PET)等无创性影像学技术的发展,使得人类对大脑整体水平结构和功能的认识不断提高,并且对于大脑创伤和疾病的治疗提供了有利的参考工具。在实验神经科学领域,以模式动物作为研究对象,避免了把人作为研究对象在有创,改造等伦理方面的限制,使得更多的技术手段得以大显身手。其中包括电生理学方面,脑电图(EEG),多电极记录(MER),膜片钳技术(patch clamp)等技术的发明和有效使用,得以使科学家在亚微米空间尺度(单个神经突触连接),亚毫秒时间尺度(单次神经冲动电位)对神经元的功能进行研究。而最令人激动人心的是,近几年来蓬勃发展的光学显微成像技术,给实验神经科学带来了很多前所未有的思路和成果。2008年钱永健等人由于荧光蛋白(GFP,绿色荧光蛋白)的发现和使用,获得了诺贝尔化学奖,是对荧光成像技术的一次巨大肯定和推动。光学成像本身具有高分辨率、高通量(高速)、非侵入、非毒性等特点,再与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,使得科学家可以特异性的分辨生物体乃至细胞内部不同结构与成分,并且能够在生命体和细胞仍具有活性的状态下(活体状态)对其功能进行动态观察。这就使得荧光成像技术成为了无可替代的,生物学家现今最为重要的技术手段之一。而随着近些年来各种新型的显微技术的出现,共聚焦显微镜(confocal microscopy),相干拉曼成像(CARS),超分辨率显微技术(super-resolution microscopy),光片显微技术(lightsheet microscopy)等使得荧光显微镜的分辨率,速度,成像深度等进一步提高。/pp  对于荧光成像技术在神经科学中应用,离不开双光子荧光显微镜(Two-photon Microscopy,简称TPM)1。目前,大多数细胞生物学,生理学研究主要还是在离体培养的细胞体系中研究。然而与细胞生物学研究有所不同的是,大脑的功能研究的整体性和原位性显得更加关键:仅研究分离的神经元无法解释神经系统的功能和规律。换句话说,必须要求神经元处在其正常生存的大脑环境中才能使其正常运转。然而,大脑是一个高度复杂的器官。即使是小鼠的大脑皮层也有将近1mm的厚度,海马,丘脑等深脑区核团更是深达3-5mm2,而且并不透明,充满了数以亿计的神经元胞体和突触,此外还有丰富的血管,粘膜(脑膜),最外层还有厚厚的颅骨和头皮包裹。使用包括共聚焦显微镜在内的传统的荧光显微镜,由于被观测的信号会受到样本组织的散射和吸收,根本无法穿透如此深的组织进行成像。而双光子显微镜的发明,则为此类研究带来了希望。双光子显微镜特有的非线性光学特性,再加上其工作波长处在红外区域等特点,令其在生物体组织内的穿透深度大大提高3,使得双光子显微镜成为神经科学家进行活体神经成像最理想的工具。神经动作电位(action potential)本身很难被光学信号捕获,但是动作电位产生的去极化会引起神经元Ca2+浓度的变化(钙内流现象)。科学家已经开发出多种Ca离子浓度的荧光探针,进而通过这种钙离子浓度的变化引起的荧光信号的变化来反映出神经活动。于是,双光子显微镜与在体的神经元Ca离子浓度指示剂标记技术相结合,碰撞出了耀眼的火花: 使得人们可以研究处于生理状态时的动物大脑内的神经元活动4。/pp  大脑的最重要功能是对生物体的行为活动进行调控,而反过来,最能反应大脑工作状态的同样是生物体的行为活动。所以说,为了了解大脑,研究者不仅要求在体状态下对神经元进行高分辨率观测,而且也希望生物体在被观测的阶段里,能够进行正常的行为活动。所以,在成像技术不断地提高分辨率和速度等性能的同时,科学家们也在积极开改进和革这些成像技术手段,使其进行成像时尽可能小的限制被观测对象的行为活动,以求得到最接近生理状态下的数据。但是这一目标始终存在诸多的技术瓶颈: 以啮齿类动物(大鼠或小鼠)神经元的双光子钙成像为例。早些年由于动物身体运动产生的晃动剧烈,而当时双光子显微镜成像速度又很低,所以科学家只能在麻醉状态下对头部固定的动物进行成像。后来随着成像速度的提高,并且对开颅手术技术的很大改进,使得科学家可以在清醒状态下对动物的神经活动进行观察(仍然需要头部固定)。近些年来,随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium indicator, 简称GECI)”成为神经元钙成像的大趋势4。这种由神经元自身产生钙指示剂的方法与之前的钙染料技术相比有着巨大的优势: 信噪比提升了一个数量级 对神经元特异性好,可以区分不同的神经元类型 并且可以在大脑神经元内持续表达数月(病毒转染)甚至整个生命历程(转基因动物)。于是,大概10年前开始,科学家就开始利用双光子成像结合GECI技术对神经元的活动和结构变化进行长期的观测和追踪,从而对记忆的形成,神经元病变等问题有了更深入的认识。其中,现在性能最好,使用最为广泛的GECI为绿色荧光钙调蛋白Gcamp家族4。目前已经改进到第六代,Gcamp6f,Gcamp6f已经成为神经成像里最受欢迎的指示剂之一。目前科学家最流行的对小动物行为过程中大脑活动进行成像的方法,是将虚拟现实与双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中5。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用(如图1)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/e167bfbc-be4e-4b26-aa38-6f15b1fdca08.jpg" title="1.png" width="600" height="429" border="0" hspace="0" vspace="0" style="width: 600px height: 429px "//pp style="text-align: center "图1 双光子成像结合虚拟现实场景,对头部固定,身体活动的动物进行研究。图片来自sup5/sup/pp  然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,因此无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家还未能得到解决终极的诉求。/pp  一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”6。这种尝试大概从20年前开始。起初,科学家只是将一根或几根光纤插到小鼠头上,用以激光导入和荧光信号采集。然而,这种方式而只是记录某个区域内信号的总和,不具有空间分辨率,算不上真正意义上的成像。在最近的十几年里,由于光学,电子,材料技术的发展,人们开始尝试研制真正意义上的微型显微镜。其中,微型单光子宽场显微镜(miniature wide-field microscope),由于其原理与结构相对简单,是目前人们主要尝试研制的微型显微镜技术。例如由Ghosh及其同事开发的显微镜,通过将小型LED光源,微型CCD和自聚焦透镜整合到一个小于25px3的框架之中,研制出了一个重量为1.9g的微型宽场显微镜。该技术被用于研究大脑海马区place cell等与记忆和本能相关的实验当中7。然而,宽场成像方式由于不能很好的对离焦区域的背景信号进行过滤,并且对光的散射敏感,所以其无法达到细胞分辨率。更难以对更精细的诸如树突,轴突,树突棘等结构进行观察。所以一直难以达到神经科学家满意。/pp  于是,从大概15年前开始,世界上一些研究和开发双光子成像技术的研究组开始尝试将双光子显微镜这种在神经成像领域已经获得广泛应用的技术进行微型。然而,目前只有为数不多的几个课题组报道了他们在微型双光子显微镜研制方面的进展: 在2001年,Denk等的工作被认为是研制微型双光子显微镜的第一步8。然而,它仍然太过“巨大”(长7.5厘米,重25克),而且成像速度很慢(2 Hz 128x128的尺寸下速度为2 Hz, 512x512的尺寸下为0.5 Hz,如图2a)。之后,其他一些课题组相继报道了不同的微型双光子系统。 Helmchen课题组在2008年报道了他们的微型双光子系统,仅重0.9克9。它实现了512X512幅面下的8 fps的成像速度速度,并展示了利用该系统实现的大鼠在体钙成像信号。然而,从展示的效果来看,其空间分辨率极低,而且并没有实现真正的自由运动下的成像(如图2b)。Mark Schnitzler课题组在2009年也发表了他们的微型双光子系统10。他们的系统首次使用了微机电扫描镜(MEMS)来进行扫描,并将Z聚焦模块集成在了探头之中(如图2c)。但是扫描频率仍然很低(400x135约为4Hz) 空间分辨率也远远达不到要求(横向1.29 μm,轴向10.3 μm)。这些方面限制了其在神经元细胞核亚细胞水平成像中的应用。 Kerr课题组在2009年展示了它们的系统11,跟之前的微型双光子显微镜相比较,由于应用了微型透镜组构成的微型物镜(NA达到了0.9),这套系统的空间分辨率更高。然而,这套探头的重量也随之提高(5.5g)。此外,由于其仍然使用振动光纤的方式来进行扫描,所以其成像速度仍然比较慢。(对于64x64为10.9Hz,对于理论上的512x512为1.25Hz)(如图2d)。此外,还有一个之前所有的微型双光子系统都没有解决的问题。由于微型双光子显微镜一般需要利用光纤将飞秒激光导入到探头之中,而光纤由于存在诸如色散、截至模式、导通带宽等一系列限制,所以某一款光纤一般只允许一定带宽(一般为几十纳米)和特定中心波长的光传播。那就需要在制作微型显微镜的时候,结合使用的荧光指示剂所需要的激光波长对光纤进行选择。但是,目前商业化的,可以用来进行飞秒光传输的空心光子晶体光纤(hollow-core Photonic Crystal Fiber, HC-PCF)种类非常有限。例如,全球最大的光子晶体光纤生产商NKT公司仅提供中心波长为800nm,1030nm,1300nm和1550nm的HC-PCF。所有现有的微型双光子显微成像系统都是基于这几款光纤所限定的中心波长进行开发的。但是很遗憾的是,本文上述所提到的目前最广泛使用的GcamP指示剂需要920 nm的激光进行激发。所以先前的所有微型双光子都不能对Gcamp进行有效的成像。这限制了微型双光子显微镜的发展。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/4c1d7c1d-53eb-4a41-96d0-98ecb5ebda8d.jpg" title="2.png"//pp style="text-align: center "图2 微型双光子发展史上的几个典型工作。a、b、c、d分别选自参考文献sup8、9、10/sup和sup11/sup/pp  之所以这些早期的微型化双光子显微镜都无法得到真正的使用和推广,其原因在于,若要制造出具有实用价值的微型双光子显微镜,比研制单光子微型显微镜复杂和困难的多得多。微型双光子显微镜需要需要解决如下几个关键技术难题:/pp  1 如何将飞秒激光有效的导入微型显微镜 /pp  2 如何在微型显微镜内进行扫描/图像重建 /pp  3 如何在微型显微镜中进行高质量的激光汇聚,高效激发双光子信号。/pp  4 如何有效的对荧光信号进行收集 /pp  5 如何使整个系统在动物剧烈运动时仍保持稳定/pp  6 在满足前5项条件下,重量是否足够轻,以致尽量小地对动物的活动造成影响 /pp  本文作者所在的课题组,是由北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队。我们在程和平院士的带领下,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,历经三年多的协同奋战,成功研制了新一代高速高分辨微型双光子荧光显微镜,并将其取名为FHIRM-TPM。原始论文于5月29日在线发表于自然杂志子刊Nature Methods (IF 25.3)12。在这项成果中,我们解决了上文所提及的早先微型化双光子显微镜研制中存在的问题,获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0418a0a6-f357-4e18-91b0-ef1c23d670bd.jpg" title="3.png" width="600" height="470" border="0" hspace="0" vspace="0" style="width: 600px height: 470px "//pp style="text-align: center "图3 FIRM-TPM示意图,来自sup12/sup/pp  新一代微型双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小型动物头部,通过颅窗实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,所以成像质量远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。其横向分辨率达到0.65μm,与商品化大型台式双光子荧光显微镜可相媲美 采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。最为重要的是,FHIRM-TPM克服了先前限微型双光子显微镜应用的两个障碍。首先,我们定制设计的HC-PCF为 920纳米飞秒激光脉冲提供了无畸变传输,这种改进让有效的激发例如Thy1-GFP和GCaMP-6f等常用荧光指示剂成为可能。第二,由于双光子点扫描显微镜的高空间分辨率和层切能力,安装到动物头上的微型双光子显微镜非常容易受到运动伪影的影响。为了解决这个问题,我们对整个系统进行了充分的优化:(a)使用柔软的新型光纤束SFB来使得动物运动引起的扭矩和拉拽力最小化,并不降低光子收集效率 (b)采用独立的可旋转连接器来连接光学探头上的光纤和电线,以使动物在自由探索期间线的扭曲和缠绕最小化 (c)使用高速成像以减少运动引起的帧内模糊。此外,我们在实验之前预先训练动物适应安装在其头骨上的微型显微镜,并滴加1.5%低熔点琼脂糖使其充满物镜和脑组织之间,这些措施都显著降低了探头与大脑之间的相对运动,进而改善了实验短期和长期的稳定性,于是实现了在动物进行包含大量身体和头部运动的行为学试验中中进行高分辨率成像。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0d8849db-62d7-4fdd-b7e0-4e572b3a1b03.jpg" title="4.png" width="600" height="437" border="0" hspace="0" vspace="0" style="width: 600px height: 437px "//pp style="text-align: center "图4 FIRM-TPM实物图,来自sup12/sup/pp  树突棘活动是神经元信息处理的基本事件,利用台式双光子显微镜在头固定的动物上的研究表明单个神经细胞的不同树突棘可以被不同朝向的视觉刺激或不同强度频率的声音刺激所激活。FHIRM-TPM实现了与传统的大型的台式双光子显微镜相同的分辨率和光学层切能力。与微型宽场显微镜相比,FIRM-TPM的高空间分辨率,固有的光学切片能力和组织穿透能力以及相当的机械稳定性都是极有优势的。所以虽然通过微型宽场显微镜可以获得数百个神经元在细胞水平上的活动,但是我们的 FHIRM-TPM无疑提供了一个更加强大的工具,即在自由活动的动物中对更加基本的神经编码单位——树突棘的时空特性进行观测。它能够在对小鼠依次进行的行为学试验(例如悬尾,跳台,以及社交行为)的过程中长时间观察位大脑中的神经元胞体、树突和树突棘的活动。这些功能的展示充分证明了FHIRM-TPM具有良好的性能和稳定性。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和大脑神经回路的活动。微型双光子荧光显微镜整机性能十分稳定,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/90a13003-d9fd-404d-8df3-64926f598012.jpg" title="5.png" width="600" height="283" border="0" hspace="0" vspace="0" style="width: 600px height: 283px "//pp style="text-align: center "图5 三种模式在结构学成像中的成像质量对比,来自sup12/sup/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/44bc19d8-0a51-4583-8784-2f9240ac1cdd.jpg" title="6.png"//pp style="text-align: center "图6 FHIRM-TPM在三种不同的行为学范例对小鼠大脑皮层神经元活动进行成像,来自sup12/sup/pp  从2001年Denk发表第一篇微型双光子显微镜的原型机以来,微型双光子显微镜的发展已经走过了15年的时间。15年的发展历程,微型双光子显微镜从最开始的25克笨重的身躯,只能在分离的组织中进行验证性的实验8到如今重量仅两点几克重,可以对自由活动的小鼠神经元进行树突棘级别的成像,可以说取得了一定的进步。然而,在看到这个领域取得的成就的同时,也应看到,至今为止,微型双光子显微镜还未像共聚焦显微镜或者是荧光光片显微镜一样被生物学家广泛认可和应用。而后者(光片显微镜)的发展时间更短(2008年Science的一篇文献一般被认为是现代荧光光片显微镜镜的开端13)。究其原因,除了技术本身的限制以外,整个研究领域的气氛和投入,也是重要的影响因素之一。/pp  纵观这15年来微型双光子显微镜的发展道路,开疆拓土者有之 改革创新者有之 另辟蹊径者有之 浑水摸鱼、指鹿为马者亦有之。然而遗憾的是,愿意心无旁骛、全情投入者鲜有之 有意愿和能力建立为这个研究的领域建立范式者亦鲜有之。而中国,在不久前在这个领域基本上属于完全的空白。更不要说什么领先世界。/pp  然而令人十分兴奋的是,中国国家基金委国家重大科研仪器设备研制专项在2014年正式将“超高时空分辨微型双光子在体显微成像系统”立项。以5年七千两百万人民币的研究经费对这一项“世界上做的还并不怎么好,中国基本没人做过”的技术进行攻关研发。这样的大力投入无疑为这一领域注入了新鲜血液和十足动力。而我也有幸在博士五年期间全程参与了这个项目的工作。从2012年来到该项目首席负责人程和平院士和陈良怡研究员的联合课题组至今,我见证了这个项目从无到有,团队从幼小稚嫩到壮大成熟的整个过程。如今,我们有了初步的成果,不仅让我们这样一支完全由中国本国科研工作者建立的团队在世界上处在了较为领先的位置,同时也把这个领域向前推动了一些,我感到无比激动和自豪。/pp  该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。”/pp  1. Denk, W., Strickler, J. & Webb, W.Two-photon laser scanning fluorescence microscopy. Science248, 73-76(1990)./pp  2. Gewin, V. A goldenage of brain exploration. PLoS Biol3, e24 (2005)./pp  3. Zipfel, W.R.,Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in thebiosciences.Nat Biotechnol21, 1369-1377 (2003)./pp  4. Chen, T.W. et al.Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature499, 295-300 (2013)./pp  5. Minderer, M.,Harvey, C.D., Donato, F. & Moser, E.I. Neuroscience: Virtual realityexplored. Nature533, 324-325 (2016)./pp  6. Hamel, E.J., Grewe,B.F., Parker, J.G. & Schnitzer, M.J. Cellular level brain imaging inbehaving mammals: an engineering approach. Neuron86, 140-159 (2015)./pp  7. Ghosh, K.K. et al.Miniaturized integration of a fluorescence microscope. Nat Methods8, 871-878(2011)./pp  8. Helmchen, F., Fee,M.S., Tank, D.W. & Denk, W. A Miniature Head-Mounted Two-Photon Microscope.Neuron31, 903-912 (2001)./pp  9. Engelbrecht, C.J.,Johnston, R.S., Seibel, E.J. & Helmchen, F. Ultra-compact fiber-optictwo-photon microscope for functional fluorescence imaging in vivo. Optics Express16, 5556 (2008)./pp  10. Piyawattanametha, W.et al. In vivo brain imaging using a portable 2.9 g two-photon microscope basedon a microelectromechanical systems scanning mirror. Optics Letters34, 2309(2009)./pp  11. Sawinski, J. et al.Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy ofSciences106, 19557-19562(2009)./pp  12. Zong, W. et al. Fasthigh-resolution miniature two-photon microscopy for brain imaging in freelybehaving mice. Nat Methods (2017)./pp  13. Keller, P.J.,Schmidt, A.D., Wittbrodt, J. & Stelzer, E.H. Reconstruction of zebrafishearly embryonic development by scanned light sheet microscopy. Science322, 1065-1069 (2008)./p
  • 2021年全球小型/微型光谱仪市场将达3亿美元
    p  日前,Research and Markets发布最新研究报告,报告内容显示,与整个分子光谱系统的市场增长状况相比,小型化光谱仪器的增长速度更高。预计,2015-2021年之间,整个分子光谱市场年增长率为7%,而小型/微型光谱仪的复合年增长率将达11%,2021年市场将达3亿美元。/pp  小型/微型光谱仪,主要用于实验室之外的环境,比如工业在线、农业或环境现场应用,医疗应用时的即时检测,甚至是消费类产品等设任何领域。随着尺寸的减小,紧凑型光谱仪的使用更加方便,成本更低,响应时间也更短。/pp  然而,为了达到工业和消费市场的需求,开发面向应用的产品是至关重要的。其中,硬件并不是系统中唯一重要的部分,数据处理、数据解析、人机交互界面、产品设计等方面的要求也很高,尤其是这些产品的用户并非光谱专家。/pp  报告中,预计将呈现高增长的市场包括:医药QA/QC、食品和饮料、农业、环境检测、医疗POC和消费者应用(智能手机光谱、食品测试等)。/pp  要很好的满足这些领域的应用,一些技术上的突破是必要的,最近的研究就利用了MEMS(微机电系统)、MOEMS(微光机电系统)、微镜阵列、线性渐变滤光片、集成光子等新的技术,从而降低光谱分析仪的成本和尺寸,同时提高了性能,增强抗造性和产量。/pp  该报告中提到的小型/微型光谱仪的厂家包括Avantes、B& W Tek、、Buchi、Horiba、Ocean Optics、Stellarnet、ThermoFisher、Zeiss等。/p
  • 国内首个高光谱遥感卫星大数据共享平台!我国在遥感卫星数据共享方面实现了零的突破!
    小编从西安发布了解到,中科西光航天发布了包括国内首个高光谱卫星大数据共享平台和国内首颗商业化双碳监测卫星在内的两项科技创新成果,标志着我国在遥感卫星数据共享方面实现了零的突破。今年,中科西光航天将推出自主研发的XIGUANG-004星(甲烷监测卫星)、XIGUANG-005星(精细化农业卫星)、XIGUANG-006星(矿产监测卫星)、XIGUANG-007(高分辨率精准农业卫星)等具备国内同量级最强指标的高光谱遥感卫星,不断突破高光谱遥感卫星在各类新兴领域的创新应用,实现我国高光谱遥感卫星指标的全面突破。作为我国西北地区唯一一家从事星座运营、卫星研制、载荷定制、数据开发全产业链的商业航天公司,也是国内唯一一家全自主研发高光谱卫星星座的商业航天公司,全力打造我国最大最全、最好用实用、成本最低的高光谱遥感卫星星座,是国内遥感星座里最具代表性的企业。图源西安中科西光航天公司官网公司创造了国内商业航天同时期发展速度最快、同比数据价值最高、同类型应用能力最强的多项奇迹,初步形成了面向环保、农林、海洋、地质、环境、智慧城市等方面的数据服务能力,是西安市知名的商业航天企业。中科西光航天拥有国内最大、最全的高光谱遥感星座108星遥感星座;向全球用户提供高空间分辨率、高时间分辨率、高光谱分辨率的全天候卫星遥感大数据服务和卫星应用系统解决方案;现已成功发射的两颗高光谱卫星均为国内首次在百公斤级卫星上搭载高光谱成像仪,也是国内率先布局双碳业务板块的商业航天公司。
  • 超微光学展示超微型光谱模组及微型光谱仪
    台湾超微光学参加了于2012年10月16-18日召开的2012北京国际光电产业博览会暨第十七届北京国际激光、光电子及光显示产品展览会(ILOPE 2012)。在此次展会上,超微光学展出了超微型光谱模组及微型光谱仪系列产品。 超微光学的系列超微型光谱模组有着微小的体积及相当低的设置成本,微型光谱仪同样具有此方面的优势,并具有宽光谱范围、高解析度及可编程微控制器,使用USB接口,无需外接电源,可同时连接多台光谱仪。
  • 仪方成为Thermo微型气相色谱仪中国区总代理
    新加坡仪方亚洲有限公司正式成为Thermo Fisher Micro GC 微型气相色谱仪中国区总代理 新加坡仪方亚洲有限公司(INTERMASS FISCHER-ASIA PTE LTD),是一家总部设在新加坡的专业科学仪器公司。作为多家世界先进的分析仪器设备制造商在中国地区的总代理,仪方公司的产品主要被应用于石油炼制、精细化工、生物制药、环保监测、电子元件等众多行业及领域。凭借成熟稳定的销售团队和优秀的售后服务团队以及与Thermo Fisher长期合作的成功经验,仪方公司继Thermo Fisher总硫总氮元素分析仪和有机元素分析仪系列产品后再次成为Thermo Fisher 最新的微型气相色谱仪Micro GC的中国市场独家总代理,负责产品的市场销售和售后服务工作。 如果您对产品有任何疑问或兴趣,欢迎随时垂询我公司或登陆公司网站查询。 联系方式:北京办公室:010-5867 8333上海办公室:021-6439 9787Email:ifac@intermasschina.comWebsite:www.intermasschina.com Thermo C2V-200 Micro GC 微型气相色谱仪快速、可靠、简便和高效 C2V-200 Micro GC 微型气相色谱仪是为快速可靠的气体分析而量身定制,可用于实验室或在线气体分析。尤其是在自然资源领域,C2V-200微型气相色谱通过精确分析天然气的热值提高生产力,能够快速的得到精确结果。&ldquo 集成微芯片技术MEMS&rdquo 结合窄口径毛细管柱带来了更高效的性能和更低的成本。C2V - 200设计理念是为了更简单实用、减少维护和更低的耗气量。设备采用模块化设计, 可更换的色谱柱模块集成加热控制部分, 且非常容易更换安装 由于采用了MEMS微芯片一体化设计的进样器和快速色谱柱温控技术,分析效率大大提升,常规气相色谱分析需要20分钟,在微型气相色谱上只要30s就可以完成,大大节约实验时间。 C2V-200增强型的控温装置使得微型气相柱的增温速率为240℃/min,以适用于更广泛的化合物分析。集成流路选择器的自动校准功能,提供了在线的、精准的分析数据。C2V-200微型气相色谱仪采用专用仪器控制和数据处理软件,在仪器运行中能够快速得到分析数据。报告结果完全遵循ISO、ASTM以及GPA标准。
  • 北大研制新一代微型化双光子荧光显微镜 重量仅2.2克
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/61f92578-2a77-4450-bae3-0909e6aa5712.jpg" title="微信图片_20170604220236_副本.jpg"//pp style="text-align: center "程和平院士在发布会上介绍研究成果/pp  历经3年多的协同奋战,北京大学分子医学研究所、信息科学技术学院、生物动态光学成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,成功研制新一代高速高分辨微型化双光子荧光显微镜,重量仅为2.2克。/pp  原始论文于5月29日在线发表于《自然》杂志子刊Nature Methods(IF 25.3),相关技术文档同步发表于Protocol Exchange(DOI: 10.1038/protex.2017.048),并已申请多项专利。新一代微型化双光子荧光显微镜的成功研制是世界成像仪器领域的重大突破,为脑与认知科学、人工智能研究的推进提供了重要工具。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/93671403-0d47-4f16-a918-f9e51a10842b.jpg" title="微信图片_20170604220241_副本.jpg"//pp style="text-align: center "新闻发布会现场/pp  据介绍,该科研团队通过这一微型显微镜获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。该显微镜适于佩戴在小动物头部,可实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。/pp  研究团队主要成员、北大分子医学研究所研究员陈良怡说道:“这是我们第一次观察到自由活动状态下的小鼠是‘怎么想的’。通过这套新型显微镜,可以在自由活动的哺乳动物上对其神经活动进行更精准研究。”/pp  美国著名神经科学家阿尔西诺· 席尔瓦教授评论称:“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/3180638f-621d-4745-b274-e1bea7ef57a2.jpg" title="微信图片_20170604220248_副本.jpg"//pp style="text-align: center "程和平、陈良怡、王爱民、张云峰、宗伟健、吴润龙、李明立等研发团队成员在发布会上与听众交流/pp  作为国家重大科研仪器研制专项的一个硕果,新一代微型化双光子荧光显微成像系统的成功研制彰显了北京大学在生物医学成像领域先期布局的前瞻性,锻炼了一支以年轻PI和硕博研究生为主体、具有学科交叉背景和核心技术创新能力的“中国智造”队伍。目前,该研发团队正在领衔建设“多模态跨尺度生物医学成像”“十三五”国家重大科技基础设施,积极参与即将启动的中国脑科学计划。可以期待,微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥不可或缺的重要作用。/pp  strong延伸阅读/strong/pp  相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm。新一代微型化双光子荧光显微镜的成像质量可与商品化大型台式双光子荧光显微镜相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和神经回路的活动。/pp  新一代微型化双光子荧光显微成像改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp  该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。/p
  • 微型光谱仪之在线光谱技术应用
    pstrong  1. 工业在线光谱分析技术/strong/pp  目前在线光谱分析已经以惊人的速度应用于多个领域的企业生产的多个环节,并已使得过程分析仪器领域发生了深刻变革。这种变革与在线光谱分析的独特优点是分不开的,比如:/ppspan style="COLOR: #548dd4"strong  在线光谱分析可以对多路多组分连续同时测量,且速度快,准确性高 /strong/span/ppspan style="COLOR: #548dd4"strong  在线光谱分析仪器易损坏和消耗品少,维护量小 /strong/span/ppspan style="COLOR: #548dd4"strong  在线光谱分析多采用光纤传输技术,适合环境恶劣的场合 /strong/span/ppspan style="COLOR: #548dd4"strong  在线光谱分析仪器结构相对简单,并适合多种样品(如液体,涂层,粉末和固体等)/strong/span/pp  这些优点对于企业原料和生产的中间环节进行快速质量控制、优化操作、稳定生产和节能降耗非常有价值。/pp  与实验室环境不同,工业环境在要求光谱分析系统具有足够的灵敏度和探测限,同时对于性能稳定性,体积尺寸和抗干扰能力也都有严格要求。光谱仪是在线光谱分析的核心模块,它的性能好坏从根本上决定了系统性能。选择合适的光谱仪对于工业在线应用十分重要。/pp  1992年美国海洋光学公司的Mike Morris博士发明了世界上第一台微型光纤光谱仪,他将光谱仪的大小缩小了几十倍,价格降低了十几倍。光纤光谱仪利用光纤把远离光谱仪器的样品光谱引到光谱仪器,以适应被测样品的复杂形状和位置。由光纤引入光信号还可使仪器内部与外界环境隔绝,可增强对恶劣环境(潮湿气候、强电场干扰、腐蚀性气体)的抵抗能力,保证了光谱仪的长期可靠运行,延长使用寿命。光纤光谱仪结构紧凑,组成包括入射狭缝、准直物镜、光栅、成像反射镜和阵列探测器,还包括数据采集系统和数据处理系统。光信号经入射狭缝投射到准直物镜上,将发散光变成准平行光反射到光栅上,色散后经成像反射镜将光谱呈在阵列接收器的接收面上,光信号被转换成电子信号后,经模拟数字转换,A/D放大后输出,最后由软件系统控制和采集信号,进而完成各种光谱信号测量分析。这些特点对于工业在线光谱应用是极其有利的。可以说,微型光谱仪是光谱测量技术从实验室走向工业应用的里程碑。/pp  工业在线光谱分析系统核心为光谱仪,其配套部件一般还有采样附件,光源,控制软件和专用分析模型,它们对于系统整体性能也有重要影响。一般在线光谱分析系统构成如下图所示。/pp style="TEXT-ALIGN: center"img title="QQ截图20161227100735.jpg" style="HEIGHT: 294px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/37c32cc6-4188-46d5-bfe9-fef2d6bda031.jpg" width="300" height="294"//pp style="TEXT-ALIGN: center"图1 在线光谱分析系统组成/pp strong 2. 应用案例-工业在线反射率与颜色测量/strong/pp  下面以一个典型案例说明在线光谱系统设计需要考虑的因素。某特种印刷用户需要快速测量薄膜材料颜色,用于产品质量控制。用户主要需求为:/pp  strongspan style="COLOR: #548dd4"系统需满足最快180米/分钟的检测速度,且具有足够精确性。/span/strong/ppstrongspan style="COLOR: #548dd4"  系统能够进行非接触非破坏性采样测量。/span/strong/ppstrongspan style="COLOR: #548dd4"  系统能直接输出最终结果给上位机。/span/strong/ppstrongspan style="COLOR: #548dd4"  系统能直接输出颜色值,并能与用户自己的上位机系统集成。/span/strong/ppstrongspan style="COLOR: #548dd4"  系统要能反映被测样品的峰值波长、光谱等特性。/span/strong/ppstrongspan style="COLOR: #548dd4"  系统具备自检和异常报警功能。/span/strong/ppstrongspan style="COLOR: #548dd4"  系统要能适应工厂持续噪声,细颗粒粉尘,电磁干扰以及不稳定供电环境。/span/strong/ppstrongspan style="COLOR: #548dd4"  系统要能7*24连续工作,且维护方便。/span/strong/ppstrongspan style="COLOR: #548dd4"  系统尺寸要能兼容于空间狭小的产线。/span/strong/pp  这些需求涵盖了性能,尺寸和环境安全性多个方面,在工业在线光谱分析应用中具有典型性。/pp  为满足检测速度要求,系统单次测量周期不得大于4毫秒。为此整个系统将采用流水线并行作业方式,确保测量速度和分辨率能够满足要求。如样品移动速度小于180米/分钟,则将得到更高的检测分辨率,即小于12毫米。所采用的工业定制型光谱仪的最小积分时间可达到1毫秒,可以充分满足速度要求。/pp  为满足用户上位机数据接口要求,在线光谱分析系统应集成数据处理算法功能,且保证运算快速,结果准确。为此,在线光谱分析系统里搭载了高性能处理器,并且为了进一步提高速度,运算处理器直接与光谱仪模块集成。从而能够在CCD探测器进行下一周期积分时并行计算反射率数据。在前后两个计算周期之间,没有等待的延迟时间。在完成计算后,光谱仪将颜色数据提交给服务器,交由服务器判断是否需要触发停机信号。由于本系统的规模仅需要至多两层交换机就能连接,因此网络的延迟时间将小于1毫秒。而经过测算,进行50万次(相当于6000米长的薄膜)100个通道的组合逻辑判断在普通的计算机上每次平均耗时仅0.02毫秒,单次最大耗时为2毫秒。按此测算,完成单次测量和判断所需时间为12毫秒,即瑕疵点在经过探头3.6厘米后系统会给出报警或停机信号。瑕疵点在经过数米的减速区之后,足以被减速,并停留在质量观察板上。报警采用光谱仪与声光报警器协同工作实现。/pp  对于颜色测量,必须有参考光谱和背景光谱,即对反射测量的校准操作。经常校准能有助于使计算的颜色结果更接近于实际结果,消除光源、环境以及其他因素对测量的影响。当进行校准操作时,需将已知颜色的标准板置于探头下方,与探头所呈角度与样品一致。此时打开光源,确保光源强度不会使光谱仪饱和,并保存参考光谱(即各波长上的强度)。然后关闭光源,此时光谱将反映暗噪声和环境光,将该光谱作为背景光谱也保存下来。在完成校准操作后,即可对样品进行颜色的测量和计算了。颜色实际上是样品在特定波长上的光谱强度与标准板在特定波长上的光谱强度的比值。为消除环境光和暗噪声的影响,需要背景光谱也参与计算。/pp  根据上述分析结果,系统使用了对颜色测量进行特殊优化的工业定制型光谱仪。其搭载的高性能处理器和以太网接口能在测量光谱的同时直接将颜色信息提交给服务器,并由服务器根据用户预先设置的判定规则进行报警或触发停机,确保了整个系统的实时性和可靠性。/pp  系统的探头支架可安装在用户指定滚轮位置的样品切线垂直方向上,并在滚轴上安装速度编码器,以获取当前检测样品的所在位置。反射式探头为Y型分岔光纤,其两头将连接到机柜内的光谱仪和光源上。在探头支架上还将安装可自动旋转的机电装置和标准板,供定期获取参考光谱。/pp  系统板载处理器为定制高性能FPGA模块,实现光谱数据到LCH颜色值的计算,并将结果上传至上位机(主控机)。/pp  系统的重要部件均安装在工业级机柜内,包括光谱仪、光源、供电电源、以太网交换机、系统服务器等。光纤和各种线缆则通过上进线或侧进线方式接入机柜。/pp  最终的人机接口将安装在操作员使用的盘台上,该工作站主机将安装在盘台内部,并通过屏蔽双绞线与机柜内的系统服务器连接。系统服务器和操作员工作站上会分别安装系统软件的服务器端和客户端,以呈现整卷或整批薄膜产品的质量情况。/pp  系统组成示意图如下所示。/pp style="TEXT-ALIGN: center"img title="QQ截图20161227101131.jpg" style="HEIGHT: 250px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/27ed627d-b20b-4735-b0d4-39858b1574a5.jpg" width="400" height="250"//pp style="TEXT-ALIGN: center"strong图2 系统组成示意图/strong/pp  在软件模块上,系统提供的定制软件功能模块均运行于主控机的Windows系统上,主要功能模块如下图所示:/pp style="TEXT-ALIGN: center"img title="QQ截图20161227101230.jpg" style="HEIGHT: 300px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/0754d649-1732-41c5-87ed-8a50be0c9ef5.jpg" width="300" height="300"//pp style="TEXT-ALIGN: center"strong图3 软件功能模块/strong/pp  strong调度模块:/strong为主程序核心,主要负责承担各模块之间的管理及任务调度 /pp  strong通讯模块:/strong主要负责与工业现场总线的通讯,解析通讯命令,并通过调度模块完成相关任务,如启动测量过程,读取测量数据等 /pp  strong计算模块:/strong计算光谱数据,得到LCH颜色值 /pp  strong底层驱动:/strong主要控制光谱仪、光源、电子快门、传动模块等硬件设备 /pp  strong测量模块:/strong根据测量时序、流程完成一个完整的测量流程 /pp  strong数据库:/strong主要用于保留系统参数、测量历史数据等信息 /pp  strong用户界面/strong:完成用户交互功能,主要包括系统参数配置,测量数据显示,历史数据浏览,系统功能测试等。/pp  在故障维修与运行维护方面,光源和光谱仪都采用模块化方式安装布置,且均对通道号进行标识,方便找到故障的光源。并且配套的通过交换机及光谱仪上的状态指示灯可了解是否存在网络线缆故障。软件也能够识别光源故障。/pp  该案例充分体现了在线光谱分析与实验室应用的巨大差异。工业环境下,在线光谱分析系统必须充分考虑应用环境的特殊性,各种影响因素都必须仔细评估。除了光谱仪,测量附件的选择在相当大程度上取决于光谱仪厂家的行业应用经验和水平,这一点在专用的在线分析系统开发方面体现的更为明显。/ppstrong  三、更多工业在线应用案例/strong/ppstrong  (1)LED芯片测试机/strong/pp  由于制作工艺存在尚未解决的技术困难,所以对于生产过程中同一块外延片不同位置的光电特性是有细微差别的,呈现出不均匀性。在完成电极和引脚的过程中也会存在一定的瑕疵。这些缺陷会导致在LED产品的发光强度和颜色,在生产过程中如果残次芯片继续进行加工,会导致生产过程中不必要的浪费。所以LED芯片测试机是LED生产过程中不可或缺的一个环节。/pp style="TEXT-ALIGN: center"img title="LED芯片检测过程.jpg" style="HEIGHT: 252px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/19f4c15e-6033-4f19-8821-6c1b7452a872.jpg" width="400" height="252"//pp style="TEXT-ALIGN: center"LED芯片检测过程/pp style="TEXT-ALIGN: center"img title="LED芯片测试结果.jpg" style="HEIGHT: 323px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/46d98eb1-7886-4300-91fe-7c950a8fb913.jpg" width="400" height="323"//pp style="TEXT-ALIGN: center"LED芯片测试结果/pp  微型光纤光谱仪主要将辐射光谱、发光强度、色坐标x,y和峰值波长作为测量指标。/pp  一般检测设备只能对电气特性不合格进行筛选,微型光纤光谱仪被引入到LED芯片检测后,发光检测方面问题得到了很好地解决。由于微型光纤光谱仪测量每颗晶粒的时间是5-6ms,快于一般测试机探针机械移动时间,因此测量速度提到提高。由于微型光纤光谱仪体积小,因此不会占用机台的使用空间,不需要对原有机台的机械结构做出较大调整。同步触发功能保证了在检测过程中,能够保证每个晶粒在点亮后的相同时间进行测量。/ppstrong  (2)LED分光机/strong/pp  LED制造流程是复杂、漫长的一个过程,想要生产出性能一致,功能完整的LED产品,LED分光机作为LED制造流程中靠后的工序,需要对封装后的器件根据光、色、电三方面参数进行筛选,然后才能将其包装为产品,最终流入市场。/pp  LED分光机的测量指标是发射光谱、发光强度、色坐标x,y、峰值波长。/pp  LED分光机工作流程一般包括:待分选的LED器件会在震动盘上排列进料,依次进入电测和光测的工位 进入电测工位后,LED会被通电进行电学指标测试 当被移动到光测工位时,LED芯片会被点亮,继而使用积分球和光谱仪测量其辐射光谱 通过计算光度学和色度学参数,并联合电学指标,一起进行数据分析 随后将数据转换为指令,传输到指令模块,将不同LED进行分选。基于微型光纤光谱仪的第一台LED分光机,可以完成分选5000颗/小时,使得LED检测从抽检进入到全检的时代。随着微型光纤光谱仪性能的提升以及与配套LED分光机兼容度提高,现在的LED分光机检测已经可以完成55000颗/小时,甚至更高。/pp style="TEXT-ALIGN: center"img title="LED分光机.jpg" style="HEIGHT: 338px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/3a28ae58-6315-466f-86d5-06cd09c39ad7.jpg" width="450" height="338"//pp style="TEXT-ALIGN: center"LED分光机/pp style="TEXT-ALIGN: center"img title="LED器件进料.jpg" style="HEIGHT: 188px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/6b21148a-276f-4227-a12a-1b2bc65ae312.jpg" width="250" height="188"/ img title="排列进入检测位置.jpg" style="HEIGHT: 188px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/b89bc6db-320c-4f95-b46b-83ab7df07248.jpg" width="250" height="188"//pp style="TEXT-ALIGN: center"LED器件进料、排列进入检测位置/pp style="TEXT-ALIGN: center"img title="检测电学和发光特性.jpg" style="HEIGHT: 188px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/8b14cb67-e6f3-42b1-a4c2-b122c600272a.jpg" width="250" height="188"/ img title="进行分选归类.jpg" style="HEIGHT: 188px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/72c530e3-ff6e-46f1-9483-33f6ae9dec81.jpg" width="250" height="188"//pp style="TEXT-ALIGN: center"检测电学和发光特性、进行分选归类/pp strong (3)污染气体排放监测/strong/pp  微型光纤光谱仪在污染气体排放监测指标是不同气体浓度,包括氮氧化物、二氧化硫、臭氧、丙酮和氨气等。不同气体所表现出的吸收光谱具有特异性,但也有一定相同性,大部分气体的吸收峰都位于紫外区域,所以采用在紫外区域的激发光或在紫外区域有响应的光谱仪对气体进行浓度的测试。/pp style="TEXT-ALIGN: center"img title="污染气体排放.jpg" style="HEIGHT: 261px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/6b0a2621-b070-4789-ab04-9bb0cf9afa88.jpg" width="400" height="261"//pp  通常使用微型光纤光谱仪对气体进行检测,会将所有检测设备放置于一辆移动检测车中,到达目标检测位时,将设备架设在相应位置。检测设备包括摄像机、激光器触发装置、激发光、光谱仪和反射镜。检测过程是通过光源发出一束激发光,照射到马路另一边的反射镜,通过反射镜反射使光谱仪能够检测到气体光谱。当一辆汽车经过检测系统时,汽车排放的尾气会和光路进行相互的作用,尾气中的物体由于浓度的不同,光谱仪可以测量光穿过气体的强度,就可以检测出汽车排放的尾气是否超标。/pp style="TEXT-ALIGN: center"img title="监测系统示意图1.jpg" style="HEIGHT: 240px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/bddce1df-323a-45ad-a394-2c6bc379d0e3.jpg" width="400" height="240"//pp style="TEXT-ALIGN: center"img title="监测系统示意图2.jpg" style="HEIGHT: 235px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/1bac5528-d221-4646-b16d-1321a1b27542.jpg" width="400" height="235"//pp style="TEXT-ALIGN: center"监测系统示意图/pp  这种尾气排放监测方法之所以能够得到广泛应用,首先得益于微型光纤光谱仪测量速度快,若被测汽车匀速通过检测系统,检测系统就能快速检测出吸收光谱,并且迅速处输入电脑进行分析和储存。微型光纤光谱仪的体积优势,使其能够与气体检测系统更好的集成到一起,方便检测车辆进行运输与架设。/ppstrong  (4)水果分选机/strong/pp  吸收光谱在工业领域应用案例不仅仅局限于气体应用,微型光纤光谱仪也被应用于水果流通的分选环节,将水果的糖分和水分作为测量指标,结合其他物理探头对水果进行分选。相对于水果的大小,对于特殊人群,如糖尿病患者,其糖分对于消费者而言意义更为重要,使用近红外光谱仪可以对糖分和水分的含量进行判定。/pp  基于微型光纤光谱仪的水果分选机一般由两部分组成,一个是发射的光源,一个是用来检测的光谱仪。一般在检测中会采用高功率的卤钨灯,提供近红外段宽光谱的能量,由于光源的高功率也就能提升了检测时穿透水果果皮的能力,在水果另一侧的光谱仪才能够获得更多更强的信号,提高信息的准确性。在水果分选过程中,水果数量巨大,微型光纤光谱仪检测的高效性正好满足了水果分选机的工作特点。/pp style="TEXT-ALIGN: center"img title="水果分选机示意图.jpg" style="HEIGHT: 225px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/bf2f6dfa-79a1-4ca1-9671-cdc594f97c04.jpg" width="400" height="225"//pp style="TEXT-ALIGN: center"img title="水果分选机示意图2.jpg" style="HEIGHT: 188px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/82a91140-60f2-402f-a77a-68eb2038a124.jpg" width="400" height="188"//pp style="TEXT-ALIGN: center"水果分选机示意图/pp  strong(5)节能玻璃镀膜工艺在线监控/strong/pp  由于现在玻璃工艺技术的发展,很多高楼选择使用玻璃作为外墙的建筑材料,但与传统建筑材料相比,玻璃的隔热性能有所欠缺。如果想使室内温度维持在一个稳定值,就需要对玻璃进行处理,最常见的手段是将玻璃进行镀膜工艺,使得玻璃能够尽可能的透过可见光,而同时增强隔热性能。所以镀膜过程的质量保证,成为了玻璃隔热性能优良与否的重要因素。/pp  将多个微型光纤光谱仪与玻璃生产线相集成,对镀膜的效果进行实时测量。微型光纤光谱仪所采集到测量指标,如镀膜玻璃的反射率,透过率,膜厚数据,反馈给镀膜机,使其在下一次镀膜过程中对镀膜工艺进行调整。在检测过程中,氘灯和卤钨灯混合光源照射到被测样品上,会反射一部分光,被光源同侧的光谱仪接收,而另一侧放置的光谱仪对透射光谱进行测量。所以整个检测系统能对反射光谱和透射光谱进行测量。由于检测的玻璃尺寸较大,所以为了对玻璃镀膜的均匀性进行全面的测量,探头采取平移方法扫描整块玻璃。由于微型光纤光谱仪的体积小巧,内部结构紧密,无移动部件,可以适应较高加速度和震动的环境,使得微型光纤光谱仪和探头可以进行在检测过程中进行往复运动。/pp style="TEXT-ALIGN: center"img title="微型光纤光谱仪检测示意图.jpg" style="HEIGHT: 303px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/db4108c9-dd18-411e-a72b-22c214e334a1.jpg" width="300" height="303"//pp style="TEXT-ALIGN: center"微型光纤光谱仪检测示意图/pp style="TEXT-ALIGN: center"img title="QQ截图20161227102542.jpg" src="http://img1.17img.cn/17img/images/201612/noimg/4f9ed63a-2184-4b8c-b7a5-bf34940b80f5.jpg"//pp style="TEXT-ALIGN: center"玻璃镀膜工艺监控系统/pp style="TEXT-ALIGN: center"img title="微型光纤光谱仪与平移台集成.jpg" style="HEIGHT: 301px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/233a6763-fd1d-4dc3-91e6-23e90370af1f.jpg" width="400" height="301"//pp style="TEXT-ALIGN: center"微型光纤光谱仪与平移台集成/ppstrong  (6)印刷机的在线颜色监控/strong/pp  颜色准确性是印刷行业重点关注的技术指标,由于不同纸张材料的吸水性差异于油墨的批次差异会导致印刷品之间存在色差,将微型光纤光谱仪与印刷实时颜色监控系统相集成就显得尤为的重要。/pp  在印刷机上集成一个反射光谱的测量系统,对印刷品的校准色块进行反射测量,并通过相应算法将光谱数据换算为行业内能够接受的颜色指标。由于印刷中的纸张具有快速移动的特性,所以在运用中往往会采用积分球或环形的反射镜对光源进行匀化,从而减小检测样品在印刷过程中的振动与倾斜。光谱仪所得光谱数据反馈到印刷设备对颜色的品控进行调整。/pp style="TEXT-ALIGN: center"img title="印刷机颜色监控示意图.jpg" src="http://img1.17img.cn/17img/images/201612/noimg/bf5b28d3-6d21-4722-b1a1-17761d368c5b.jpg"//pp style="TEXT-ALIGN: center"印刷机颜色监控示意图/pp  光谱仪自带可编程逻辑电路,可将复杂的逻辑关系写入微型光纤光谱仪中,可以使光谱仪直接与印刷设备油料控制器对接,产生在线的闭环系统。/pp style="TEXT-ALIGN: right"(内容来源:海洋光学)/p
  • 海顿科克高品质的微型丝杆副系列产品
    海顿科克直线传动是AMETEK集团的一员,是世界上直线传动产品领导型企业,是世界上微型丝杆副做的最好的公司。其微型丝杆是指螺杆直径2mm,螺杆导程从0.3mm&mdash 2.4mm的丝杆,所有丝杆都有螺母与其配套使用,螺母由高分子材料做成,带有自润滑效果。 科克的微型丝杆其最引人注目的地方是它扩大了工程师的设计领域,这些微型丝杆副可以让产品设计的更小,更轻,更节能,同时还不会影响产品质量和性能。这也是当今世界普遍对产品的新的要求,海顿科克生产微型丝杆已经超过10年时间,已经有很成熟的的微型丝杆标准产品了,客户如果需要马上就可以使用它们改进自己的产品。 海顿的LC15000电机上使用传动丝杆就是科克的微型丝杆,丝杆也是由303不锈钢一次挤压成型,质量好,寿命长而且免维护!科克的微型丝杆精度很高,一致性好,极大的提高了电机的性能,客户还可以根据要求加涂TFE涂层! 科克的微型丝杆长度最长可以做到76.2MM,导程从0.3mm-2.4mm可选,丝杆都是由303不锈钢制作而成,螺母都是由高分子材料做成,产品性能完全可以保证! 更多信息请访问海顿直线电机(常州)有限公司网站http://www.haydonkerk.com.cn
  • 船舶气象仪-一款有条不紊的微型气象传感器
    船舶气象仪-一款有条不紊的微型气象传感器#2022已更新【品牌型号:天合环境TH-Y6】雷雨大风天气对船舶航行安全会带来很大影响,船舶在大风浪区域航行,将出现较剧烈的摇荡运动、降速、航向不稳定,以及由此引起的其他操纵方面的困难,甚至出现难以预料的危险,而且大雨、暴雨会引起能见度下降,影响航行安全。一、产品简介山东天合环境科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。TH-Y6型六要素微气象仪原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向。与传统的超声波风速风向仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。TH-Y6型六要素微气象仪创新性地将气象标准六参数(环境温度、相对湿度、风速、风向、大气压力、压电雨量)通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将六项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、大气压力、压电雨量六要素一体式4、采用先进的传感技术,实时测量,无启动风速☆5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行6、高集成度,无移动部件,零磨损7、免维护,无需现场校准8、采用ASA工程塑料室外应用常年不变色9、产品设计输出信号标配为RS485通讯接口(MODBUS协议);可选配232、USB、以太网接口,支持数据实时读取☆10、可选配无线传输模块,最小传输间隔1分钟11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆三、技术参数1、风速:0~60m/s(±0.1m/s);2、风向:0~360°(±2°);3、空气温度:-40-60℃(±0.3℃);4、空气湿度:0-100%RH(±3%RH);5、大气压力:300-1100hpa(±0.25%);6、压电雨量:0-4mm/min(±4%)7、功率:1.08W8、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证☆9、生产企业具有知识产权管理体系认证证书和计算机软件注册证书☆四、产品尺寸图五、产品结构图六、注意事项1.传感器水平周围1米半径无遮挡,避免水滴飞溅影响2.传感器安装位置应避开强机械振动源3.传感器安装上方应为开阔区域,雨滴应直接滴落至传感器,应免二次滴落和连续水流冲击
  • 海顿科克全新推出微型滑动丝杆系列
    海顿科克最近全新推出了微型的滑动丝杆系列,作为直线传动领域的领导企业,公司利用丰富的经验和先进的技术推出了全新微型系列丝杆,该系列螺杆的直径为2mm,导程从0.3mm-2.0mm有多种可选,每个螺杆都可配各式的螺母,螺母都是用科克公司特有的Kerkite聚合材料制成,都有自润滑的功能。  微型丝杆系列是一个全新设计的系列,采用了先进的生产工艺和技术,它可以让工程师设计的产品变的更小,更轻,更节能,但是却不会降低产品性能和质量,通过深化对很多正在增长中的市场需求的反应,海顿科克生产客户化定制微型螺杆已经超过十年。现在,随着微型系列的引入,任何人都能利用标准化设计,现有的机加工条件和快捷的交货,使自己的产品快速推向市场并活得更好的成本效益。     科克微型丝杆可以单独作为一个传动件使用,也可以作为海顿的直线步进电机的传动丝杆使用,丝杆都是用303不锈钢制造而成,性能好,寿命长而且免维护,螺纹一致性高,在传动工程过程中,不但定位精度高,而且能极大减小运行振动和噪音,同科克的其他产品一样,微型丝杆同样可以选涂科克的Kerkote的涂层,这是一种干性润滑涂层,可以减少摩擦和阻力矩。  海顿科克一向善于为客户定制产品,只要客户有特殊应用要求,海顿科克都会想方设法满足客户要求,海顿科克有一整套的产品开发设备,包括开模,注塑,挤压,切割等等,不管您是需求一个,一百个,还是一万个海顿科克都会为您开发,如有需要请尽快联系我们吧。  更多信息请访问海顿直线电机(常州)有限公司网站http://www.haydonkerk.com.cn
  • 海洋光学新一代微型光谱仪Ocean ST惊喜上市
    近年来,由于全球制造业迎来“工业4.0“时代,经济快速发展以及环境监测、医疗和生命科学、半导体等领域的现代化进程加快,用户对光谱仪的需求量增多(据报告显示,2020 - 2026年医疗行业对微型光谱仪的需求复合年增长率预计超过11%),同时对光谱仪的性能、体积等提出了更高的要求。此外,随着对工业生产环境的要求日益严苛,检测设备的准确度、适用性、智能化和集成性就显得尤为重要了。作为微型光纤光谱仪的发明者,海洋光学致力于帮助客户解决棘手的困难与挑战,投入了大量的资源用于新一代光纤光谱仪的研发。近日,海洋光学推出新一代微型光纤光谱仪Ocean ST。Ocean ST——业界超小尺寸的微型光纤光谱仪,以超紧凑的机身设计和强大的性能,为客户提供超高性价比的体验,为行业赋能。超小的体积,出色的性能Ocean ST体积仅有45cm³,是海洋光学USB系列的约1/4;重量仅有70.4g,是USB系列的约1/3;整体设计紧凑、小巧,价格便宜,但在性能上却可与市场上大尺寸、更昂贵的光谱仪相媲美,提供优质的全光谱分析数据,高速光谱采集、高信噪比以及高分辨率。此外,Ocean ST在紫外波段响应实现了重大突破。相比于海洋光学上一代超小体积的微型光谱仪,Ocean ST在紫外波段灵敏度提高了233倍,检测限更低,可以监测到更弱的紫外信号。名副其实的“掌中宝”应用灵活,便于集成Ocean ST微型光谱仪有紫外、可见光和近红外波段三个配置,并与海洋光学的光源、光纤、采样附件和OceanView软件兼容,用户可根据不同的应用和场景优化配置。可选配狭缝的设计使用户能够更加灵活地调整光学分辨率和光通量。当光信号较强,且光谱仪分辨率较为重要时,选择宽度较小的狭缝。反之,则选择更宽的狭缝。同时, Ocean ST坚固耐用的结构,超小的体积,出色的热稳定性以及较小的台间差, 使其成为一个集成开发的理想选择,可轻松集成到生产线上进行在线检测,或对成品进行质量监测。为深陷“性能”与“尺寸”两难的工业客户提供了便于操作且性价比高的理想替代方案。配备软件二次开发包每台Ocean ST微型光谱仪都配有OceanDirect,这是一个强大的跨平台软件二次开发包(SDK),具有应用程序编程接口 (API)。OceanDirect的例程库为用户提供了调整光谱仪参数和访问关键数据并进行分析的能力。用户可通过OceanDirect连接光谱仪,设置积分时间等采集参数并采集光谱;同时,将OceanDirect集成至用户自身的软件应用程序中,即可全面控制光谱仪和设备。应用范围广Ocean ST是通用型的微型光谱仪,在多种应用场景中表现出色,是以下应用的不二之选:荧光测量紫外波段的吸光度和辐照度等离子体监测近红外反射测量塑料和其他固体表面反射率DNA/RNA样品吸光度与浓度检测颜色测量Ocean ST是海洋光学研发推出的超小体积微型光谱仪,未来将会有更多海洋光学新一代光谱仪问世,敬请期待!
  • 微型光谱仪发展方向:标准化、小型化、功能化
    p  光谱仪作为重要的分析仪器,在诸多领域已取得应用。那么光谱仪技术未来的发展方向和潮流是什么?有哪些难点需要克服?/pp  光谱仪技术已经到了发展的关键时刻,未来光谱仪将朝着以下三个方向发展:/pp  第一,微型光谱仪标准化。在标准化方面,目前国家并没有针对光谱仪出台任何计量标准,在传感器标准方面也没有涉及。虽然海洋光学在这个方向做了很多工作,但是还没有上升到行业标准及国家标准。未来我们将致力于微型光谱仪市场的标准化,只有形成标准化市场之后,才会得到更多工业用户的认可,甚至走向民用市场。/pp  第二,由微型光谱仪到迷你光谱仪。这涉及到光路设计、检测器筛选、生产工艺改善以及相关技术上的突破。随着光谱仪产品尺寸越来越小,检测灵敏度越来越高,对于制造工艺也提出了新要求,未来将会引入更多自动化技术,带来制造工艺的革新。/pp  第三,光谱仪的功能化及系统化。现阶段光谱仪只能给出光谱数据,但对于一般使用者而言,无法把握光谱数据所传达的确切信息。因此,我们要把微型光谱仪功能化,做成子系统,能够输出客户真正关心的数据信息。/pp style="TEXT-ALIGN: right" /p
  • 微型光纤光谱仪可以应用于哪些领域?
    从1992年Mike Morris发明世界上第一个微型光纤光谱仪至今已经24年了,各个行业已经开发了数以千计的应用。广阔的市场前景吸引了越来越多的公司,包括仪器仪表行业的大公司都开始参与到这个领域的竞争。  微型光纤光谱仪可以应用于哪些领域?  第一, 光谱仪可以分析各种光源发出的光,这些光源包括太阳,LED, 激光,平板显示器件,等离子体,气体放电,火焰燃烧,受激发光,化学发光等等基于各种原理的发光体。  第二, 光谱仪可以分析光与各种物质相互作用后的光,相互作用后的光一般都含有与物质微观结构有关的丰富信息。在这里光可以看成是探索物质微观结构的“探针”,因此,微型光谱仪通常被列为光学传感类(optical sensing)。  第三, 由于微型光谱仪的体积小,所以适合于便携,手持,现场,在线,原位,活体,非破坏性应用场合。由于光纤的使用,所以适合在有害环境下(包括化学,生物,放射性)进行远程测量。由于微型光谱仪内无移动部件,可靠性高,因此,适合于工作在环境恶劣的工业现场。由于采用探测器陈列,可一次获得全光谱,测试速度快,因此适合需要高速测量的应用,例如工业在线检测,化学反应动力学监测。  由于微型光谱仪应用领域非常广,在如此短的篇幅内无法详细列举所有的应用。以下,我们就当今社会最关注的领域中比较成功的应用案列进行分析:  环保行业:  -燃煤电厂烟气排放监测系统用于监测电厂在脱硫和脱硝之后对于大气的排放废气中SO2,NOx的含量。  这基于气体紫外吸光度测量的原理,看似简单,但是在解决实际问题时,必须要克服一些具体困难。由于实际应用中的待测气体样品中有颗粒物存在,如何将颗粒物对光的散射引起光的能量损耗扣除掉,以获得准确的浓度值?1970年代德国科学家Ulrich Platt在研究大气紫外吸收时,发现颗粒物散射谱随波长变化慢,气体分子紫外吸收谱随波长变化陡峭,因此对光谱进行微分,再进行数字滤波,将低频分量滤去,就可以将散射的影响扣除,这就是著名的DOAS技术(Differential Optical Absorption Spectroscopy)。由此可见,应用研究的重要性。  -对于地表水的有机物综合指标的监测  有机物综合指标是指化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC),高锰酸盐指数(CODMn),总磷(TP),总氮(TN),多环芳烃(PAHs)。分析地表水的有机物综合指标的困难在于,第一,这不是由单一化学组分决定的,而是由水中大量化学组分的综合效果 第二,水体中除了有机物之外,还有许多其它的干扰因素,譬如泥沙,会影响测量结果的准确度。  不少地方仍然采用化学滴定方法检测,这种方法虽然准确度高,由于需要采用化学试剂会对水体造成二次污染,而且设备复杂,测试所需时间长,运行费用高。  采用紫外吸收光谱技术,通过对大量水样建模和多变量化学计量学分析,可以获得有机物综合指标。但是实际的水样中总会含有泥沙,泥沙含量较高时,这些无机物也会使透光量减少,探测器无法区分透射光强度减少,究竟是被有机物吸收了,还是泥沙的散射引起透光量的减少,从而带来误差。而且,在有机物含量较少时,测量误差较大。浙江大学的吴铁军教授发现如果加用荧光光谱测试,由于无机物是不会产生荧光的,因此,融合荧光光谱和紫外吸收光谱的数据,就可以扣除无机物的影响。这种创新的方法可以用一台仪器同时测量出上述七个水的有机物污染的综合指标。  这个案例告诉我们,在分析复杂体系时,基于多变量化学计量学的算法和建模是极端重要的。  食品安全  -水,土壤和鱼的汞超标  由于环境污染体现在地表水和土壤的汞超标,汞又特别容易在生物组织中积累,譬如鱼类。摄入过量的汞会影响人的神经系统,儿童的发育生长。全球140个国家都对食品中汞的含量有规定。现有的分析方法非常耗时并只能在实验室使用。  美国Jackson州立大学发明了一种基于纳米材料表面能量转移技术NSET(Nanomaterial Surface Energy Transfer)的检测微量汞的便携式仪器。NSET技术原理如下,当罗丹明B(RhB)分子吸附在胶体金纳米颗粒时,胶体金纳米颗粒会使RhB荧光焠灭,当有Hg2+离子存在时,RhB会从纳米金颗粒表面释放,与汞离子结合,并在532nm激光激发下开始发荧光,荧光的强度与Hg2+离子浓度成正比。(见图2)这种方法检测灵敏度很高,汞的检测线0.8ppb,美国环境署水中汞含量的标准为2ppb.并能检测鱼组织中的汞,达到美国环保署0.55ppm的要求。图1 吸附在纳米金颗粒表面的罗丹明RhB,它的荧光强度与待测样品中汞的浓度成正比  这个案例中检测汞的原理就不那么直截了当,待测物汞本身并不能受激发荧光,而当汞离子与罗丹明RhB结合时,RhB充当标记物(marker)的角色,另一方面,利用了纳米金颗粒能使RhB荧光焠灭的特性。  -检测奶粉中的微量三聚氰胺  采用表面增强拉曼光谱技术SERS(Surface Enhanced Raman Spectroscopy),在785nm激光的激发下,待测的三聚氰胺的分子在基于纳米金颗粒的SERS芯片上,在激光强电磁场的作用下,与纳米颗粒表面的等离子激元发生谐振,拉曼光谱的强度被大大增强。(见图2)采用便携式拉曼光谱仪和SERS芯片三聚氰胺的检测限可达到12ppm。图2在打印的SERS芯片表面增强拉曼光谱与三聚氰胺浓度的线性关系  拉曼光谱技术,由于拉曼信号特别微弱,所以只适合应用于分析浓度较高的物质主成分。由于纳米材料科学,表面物理科学,激光技术的发展,才使SERS技术逐步进入应用阶段,用于分析痕量物质。不断提高测量的重复性,稳定性,降低SERS芯片的价格,使更多的应用领域用得起SERS技术。  -鉴别假冒的初榨橄榄油  常用的方法是观察油的颜色,但是在不同光线下显示的颜色是不同的,而且造假者会用叶绿素或b胡萝卜素去调节油的颜色去靠近真品的颜色。用低档橄榄油或者葵瓜子油,菜油稀释初榨橄榄油都可以用便携仪器进行吸光度测量方法鉴别。  正是由于光纤光谱仪的便携性和快速,使其得以应用在仓库,海关现场快速验货。图3 不同比例的低档橄榄油稀释初榨橄榄油对于吸光度的影响  -对食品内黄曲霉素的快速检测  发霉和变质的粮食,花生,坚果含有致癌的黄曲霉素。现用的主流技术有液相色谱仪HPLC,  液相-质谱联用仪LC-MS。这些技术只能在实验室用,并且设备昂贵,分析时间长,还要用大量化学溶剂,污染环境,操作和维护保养麻烦,需专业人员操作。也有用酶联免疫分析技术(ELISA),这种方法测量精度不如HPLC,并经常会报告假阳性。  因此,急需一种可以在现场快速筛检的设备。英国的Ray Coker博士发明了一种基于紫外荧光光谱的技术,先将样品进行预处理,使待测毒素分离,富集,然后用紫外荧光光谱分析,在365nm LED光源激发下,测量其荧光,并采用专利的算法,一次同时测得4种黄曲霉素(B1,B2,G1,G2,M1)和赭曲霉素A,其检测限1ppb,即零点几ppb,满足最严格的欧盟标准,可与HPLC比拟。这种方法其实还可以成为快速检测的平台,包括病原体检测,贝类毒素检测,兽药残留检测,动物饲料中真菌毒素检测,假药甄别检测,农药残留检测,MRSA(Methicillin-resistant Staphylococcus aureus)耐甲氧西林金黄色葡萄球菌检测。  该案例的技术难点在于样品预处理,如何从成分复杂的待测食品样品中将微量待测物萃取,分离,富集,第二,如何挑选出具有高度特异性的抗体,使自身不会发荧光的毒素与标记物(marker)可以用荧光技术来检测 第三,如何从光谱数据提取出有用信息的算法。  -食源性致病菌的快速检测  检测食品中的致病微生物,现行的方法,譬如检测细菌的金标准方法“平板计数法”(Culture Plating),虽然准确,但是分析所需时间太长,需要2-3天。其它的方法,例如酶联免疫吸附测定法ELISA,虽然速度快了,但是灵敏度不高。聚合酶链式反应法PCR方法,虽然速度快了,灵敏度也高一些,但需要复杂的核酸提取过程。总之,需要一种快速,灵敏,准确,特异性强的检测方法。  食品是一个成分复杂的物质,我们需要分析其中微量的细菌,首先要解决的问题是如何从复杂的背景中提取并富集这些待测的细菌 第二,按照国家标准,允许存在的细菌浓度必须很低,因此要求检测方法的灵敏度很高 第三,实际上,食物中很可能同时存在多种细菌,因此检测方法一定能够同时,分别检测出多种目标物。  美国阿肯色大学生物与农业工程系Yanbin Li教授团队近年来利用免疫纳米磁珠与免疫量子点对食源性致病菌进行快速检测。同时检测李斯特菌,沙门氏菌,大肠杆菌,检测下限可达到101 CFU/ml。(见图4) 图4(a)纯细菌样本的荧光光谱 (b)含致病菌的牛肉样本的荧光光谱  其基本原理是利用免疫检测方法,即先用第一抗体去修饰纳米磁珠,形成细菌-免疫磁珠复合体,在与样品均匀混合时,抗体就会与样品中的目标细菌进行免疫反应,在强磁场作用下,这些被免疫磁珠抓住的细菌就会被吸附到磁极,从而实现了细菌从复杂的背景物中分离。但是抓住细菌的磁珠不会受激发射荧光。我们知道量子点是可以受激发光的,如果用被第二抗体修饰的量子点作细菌的标记物,就可以通过测量量子点发出的荧光强度来间接测量细菌的浓度。利用抗体的特异性,即不同的抗体专门去抓不同的细菌。再利用量子点发光的波长取决于量子点的大小的特点。就可以通过对于荧光光谱相应的波峰强度测量,同时测量不同细菌的浓度。  生命科学和医疗诊断  -核酸,蛋白质分析  对核酸和蛋白质进行定量分析是现代生命科学实验中最基本的工具。  紫外吸光度方法是测量核酸浓度最常用的方法之一。核酸包括:DNA(脱氧核糖核酸)和RNA(核糖核酸)。它的基本组成是核苷酸。核苷酸又是以含氮的碱基,戊糖和磷酸组成。五种碱基包括嘌呤和嘧啶。碱基上苯环的共轭双键在紫外波段有强吸收,最强的吸收峰在260nm。核酸浓度与波长260nm的吸光度成线性关系,这就是用紫外吸光度方法测量核酸浓度的基本原理。核酸样品中如果含有蛋白质,蛋白质的紫外吸收峰在波长280nm,但是蛋白质在280nm的吸光度只有核酸在260nm的吸光度的1/10,利用样品在这两个波长的吸光度比值,可以得到核酸的纯度。  核酸,蛋白质这类生物样品的量常常很小,甚至在mL量级,微量样品的采样在技术上是一个难点。美国热电公司的NanoDrop2000型紫外/可见分光光度计巧妙地利用表面张力的原理,将待测样品液滴置于连接光源的光纤端头和连接微型光谱仪的光纤端头之间,形成待测样品液柱。利用这种采样技术,可以不用稀释样品就可以测量高浓度的DNA样品,对于双链DNA样品,可测的浓度可高达15000ng/ml。  该仪器还可以利用蛋白质在280nm的吸收来测量蛋白质的浓度。这是由于蛋白质分子结构中含有芳香族氨基酸,而芳香族氨基酸(主要是酪氨酸和色氨酸)的紫外吸收的峰值位于280nm。  蛋白质实际测量中遇到的问题是待测样品中常常含有其它化学试剂的残余,而这些杂质对紫外吸光度测量有干扰,影响测量的准确性。因此就在对蛋白质的各种性质研究的基础上,发展了各种其它的测量方法,以摆脱杂质对测量的干扰。例如蛋白质和染料的结合,蛋白质和铜离子的络合反应?  同样这一台工作在紫外/可见波段的分光光度计NanoDrop,基于不同的原理,还可以在不同的波长用于蛋白质定量分析。譬如,Bradford法测蛋白质,这是基于让染料分子(考马斯亮蓝G250)与蛋白质结合成复合体,该复合体在595nm有最大吸收峰,这种方法的好处是待测蛋白质样品中可能含有的K+,Na+,Mg2+,(NH4)2SO4,乙醇等杂质不会干扰蛋白质测定。BCA法则是利用蛋白质的化学性质,即在碱性条件下蛋白质可以与Cu2+发生络合反应,并将Cu2+还原为Cu+,而BCA (bicinchoninic acid)则会与Cu+反应形成稳定的复合物,它的吸收峰在562nm。这就是BCA法测量蛋白质的原理。  -紫外荧光光谱是研究蛋白质组分,构象的强大工具。  实验发现大部分蛋白质中有三种氨基酸残基具有内源性荧光的特性,它们分别是:色氨酸tryptophan (Trp), 酪氨酸tyrosine (Tyr) and 苯丙氨酸phenylalanine (Phe)。但是,实验中常用的是Trp和Tyr的内源性荧光,主要是因为这两种氨基酸的残基的荧光的量子效率比较高,所发出的荧光信号较强。Phe受激荧光的量子效率较低,激发波长在257nm。如果采用波长为280nm的激发光,由于Trp和Tyr的激发波长比较接近(分别为280nm,274nm),因此Trp和Tyr会同时有荧光信号。如果想选择性地只激发Trp,则可以采用295nm激发光源。  实验进一步发现,氨基酸残基的內源荧光的强度,峰位对于氨基酸的组分和构象状态十分敏感。这是因为在蛋白质分子处于自然折叠状态时,Trp和Tyr被包裹在蛋白质的中心位置。而当采用升高温度,采用尿素,盐酸胍,或者调解pH值等方法,使得蛋白质展开(图6A)。原先在折叠状态下埋在里面的疏水核心就暴露在溶剂中。Trp和Tyr就暴露在周围的环境中,它的荧光发光特性发生变化(图5B)  图5 用Trp的荧光来监测蛋白质的构象状态。图6A中Trp是用红点和红色字母w表示,在蛋白质处于自然折叠的状态下Trp被埋藏在疏水的环境中,展开后则暴露在溶剂的环境中。图5B,在自然折叠状态下Trp处于疏水状态下,荧光强 反之,在展开状态下,Trp暴露在溶剂中,荧光强度下降。  实验还发现Trp残基的荧光峰值的波长与周围的溶剂有关,发生Stoke位移。  研究蛋白质的分子折叠和展开有什么应用价值?有些疾病与人体内蛋白质分子的构象状态有关. 譬如, 有些退行性神经病变,就与蛋白质分子的展开有关,因此蛋白质的荧光光谱有时可用于退行性神经病变的诊断。  -医学诊断  一般而论, 采用光纤光谱仪作为医学诊断的手段有两个优点. 一个优点是非侵入性, 第二个优点是体积小, 仪器方便携带, 因此, 可以部署在病床边上, 县以下的基层诊所, 战地,出诊.  以下举一些例子.  基于吸光度和荧光技术的血样,尿样在生化分析仪器在医院的分析实验室几乎处处可见,现在可以做得更小,更便宜.  对于皮肤癌,乳腺癌可以对人体组织活体(in vivo)用拉曼光谱或反射光谱技术进行诊断.  黄疸病对于新生儿是常见的,而且无害,但是,对于早产婴儿则有造成大脑损伤的危险。因此,需要密切监测血液中胆红素的浓度。现行的方法是针刺婴儿的脚跟取血样,然后送实验室进行生化分析,大约需要一个小时,每日三次。如果对新生儿脚底皮肤用光学方法,通过反射谱测量,立即可以分析得到血液中胆红素的浓度,可以比现行的方法更快地诊断黄疸病,并使婴儿免受脚跟针刺之苦,这就是非侵入性带来的好处。  脉搏血氧仪是用红光和近红外透射测量技术连续监测血氧饱和度。慢性阻塞性肺病,哮喘等呼吸性疾病,病人的血氧饱和度是表征病的严重程度的非常重要的指标。  在线检测:  -为了得到辛烷值(RON)合乎标准的92号,95号汽油,石油炼化厂需要将重整催化工艺所得到的高辛烷值油与低辛烷值的催化裂化汽油按适当比例进行调和,以最终获得辛烷值符合国家标准,而且产率足够高的汽油。生产工艺需要在线测量汽油的辛烷值,并根据测量值去控制重整反应器的温度。  浙江大学戴连奎教授采用在线拉曼光谱系统测量重整汽油的辛烷值。其辛烷值主要取决于待测油品中直链烷烃、侧链烷烃、环烷烃与芳烃含量。拉曼光谱可以很好地显示直链烷烃、侧链烷烃、环烷烃与芳烃等物质的特征峰,因此可以很好的计算各种芳烃和其它烷烃等物质的含量。由于不同的烃类物质对辛烷值的影响不同,需要综合考虑每类物质对辛烷值的影响。通过含量高低建立相应的预测模型可以很好地测量汽油样品的辛烷值。相比于红外光谱,拉曼光谱特征峰明显,建立模型所需的样品数量也大为减少。相比色谱,拉曼光谱测量速度较快,使用和维护成本较低。图6 重整汽油的拉曼光谱(经过数据的预处理)  在此应用案例中,待测的汽油辛烷值并不是由单一物质的分子的光谱所决定的,而是由多种烃类的分子的综合作用所决定。因此,有了光谱之后,如何得到辛烷值,建模就是关键。
  • 杨宗银:绘制光谱仪微型化“全景图”
    走进浙江大学信息与电子工程学院智能传感所的百人计划研究员杨宗银的办公室,可以看到电路焊接平台上,电烙铁、电路板、各种零配件一应俱全,办公室俨然是一座实验室。杨宗银(左)指导学生做实验 王崇均/摄“回到浙大任教后,我对自己的办公室做了规划,圆了儿时的梦想。”杨宗银说,“很享受制作机械电路的过程,比打游戏有趣。”继2019年在《科学》杂志刊发世界上最小光谱仪成果后,今年3月,杨宗银作为第一作者撰写的综述,又在线发表于《科学》。该文章首次系统性总结了光谱仪微型化的技术方案和发展历程,引起国际科学界高度关注。150次失败后的成功 把心路写进实验记录本光谱仪是测量光谱线中各个波长强度的设备,可以对物质成份和结构进行测知,广泛应用于科研、生产和生活中。比如一个苹果是否成熟、含糖量如何,通过光谱仪的“火眼金睛”就能一目了然。杨宗银研制的世界上最小光谱仪,直径在一百微米以下,不到头发丝直径的一半。“这么小的尺寸很适合装进我们的手机中,将来或可通过拍摄进行食品安全和健康的监测。”他在谈及未来应用时说,“再过几个月,团队研制的微型高光谱成像样机就将面世。”这样一个比头发丝直径还小的器件,杨宗银前前后后研究了8年。攻读博士期间,杨宗银每天都是剑桥大学电子工程系实验楼最晚走的那个人,但每一次回寝前都对实验结果不甚满意。 “早起努力!” “新idea明天试一下… … 又失败了。”打开杨宗银的实验笔记,上面用英文密密麻麻写着各类实验优化的细节,但每天都有几句中文格外醒目。“刚开始做实验是非常有新鲜感的,但是失败次数越多自己也会感到很无力。”他说,于是自己便在笔记中记下实验中的灵光一闪,或者勉励的话,“每天都期待好的结果,同时又期待新的一天快快到来。”“当时就写了整整三大本笔记本。”杨宗银说,偶尔也会心灰意冷,但是内心的那份热爱总能驱使自己去找失败的原因再尝试一次。2018年8月,历时3年,历经150次失败,实验终于成功,他的论文于第二年5月投稿《科学》杂志,7月便被接受。评审专家评价这个工作是“集合了世界上最先进的材料合成工艺,配上最高超的器件制作水准、实验技巧和巧妙的算法,是一个惊艳之作。”荣誉随之而来,杨宗银获得了剑桥大学国际生全额奖学金和国家优秀自费留学特别优秀奖,还被选为剑桥大学国王学院研究员,是学院第一位华人研究员。交叉与蜕变 兴趣是最好的老师杨宗银这份愈挫愈勇的劲头,在他求学浙大期间就已经打下基础。在浙大读硕士生的杨宗银,在世界上首次“生长”出了彩虹渐变的半导体纳米线。这种材料可以发出五颜六色的光,非常漂亮。这份光亮的背后是他近一万个小时的不断试错改进的艰辛。凭着兴趣与热爱,他在浙大学习时打开了一片新天地。在机械工程学院完成本科学业时,杨宗银就把机器人、机械设计等领域的各类竞赛都参加了一遍,乐在其中,还拿过全国大学生机械创新设计大赛一等奖。浙江大学机械工程学院教授顾大强,在担任杨宗银导师期间,经常教导他“要用最巧妙的机构完成一件复杂的事情”。这种思维训练对杨宗银来说终身受益。后来杨宗银被保送到浙大光电科学与工程学院攻读硕士。他回忆道:“交叉融合的求学经历为我后来研究提供了便利条件,当面临没有现成的设备时,可以直接自己做一个。”“我从小就喜欢做点小发明,比如随着光照自动响的闹钟、光控灯,或者把家里收音机、闹钟等拆开,研究其中的机理。为此也没少挨父母批评。”杨宗银笑称。在硕士期间,杨宗银除了生长出彩虹渐变半导体纳米线,还基于这种材料开发了世界最宽光谱可调谐激光器。就像收音机不同的调台,能够听到不同的节目,不同的激光波长能够对物质进行不同层面的探测。读文献到写文献 绘制一个领域“藏宝图”现如今,传统的光谱仪由于体积庞大已经无法满足日益发展的光谱检测技术的需求,然而,减小光谱仪的分光元件或探测器尺寸将导致光谱分辨率、灵敏度及动态范围显著下降。光谱仪的微型化是目前科技界面临的一项重大技术挑战。回到浙大任职后,杨宗银的研究是将微型光谱仪进一步往应用端迈进。“光电技术终究还是要落实到百姓的实际应用中才更有意义”。其中,向全球科研探索者们展现微型光谱仪领域的“全景”也成为其工作计划之一。杨宗银认为,只是把技术原理和研究进展介绍清楚是远远不够的,还要有全局观,用一个清晰的脉络把全文串起来。一篇好的文献综述,就是认识一个领域的主心骨,是一张“藏宝图”。“我把整个领域几百篇文献捋了好几遍,了然于胸,最后像介绍老朋友一样把它们串起来讲。”杨宗银介绍,“在后续的修改中,我和另外几位合作者讨论了几十次,不厌其烦地对文章进行精雕细琢。记得我在准备文章图片的时候盯着屏幕好几天就为了不让它们有一点瑕疵。”如何用好“藏宝图”?杨宗银也有自己的独家秘籍。担任博导的他,会给新生“打样”,面对面教学生如何读文献管理文献。“每读完一篇文献后,在软件里做个标签,这样日积月累,大量的文献就能理出一个脉络,后续根据这些标签迅速找到需要的文献。”从前沿探究的坚持不懈,到带领学生探索的孜孜不倦。他还会手把手指导学生如何搭建和使用实验仪器,也乐在其中。“如果说,科研的成就感在于做出独创的贡献和价值,”杨宗银说,“那么带学生就是自我价值的延伸。”
  • 新品发布 | 超维景微型化三光子显微镜SUPERNOVA-3000隆重上市
    大脑深部区域与基本生命功能密切相关,在各种神经疾病中均观察到深部大脑的结构和功能异常,例如帕金森病、阿尔茨海默症、抑郁症和强迫症等。但在啮齿类动物研究模型中,由于神经组织,特别是胼胝体,具有对光的高散射光学特性。如何突破成像深度极限,在自由活动动物上对距离脑表层深度>1 mm的结构进行成像存在极大的挑战。三光子成像技术的出现将成像深度大大扩展至1500 μm,为非侵入式深脑成像带来了曙光。北京大学研发团队最新发文Nature Methods图1.文章截图Zhao, et al. (2023). Miniature three-photon microscopy maximized for scattered fluorescence collection. Nat Methods. 10.1038/s41592-023-01777-3.[1]解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,但传统的多光子显微镜进行常规脑成像通常需要将动物的头部固定在台式显微镜上,这严重限制了模式动物的自由生理状态。为此需要打造自由行为动物佩戴式显微成像类研究工具。※ 2017年,北京大学程和平院士团队成功研制第一代 2.2g微型化双光子显微镜,获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像。※ 2021年,该团队的第二代微型化双光子显微镜将成像视野扩大了 7.8 倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力。※ 2023年2月,北京大学程和平-王爱民团队再一次实现技术突破,将微型化探头与三光子成像技术结合,并在 Nature Methods 发表文章 “Miniature three-photon microscopy maximized for scattered fluorescence collection ”。文章报道了仅2.17g的微型化三光子显微镜,首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。图2. 小鼠佩戴微型化三光子显微镜探头SUPERNOVA-3000应运而生依托专业的研发团队和深厚的技术积淀,SUPERNOVA-3000应运而生。SUPERNOVA-3000通过高度集成化、系统化、工业化设计将微型化探头的重量控制在2.2g。搭配独有的光学设计突破微型化显微镜的成像深度极限,在全球范围内开创性构建自由行为动物深脑成像“新范式”。自由行为动物非侵入式深脑成像解决方案Go deeper利用五阶非线性效应以及穿透力更强的激发荧光(1300 nm),一举突破此前微型化多光子显微镜的成像深度极限。图3. 荧光激发示意图图4. 小鼠脑组织中散射长度的光谱分布[2]显微镜激发光路可以穿透整个小鼠大脑皮层和胼胝体,实现对小鼠海马CA1亚区形态及功能的直接观测记录。神经元钙信号最大成像深度可达1.2 mm,血管成像深度可达1.4 mm。图5. 微型三光子显微镜记录小鼠大脑皮层L1-L6和海马CA1的结构和功能动态。CC:胼胝体。绿色代表GCaMP6s标记的神经元荧光钙信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。More Freedom&bull 2.2g新型微型化探头微型化探头通过新型内嵌阿贝聚光镜复合式光学构型,体积仅2 × 1.6 × 0.9 cm3,实现飞秒激光脉冲无畸变传输、高质量激光汇聚、高效率荧光收集和激发。开创性的将三光子光学组件高度集成在一个微型化探头内。同时外壳使用超轻金属,重量仅2.2g既轻盈又坚固,搭配电动变焦模块、定制光纤、光屏蔽GaAsP PMT,保证了对自由运动小鼠深脑神经活动的高稳定性、高分辨成像。图6. 小鼠佩戴微型化三光子探头&bull 激光传导光纤--空芯光子带隙光纤系列光纤均具有准单模传输、低损耗、低非线性、低色散、高激光器损伤阈值的特点。高效率传输1300 nm飞秒脉冲激光,将空间光路转变为光纤传输,强抗弯折性能,使自由运动下观察成为可能。图7. 空芯光子带隙光纤截面和输出光斑示意图图8. 出口处激光脉冲时间剖面Less damage&bull 非侵入式手术◎ 深脑成像避免使用GRIN Lens,对小鼠大脑损伤更小,避免影响小鼠正常神经生理状态◎ 无GRIN Lens,成本更低◎ 手术便捷,成功率更高&bull 超低光毒性散射荧光增强收集系统——深脑超低功率成像SUPERNOVA-3000创新的使用微型阿贝聚光镜与无限远物镜密接提高散射光的收集效率,李斯特微型管镜复用简化结构,优化光路设计,提高荧光收集效率的同时,保证了大视场分辨率。总体上,散射荧光增强收集构型使微型化显微镜的散射荧光收集效率实现了成倍的提升,实现了在超低成像功率下对自由运动小鼠大脑深部脑区神经元活动进行实时监测。图9. 散射荧光增强收集构型基于散射荧光增强收集构型,实现全皮层钙信号成像仅需几个毫瓦,海马钙信号成像仅需要几十毫瓦,大大低于组织损伤的安全阈值。因此,SUPERNOVA-3000可以长时间、不间断连续观测神经元功能活动,且不产生明显的光漂白与光损伤。图10. AAV-hSyn-GCaMP6s病毒注射小鼠大脑不同深度脑区超低功率钙成像生物应用动物自由运动成像&bull 行为学实验下的小鼠顶叶后皮质 L6(PPC L6)的神经元钙活动(成像深度650 μm)微型化三光子显微镜可以搭配不同行为学实验的深部脑区进行单细胞级的稳定高时空分辨率成像,满足实时监测单个神经元的活动,结构变化以及不同功能神经元分类等实验需求。图11. 行为学实验下小鼠大脑PPC L6的神经元活动&bull 自由运动小鼠大脑海马CA1亚区的神经元钙活动(成像深度1.2 mm)安全激光功率下通过非侵入式手术对背侧海马CA1(深度达1.2 mm)的钙活动进行成像,监测神经元的钙活动轨迹,并与小鼠行为视频进行同步。图12. 自由运动小鼠大脑海马CA1亚区的神经元活动&bull 长时程监测自由运动小鼠大脑海马CA1亚区的神经元钙活动(成像深度978 μm)在8.35 Hz的成像速率下,进行100分钟不间断连续监测采集自由运动小鼠大脑海马CA1亚区神经元活动,钙信号瞬态特征无明显变化(平均振幅,衰减时间常数,SNR)图13. 100分钟不间断采集自由运动小鼠大脑海马CA1亚区神经元活动小鼠大脑组织3D重构国际影响--Nature Methods 发表社评图14. 文章部分截图Benjamin F. Grewe et al. Nat. Methods https://doi.org/10.1038/s41592-023-01808-z [3]3月,Nature Methods期刊邀请Benjamin F. Grewe等领域专家发表在线社评文章Deep brain imaging on the move ,特别指出微型化三光子显微镜对于深脑成像的重要意义。三光子成像则将可到达的成像深度大大扩展至1500 μm。因此,在小鼠中,微型化三光子显微镜将直接实现对整个大脑皮层及下方区域,例如海马CA1进行成像,同时保留完整的大脑皮层结构投影。随着微型化三光子显微镜SUPERNOVA-3000的出现,神经科学的研究人员将可实现对例如涉及纹状体结构的,大脑皮层及皮层下方脑区之间的神经网络进行深入研究图15. 微型化三光子显微镜SUPERNOVA-3000【参考文献】[1]Zhao, C., Chen, S., Zhang, L., Zhang, D., Wu, R., Hu, Y., Zeng, F., Li, Y., Wu, D., Yu, F., et al. (2023). Miniature three-photon microscopy maximized for scattered fluorescence collection. Nat Methods. 10.1038/s41592-023-01777-3.[2] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nature Photonics 7, 205- 209 (2013)[3]Lecoq, J.A., Boehringer, R., and Grewe, B.F. (2023). Deep brain imaging on the move. Nat Methods. 10.1038/s41592-023-01808-z.
  • “微型化”新成员,滨松笔头大小MEMS-FPI光谱探测器面世
    滨松公司2015年推出了一款最新的微型化光谱探测器——MEMS-FPI C13272。MEMS FPI NIR Spectrum Sensor,全称“微机电加工工艺制作法布里珀罗腔型近红外光谱探测器”,简称MEMS-FPI。是一款超小型、低成本的光谱探测器产品。虽说微型光谱仪也不是一个新鲜的概念了(2013年滨松就推出了指尖大小的微信光谱仪C12666MA),但是MEMS-FPI C13272的出现,对熟悉光谱仪行业的人来说也会是一个大惊喜。原因很简单,因为这个器件彻底打破了传统意义上人们对于光谱仪的认知,不仅原理上跟传统光谱仪完全不同,还将微型化做到了新的极致。既然是“微型化”,那“身材”肯定是棒棒哒。具体有多小,见上图就好了。之所以能够做得如此之小,主要是在三个方面的功夫:1、该器件使用的分光技术不是大家所熟知的光栅,而是极为罕见的方法——法布里珀罗标准具,所以使得该光谱仪仅仅使用单点的InGaAs探测器,就能够得到光谱图。这么做的好处是可以用三个“大大”归纳:大大省了InGaAs材料,大大降了制作成本,大大减了探测器部分的体积。2、法布里珀罗标准具的制作,采用的是MEMS加工方法,从而使分光部分的体积也减小不少。3、探测器部分和分光部分被封装在了一个器件之中。综上三点,笔头大的小身板儿就诞生了。MEMS-FPI近红外光谱仪结构示意图物联网、可穿戴设备等概念当下也是如火如荼,其不可或缺的推进力,也是传感器体积和性能的不断极致。而光谱仪由于能够帮助人们识别物质,更是成为了众多厂商和消费者极为关注的一类。但苦于没有成熟的的微型光谱探测元件方案,如今市面上也鲜有一款能够帮助人们识别物质成分的民用消费级设备。而现在随着“微型化”产品的陆续出现,相信那些对于可穿戴“天马行空”的想法也能将真的够落地成真了。就这只MEMS-FPI C13272(光谱范围在1.55~1.85μ m)来说,可以实现对气体(环境测量)、食品和饮料、农产品、饲料、石油化工等产品的检测。不过,在如今的这个处处脑洞大开的世界,有点其他的一些应用前景,也是说不定的事。目前滨松拥有该产品的少量配套评估板和软件,如有意对该产品进行测试评估,敬请和滨松中国取得联系。另外,在即将在11月27日举办的BCEIA上,MEMS-FPI C13272不但会出展,其可连移动设备的DEMO机也将同台展出,现场将提供sample,欢迎前来体验。MEMS-FPI DEMO模块可连移动设备MEMS-FPI是日本滨松的产品图为其在今年9月日本JASIS展出的DEMO模块实物想象一下,今后人们通过手里的价格低廉的设备,就能知道所吃食物的物质组成,饮料里是否有不健康的东西,空气质量的好坏,衣服所含成分等等。人们也可以根据自己的身体状况,决定喝不喝桌上摆着的这一杯咖啡或者果汁,做饭的时要不要使用那么多油。到那时,健康饮食将不再只是脑中的概念,而是实实在在可以掌控的事实了。点击进入滨松MEMS-FPI C13272资料下载
  • 微型量子点光谱仪问世
    化学家们日前的一项成就,为制造更高性能的光谱仪铺平了道路,而这种光谱仪将比手机照相机镜头的图像传感器还要微型。1日出版的英国《自然》杂志上的一篇论文,详细描述了一种微型量子点光谱仪,其未来应用包括太空探索、个性化医疗、微流控芯片实验室诊断平台等。  光谱仪作为一种分析仪器,几乎在每个科学领域都会用到,尤其在物理、化学和生物学研究中必不可少。这类设备通常体积过大以致于难以移动。科学家长期致力于让光谱仪小型化、成本低廉且易于使用,以便增加它们的使用范围。但一直以来,相关努力都不是很成功。  据美国麻省理工学院官方网站消息,此次,前麻省理工学院博士后、中国清华大学的鲍捷以及麻省理工学院化学教授莫吉· 巴旺迪提出,现有微型光谱仪的设计局限可以用胶体量子点克服,量子点是高度可调控的、微型的并且对光敏感的半导体晶体,使用量子点可以在减小光谱仪体积的同时不影响它的分辨率、使用范围和效率。  研究人员展示了一个用195个不同的量子点做成的光谱仪,其每一个量子点都对特定光谱范围敏感,可以过滤各种波长的光并检测到非常小的光谱移位。美国加州大学伯克利分校物理学副教授王锋(音)认为,这个堪称&ldquo 美丽&rdquo 的方式,利用半导体量子点微型光谱仪来控制光吸收,该设备体积之小、性能之高,在以前还从未实现过。  论文作者们表示,这一系统兼具了高性能和简洁性,容易制造并有进一步小型化的可能,所以将会在很大程度上有利于那些需要缩小尺寸、重量、成本和复杂性的应用。其与小型设备结合后,可用于诊断皮肤状况或分析尿液样本,甚至用于追踪生命体征诸如脉搏和血氧水平等。与此同时,这一研究也代表了量子点的新应用,这种纳米结构材料现主要适用于标记细胞和生物分子,在计算机及电视显示屏领域也大有用武之地。  总编辑圈点  量子点这种发现于上世纪80年代的纳米晶体,吸收性能众所周知并且非常稳定。现在利用量子点固有的性质打造出新型光谱仪的优点,甚至足够小到可以在智能手机中运行,使得一个以往笨重的实验设备轻松走入日常生活。受益的,不仅仅是科学家们研究原子能量水平、分析生物组织样品,更多的行业都可随时利用光谱仪,譬如检测环境污染、判断食品安全等等。
  • 舜宇恒平基于PID微型气相色谱仪通过验收
    由上海舜宇恒平科学仪器有限公司承担、复旦大学参与的上海市科委2009年下达的科学仪器科技攻关项目“基于光离子化检测器的微型气相色谱仪”日前顺利通过了验收和鉴定。上海理工大学庄松林院士任专家组组长,专家组成员来自环境检测机构、高校以及仪器厂家等不同领域。 GC1100P 微型气相色谱仪 基于光离子化检测器(PID)的GC1100P气相色谱仪系统是集高效分离和高灵敏度检测为一体的现代科学仪器。PID检测器是一种具有极高灵敏度、用途广泛的气体检测器,具有精度高、响应快、可以连续测试、不需使用易燃气体本质安全等优点。GC1100P 气相色谱仪利用气相色谱分离混合物,使复杂的混合样品分离为不同保留时间的色谱峰,再利用PID检测每个色谱峰所代表的化学物质的量。仪器自动化程度高、分析速度快、体积小、重量轻、便于携带,且无需易燃易爆的氢气和助燃气体,技术先进,为实现现场快速检测打下了基础。专家组听取项目汇报专家组观看仪器演示 GC1100P微型气相色谱仪适用于现场检测,突发事件处理、潜在的泄露事故的防范、自动监测报警及公共场所空气质量监测、危险气体、有毒有害气体检测等,可广泛适用于环境保护、石油化工、食品检验、医药卫生以及公共安全等行业,应用前景十分广泛。 关于上海舜宇恒平科学仪器有限公司上海舜宇恒平科学仪器有限公司,是上海市高新技术企业,专业致力于各类科学仪器的研发、制造和销售。公司继获得“上海市著名商标”后,又获得“上海市创新型企业”称号。公司承诺向顾客提供更合适的产品,更广阔的选择空间。现已形成色谱仪器、光谱仪器、质谱仪器、天平仪器等一百多个品种的数字化、智能化产品,建立了与顾客零距离的营销网络,客户遍及海内外。 联系方式:上海舜宇恒平科学仪器有限公司地址:上海市虹漕路456号8号楼5-6楼邮编:200233电话:021-64959872E-mail:info@hengping.comhttp://www.hengping.com
  • 微型显微镜实现放大物体新革命:可放进口袋
    据国外媒体9日报道,它和一枚50便士的硬币一样重,小到足以放到裤子口袋中,但这种开创性新型显微镜的作用可没有大打折扣。这种装置叫Foldscope,可提供2000多倍的放大效果,有望彻底改变放大物体的方式。  一种可能彻底改变物体放大方式的新型显微镜已在秘鲁亚马逊雨林进行测试。这张照片显示,几只蚂蚁在显微镜下保护一只水蜡虫。  这种装置叫Foldscope,可提供2000多倍的放大效果,它和一枚50便士的硬币一样重,小到足以放到裤子口袋中,或许会彻底改变物体放大的方式。  波梅兰茨对这种微型显微镜进行了测试。这位野外生物学家在南美洲用它拍摄到鼠尾草花的这张特写照。  波梅兰茨对这种微型显微镜进行了测试。这位野外生物学家在南美洲用它拍摄到鼠尾草花的这张特写照。  美国加利福尼亚州洛杉矶市野外生物学家波梅兰茨(照片显示)测试了微型显微镜Foldscope。  照片显示,一只蜘蛛感染冬虫夏草。这种寄生真菌取代了蜘蛛体内的组织。  在这张用手机拍摄的照片中,100美元纸币的纤维清晰可见。  波梅兰茨将微型显微镜Foldscope连接到手机上,然后拍摄到这些不同寻常的照片。  这张用微型显微镜Foldscope拍摄的照片展示了一株马利筋草的绚烂细节。美国野外生物学家艾伦-波梅兰茨对它进行了试验。他在秘鲁亚马逊雨林中停留一个月,用这种微型显微镜捕捉到一系列惊人照片。这位25岁科学家用它拍摄了一组照片,展示了一只被感染的蜘蛛和一片被虫瘿覆盖的叶子。其他照片还展示了一朵花瓣的细胞和一只未知螨虫的放大图像。  美国加利福尼亚州洛杉矶市的波梅兰茨表示:“使它成为革命性工具的是它探测致病因素或研究未知物种的方式。还有一点就是它的售价不到1美元。这使它可以得到广泛使用,或许适用于数百万人,例如孩子、医护人员和野外生物学家等。有时我们在野外根本不知道我们要观察什么,直到很晚的时候才明白这一点。”  这位科学家说:“在有些情况下,你回到实验室,想获得一些不同于野外的发现,例如收集更多信息或进行更多的观察。但微型显微镜Foldscope使你在野外就可直接研究目标,然后你可以带它们回实验室,开展更加细致的科研工作。”  波梅兰茨将微型显微镜Foldscope连接到手机上,然后拍摄到这些不同寻常的照片。该装置的尺寸是70毫米乘20毫米,重量仅0.3盎司(约合8.5克)。相比之下,一部传统显微镜却重达512盎司(约合15公斤)。  不到10分钟内,可将一张平面纸组装成微型显微镜Foldscope。使用者可用折纸方法将它制作而成。这种微型显微镜是加利福尼亚州斯坦福大学生物工程系普拉卡什实验室一个研究小组的智慧结晶。  波梅兰茨说:“微型显微镜Foldscope并不能替代可提供更高分辨率、更强大的传统显微镜。但后者有很多缺点,例如很大,又昂贵,还只能在实验室内使用。微型显微镜Foldscope被设计成一种便携式工具,可随时随地使用,让你及时近距离观察微观世界。我认为它不会取代传统显微镜,却毫无疑问,它会弥补传统显微镜的不足。大多数孩子从未用过传统显微镜,所以微型显微镜Foldscope可帮助贫穷地区的学生探索微观世界和科学。”
  • 微型化多光子显微镜揭秘大脑,开启自由活动动物成像新范式——超维景生物科技研发总监胡炎辉
    近年来,光学成像技术如荧光分子成像、光声成像和生物发光成像等广泛应用于小动物活体成像。同时,多模态成像技术的兴起将多种成像技术结合,为小动物活体成像提供了更精确和信息丰富的工具。为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别制作【小动物活体成像技术创新突破进行时】专题,并策划“小动物活体成像技术”主题征稿活动,以期进一步帮助广大用户从多维度深入了解小动物活体成像技术应用、主流品牌、市场动态以及相关内容。本期约稿特别邀请超维景生物科技有限公司研发总监胡炎辉,就小动物活体成像技术发展、市场规模及未来趋势进行分享,并就超维景生物科技在面对小动物自由运动活体成像瓶颈取得的突破性进展。 本期嘉宾:胡炎辉,超维景生物科技有限公司 研发总监 胡炎辉,超维景生物科技有限公司研发总监。2018年毕业于北京大学,电路与系统专业,曾参加基金委国家重大仪器专项,负责逻辑控制、微弱信号探测及系统设计,在激光扫描显微成像、微弱信号探测及高速信号处理等技术方向有着多年的积累。2017年至今,作为超维景核心创始团队成员之一,参与公司技术专利20余项,开发了新一代双光子成像处理平台,推出了科研、医疗等多款多光子产品,具有丰富的产学研融合开发及落地经验。——01—— 从单光子到多光子成像,推动活体成像技术发展在医学和生命科学研究的领域内,不断的革新和突破在成像技术方面是推进科学发展的关键,同时也是推动新的生物学发现和进步的重要引擎。其中,多光子成像技术通过激光与生物样本内的分子和原子相互作用产生荧光反应,以荧光显微的形式,允许我们以无损害的方式直接观察到组织的内部结构。尽管生物样本本身对光有较好的透光性,它们也具有强烈的散射特性。通常,细胞水平的高分辨成像技术在生物组织中的穿透深度“软极限”大约为1mm。不过,使用更长波长的激光可以减小对光的散射,并且增强穿透力。多光子吸收提供了一种非线性的荧光激活方法,其中双光子和三光子吸收的波长分别是单光子激发的两倍和三倍。与单光子相比,多光子成像可以实现几乎10倍的成像深度增强。这种非线性激发方法也带来了更高的信号-背景比及更优秀的层析成像能力。所有这些成像上的优势使得多光子成像特别适合用于复杂条件下的活体成像研究,成为一种在这些应用中非常重要的工具。Winfried Denk于1990年在康奈尔大学发明了世界上第一台双光子激光扫描显微镜。而自21世纪初以来,随着超快激光技术的突破及商业化,双光子显微成像技术迅速成为最广泛使用的活体动物成像方法。特别值得提及的,超维景的创始人程和平院士早在1992年就开始涉足双光子显微技术,成为最早的技术参与者之一,并致力于推广这一技术。历经近三十年的发展,双光子显微成像技术已变得在脑科学研究中不可或缺。尽管传统的台式双光子显微镜分辨率高,但它们体积庞大且重量重,需将实验动物固定或麻醉以完成成像,因此无法适用于自由活动的动物。微型单光子成像技术可以实现对自由活动的小鼠进行成像,但它在分辨率和对比度方面相对较低,难以达到亚细胞级别的分辨率和三维成像效果。——02——直面脑科学研究自主研发工具挑战,2.2克微型化双光子显微镜“轻装上阵”打造用于全景式解析脑连接和功能动态图谱的研究工具是当代脑科学的一个核心方向。针对如何在自由行为动物上绘制大脑神经元功能图谱的难题,超维景团队研发出了头戴式2.2克微型化双光子显微镜,首次实现自由活动小鼠大脑神经元和突触水平钙信号功能成像,为脑科学研究提供了革命性的新工具。这项技术解决了困扰领域近20年的挑战,显著领先于美国脑计划催生的微型化单光子技术,入选“2017年度中国科学十大进展”,并被评为Nature Methods“2018年度方法”。依托此技术建成“南京脑观象台”,为中国脑计划提供了“人无我有”的支撑平台;专利技术的产业转化实现高端显微成像装备自主创制的突破,完成对欧美国家的整机出口,累计实现销售额过亿元。通过技术拓展,研发了应用于人体的手持式双光子显微镜,在临床医学与航天医学中具有巨大的应用前景。为病理诊断技术带来一种全新的手段,成为临床疾病精准检查的重要工具。这项技术成果属于国家基金委重大仪器专项转化的科技成果,是国家在高端装备研发方向投入的典型产出代表。除了在脑科学、医疗应用领域的技术贡献之外,同时彰显了中国也可利用具有自主知识产权的国际领先的技术,实现在高端仪器方向的突破,提振了中国科学家在高端仪器装备方向的研究信心,并以此为核心技术来推动国内以及国际的科学研究大计划,对国内的脑科学研究领域也起到积极引领作用。——03——深耕小动物自由运动活体成像,持续提升核心竞争力超维景公司始创于2016年,公司核心力量来自北京大学院士创建和领导的多学科交叉团队,是一家专注于高端生物医学成像设备研发、生产和销售的国家高新技术企业。2017年,超维景核心团队成功研制仅2.2g的超高时空分辨微型化双光子显微镜,在国际上首次获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像,被评为“2017年度中国科学十大进展”和《Nature Methods》“2018年度方法”(无限制行为动物成像),开启自由活动动物成像新范式,研究成果可应用于脑认知基本原理研究、脑重大疾病机理研究和脑疾病的药物研究,本技术进一步可应用于临床实时在体无创细胞级检测。部分获奖照片“微型化”是指将显微镜做到拇指大小,可以佩戴在小鼠头上,同时不影响小鼠的自由活动,进而观察小鼠在觅食、社交、睡觉等自主行为时大脑神经元的真实活动和功能连接。超维景的微型化显微镜体积微小,让小鼠能够“戴着跑”,实现了自由行为动物的清晰稳定成像,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,观察神经突触、神经元、神经网络等的动态变化,从而获取小鼠在自由行为过程中大脑神经元和神经突触活动的动态图像。2.2g微型双光子荧光显微镜2021年,团队的第二代微型化双光子显微镜将成像视野扩大了7.8倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力,原始论文发表于《Nature Methods》。2023年2月,团队将微型化探头与三光子成像技术结合,成功研制微型化三光子显微镜,重量仅为2.17克,并在 《Nature Methods》 发表文章。一举突破了此前微型化多光子显微镜的成像深度极限,首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。 《Nature Methods》发表相关技术成果2023年2月,神州十五号航天员乘组使用由我国自主研制的空间站双光子显微镜开展在轨实验任务并取得成功,是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮千层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。图为神舟十五号航天员乘组在轨使用空间站双光子显微镜2023年12月,由超维景公司自主研发的在体双光子显微成像系统获批上市,是中国首个基于双光子显微成像原理的医疗器械。本次研发是首次实现脑科学技术跨学科助力皮肤检测的技术应用,将最前沿的双光子显微成像技术引入现代皮肤医学检测领域,实现“实时、无创、在体、原位、无标记”的高分辨率皮肤细胞及胞外组织三维成像,为患者和医生带来便利。——04——布局微型化多光子产品体系,开启自由行为动物显微成像新范式解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,但传统的多光子显微镜进行常规脑成像通常需要将动物的头部固定在台式显微镜上,这严重限制了模式动物的自由生理状态。为此需要打造自由行为动物佩戴式显微成像类研究工具。基于团队及技术发明,超维景已布局微型化多光子成像产品体系,并成功实现多款产品的产业化,包括SUPERNOVA-100一体式微型化双光子显微镜、SUPERNOVA-600集成式微型化双光子显微镜与SUPERNOVA-3000微型化三光子显微镜等,解决了困扰领域近20年的挑战,显著领先于美国脑计划催生的微型化单光子技术。超维景微型化多光子显微成像系列产品,可以在微观尺度上、不干扰自由运动动物行为的前提下,对大脑神经元和神经突触进行无创性观察和实时、动态成像,为研究神经科学、行为学、认知科学等多个领域提供了新的视角和手段,从而为脑健康研究开辟新的道路。树突棘成像 单树突棘级分辨率 神经元轴突与亚细胞结构成像 ——05——持续加码小动物自由运动活体成像系统“科研+临床”的广阔应用脑科学机理研究。大脑是一个极度复杂的器官,目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。其中,如何打破尺度壁垒,融合微观神经元和神经突触活动与大脑整体的信息处理和个体行为信息,是领域内亟待解决的一个关键挑战。要想实现动物在体脑功能实时成像的研究,能够观察到整个皮层甚至更为深入的其他脑区,涉及到仪器开发、手术技术、生物研究等等不同的方面领域,技术挑战非常大。为了真正解密大脑的工作原理和流程,人们需要在对大脑神经元高分辨成像的同时,被观察者能够自由的正常活动,也就是最理想的脑功能成像需要被观察者在自由运动状态下进行脑功能观测。脑疾病机理研究。目前一些重要的脑疾病,如自闭症、精神类疾病、老年痴呆症等都是全世界的难题。以老年痴呆症为例,根据得病率统计,85岁以上老人中的 50%患有老年痴呆。预计到2050年,中国将有近1亿患者的生活需要照顾、需要医疗系统的救助,这是严重的社会负担。通过本技术对脑科学疾病研究,如果有新发现,对于老年痴呆症,就可能找到早期诊断的方法,早发现、早干预,把严重症状出现期从85岁延缓到95岁,社会负担就可以大大减轻,提高国民生活质量。神经药物筛选。微型化双光子显微镜不仅可以“看得见”大脑工作的过程,还将为可视化研究自闭症、阿尔茨海默病、癫痫等脑疾病的神经机制发挥重要作用。而此类疾病的药物开发,由于缺少快速直接的药效反馈手段,而大大受阻。微型化双光子技术的应用将极大的推动此类神经疾病药物的开发进程,为人类脑疾病的诊断和治疗提供新的手段。携手全球合作伙伴,携手共谋发展。微型化多光子成像系统已获得国内的上亿元订单,以及国外的数千万元订单。其中,国内用户包括北京大学、中科院上海神经所、中科院深圳先进技术研究院、复旦大学、上海交通大学、西湖大学、中山大学、华南理工大学、南京脑观象台等。国外用户包括加州理工、纽约大学、德国马普神经所、德国波恩大学、德国马普鸟类研究所等。未来,超维景将在多光子显微成像技术继续深挖“科研+临床”的广阔应用,这将作为神经探索领域的引路明灯,照见更多未知的领域。参考文献:• Zhao, C., et al. (2023). Miniature three-photon microscopy maximized for scattered fluorescence collection. Nat Methods, 2023 Apr 20(4):617-622.• Zong, W., et al., Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods, 2021. 18(1): p. 46-49.• Zong, W., et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods, 2017. 14(7): p. 713-719.
  • 微型光谱仪的革命性升级-flame系列全新登场
    导读:光谱仪,是将一束光中不同波长和颜色的光分离,并分别显示其含量的仪器。(可以想象它将白光分离成彩虹,再测出彩虹中不同颜色的光分别有多少。在此之上,它同时还能看到肉眼不能觉察的紫外和红外光。)。光谱仪犹如人眼,在生活中、实验室和工业中的用途十分广泛。比如,它可以代替人眼,做更稳定快速的颜色测量,也可以用来“看”化学物质的成分、溶液的浓度、化学反应过程、生物样品鉴别、LED和灯具的质量等等。光谱检测通常快速无损,无毒无害,因此是很多民生息息相关,也是近年来国内外研究的重点方向之一。 1992年,美国海洋光学为世界发明了第一台微型光谱仪,从此将庞大昂贵的光谱检测技术变得灵活廉价,让成千上万个实验室、工业设备得以受益。 2011年,海洋光学USB系列光谱仪达到累计销量20万台,至今仍畅销全球。 2015年,海洋光学再创辉煌,为其最畅销的USB系列产品进行核心升级,集成自动化生产工艺。在同级光谱仪中再创新高。海洋光学2015年推出的flame微型光纤光谱仪海洋光学新一代flame系列光谱仪继承了倍受欢迎的USB系列光谱仪的诸多优点,如小巧稳固的外形、灵活的配置以顺应各类需求、以及精确稳定的表现。在此基础上,flame顺应客户的需求和适用环境,做了革命性的提升。 新一代光学平台,降低环境温度的影响为了更好地适用于条件恶劣,温度变化大的应用环境,flame的核心设计获得了创新性的突破,使得仪器在不同温度下获得的数据更稳定,重复性更高。这一优点顺应了在线工业测量系统、室外测试的需求。 自动化生产工艺,提高仪器间的一致性长年积累的经验以及业内领先的设计能力带来了生产工艺的革新。自动化的生产流程将仪器间的差异减小到了前所未有的范围内。因此用多台flame仪器测量出的数据一致性更高,可以提高实验的可再现性,提高OEM集成设备的一致性。 用户可更换狭缝,更灵活调整实验条件过去的USB允许用户根据实验需求自由配置。而新推出的flame甚至允许用户亲自改变配置,减少摸索实验条件的时间,并达到一机多用。Flame系列拥有用户可更换的狭缝,轻松改变光谱仪的分辨率和灵敏度,是同级产品中的首创。如:可以在几分钟内从吸光度测量的配置迅速简便地改为荧光测量的配置。 可视LED 指示灯,便于操作和系统诊断Flame光谱仪上新增添了LED指示灯。表面看是一个小小的改进,但是用户可以藉此直观地看到光谱仪的工作状态,在实验搭建和集成系统诊断时,可以提供很多的便利,省下时间和成本。 关于海洋光学亚洲(Ocean Optics Asia)和豪迈(HALMA): 海洋光学(www.OceanOptics.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过20万套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤和光学元件等等。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛。 海洋光学是英国豪迈(HALMA plc– www.halma.cn)的子公司。创立于1894年的豪迈是世界领先的安全、健康及环境技术集团,伦敦证券交易所的上市公司,在全球拥有 5000 多名员工,40 多家子公司。豪迈是伦敦证券交易所上市公司中唯一一家在过去30多年股息增长保持5%以上年增长的企业。豪迈目前在上海、北京、广州、成都和沈阳设有区域代表处,并且已在上海、北京、保定、深圳等地开设多家工厂和生产基地。业务联系电话:400 623 2690传真:021-6295 6708电邮:asiamkt@oceanoptics.com
  • “超高时空分辨微型化双光子在体显微成像系统”专项取得重要成果
    p  在国家自然科学基金国家重大科研仪器研制专项“超高时空分辨微型化双光子在体显微成像系统”(项目编号:31327901)的支持下,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,历经三年多的协同奋战,成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。相关研究成果以“Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice”(高速高分辨微型化双光子显微镜在小鼠自由行为中获取大脑图像)为题于5月29日在线发表在Nature Method上。相关技术文档同步发表在Protocol Exchange上,并已申请多项专利。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/9523a7f7-b0b6-4b67-981d-b74805580c21.jpg" title="2017-06-14_094040.jpg"//pp style="text-align: center "2.2g可佩戴式微型双光子显微镜/pp  目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。/pp  新一代微型化双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。/pp  此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。 同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和神经回路的活动。/pp  微型化双光子荧光显微成像改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp  该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。”/pp  可以期待,微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥不可或缺的重要作用。/p
  • “掌上HSCE,把电泳捧在手心里”——浙大团队在微型分析仪器研制方面再创新高
    p  近日,浙江大学方群教授研究组研制出一台可完全手持并独立工作的高速毛细管电泳分析仪,这是迄今为止国际上尺寸最小的基于激光诱导荧光检测的高速毛细管电泳分析仪,该成果以“A Low-Cost Palmtop High-Speed Capillary Electrophoresis Bioanalyzer with Laser Induced Fluorescence Detection”为题发表在学术期刊“SCIENTIFIC REPORTS”上,并得到separationNOW.com网站的亮点报道。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/insimg/e0f43721-a7ac-462c-94aa-a0fb41e09f23.jpg" title="1_副本.jpg"//pp style="text-align: center "strong掌上高速毛细管电泳生化分析仪外观/strong/pp  高速毛细管电泳(High-speed capillary electrophoresis, HSCE)技术自1991年被提出以来,因其快速、高效又耗样量少的特点,在分析化学领域得到快速发展。近年,即时检测(Point-of-Care Testing, POCT)、环境监测、现场勘查和空间探测等领域的发展对分析仪器的微型化和自动化水平提出了更高的要求,借助于微流控技术的发展、电子元件的集成,小型化也成为HSCE系统的一个重要发展方向。/pp  span style="color: rgb(255, 0, 0) "strong麻雀虽小五脏全,极简策略显神通/strong/span/pp  这款掌上HSCE分析仪整体尺寸仅为90 mm× 75 mm× 77 mm(长× 宽× 高),重300 g,成本只有约3500元。体积虽小,但内部却集成了缺口管阵列自发进样模块、毛细管电泳模块、正交型激光诱导荧光检测模块、高电压模块及电子电路控制模块这五大部分。在该仪器研制过程中,采用了“极简微型化”的策略,即基于对仪器分析原理的本质化理解和前期基础研究的成果对仪器进行最大程度的简约化系统设计,保留核心功能,删减暂不必要的次要功能,同时充分借用其他学科领域内低成本的商品化元器件构建仪器系统,达到简化系统结构、缩小仪器体积、大幅降低仪器成本的目的,同时在分析性能上仍可达到与常规分析系统相当的水平。/pp  该研究组之前发展的具有自主知识产权的缺口管阵列自动进样技术、皮升级平移自发进样技术、斜45° 检测正交型激光诱导荧光检测技术等,为微型化HSCE分析仪的研制提供了坚实的基础。而极简微型化策略和低成本元器件的采用,以及对仪器电子电路的最大程度的集成与优化共同促进了这款微型化仪器的出台。利用在淘宝网上购买的数码相机自动对焦模块中使用的微型平移台,以及200 μL离心管,即可构建一个自动化的缺口管阵列自动进样系统,体积仅为传统平移台系统的百分之一,其移动距离可达到17 mm,定位精度达到10 μm,而其成本仅为20元。/pp  在激光诱导荧光检测模块研制过程中,虽然遵从极简微型化策略而使用了小体积的405 nm激光二极管光源、光电二极管检测器和聚焦透镜,但通过采用独特的斜45° 正交型光路以及对系统的深入优化和挖掘潜力,仍能保留较高的仪器检测性能,在S/N=3的条件下,对荧光素纳的检出限达到1.02× 10-9 M,足以与部分使用光电倍增管的常规激光诱导荧光检测器相媲美。此外,通过采用自主设计和加工的整体型光路框架可将激光光源、激光聚焦透镜、毛细管支架与对准装置、荧光收集透镜、荧光滤光片、光电检测器等元件集成于一体,使得整个检测模块的体积仅为44 mm× 42 mm× 40 mm。/pp  在毛细管电泳分离部分,利用缺口管进样系统和平移自发进样方法可实现90 pL的微体积进样,即不需采用昂贵和加工复杂的电泳芯片,只采用普通的短毛细管即可完成高速毛细管电泳分离操作。同时,利用微型化的高电压模块(22 mm× 22 mm× 22 mm),可提供0 至 - 6000 V 的电泳电压。/pp  熟悉分析仪器研制的人都知道,要实现分析仪器的微型化,仪器的电子控制系统是关键难点之一,电子控制系统需要实现荧光信号的实时采集和处理、图谱的实时显示及数据的保存。更为重要的是,要实现真正的掌上型应用,整个系统需要由小体积的电池供电,而分析仪中的激光二极管、微型平移台和电泳高压模块对电池来说均是耗电的大户。因此,系统除了选用超低功耗嵌入式微控制器实现了控制系统的集成化外,在降低功耗方面还做了很多努力,最终成功实现了仪器的电池供电,单块容量为1150 mA的锂电池可提供10小时以上的连续工作时间。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/insimg/e0cc5945-dcd7-4c82-9acb-302624aceeb3.jpg" title="2_副本.jpg"//pp style="text-align: center "strong掌上高速毛细管电泳生化分析仪内部结构照片/strong/pp  span style="color: rgb(255, 0, 0) "strong分离模式多样化,仪器应用尤可期/strong/span/pp  该掌上HSCE分析仪以3.8 cm的毛细管作为分离通道,仅用7秒的时间即可完成3种氨基酸的电泳分离,在如此短的时间内不会形成明显的焦耳热效应,电泳分离可获得约1 μm 塔板高度的高分离效率。这台掌上HSCE不仅适用于氨基酸的毛细管区带电泳分离,也实现了手性氨基酸(D、L-亮氨酸和D、L-天冬氨酸)的胶束电动毛细管色谱快速分离,还实现了5 个DNA片段、3个蛋白质的毛细管凝胶电泳分离。该仪器还被应用于KRAS原癌基因诊断中的PCR产物和酶切产物实际样品的分析。电泳分离图谱直接显示在仪器外壳上的液晶显示屏上,并同步保存在MicroSD数据存储卡上,也可以通过蓝牙模块无线发送到手机或者平板电脑上进行实时监测。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/insimg/d29702a5-d745-4964-87df-547353e8c955.jpg" title="3_副本.jpg"//pp style="text-align: center "strong掌上高速毛细管电泳分析仪在线分离结果照片/strong/pp  纵观当下的需求和这款掌上HSCE分析仪的性能特点,该仪器作为一个起点,将有助于开拓HSCE更多新的应用领域:几分钟的DNA片段分离有望取代繁琐耗时的平板凝胶电泳,在广大生化实验室中得到普及 用价廉易得的低成本毛细管取代电泳芯片,自动化的操作和四按键的便捷控制成为走进家庭的敲门砖,进而实现个体化健康管理和疾病预防 电池供电超长待机,这是一款行走的HSCE,借此进行床旁检测、传染病监控等指日可待。/pp  该论文的第一作者为浙江大学化学系微分析系统研究所潘建章副研究员、方盼博士和方晓霞博士,通讯作者为浙江大学化学系微分析系统研究所方群教授。特别感谢国家自然科学基金(21435004,21227007和21027008等)对该项工作的支持!/pp  SCIENTIFIC REPORTS文章链接:/pp  https://www.nature.com/articles/s41598-018-20058-0/pp  separationNOW.com报道链接:http://www.separationsnow.com/details/ezine/161ada26e8d/Cheap-analysis-in-the-palm-of-your-hand-A-miniature-CE-device-made-with-off-the-.html/p
  • 滨松指尖尺寸微型光谱仪获2015年“Prism Award”
    2015年2月11日, SPIE Photonics West(美国西部光电展)在加州旧金山举行,角逐了8个月之久的2015年光学“Prism Award”(棱镜奖),在本次展会上公布了最终获奖名单。 “Prism Award”被誉为光学界的“奥斯卡”是由SPIE(国际光学工程学会)与美国Photonics Media共同发起的。旨在表彰为光学发展做出了突出贡献,并通过光学技术解决现实问题、改善生活的新创新科学产品、程序、软件、装置、材料、系统、仪器等。“Prism Award”颁奖现场 2015年“Prism Award”共有9个组别,而滨松指尖尺寸微型光谱仪则参与了“探测器与传感器”组的角逐。滨松C12666MA微型光谱仪为目前世界最小的光谱仪,拥有突破性的机身尺寸:20.1*12.5*10.1mm,而重量也仅有5g,可实现与LED照明的颜色传感、智能手机、POCT等轻便测量仪器的连接。滨松C12666MA与Prism Award奖座 滨松C12666MA微型光谱仪在2014年6月进入“Prism Award”探测器与传感器组的甄选,并于12月被列入该组入围名单。通过专家进一步的评估和筛选,滨松C12666MA最终从入围产品中脱颖而出,获捧了传感器及探测器组的奖座。这是继2009年滨松160kV微焦点X射线源L10711获得“Prism Award”以来,滨松公司产品再次获此殊荣。
  • 俄Shvabe公司参与微型光谱仪生产 欲进军中国市场
    2月22日消息,俄罗斯施瓦贝Shvabe公司近日宣布,将于今年进军中国市场。目前,Shvabe不仅在衍射光栅的生产和销售方面具有巨大潜力,并且具有军用和民用光电子系统的研究和生产基础。  据了解,Shvabe公司旗下的俄罗斯国家实用光学研究所(OJSC NPO GIPO)已经获得了宽波段衍射光学元件(衍射光栅,全息光学元件及全息合成图)业界的认可。公司拥有上述元件特殊的生产和测量设备。  仅在2015年,该研究所就与德国一顶尖公司签订了凹型全息衍射光栅的合同,并向德国出售了200件该型光栅,旨在促进人民生活质量提升的智能技术的发展。  全息光栅被应用于光谱分析和管理激光系统辐射参数。光谱设备借助全息光栅能够进行光谱成分研究,包括其折射率、反射率及分散率,从而分析化学成分。这样的研究能够判断产品的物理和化学特性。如果将光谱设备应用于生产中,能够检测金属合金中的杂质,蔬菜、水果、肉类及奶制品的中的硝酸盐和亚硝酸盐。该设备不仅能探测出机场里的爆炸物,也能测量糖尿病患者血液中的血糖水平。  俄实用光学研究所首席执行官弗拉基米尔伊万诺夫表示,“微型光谱仪中的凹型全息光栅与平面型相比具有更高的性能。该光栅的生产采用了光学方法,因此和采用传统刻文方法的光栅不同,能够不受暂时性和偶然性的笔画排列错误的影响,同时能大大减少散射光。”  目前,该研究所已向白俄罗斯、挪威、爱尔兰、芬兰、法国、立陶宛和德国出售了各类型的光学元件,并计划将于2016年进军中国市场。多年以来,研究所的科学专家创造了超过1500项的发明。
  • 北大成功研制新一代微型显微镜 可实时记录神经元进行脑分析
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201705/insimg/d524002c-f06f-4221-a09b-ea5520ae7810.jpg" title="QQ截图20170531163243.png" width="600" height="424" border="0" hspace="0" vspace="0" style="width: 600px height: 424px "//pp 进入新千年,脑科学研究成为热点。工欲善其事,必先利其器。若要更好的探索人类大脑,就必须有更好的仪器与工具。目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。 其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整 体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。/pp  近日,自然杂志子刊 Nature Methods 发布了来自于中国在这方面的研究进展。该论文主要展示了《超高时空分辨微型化双光子在体显微成像系统》的研究成果——新一代高速高分辨微型化双光子荧光显微镜成功研制,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。/pp  该研究成果源自于国家自然科学基金委员会计划局组织的国家重大科研仪器设备研制专项,当时共有9个项目入选。北京大学程和平院士主导的《超高时空分辨微型化双光子在体显微成像系统》就是其中之一,当时也获得了7200万元的经费支持。/pp  过去三年,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院,联合中国人民解放军军事医学科学院组成跨学科团队,完成了的这一研发工作。团对成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。研究论文2016年12月提交,2017年5月29日正式在自然杂志子刊 Nature Methods 发布。/pp  根据官方提供的信息,产品相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到 0.65μm,成像质量可达商品化大型台式双光子荧光显微镜水平,并优于美国所研发的微型化宽场显微镜。该显微镜采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达 40Hz(256*256 像 素),同时具备多区域随机扫描和每秒 1 万线的线扫描能力。/pp  此外, 采用自主设计可传导 920nm 飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动 的荧光探针(如 GCaMP6)的有效利用。/pp  同时采用柔性光纤束进行 荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而 受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能 成像的同时,精准地操控神经元和神经回路的活动。/pp  值得一提的是,该显微镜重仅 2.2 克,可在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号 在大型动物上,还有望实现多探头佩戴、多颅窗不同脑区的长时程观测。/pp  之所以说这一研究成果意义重大,主要是因为它为脑科学、人工智能学科的研究提供了重要的高端仪器。具体来说,微型双光子荧光显微成像技术改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、 睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp  事实上,成像技术一直是推动生命科学进步的主要动力。历史上,X射线、全息照相法、CT计算机断层成像、电子显微镜、MRI核共振成像、超高分辨率显微成像技术都推动了科学技术的进步,也都获得了Nobel奖。/pp  在今天的发布会之前,该成果在 2016 年底美国神经科学年会、2017 年 5 月冷泉 港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的认可。冷泉港亚洲脑科学专题会议主席、 美国著名神经科学家加州大学洛杉矶分校的 Alcino J Silva 教授认为,“ 这款显微镜将改变我们在自由活动动物中观察细胞和亚细胞结构的方式??系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所 造就的大脑环路实现复杂行为的核心工程学原理。”/pp  这项技术研发成功的同时,团队也成立了一家叫做”超维景“的公司,并获得了来自协同创新基金、西科天使的融资,公司将会在符合北大政策的前提下,由北大支持进行商业化推广。团队接下来的重心仍是技术迭代、新产品研发。/ppbr//p
  • 微型显微镜助医生在手术中识别癌细胞
    在切除恶性脑肿瘤时,医生既不想留下任何癌细胞,又要保护健康脑组织,将对神经的伤害尽可能降到最低。然而一旦打开了病人颅骨,就没时间在笨重的显微镜下对组织样本进行病理分析。据美国华盛顿大学最新消息,该校工程师与斯坦福大学纪念斯隆凯特琳癌症中心、巴罗神经学研究所合作,开发出一种手持式微型显微镜,让医生在手术时也能看到细胞水平,帮他们决定该在哪里果断下刀,在哪里刀下留情。 新的手持显微镜比钢笔略大一点,用了一种叫做“双轴共焦显微技术”的新方法,能更清晰地“看透”不透明组织,捕获组织表层以下半毫米的细节。研究人员之一、华盛顿大学机械工程副教授乔纳森刘说:“要看到组织表面以下,就像开着灯在浓雾中驾驶,无法看得太远。但我们用的(显微镜)就像雾光灯,从不同的角度照亮并减少炫光,能在浓雾中看得更远。” 要让显微镜更小,通常要牺牲图像质量或分辨率、视域、深度、对比度、处理速度等性能。研究人员结合了快速高质量图像的处理传输技术,实现了各种图像指标的平衡。他们发表在《生物医学光学快报》上的论文称,微型显微镜的分辨率足以看到亚细胞水平,其拍摄的小鼠组织图像能和在临床病理实验室经过多天处理后的图像媲美。 乔纳森刘表示,手术中要知道切除的究竟是不是肿瘤,外科医生只能用眼睛看,凭借触觉和术前脑成像,有时会相当主观。如果能在手术过程中放大组织,看到细胞水平,有助于他们精确区分肿瘤和正常组织,会让手术效果更好。 研究人员希望将微型显微镜作为一种临床癌症筛查工具,他们将在2017年对其进行测试,然后在2到4年里将其用于手术或其他临床程序。 上图为了造出手持双轴共焦显微镜,研究人员将原来的桌面显微镜原型缩小成约钢笔大小。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制