方形散流器

仪器信息网方形散流器专题为您提供2024年最新方形散流器价格报价、厂家品牌的相关信息, 包括方形散流器参数、型号等,不管是国产,还是进口品牌的方形散流器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合方形散流器相关的耗材配件、试剂标物,还有方形散流器相关的最新资讯、资料,以及方形散流器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

方形散流器相关的厂商

  • 北京方兴大业科技有限公司,李囿萱经理13366200806(同微信),微信fxdy518, QQ:656652896。主要产品:X射线防护服及设备,铅胶衣铅胶帽,铅围领铅围脖,铅围裙铅背心,铅眼镜铅手套,铅护臂铅护手,铅方巾铅三角,铅防护裙,铅防护衣架,铅衣收纳柜,铅胶皮,铅防护门,铅防护屏风,铅防护玻璃,铅防护帘,铅防护面罩,核辐射防护服,介入铅衣,介入铅帽,介入铅眼镜,移动防护罩,LED观片灯,紫外线消毒车,紫外线杀菌车,紫外线消毒灯,紫外线杀菌灯,验光镜片箱,静音无油空压机,心肺复苏模拟人,美国3m听诊器,超短波电子管输出线等。 公司地处美丽的北京雁栖经济开发区,公司是一家专业从事:射线防护,消毒设备,生物器材,仪器仪表的销售企业。我们重视新产品的挖掘与推广,通过细化市场,精选渠道,深入客户,坚定品质就是价值的经营理念。 公司重视员工队伍的建设,秉承品质服务的宗旨,在全体同仁的不懈努力下,在强手如云的市场竞争中,不断完善自我,开拓进取,在未来高品质服务的时代,我们会一如既往的坚持这个思路和方向,始终如一地保持锐意求新、追求完美的精神发展企业,锻炼队伍,使客户享受我们品质服务的同时,跟我们一起方兴未艾,共创大业… …
    留言咨询
  • 墨格微流科技(汕头)有限公司成立于2022年3月,是化学与精细化工广东省实验室首家孵化公司,致力于打造国际微反应器与连续流化学行业的中国品牌。基于创始人董正亚教授及其研究团队在微反应器与流动化学领域13年研究成果 ,墨格利用自主研发的超声微流体技术 (umFlow) 平台,开发精细化学品连续流生产工艺与装备,以及面向化妆品、医药、半导体、精细化工行业的高端纳米材料。公司在国际上率先突破超声微反应器的工程放大难题,并开发了纳米材料可控宏量生产和均质分散平台。公司研发人员超75%, 包括国家级人才1人、 教授3人 、 高工2人 、博士8人及硕士若干。
    留言咨询
  • 400-860-5168转5085
    苏州微流纳米生物技术有限公司由海归工程师创立, 地处苏州工业园区生物纳米科技园内。公司技术团队具有十余年国内外纳米均质领域服务经验,一直与国外厂商保持了紧密的合作关系,公司是美国Genizer官方授权亚洲区总代理、美国BEE官方授权中国区总代理。  公司主营代理超高压均质、脂质体挤出等设备和技术,为脂肪乳 (丙泊酚、前列地尔、氯维地平等),精细化工(MLCC、锂电池、导电涂层等),细胞破碎,纳米粒(紫杉醇白蛋白等)、纳米脂质体(多柔比星、伊立替康)、纳米纤维素、混悬液(泊沙康唑、氯替泼诺等)等领域客户提供了优质的解决方案。公司致力于成为纳米均质服务领域的专家,“品质至上、效能优先”是我们的经营理念,公司将竭诚为您提供优质的服务与解决方案。  苏州微流纳米生物技术有限公司供应: 高压微射流均质机、高压均质机、微射流金刚石交互容腔、超高压均质机、纳米分散仪、纳米均质机、纳米破碎仪、脂质体挤出器、微流化器、纳米激光粒度仪、实验到生产型Genizer微射流超高压均质机、实验型和生产型脂质体挤出器、脂肪乳配液系统、脂质体工业化制备、石墨烯导电浆料、碳纳米管导电浆料、MLCC多层陶瓷电容导电涂层、电池导电浆料纳米化系统。
    留言咨询

方形散流器相关的仪器

  • MAD25-S2C-xx方形镜片转接器 说明:由于夹持正方形镜片(或方形光栅)的调整架不多,所以给方形镜片的使用者带来困扰,MAD25-S2C 很好地解决了方形镜片无法夹持的问题:将方形镜片装入转接器中,将转接器装入对应尺寸的顶丝卡紧式调整架中即可正常使用。选型表:关联产品: 镜架:OMRS、 OMHS、OMUS连接附件
    留言咨询
  • 自垂百叶此风口用于具有正压的空调房间自动排气,通常情况下靠风口的百叶自重而自然下垂,隔绝室内外空气交换,当室内气压大于室外气压时,气流将百叶吹开而向外排气,反之室内气压小于室外气压时,气流不能反向流入室内,该风口有单向止回作用。 自垂百叶结构示意图单层固定百叶单层固定百叶叶片倾斜设计,具有防止直吹风作用,常用于洗漱间、卫生间的回风,电梯、管道口及检修口的装饰,防排烟、排风的侧送风或回风,可以与人字闸配套使用,此系列风口的叶片为固定式。 单层固定百叶结构示意图单层可调百叶单层可调百叶风口,叶片角度可在0-180°范围内任意调节,将叶片调成不同角度,可得到不同的送缝距离和不同的扩散角,也可以配置OBD人字闸,将风量和风速控制在适当范围内。 单层可调百叶结构示意图防水百叶防水百叶风口,系铝型材制成,其叶片设计成特殊状,具有防止雨水溅入内部的功能,一般安装在外墙上作为新风口。 防水百叶结构示意图 门铰回风百叶门铰式百叶是在固定百叶的基础上增加一个边框和特制门铰,内胆和边框相对分离,通过特制门铰连接在一起。用手轻拔内胆两边弹簧门锁,内胆就像门一样打开,常与过滤网配套使用,多用于回风,方便清洗过滤网。 门铰回风百叶结构示意图 球形喷口球形喷口由于送风距离大,特别适用在空调送风口与人员活动范围有较大距离的场合。如各种大厅及大型装配车间等面积很大的场所,采用天花板送风口不能将气流均匀送至所需地点时则应考虑采用球形喷口送风,以解决远射程的送风问题。喷口采用空气动力学结构设计,其噪声低、射程远、喷口表面光洁美观、线条过度均匀,适用于各种室内条件和技术要求,可用于各种空调系统。 球形喷口结构示意图旋流风口旋流风口具有送出旋转达射流,诱导比大,风速衰减快等特点;在通风空调系统中可做大风量大温差送风以减少风口数量;安装在天花板或顶棚上,可用于3米以内低空间,也可用于中高度大面积送风,高度甚至可达10米以上。调节起旋器在风口中位置,可获得吹出型、散流型等不同气流形式,此时风速基本不变。 旋流风口结构示意图圆形散流器圆形散流器用于冷暖送风、常安装在顶棚上吹出气流呈贴附(平送、下送)型,其结构为多层锥面型。由于室内诱导气流大于排风量,因此吹出气流减速较快。因相对任意大小面积来说可以供给较大风量,而且在给定的风量范围内扩散半径可大小变化,常与圆形对开调节阀配套使用。 圆形散流器结构示意图 方形散流器方形散流器具有线条挺直简洁,叶片倾角37°,具有扩散作用,气流属贴附(平送)型,整个叶片与边框采用分离结构,整个叶片可以从边框中轻易取出,方便安装和清洗,还可以根据空间特点选用不同方向的散流器,也可以与人字闸配套使用。适用于播音室、医院、剧场、教室、音乐厅、图书馆、游艺厅、剧场休息室、一般办公室、商店、旅馆、饭点及体育馆等。 方形散流器结构示意图双层可调百叶双层可调百叶风口,叶片角度可在0-180°范围内任意调节,将叶片调成不同角度,可得到不同的送缝距离和不同的扩散角,也可以配置OBD人字闸,将风量和风速控制在适当范围内。双层可调百叶结构示意图风口的型式代号与名称按下表规定: 型号编制按以下规定:
    留言咨询
  • GHD-CY02土壤方形木质采样器,采用高强度木质、梯形结构设计,单次土壤样品定量采样,采集深度可达20cm。 采样深度20cm 梯形结构,方便取样 单次土壤样品定量采样 高强度木质,避免样品污染 可用于采集非金属样品
    留言咨询

方形散流器相关的资讯

  • 大口径方形激光能量计研制成功
    经过近两年的努力,中科院上海光学精密机械所高功率激光物理联合实验室测量课题组成功完成了大口径方形能量计的研制任务。  目前,高功率激光装置采用多程放大和方型光束方案来提高泵浦光能量的利用率已成为一种发展趋势。研制中的神光Ⅱ升级装置也采用了此种技术方案,升级后装置的光束口径为310mm×310mm,现有最大口径能量计Φ400mm也无法满足测量需求。而从国外购买的大口径能量计价格高,标定校准难。为满足升级后的神光Ⅱ装置和未来的神光Ⅲ主机对激光能量测量的需求,在863高技术的支持下联合实验室的测量课题组承担了能量计的研制任务。  研制完成的大口径方形能量计测量口径达420×420mm,适用基频、二倍频、三倍频三个波段,灵敏度大于50μv/J,面均匀性优于±1.8%,在稳定性、信噪比、面响应均匀性这三个激光能量计的主要技术指标都做到了较高的实用水平。大口径方形能量计于近日获得了中国计量科学研究院授权的校准证书,将用于神光Ⅱ升级项目中激光能量的测量。  这是课题组继成功研制口径为Φ20mm、Φ50mm、Φ100mm、Φ300mm、Φ400mm的能量计之后,又一次出色完成了大口径方形能量计的研制。在此次的研制任务中,课题组不仅形成了一套方形、大口径激光能量计设计方法和制作工艺,而且大大丰富了实际的研制经验,为今后研制更大口径的能量计打下了坚实的基础。
  • 大口径方形激光能量计研制成功
    7月2日消息,经过近两年的努力,高功率激光物理联合实验室测量课题组成功完成大口径方形能量计的研制任务。  目前,高功率激光装置采用多程放大和方型光束方案来提高泵浦光能量的利用率已成为一种发展趋势。研制中的神光Ⅱ升级装置也采用了此种技术方案,升级后装置的光束口径为310mm×310mm,现有最大口径能量计Φ400mm也无法满足测量需求。而从国外购买的大口径能量计价格高,标定校准难。为满足升级后的神光Ⅱ装置和未来的神光Ⅲ主机对激光能量测量的需求,在863高技术的支持下联合实验室的测量课题组承担了能量计的研制任务。  研制完成的大口径方形能量计测量口径达420×420 mm,适用基频、二倍频、三倍频三个波段,灵敏度大于50μv/J,面均匀性优于±1.8%,在稳定性、信噪比、面响应均匀性这三个激光能量计的主要技术指标都做到了较高的实用水平。大口径方形能量计于近日获得了中国计量科学研究院授权的校准证书,将用于神光Ⅱ升级项目中激光能量的测量。  这是课题组继成功研制口径为Φ20mm、Φ50mm、Φ100mm、Φ300mm、Φ400mm的能量计之后,又一次出色完成了大口径方形能量计的研制。在此次的研制任务中,课题组不仅形成了一套方形、大口径激光能量计设计方法和制作工艺,而且大大丰富了实际的研制经验,为今后研制更大口径的能量计打下了坚实的基础。
  • 无菌药品生产与放行交流会在京召开
    p style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="1.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/6756cad0-90ff-4062-b696-8887c0fbbe91.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"strong会场掠影/strongbr//pp  strong仪器信息网讯/strong 2017年3月29日,无菌药品生产与放行交流会在北京亮马河饭店圆满落幕,这次交流会吸引了来自无菌制药企业的120多位代表参加。/pp style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="2.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/75ee378d-40a8-45f6-b105-274533c1e739.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"strong赛多利斯实验室产品与服务部门大中华区销售总监卢莉琼/strong/pp  蒲公英制药技术论坛代表夏赟女士和赛多利斯卢莉琼总监先后为交流会致开幕辞。卢莉琼女士讲到,作为国际领先的实验室技术和生物工艺解决方案的供应商,赛多利斯一直致力于将国际先进的技术、应用与合规性经验带到国内,帮助中国制药企业更加安全、高效地生产药物。此次,我们很荣幸能够与蒲公英制药技术论坛携手,为大家搭建这样一个经验分享与交流的平台,共同探讨药品生产和检验过程中的无菌保证和风险控制。/pp style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="3.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/cbe1f550-5fe5-4942-adad-c556098035b3.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"strong赛多利斯集团亚太区验证项目高级经理 Christian Boecking 博士/strong/pp  Christian博士带来了题为“无菌过滤工艺的风险分析”的演讲,通过分享2012年FDA新发布工艺验证指南对于质量风险管理的相关条款,强调在工艺验证开展之前,需要深入理解工艺和产品以及法规要求,并对验证内容进行准确判断才能确认科学的工艺验证方法。此外,还可通过借助专业工具方法来提高风险控制,从而保障药品生产过程的安全可靠。演讲中,他结合了实际案例就如何在无菌过滤生产工艺中进行工艺风险评估提供实用见解。/pp style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="4.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/3ba1e555-1bcd-4f26-9323-706046a93383.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"strong药品评审与检验专家 周立春/strong/pp  周立春女士发表了题为“注射液的质量标准研究”的演讲,主要内容包括:对药品质量标准定义的解读,质量源于设计的诠释,不同的注射液工艺特点如何影响质量标准的建立,注射液质量标准的要求,质量标准建立的过程,国内外文献的解读和应用,注射剂的添加剂及添加物的控制,包材与活性物质的相互影响,包材释放物的不良影响,稳定性试验的启示,方法学的验证和质量标准的管理。周老师演讲的精彩之处来自于她把常规理念、实际案例和自身经历的结合,然后用一种汇通古今中外的文艺方式娓娓道来。/pp style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="5.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/d19b8678-d5e0-4f95-aea1-fe76e128782d.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"strong赛多利斯集团亚太区验证服务总监 Petra Motzkau/strong/pp  Petra女士做了题为“最终产品除菌过滤工艺的验证-考虑要点和应用案例”的演讲,她首先介绍了过滤在无菌保证中担任的角色,通过对比不同国家地区对除菌过滤工艺的法规定义和监管框架,并结合实际的案例分享,强调了在过滤器验证中需要考虑的要点。/pp style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="6.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/8b42fdb8-2e30-404c-9ccd-5de0efa4f943.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"strong赛多利斯集团过滤技术产品亚太市场总监 Ulrich Brautigam/strong/pp style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="7.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/b0dc7ac0-fd0c-49f6-b496-2651637a463e.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"  strong赛多利斯中国区过滤超滤产品应用支持经理 谭宁/strong/pp  Ulrich先生和谭宁先生给大家带来了题为“基于风险分析的完整性测试策略以及案例分析”的演讲,主要介绍了各个不同国家法规机构对于完整性测试的要求,同时也和大家讨论了FMEA作为一种非常有效的风险管理工具在完整性测试中的应用的实施过程,以及业界的案例分析。/pp style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="8.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/9e707a84-379e-414a-af26-7120b3bafd7e.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"strong上海诺狄生物科技有限公司总经理 柴海毅/strong/pp  柴海毅先生做了题为“洁净区微生物监测与控制方案”的演讲,介绍了环境监测解决方案以及培养基的选择及质量控制。他指出为了降低假阴性,在a/b级区域应该选用截留率更高的凝胶膜过滤法,可以进行动态长时间检测浮游菌,在c/d区域优先选择撞击法,一次性采样头能有效降低消毒带来的风险。他的报告引来了会议现场热烈的互动讨论。/pp style="TEXT-ALIGN: center"img style="WIDTH: 569px HEIGHT: 379px" title="9.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201703/insimg/4457273f-0bea-44fd-a500-c0bbe5461cfa.jpg" width="569" height="379"//pp style="TEXT-ALIGN: center"strong赛多利斯集团微生物检测技术全球市场总监 Susanne Roederstein 博士/strong/pp  Susanne女士给大家带来了“最终放行产品:难过滤样品的测试方案”的演讲。她介绍了根据USP& EP的最终放行的无菌试验程序,测试难滤样品的方案的实例研究,以及培养后利用快速检测微生物的方法放行产品。对于难过的样品可以采用更快的CA膜滤筒,通过稀释样品、预过滤中和液以及适当加热的方法完成测试。/p

方形散流器相关的方案

方形散流器相关的资料

方形散流器相关的试剂

方形散流器相关的论坛

  • 【原创】物镜像散怎么会变成方形的?

    【原创】物镜像散怎么会变成方形的?

    各位大侠,为什么加上物镜光阑后像散会变成方形的,但是退出光阑后像散又能调成圆形的呢?到底是什么原因呢?极靴内磁场变成方形的呢?[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005111128_217527_1609691_3.jpg[/img]

  • 832的CCD图片能调成正方形吗

    一般832拍出来好像都是2X2.7K的长方形图片,但很多文章都是正方形,有时有点疑惑,能否设置成拍成正方形的图片呢?

方形散流器相关的耗材

  • HOLO / OR衍射扩散器
    HOLO / OR衍射扩散器HOLO / OR衍射扩散器• 均质分布的整形激光束• 圆形或正方形输出形状• 532nm和1064nm Nd:YAG激光器的设计• 与单模或多模光束兼容通用规格基底:Fused Silica注意:High HomogeneityInput Beam Mode:SM or MMHOLO / OR衍射扩散器,也称为光束均质器,是将单模或多模激光束转换为具有均匀分布的定义形状的衍射光学元件(DOE)。每个扩散器在其设计波长处具有指定的扩散角,该扩散角与透镜一起控制光斑尺寸。 HOLO / OR漫射器具有方形或圆形输出,并且还提供高均匀性版本,与标准衍射漫射器相比,它具有更高的均匀性和更低的零级。 HOLO / OR衍射扩散器可用于各种激光应用中,包括光束均化,减少热点,表面处理和激光材料加工应用。注意:衍射光学元件不可在其设计波长范围之外使用。如果衍射光学元件的表面被油或其他物质弄脏,则会降低其性能。建议在处理这些光学器件时始终戴手套或手指套。Edmund Optics为激光应用提供了一系列来自HOLO / OR的衍射光学元件,包括:• 衍射扩散器:用于将输入激光束转换为具有均匀分布的定义形状• 衍射分束器:用于将输入激光束分成一维阵列或二维矩阵输出• 衍射光束整形器:用于将近高斯激光束转换为具有均匀平顶强度分布的定义形状• 衍射光束采样器:用于传输输入激光束,同时产生两个可用于监视高功率激光的高阶光束• 衍射轴心:用于将输入激光束转换为可聚焦到环的贝塞尔光束• 衍射涡旋相位板:用于将高斯轮廓光束转换为甜甜圈形能量环产品信息标题产品编码1064nm,20mm直径,方波输出,高均质衍射扩散器#14-68532nm,15 x 15mm,圆形输出,高均质衍射扩散器#14-683
  • 方形培养基瓶
    LuxCell方形培养基瓶具有极好的气体阻隔性,适用于制备和存储缓冲液、培养基、血清及PH值敏感的液体,也非常适合存储和采样活性药物成分和散装中间体。LuxCell方形培养基瓶无菌,且采用符合人体工程学的方形设计,使用更加便捷。产品特点►聚酯(PET、PETG)材质可选,适合不同应用需求,配备聚丙烯瓶盖►注拉吹一次成型工艺生产,气体阻隔能力更强,瓶体光泽度高,内外壁光滑,溶液不挂壁►重量轻、用料足、硬度高、抗冲击,抗化学药品,稳定性好►透明度髙,瓶体带刻度,便于可视化►伽马辐照灭菌处理,无DNA酶、无RNA酶、无热原、无细胞毒性►方形符合人体工程学设计,方便抓握的同时也更节省空间►防渗漏,盖子与瓶口配合更紧密,多重管控,确保不漏液■ PET材质产品名称产品货号容量(ml)颈部直径(mm)高度(不含盖子)(mm)高度(含盖子)(mm)包装规格125ml灭菌PET方形培养基瓶24112512535.410410824个/包 4包/箱250ml灭菌PET方形培养基瓶24125025035.414014430个/包 2包/箱500ml灭菌PET方形培养基瓶24150050035.4172.5176.524个/包 2包/箱1000ml灭菌PET方形培养基瓶241210100035.421321712个/包 2包/箱■ PETG材质产品名称产品货号容量(ml)颈部直径(mm)高度(不含盖子)(mm)高度(含盖子)(mm)包装规格125ml灭菌PETG方形培养基瓶F26112512535.410410824个/包 4包/箱250ml灭菌PETG方形培养基瓶F26125025035.414014430个/包 2包/箱500ml灭菌PETG方形培养基瓶F26150050035.4172.5176.524个/包 2包/箱1000ml灭菌PETG方形培养基瓶F261210100035.421321712个/包 2包/箱
  • 多模光纤跳线,方形纤芯
    多模光纤跳线,方形纤芯特性方形纤芯的多模光纤跳线,数值孔径0.39纯石英纤芯尺寸150 μm x 150 μm硬聚合物包层?225 μm波长范围400 - 2200 nm两端有2.0 mm窄键FC/PC或SMA905接头外有FT030 ?3 mm松套管提供焦比衰退(FRD)少或扰模增益高的版本(更多信息,请看应用标签)非常适合成像和天文光谱学应用定制长度或接头配置,详情请联系技术支持制造这些多模光纤跳线使用的是150 μm x 150 μm 方形石英纤芯的光纤,而不是圆形纤芯的光纤。纤芯的方形有助于光纤中的模式混合,从而产生均匀的空间分布、正方形的光束形状以及平顶截面轮廓(在输出端)。为了在远场距离保持方形的光束,需要使用准直器对纤芯成像(请看右图)。该光束轮廓的形状还可以改善激光二极管或LED的耦合,因为它们具有矩形发射面。本页出售的所有光纤跳线都非常适合通用或成像应用;但这些跳线也包含其他特性,这些特性对天文光谱学非常重要。具体来说,方形和其他非圆形纤芯的跳线可以减少焦比衰退(FRD),改善扰模增益。这些跳线具有优化了FRD或扰模增益性能的两种版本。这些光纤跳线使用低应力环氧树脂粘合终端,使跳线的FRD比圆形纤芯光纤跳线的FRD少。对高扰模增益感兴趣的客户,可以考虑M102L05和M103L05光纤跳线,它们由于长度较长而具有高扰模增益。方形纤芯与圆形纤芯光纤跳线的FRD与扰模增益的典型测量,请看应用标签。光纤跳线的两端可以为2.0 mm窄键FC/PC或SMA905接头。对于SMA905终端的跳线,所刻黑线用于对准纤芯的平边;对于FC/PC终端的跳线,接头键对准纤芯的平边(请看右图)。每根光纤跳线包含两个防尘帽,可以防止跳线末端受到灰尘影响和其他损害。我们也单独出售额外的CAPF塑料防尘帽和CAPFM金属螺纹防尘帽,用于FC/PC终端,以及CAPM橡胶防尘帽和CAPMM金属螺纹防尘帽,用于SMA905终端。我们也可以定制不同的长度或接头配置,详情请联系技术支持。这些光纤跳线并不适合需要光纤承载高光功率的应用,因为过高的功率可能会过度加热接头中使用的环氧树脂(更多信息,请看损伤阈值标签)。我们也提供方形纤芯的裸纤,不包含任何环氧树脂,可以在功率较高的环境下使用。使用M97L02光纤跳线(左图)与M29L02 ?200 μm纤芯的光纤跳线(右图)的准直输出比较。M625F2光纤耦合LED用作光源。利用透镜扩束测量的平顶光束轮廓接头有黑色标记(SMA905接头)或对准键(FC/PC接头),用于对准纤芯的一条平边。In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMAFC/PCFC/PC to SMASquare-Core FC/PC and SMAAR-Coated SMAHR-Coated FC/PCBeamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PCLightweight SMARotary Joint FC/PC and SMAHigh-Power SMAUHV, High-Temp. SMAArmored SMASolarization-Resistant SMAFC/PCFC/PC to LC/PC规格:Bare Fiber Item #WavelengthRangeHydroxylContentCore SizeCladdingDiameterCoatingDiameterCore / CladdingCoatingStripping ToolProof TestFP150QMT400 - 2200 nmLow OH150 ± 10 μm x 150 ± 10 μm225 ± 5 μm500 ± 30 μmPure Silica /Hard PolymerTefzelT12S21≥50 kpsiBare Fiber Item #NACore Index @ 589.3 nmCladding Index @ 589.3 nmAttenuation (Click for Plot)Core OffsetBend RadiusOperatingTemperatureShort TermLong TermFP150QMT0.391.4589651.365120 dB/km @ 803 nm (Max)6 μm (Max)20 mm40 mm-40 to 150 °C应用方形纤芯的光纤适合多种应用,包括:天文学、激光加工、皮肤病学设备和生物医学成像。下面的例子展现了这些光纤相对于传统圆形纤芯光纤而具有的独特优势。平坦的光束轮廓方形纤芯的光纤具有一个明显的特点,那就是它在纤芯区域产生的是强度均匀的光束,而不是圆形纤芯的光纤通常产生的高斯光束轮廓。这是因为,纤芯的方形有助于光在光纤中传播时实现模式混合,从而使输出光束的空间模式均匀分布。方形纤芯的光纤非常适合激光加工应用,无需光束整形光学元件或掩模,就可以形成尖角或进行边缘切割;这种光纤也适合成像应用,方形光束轮廓可以更好地适应矩形CCD阵列的形状。请注意,光束一旦离开光纤,光束形状就无法保持,因此,需要准直器对纤芯成像,以保持光束在自由空间中的形状。使用透镜扩展由530 nm LED光源从单模光纤发射到测试光纤的光束,并测量光束轮廓。天文应用对恒星和天文光谱学感兴趣的客户,这种方形纤芯的光纤还有几种优于圆形纤芯光纤的特点。焦比衰退(FRD)少多模光纤跳线适用于天文应用,尤其常用于建立多天体分光(MOS)系统,可以在望远镜的视场内同时观察多个天体的光谱。光纤的小视场只能捕捉目标天体发出的光,周围天体产生的噪声很小。由于微弯曲以及安装接头时终端对光纤产生的应力,光纤输出端的焦比(也就是f/#)会低于输入端,而光束角度在输出端会变大。这种现象也就是所谓的焦比衰退(FRD),输出光束角度变宽,会导致光谱分辨率降低,在探测器上的采光量减少。FRD通过输入f/#与输出f/#的比值来计算。Thorlabs方形纤芯的光纤可以zui大程度地减少终端应力和焦比衰退。为了证明这点,我们测试了三种光纤,其终端由低应力环氧树脂粘合,并在40 °C下经过4小时固化。如右图所示,与FT200EMT(?200 μm纤芯)和FT300EMT(?300 μm 纤芯)光纤相比,使用FP150QMT方形纤芯光纤的跳线焦比衰退更低(即,输入端与输出端的焦比差异更小)。在530 nm处的FRD测量FP150QMT:150 μm x 150 μm方形纤芯FT200EMT:?200 μm圆形纤芯FT300EMT:?300 μm圆形纤芯扰模增益恒星光谱学中也使用多模光纤。观察到的恒星的细微运动会导致所测光谱的变化,这是一种测量噪声的来源。加强扰模可以降低光纤对这些波动的灵敏度。"扰模增益"可以量化光纤对这些扰动的灵敏度,被定义为光纤输入端点光源的位移与光纤输出端所测光束位移的比值。扰模增益值越高,表示点光源波动对光纤输出的影响越小。有好几种方法可以改善光纤中的扰模增益。一般而言,使用较长的光纤可以提高扰模增益,但是,光纤的总透射率也会降低。而方形纤芯的光纤改善扰模增益不需要使用较长的光纤。如左表所示,使用方形纤芯的Thorlabs光纤跳线的扰模增益高于类似圆形纤芯的光纤跳线。Scrambling Gain for Different Fiber TypesaFiber LengthFiber TypeCoreScrambling Gain2mFT200EMTCircular42FP150QMTSquare1215mFT200EMTCircular235FP150QMTSquare465入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / GlassInterfaceaTypeTheoretical DamageThresholdbPractical SafeLevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。多模光纤跳线,方形纤芯Item #FiberCore SizeNACladdingDiameterCoatingDiameterWavelength Range(Click for Plot)LengthJacketConnectorsApplicationaM97L02FP150QMT150 ± 10 μm x 150 ± 10 μm0.39225 ± 5 μm500 ± 30 μm400 - 2200 nm2mFT030(?3 mm)SMA905General Purpose /Astronomy: Low FRDM101L02FC/PCM102L055mSMA905General Purpose /Astronomy: High Scrambling GainM103L05FC/PC这些跳线具有优化了FRD或扰模增益性能的版本,适合天文应用。更多信息,请看应用标签。产品型号公英制通用M97L02光纤跳线,方形纤芯150 μm x 150 μm,SMA905接头,2 mM101L02光纤跳线,方形纤芯150 μm x 150 μm,FC/PC接头,2 mM102L05光纤跳线,方形纤芯150 μm x 150 μm,SMA905接头,5 mM103L05光纤跳线,方形纤芯150 μm x 150 μm,FC/PC接头,5 m
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制