当前位置: 仪器信息网 > 行业主题 > >

频率特量仪

仪器信息网频率特量仪专题为您提供2024年最新频率特量仪价格报价、厂家品牌的相关信息, 包括频率特量仪参数、型号等,不管是国产,还是进口品牌的频率特量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合频率特量仪相关的耗材配件、试剂标物,还有频率特量仪相关的最新资讯、资料,以及频率特量仪相关的解决方案。

频率特量仪相关的论坛

  • 【讨论】关于testresources试验机信号采集频率

    关于信号采集频率 看了很多市面上的工业数据采集卡,多通道的(2通道,4通道)无相位差的数据采集卡,都已经做到了以MHz为单位的数据采样频率,也有一些MCU,比如混合信号的C8051F06系列,其内置双通道同步16位AD,采样频率也达到1MHz,应该说用在试验机上有余的。 我不是很明白三思的采样为什么只做50HZ到500HZ,难道采样频率在试验机中没必要很高?而看到国外的一些厂家MTS、testresources等就要高些了。我的想法是这样,比如要求AD一秒内转换50000次,也就是得到50000个数据,那么每1000个数据求一次平均(数字滤波,但是滤波算法可以非中值平均法),这样每秒相当于得到50个有效数据,所以说起来就是50Hz了。也就是说,每秒采几次,每次AD转换多少下对于试验机是合适的

  • 【求助】超高频辐射测量仪和工频场强仪量仪的选择

    在新标准GBZ/T189中对超高频辐射测量使用的仪器要求是“选择量程和频率适合于所检测对象的测量仪器”,对高频电磁场的测量仪器要求是“[font=宋体]量程范围能够覆盖[/font][font=']10V/m-1000V/m[/font][font=宋体]和[/font][font=']0.5A/m-50A/m[/font][font=宋体],频率能够覆盖[/font][font=']0.1MHz-30MHz[/font]”,对于工频电场的测量仪器要求是“[font=宋体]采用灵敏度球型(球直径为[/font][font=']12cm[/font][font=宋体])偶极子场强仪进行测量,场强仪测量范围为[/font][font=']0.003kV/m-100kV/m,其他类型的场强仪最低检测限应低于0.05kV/M[font=宋体]”,市场上仪器种类繁多,如何选择测量超高频辐射测量仪器和工频电场的测量仪器,不知大家有没有好的仪器推荐~期待高手答复。[/font][/font]

  • 客户问我:产品不符合沙特频率和标识要求怎么办?

    和客户联系上后,客户迅速提供了产品的第三方检测报告,报告内容是产品的安全方面的检测项目,各项要求都挺符合的,但很可惜的是报告测试的频率不符合沙特要求,沙特要求的频率是60HZ,而产品的原测试报告使用的是50HZ做的,这样报告就无法适用于沙特SASO认证的申请。如果重新检测的话,势必会增加测试费用,而且这个费用还不便宜。那究竟该怎样答复客户呢?针对这种情况,我和客户做了解释。我们的建议是:首先和原测试实验室联系,以最低的成本让实验室出具一份60HZ的检测报告。因为和原实验室有过合作,所以这次换一个参数测试,费用肯定不会比第一次贵。如果这个方法不行的话,只有寄样品给我们,我们重新安排测试,出具符合沙特要求的检测报告。最后客户还是乐意先向原测试实验室联系,争取快速、便宜的出一份报告。再次提醒出口沙特的朋友:沙特国家电网电压是220-240V,频率是60HZ。只有满足电气参数的产品才能出口到沙特。

  • 【求助】Varian 500 NMR system 13C的观察频率

    [size=4]各位老师, 请问有没有接触过[size=3][font='Times New Roman','serif']Varian 500 NMR system?我没有做过核磁,是不是核磁测定13C时的频率都是一样的?现在仪器型号一般都是根据质子频率来的,不知道13C的是多少,求告知。谢谢![/font][/size][/size]

  • 非接触测量物体振动的速度,加速度,位移,运动轨迹,频率-激光测振仪

    激光测振仪(进口)位移分辨率高达0.008纳米。非接触测量物体振动的速度,加速度,位移,运动轨迹,频率.全场激光测振实现整面物体的XY轴的振动测量可以彩色动画输出。三维激光测振可以实现三轴振动测量。多点激光测振可以同时实现16个振动点振动并可以测量物体瞬间振动和实时的振动模拟.激光测振可以实现对振动幅值、频率测量。使用激光进行非接触式测量,记录被测体在振动过程中的运动轨迹,并用最大值减去最小值得到振幅。当振幅超过界定值时,可通过软件设置输出报警信号。采样频率高,能精确还原被测体运动轨迹并通过图像显示出来。传统振动测量仪都会对机械振动带来的影响,而激光测振动测量系统使用各种滤波器,使测量结果更加稳定准确。还可以测量高频振动加速度峰值和平均值,测量低频振动速度有效值。应用于如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。非接触高精密测量精密机械加工微小振动 如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动激光多普勒测振仪最大测量速度可达20m/s,最大频率范围可达2.5MHZ,可以检测到纳米级别的振动.激光多普勒测振仪采用非接触式的测量方式,可以应用在许多其他测振方式无法测量的任务中。频率和相位响应都十分出色,足以满足高精度、高速测量的应用。使用非接触测量方式,无需耗时安装调节传感器、无质量负载,且不受被测物体的尺寸、温度、位置、振动频率等的限制。还可以检测液体表面或者非常小物体的振动,同时,还可以弥补接触式测量方式无法测量大幅度振动的缺陷。 应用:如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。 非接触高精密测量 精密机械加工微小振动如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动 整片不规则金属大型结构、高温、柔软物体等接触式测量无法满足的振动测量领域的振动情况

  • 频率表到底是怎么一回事?

    频率表是测量频率的机械式指示电表。频率表种类很多,有电动系、铁磁电动系和属于整流式的变换器式频率表 频率表等。生产现场用来监测频率用的安装式频率表,大多采用铁磁电动系电表的测量机构。   铁磁电动系频率表的测量机构与电路如图。带有铁心的固定线圈与电感器L、电容器C组成的串联谐振电路,通常被调整在标尺的中间频率(例如50赫)时谐振。可动部分由两个线圈组成,其中动圈1与电容器C1串联后与谐振电路并联。接通电源时,可动部分所受转动力,I、I1分别为固定线圈及动圈1中电流,θ为两电流相量间夹角,K为系数。动圈2与电阻器R2、电感器L2构成闭合回路。当可动部分指针偏离标尺中间位置α角时,动圈2将受到一个与偏转角α 成正比、并使指针返回中间位置的反抗力矩。当被测频率等于标尺中间频率时,谐振电路发生谐振,这时固定线圈中的电流与动圈1中电流相量间夹角θ=90°,因而转动力矩M=0。于是可动部分在动圈2力矩的作用下,使指针指在标尺的中间频率(例如50赫)的刻度上。当被测频率偏离中间频率时,谐振条件被破坏,转动力矩不再为零,可动部分发生偏转,直到转动力矩与反抗力矩平衡时为止,可动部分将停在与被测频率对应的新位置上。改变串联谐振电路的参数,可以获得不同的频率量程。   频率表 用于测量工频电网的频率。对于50赫的频率来说,频率表的测量误差小于0.1赫。   世界上许多国家利用短波频率来进行世界范围的广播传输,短波频率范围通常在 1.6MHz- 30MHz之间.一般我们还将短波频率划分为很多“米段波”,每一个米波段包含一段频率范围。    例如:19M米波段包含的频率范围为从15.100到15.600MHz 。国际无线电委员会规定民用广播使用米波段范围内的 频率,米波段之外的频率大多用于军事和其他民用通讯。所以,只有在米波段频率范围内,才能接收到民用广播电台节目。短波信号传播受到许多因素影响,诸如太阳黑子活动、大气层和地球电 离层变化的影响,因此短波广播电台每年有两次大的频率调整,即"夏季频率"及"冬季频率".

  • 关于仪器期间核查频率

    实验室的有台仪器设备之前都是按程序文件要求半年6个月进行1次仪器期间核查(按仪器校准规范核查的),以及2年一次外面公司上门计量校准,现在有个问题想问下?半年一次期间核查,我想把程序文件修改成1年1次期间核查可以吗?(因为仪器期间核查买标液还是其次的,主要核查操作太麻烦)?还有说明下这台仪器的检测项目是已申请了CNAS认可,我们把核查频率由6个月改成12月,到时候现场评审老师看到会不会质疑不认可?实验室其实每年还有做其他质量监控的现在想减少仪器期间核查频率!

  • 【求助】DMA 等温频率扫描程序设计

    我现在要做一个DMA 频率扫描的测试,-65--255度,升温为10度每分钟,频率范围在0.1--100之间取16个点,全文转帖如下:The multi-freq method we use involves the following frequencies (16 decades, log scaled):100, 63, 39.8, 25, 15.8, 10, 6.3, 3, 2.5, 1.6, 1, 0.63, 0.4, 0.25, 0.16, 0.1Temp increment is 10C, 5 mins isothermal soak time (between -65 and +255C)The raw data can be processed by App Tech (excel format) into what they need for Marc-Mentat (FEM simulations).我想问下这个程序应该怎么设计?我的想法是每隔10度恒温5分钟,然后频率扫描,如此循环,但是这样做的话,全部程序比较复杂,加起来有50多条,请问还有其他办法简化么?

  • 观测频率

    对于原子核的Larmor频率来说 在核磁中是不是其频率越高 越容易被检测到信号?为什么呢?

  • 非接触式应变位移视频测量仪

    求助各位朋友,有谁知道以下这个设备是那个生产厂家的,请加我,谢谢非接触式应变位移视频测量仪:一、性能要求1. 非接触式应变位移视频测量分析软件,用于处理摄像机视频图像信息,测量全场应变位移;2. 控制软件配置开放接口,可加配红外热像仪控制节点;3. ★所有测试数据,能够与MTS共享。二、技术参数1. 可测量参数:包括应变、位移、泊松比、拉伸/压缩模量、应力-应变曲线等。2. 仪器专用CCD摄像,象素≥1380x1024,15fps,1394b。3. 专用镜头(6-19mm标距,70mm物距)4. 结构监测镜头焦距50mm,25mm5. 测量间距:不小于500mm6. 标距可调:最小不大于5mm,最大不小于150mm7. 视频扫描频率:不小于100次/秒。8. ★测量位移分辨率:不大于0.05微米(可用MTS检测);9. ★应变分辨率:不小于5个微应变(可用MTS检测)10. 提供数字和模拟信号的输入和输出。模拟输入: 16单/8双通道;分辨率:16位;电压范围:+/-0.2V到+/-10V 模拟输出:通道:2 ;分辨率:16位电压范围:+/-10V 数字输入:通道:4 ;数字输出:通道:4 三、仪器配置1. ★一体化视频测量仪(含主机、摄像机及镜头、视频光源);2. 笔记本电脑: 13’屏;CPU i5;硬盘500G ;内存4G;独显2G;配三脚架。

  • 【讨论】超声中功率和频率的关系?

    [size=3]药典中的含量测定下,提取方法有许多采用超声提取,并标注了功率和频率(例:功率250W 频率40kHz)。我的问题是:功率和频率有什么联系?我们的超声清洗仪只能控制功率而不能控制频率,怎样改变频率?[/size]

  • 【我们不一YOUNG】ODP测量方法—频率检测法

    [align=center]ODP[font=DengXian]测量方法—频率检测法[/font][/align][font=DengXian]采用[/font]6-12 [font=DengXian]个人员组成气味评价小组对同一个萃取样品进行[/font]GC-O[font=DengXian]分析,同时对一种化合物评价,用能够感知这种化合物气味的评价数目比例表示气味的强度,即检测频率。[/font][font=DengXian]确定在特定保留时间内检测到气味的小组人员比例。[/font][font=DengXian]嗅觉影响频次法[/font](NIF):[font=DengXian]峰值高度根据“小组成员检测到气味的比例[/font](%)[font=DengXian]”。[/font][font=DengXian]表面嗅觉影响频次法[/font](SNIF):[font=DengXian]峰面积是根据“检测到气味的比例[/font](%) X [font=DengXian]气味持续时间[/font](s)[font=DengXian]”。[/font]

  • 【转帖】智能工业电导仪误差来源及分析:电源频率引起的误差

    【转帖】智能工业电导仪误差来源及分析:电源频率引起的误差

    工业电导仪一般采用分压法测量溶液的电导,假如用直流电源作为外加电压,就会产生极化现象,使溶液的等效电阻发生变化 智能工业电导仪采用交流电源作为外加电压以消除极化造成的影响,但由此产生的后果是电导池系统便不再是纯电阻,而是包括容抗的阻抗,其分布情况见图1。但在考虑溶液浓度与电导的关系时,只能把电导池看作纯电阻元件,且在仪表定标时也以电阻箱代替它进行刻度,所以在测量溶液的电导时会产生误差。其大小与电源频率的关系如下。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912302155_193108_1615922_3.jpg[/img]图中Rl , 为电极电阻 为极化电阻 R3为电解液电阻 C1为电极表面双电层电容 C2为电解液电容。由图1知,与待测成分有关的部分是Rs,为了提高测量灵敏度,应使R3占总阻抗的比例越大越好,所以测量低浓度范围内的溶液,R3占的比例就大,仪表有较高的灵敏度。容抗Ze=1/2πfC。由此知,为降低与R3串联的C1, 的容抗,电源的频率取高些更为有利 同时提高电源频率也有助于减小极化电阻,但频率过高,会降低C2的容抗,这对精确测量R3是不利的。基于上述分析,智能工业电导仪采用了1 kHz方波电压,增强了驱动电压的负载能力,以保证电压的稳定性,使得仪表的测量误差小于1%,较模拟工业电导仪精度提高1%~20%。

  • TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    [size=16px][color=#339999]摘要:为解决石英晶体微量天平这类压电传感器频率温度特性全自动测量中存在的温度控制精度差和测试效率低的问题,本文在TEC半导体制冷技术基础上,提出了小尺寸、高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/color][/size][size=16px][color=#339999][/color][/size][align=center][size=16px][img=TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用,550,309]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141513442750_3958_3221506_3.jpg!w690x388.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 石英晶体微天平(Quartz Crystal Microbalance,QCM)作为一种超高灵敏的质量检测装置,其测量精度可达纳克级,并广泛应用于化学、物理、生物、医学和表面科学等领域中,用以进行气体、液体的成分分析以及微质量的测量、薄膜厚度及粘弹性结构检测等。石英晶体微天平实际上是一种压电传感器,它利用了石英晶体的压电效应,将石英晶体电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的测量结果。石英晶体微天平除了具有高灵敏度高和高精度之外,最大特点是结构简单和成本低,它由一薄的石英片组成,两侧金属化,提供电接触。QCM的工作原理类似于用于时间和频率控制的晶体振荡器,但QCM表面常暴露在周围环境中,且对环境温度变化非常敏感,QCM的一个重要技术指标就是频率温度特性。在QCM的具体应用中,温度变化会严重影响QCM测量结果,因此准确测量频率温度特性是表征评价QCM的一项重要内容。但在目前的各种频率温度特性测试装置中,特别是高精度温度控制装置,还存在以下问题:[/size][size=16px] (1)在常用的-10~+70℃的温度范围内需要对QCM进行多个设定点的高精度温度控制和频率测量,而目前常用温控技术往往控制精度偏低,若提高控制精度又带来测试时间过长的问题。[/size][size=16px] (2)专门用于压电晶体频率温度特性测试的恒温装置往往体积普遍偏大,内部温度均匀性较差,同样会带来温控精度差的问题,仅能用于批量压电晶体较低精度的频率温度特性测试。[/size][size=16px] (3)尽管采用了TEC半导体制冷技术可实现QCM的高精度温度控制,实现了小型化和快速温控和频率测量,但存在的问题是多个温度点的自动化程序控制能力差,无法实现全温度区间内多个温度点的自动控制和频率测量。[/size][size=16px] 为了解决QCM这类压电传感器频率温度特性全自动测量中存在的上述问题,本文在TEC半导体制冷技术基础上,提出了高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了进行石英精度微天平(QCM)的频率温度特性测量,需要将QCM放置在一个受控的热环境中。为了提高热环境的温度控制精度,热环境的尺寸空间较小,并采用TEC模组进行加热和制冷,整个热控装置的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=压电传感器频率温度测量温控系统示意图,690,209]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141516237559_7391_3221506_3.jpg!w690x209.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 石英精度微天平频率温度特性温控装置结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,TEC被放置在铝制均热套和散热器之间,铝制均热套作为热稳定工作的密闭腔体,为整个腔体提供均匀的温度环境。散热器直接浸泡在水浴中使得TEC的工作表面达到较低的负温度,散热器也可以直接采用水冷板,水冷板内通循环冷却水。[/size][size=16px] 另外,在频率温度特性测试过程中,TEC要提供高低温范围内温度控制,那么在高低温运行时,TEC工作表面和散热器之间存在较大差异,因此,在TEC周围布置隔热材料以减少其两侧之间的热流,从而增加TEC工作面的温度均匀性。[/size][size=16px] 铝制均热套放置在TEC工作表面的顶部,在均热套与TEC之间采用银胶以减小均热套与TEC工作表面之间的接触热阻,铝制均热套被隔热材料包裹以减少与环境的热交换。[/size][size=16px] 在铝制均热套内布置了两只电阻型温度传感器,其中一只安装在铝制均热套的侧壁上作为控温传感器,此温度信号提供给超高精度的PID控制器进行温度自动控制。另一只用来测量固定在铝制支架上的QCM组件温度。[/size][size=16px] 在图1所示的温控装置中,为满足不同尺寸和结构的TEC温控装置,采用了独立的TEC换向电源以满足不同加热功率的需要。在温控器方面,则采用了超高精度的PID控制器,可直接对TEC进行加热制冷双向控制,其中AD为24位,DA为16位,最小输出百分比为0.01%,PID参数自整定,可编程程序控制,由此可实现高精度的温度控制。[/size][size=16px] 对于图1所示结构的温控装置,在全温区范围内设定点从-10变化到+70℃,步进5℃,其温度控制可实现±12mK的温度稳定性和±15mK的设定值精度。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述压电传感器频率温度特性测试的温控解决方案,主要具备以下几个特点:[/size][size=16px] (1)采用了TEC半导体制冷组件,可低成本的实现压电传感器频率温度特性测试过程中的精密温度控制,并使得整个频率温度特性测试装置的体积非常小巧。[/size][size=16px] (2)整个温控结构的设计简便,但可以实现0.02℃以内的控制精度和重复性,完全能满足各种压电传感器的频率温度特性测试需要。[/size][size=16px] (3)由于采用了目前最高精度的工业级可编程PID控制器,具有24位AD、16位DA和0.01%的最小输出百分比,这是实现高精度TEC温度控制的必要条件。[/size][size=16px] (4)高精度的可编程PID控制器可按照设定程序进行全测试过程的温度自动控制,设定程序可通过随机的计算机软件进行编辑和修改,控制过程参数可自动进行显示和存储。[/size][size=16px] 总之,本文为实现高精度、简便小巧和低价格的压电传感器频率温度特性测试中的温度控制提供了切实可行的解决方案,为单个或少量压电传感器稳频特性评价提供了有效的技术途径。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 期间核查的频率

    期间核查是指两次校准期间对设备的核查,如果我定义设备的校准频率和期间核查频率分别为2年,穿插进行,是否符合CNAS要求?比如:设备在2009年校准,下次校准时间为2011年。 期间核查第一次为2010年,下次期间核查时间为2012年。请帮忙多指点哦!谢谢啦

  • 国家时间频率计量基准相关介绍

    [align=center][b][size=24px]国家时间频率计量基准相关介绍[/size][/b][/align] 国家时间频率计量基准包括:[b]秒长国家计量基准和原子时标国家计量基准[/b]。[b]秒长国家计量基准[/b]: 秒长国家计量基准是直接复现秒定义的实验装置,输出的标准频率具有最高计量学特性,它是经国家审查、批准作为统一全国秒长量值(频率量值)最高依据的计量器具,全国只有一套。1967年,秒定义从天文秒改为原子秒,定义在铯原子基态能级跃迁上。铯原子钟成为直接复现秒定义的实验装置。 世界上第一台热铯束钟是英国国家物理实验室1955年研制完成的。中国计量科学研究院从70年代起开始了热铯束钟的研究,1981年研制完成的NIM3热铯束钟,相对频率不确定度达到3×10[size=12px]-13[/size],成为中国第一代秒长国家计量基准。2003年,中国计量科学研究院研制完成了中国第一台激光冷却铯原子喷泉钟NIM4,不确定度达到8.5×10[size=12px]-15[/size],随后改进提高至5×10[size=12px]-15[/size],经国家质量监督检验检疫总局批准替代NIM3热铯束钟,成为中国第二代秒长国家计量基准。2014年,中国计量科学研究院研制完成的新一代NIM5铯原子喷泉钟,不确定度达到1.5×10[size=12px]-15[/size],获批取代NIM4成为新的秒长国家计量基准。2014年8月,NIM5铯原子喷泉钟通过国际专家评审开始参加国际原子时合作驾驭国际原子时。2017年改进后的NIM5不确定度达到9×10[size=12px]-16[/size]。 秒长基准利用高稳晶振或者低温蓝宝石晶振等频率源,通过频率变换合成9192631770 Hz的微波信号。利用此微波信号激励铯原子产生钟跃迁,误差信号反馈给频率源将微波频率锁定到铯原子秒定义能级跃迁上。由于秒定义在不受任何外界场干扰的孤立的铯原子跃迁频率,因此世界各国计量院研制的基准钟复现秒定义都评定和修正一系列物理效应引入的钟跃迁频率偏移,包括外界场引入的频率偏移,如将原子周围温度引入的黑体辐射频移修正到0 K温度,将重力场引入的频率偏移修正到平均海平面水准。 秒长国家计量基准作为国家时间频率计量体系的源头,复现秒定义输出基准频率,用来驾驭氢钟产生本地原子时,向国际计量局报送数据,驾驭国际原子时,也直接测量光钟等高性能原子钟的频率。 随着科学技术的发展,秒定义可能被修改,其时,按新定义复现秒长的实验装置将成为新的秒长国家计量基准。[b]原子时标国家计量基准[/b]: 中国计量科学研究院于1980年建立了原子时标,1983年经国家计量主管部门(原国家质量监督检验检疫总局)批准,由中国计量科学研究院(NIM)国家时间频率计量中心建立和保持的原子时标UTC(NIM)为原子时标国家计量基准,是统一全国时间频率量值的最高依据。 原子时标国家计量基准由守时钟组、内部测量系统、溯源比对系统、数据处理系统、算法及控制系统等部分组成。守时钟组由不间断运行的多台商品氢原子钟和商品铯原子钟组成,产生连续稳定的时间频率信号;内部测量系统通过双混频时差测量得到中国计量科学研究院协调世界时UTC(NIM)与各守时原子钟之间的时差(相位差);溯源比对系统通过全球卫星导航系统(GNSS)及卫星双向时间频率传递(TWSTFT)技术使UTC(NIM)实现国际比对,参加国际原子时合作;数据处理系统对内部比对和国际比对数据进行存储、监测和处理;算法及控制系统对钟组相关数据进行计算产生本地原子时,利用中国计量科学研究院保持的铯喷泉钟秒长国家计量基准和国际原子时合作返回的UTC-UTC(NIM)数据对其进行驾驭(校准),产生准确稳定的UTC(NIM)。 UTC(NIM)作为原子时标国家计量基准,其量值溯源至国际标准时间-协调世界时(UTC)并对UTC做贡献;同时作为国家时间频率量值的源头,保证国内时间频率测量量值的准确统一。与协调世界时(UTC) 实现全球卫星导航系统(GNSS)共视及载波相位时频传递,保证了UTC(NIM)参加TAI合作的高水平链接,与UTC偏差在±5 ns内,标准合成不确定度优于2 ns。 中国计量科学研究院基于载波相位的链接于2013年成功主导了欧亚四国铯原子喷泉钟国际比对,标志中国第一次成功实现基准钟国际比对;实现时间传递链路校准技术及装置,2014年被BIPM指定为国际9家一类GNSS时间传递链路校准实验室,负责对亚太区域内二类实验室的校准。

  • 求购频率计

    要求:检测频率范围在0.1~250MHz,大概研究200MHz左右的频率稳定性。

  • 指针式频率表的构成

    指针式频率表应用磁电原理工作,驱动指针运动,依靠指针在面板上停留位置来 的频率大小的表,用于显示被测物体的频率度数。磁电系电工仪表的测量机构是由固定的磁路系统和可动部分组成的。仪、的磁路系统包括永久磁铁1,固定在磁铁两极的极掌2以及处于两个极掌之间的圆柱形铁芯3。圆柱形铁芯固定在仪表支架上,用来减小磁阻,并使极掌和铁芯间的空气隙中产生均匀的辐射形磁场。处在这个磁场中的可动线圈4绕转轴偏转时,两个有效边上的磁场也总是大小相等,并且方向是与线圈边相互垂直的。可动线圈绕在铝框上。转轴分成前后两部分,每个半轴的一端固定在动圈铝框上,另一端则通过轴尖支撑于轴承中。在前半轴还装有指针,当可动部分偏转时,用来指示被测频率的大小。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制