当前位置: 仪器信息网 > 行业主题 > >

频率监测仪

仪器信息网频率监测仪专题为您提供2024年最新频率监测仪价格报价、厂家品牌的相关信息, 包括频率监测仪参数、型号等,不管是国产,还是进口品牌的频率监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合频率监测仪相关的耗材配件、试剂标物,还有频率监测仪相关的最新资讯、资料,以及频率监测仪相关的解决方案。

频率监测仪相关的资讯

  • 日加大对中国产荔枝中对氯苯氧乙酸检测频率
    近日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0606第1号:加强对中国产荔枝中对氯苯氧乙酸的监控检查。根据2013年度进口食品等的监控检查计划,按2013年6月5日发布的食安输发0605第1号,对中国产生鲜荔枝实施检查时,发现其违反了食品卫生法。因此,将对其残留农药对氯苯氧乙酸的监控检查频率提高到30%。  对氯苯氧乙酸,又叫防落素,为白色针状粉末结晶,基本无臭无味,是一种苯酚类植物生长调节剂。可用于番茄、蔬菜、桃树等,也用作医药中间体。该物质对眼睛、皮肤、黏膜和上呼吸道有刺激作用,对环境有危害,对水体和大气可造成污染。  检验检疫部门提醒相关企业:要详细了解日本厚生劳动省发布相关通报详细内容,尽快核实荔枝中是否使用了对氯苯氧乙酸,且所使用的剂量是否有超标风险 要配合检验检疫部门,加强对出口荔枝中对氯苯氧乙酸残留量的检测,特别是要加大检测对氯苯氧乙酸的频率,避免造成不必要的贸易风险,确保产品符合进口国标准。
  • 可用于医疗诊断或药效检测的新技术“波长诱导频率滤波”
    美国麻省理工学院工程师开发出一种用于激发任何荧光传感器的新型光子技术,其能够显著改善荧光信号。通过这种方法,研究人员可在组织中植入深达5.5厘米的传感器,并且仍然获得强烈的信号。科学家使用许多不同类型的荧光传感器,包括量子点、碳纳米管和荧光蛋白质,来标记细胞内的分子。这些传感器的荧光可以通过向它们照射激光来观察。然而,这在厚而致密的组织或组织深处不起作用,因为组织本身也会发出一些荧光。这种“自发荧光”淹没了来自传感器的信号。为了克服这一限制,研究团队开发了一种被称为“波长诱导频率滤波(WIFF)”的新技术,使用三个激光来产生具有振荡波长的激光束。当这种振荡光束照射到传感器上时,它会使传感器发出的荧光频率增加一倍。这使得研究人员很容易将荧光信号与自发荧光区分开来。使用该系统,研究人员能够将传感器的信噪比提高50倍以上。这种传感器的一种可能应用是监测化疗药物的有效性。为了证明这一潜力,研究人员将重点放在胶质母细胞瘤上。这种癌症的患者通常选择接受手术,尽可能多地切除肿瘤,然后接受化疗药物替莫唑胺,以消除任何剩余的癌细胞。但这种药物可能有严重的副作用,且并非对所有患者都有效,所以研究人员正在研究制造小型传感器,这样就可以植入肿瘤附近,从体外验证药物在实际肿瘤环境中的疗效。当替莫唑胺进入人体后,它会分解成更小的化合物,其中包括一种被称为AIC的化合物。研究团队设计了可以检测AIC的传感器,并表明他们可以将其植入动物大脑中5.5厘米深的地方,甚至能够通过动物的头骨读取传感器发出的信号。这种传感器还可以用于检测肿瘤细胞死亡的分子特征。除了检测替莫唑胺的活性外,研究人员还证明可以使用WIFF来增强来自各种其他传感器的信号,包括此前开发的用于检测过氧化氢、核黄素和抗坏血酸的基于碳纳米管的传感器。研究人员说,新技术将使荧光传感器可跟踪大脑或身体深处其他组织中的特定分子,用于医疗诊断或监测药物效果。相关研究论文近日发表在《自然纳米技术》上。
  • 《一般工业固体废物贮存场、处置场污染控制标准》征求意见 严格自监测频率
    p  工业固体废物主要包括冶炼渣、化工渣、燃煤灰渣、废矿石、尾矿和其他工业固体废物。我国固体废物产生量、综合利用量和处置量等呈现不断增长。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/dcf376ff-c15e-4fb2-ac24-6d5a702b7c81.jpg" title="固体废物产生量.jpg" alt="固体废物产生量.jpg"//pp  但目前的《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)对工业固体废物污染控制措施的要求不够完善,如运行、监测等要求相对薄弱,对废矿石堆场、煤矸石堆场等场地的污染防治要求不够细化。因此生态环境部对标准进行了修订,近日发布了征求意见稿。标准名称修改为《一般工业固体废物贮存场、处置场污染控制标准》。/pp  对于污染物排放与监测。/pp  新标准拟增加地下水井位置要求,增加企业应急监测技术要求,严格企业自行监测频率要求。/pp  标准全文:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201911/attachment/44494c80-d9cc-4ffb-aa30-dca3995583d6.pdf" title="一般工业固体废物贮存场、处置场污染控制标准(征求意见稿).pdf" style="font-size: 12px color: rgb(0, 102, 204) "一般工业固体废物贮存场、处置场污染控制标准(征求意见稿).pdf/a/pp  固体废物管理是我国环境保护中的重要工作,但是目前水、气、土是重点,但是未来固体废物也将是重点之一,上个月,生态环境部发布了《a href="https://www.instrument.com.cn/news/20191014/494732.shtml" target="_blank"危险废物填埋污染控制标准/a》,新标准增加了TOC、总氮、总铜、总锌、总钡、氰化物、总磷、氟化物等检测指标。/ppbr//p
  • 科学岛团队在时间分辨频率调制磁旋光谱探测技术方面取得新进展
    近日,中国科学院合肥物质院安光所张为俊研究员团队在时间分辨频率调制磁旋转光谱探测技术方面取得新进展,相关研究成果以《用于OH自由基时间分辨测量的高带宽中红外频率调制磁旋转光谱仪》为题发表于美国光学学会(OSA)出版的Optics Express上。   羟基(OH)自由基是大气中最重要的氧化剂,启动了对流层大气中绝大部分的氧化反应。OH自由基浓度低、寿命短,实现高灵敏快速检测对于深入研究其化学反应动力学和机理、厘清大气污染成因,具有极为重要的科学和应用意义。   团队赵卫雄研究员和程飞虎博士等人发展的用于OH自由基高灵敏快速测量的频率调制磁旋转光谱技术具有高时间分辨、高灵敏度、选择性好的特点,特别适合短寿命自由基和中间体的动力学研究。实验中,针对266nm脉冲激光产生OH自由基,研究人员使用该技术测量了2.8微米附近的时间分辨光谱信号,经过3次脉冲平均,OH的检测线达到6.8×10 8 分子/立方厘米 (1σ, 0.2 ms),100次平均后,检测线可进一步下降到8.0×10 7 分子/立方厘米。该技术不仅适用于OH自由基,也适用于其它顺磁性瞬态分子,将为自由基动力学研究提供一种新的重要测量手段。   本研究得到国家自然科学基金、中国科学院青年创新促进会、中国科学院合肥物质科学研究院院长基金资助。频率调制磁旋转光谱装置原理图OH自由基浓度时间衰减曲线(a)OH自由基浓度监测;(b)OH自由基浓度的艾伦偏差
  • 亚飞米分辨率双电光梳绝对频率光谱测量
    光学频率梳(Optical frequency comb,简称“光梳”)由大范围、等间隔的梳齿分量构成,每根梳齿均对应绝对频率,如同在光频上的一把梳子(或标尺)。得益于飞秒激光器和非线性光学的发展,1999年美国标准局和德国马普所的研究团队分别在实验上实现了光梳,解决了绝对光频率计量问题,J. L. Hall和T. W. Hänsch因此贡献而分享了2005年诺贝尔物理学奖。光梳的诞生同样给光谱测量领域带来了革命性突破,分辨率提高到皮米量级,光梳光谱学的新技术和新应用也在不断涌现。双光梳光谱学可以充分利用光梳在频率准确度、频率分辨率、光谱范围和脉冲宽度等方面的优势,在诸多基于光梳的测量技术中脱颖而出。在频域上,双光梳光谱学表现为两个有微小重复频率差异光梳的多外差探测,可以将探测光梳记录的待测谱线,如分子吸收谱,从光频转移到射频。双光梳光谱学可以利用光谱交织技术进一步将分辨率提高至几十飞米量级。然而现有方案测量时间大幅增加,使用温度或驱动电流调节时无法提供绝对频率参考,且分辨率仍有进一步提高至光梳梳齿线宽的较大空间。电光调制光频梳(简称“电光梳”)由对连续种子光的电光调制产生,用于构建双光梳系统时其具有天然的互相干性,无需复杂的锁定电路或相位校正算法,可以大幅降低系统复杂度。此外,由于电光梳具有不受谐振腔腔长限制的重复频率以及可自由调节的中心波长,由其构建的更具应用前景的双电光梳系统受到研究人员的广泛关注。上海交通大学何祖源、樊昕昱教授团队提出了一种新型双电光梳光谱测量方案,将光谱测量分辨率进一步提高到亚飞米量级,相较于现有方案提高了两个数量级。该方案利用外调制的稳频光作为扫频电光梳的种子光,可以在实现低频率误差快速光谱交织的同时,提供绝对光频率参考。图1 亚飞米分辨率双电光梳绝对频率光谱测量技术原理示意图研究团队在分析各性能指标的理论限制和相互制约关系的基础上,将光谱测量技术关注的综合性能指标(光谱分辨率、测量带宽以及测量时间)提高至奈奎斯特极限,并且可以通过多次平均提高测量信噪比。该方案用于测量分子吸收谱线和高Q值光纤法布里珀罗腔谐振谱线的实验结果,充分展示了该方案灵活实现超高光谱分辨率、高信噪比和高刷新率的能力。图2 氰化氢(HCN)气体吸收谱线的光谱测量结果图3 光纤法布里珀罗谐振腔反射谱的光谱测量结果该研究成果将推动超精细光梳光谱学的进一步发展,并在温室气体监测、精密光器件测试、生物化学传感,以及诸如电磁诱导透明等物理现象观测中具有非常重要的应用价值。
  • 石家庄数英仪器SS7402型频率计数器
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/062555b8-6f35-4273-8cd0-df00fed6f75b.jpg" title="石家庄数英仪器_副本.jpg"//pp  ■仪器名称:频率计数器 SS7402型/pp  ■英文名称:Frequency counter/pp  ■厂家名字:石家庄数英仪器有限公司/pp  ■仪器介绍:SS7402通用频率计数器/计时器/分析仪采用高可靠性大规模集成电路和CPLD器件,由16位微芯单片机进行功能控制、测量时序控制、数据处理和结果显示。还采用多周期同步和时压转换技术相结合用来提高测量精度。它具有频率、周期、时间间隔、脉宽、占空比、计数、相位差等测量功能和频率的多次平均、最大值、最小值、标准偏差、阿伦方差、单次相对偏差的测量运算功能。机内时钟频率为10MHz。测量时既可内部闸门自动测量,也可由外部信号触发控制测量。仪器可以自动检测到外部频率标准5MHz或10MHz并自动转换。该仪器性能稳定,功能齐全,测量范围宽,灵敏度高,精度高,体积小,外形美观,使用方便可靠。/p
  • 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳
    成果名称基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 □原理样机 &radic 通过小试 □通过中试 □可以量产成果简介:光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。利用频率梳测量频率时,需要频率梳的频率间隔在200MHz以上,以便波长计数器计量波数。特别地,类地行星观测需要20GHz以上频率间隔的频率梳来定标光谱仪,这个频率间隔一般的光纤激光器无法达到,目前只能依靠法布里-珀罗(FP)滤波装置进行频率倍增。由于FP透射光谱的有限线宽会导致边模泄露,从而影响天文光谱仪的定标精度,因此需要源激光频率梳本身的频率间隔尽量大,以抑制边模。可见,研制高重复频率(大频率间隔)的频率梳已经成为国际激光器和频率梳领域研究的热点和难点。目前该产品的国内市场基本上被德国Menlo System公司生产的基于掺镱光纤激光器的可见光域频率梳垄断,我国亟需研制出具有自主知识产权的光梳设备。2011年,北京大学信息学院张志刚教授申请的&ldquo 基于光纤激光器的可见光频率梳&rdquo 得到第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金经费支持下,通过关键配件的购置和加工,该项研究得以顺利开展。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作,包括:(1)搭建高重复频率、1um波长的锁模光纤激光器,作为频率梳&ldquo 种子源&rdquo ;(2)研究初始频率和腔内色散的关系,以得到更高信噪比的初始频率信号;(3)利用合适的色散补偿元件对种子源输出的脉冲进行色散补偿,并进行多级反向放大,使其输出功率满足频率梳要求;(4)试验多种光子晶体光纤,以获得更宽的、覆盖可见光域的光谱。通过以上工作的开展,课题组成功研制出了国际首创的500MHz光学频率梳样机,而Menlo公司同类产品重复频率仅为250M。这一技术的产品化将打破外国公司在国内市场的垄断,填补国内外市场的空白。在第三期项目工作的基础上,张志刚课题组的王爱民副教授申请的&ldquo 20GHz可见光波段天文光学频率梳的研制&rdquo 项目在2012年得到了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在第四期基金的支持下,项目组发展了前期500MHz高重复频率的光学频率梳的研究成果,开展了更加深入的工作,包括:(1)利用FP技术对500MHz重复频率的稳定光梳进行倍频,获得20GHz、1m波段的稳定光学频率梳;(2)对20GHz光学频率梳进行功率放大、脉冲压缩和倍频,实现515nm波段的蓝光飞秒光梳源;(3)利用拉锥光子晶体光纤对飞秒蓝光光梳进行可见光扩谱,达到400-750nm的光谱覆盖。通过这些工作,课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。这两期项目目前已经结题,其成果已进入产品化阶段,科技转化前景良好。相关成果受到了北京市科委的高度重视。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作。课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。应用前景:光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。
  • 上海光机所在高重频飞秒光学频率梳光源方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在高重频飞秒光学频率梳光源方向取得重要进展。该团队首次报道了一种基于腔内谐振滤波技术的GHz低噪声九字腔掺铒光频梳。相关研究成果以GHz figure-9 Er-doped optical frequency comb based on nested fiber ring resonators为题,发表在《激光与光子学评论》(Laser Photonics Reviews)上。   九字腔光纤光频梳是目前技术成熟度最高的光频梳技术之一,广泛应用于车载、星载、外场等非实验室环境,推动了光频梳相关应用的发展。重复频率近GHz的光频梳在双梳测距、光谱检测以及天文频标等领域有着重要应用。然而,目前九字腔光纤光频梳的重频一般小于250MHz,其重频的提升仍然面临技术挑战。由于非线性放大环镜(NALM)锁模技术需要一定长度的光纤来积累足够的非线性相移差以启动锁模,传统的短谐振腔方案难以适用于九字腔的结构。   针对上述问题,该团队采用嵌套腔结构(图1),由两个光纤耦合器熔接构成的Fabry–Pérot(F-P)腔对外部NALM谐振腔进行模式滤波。当内、外腔的自由光谱范围精确匹配时,可将九字腔光纤光频梳的重频倍增至GHz。实验结果表明,该激光器具备优异的脉冲自启动性能和长期稳定性(图2)。区别于高次谐波锁模,嵌套腔方案可通过合理的内腔参数设计,配合增益竞争机制,来有效抑制超模噪声,实现高相干、低噪声的GHz重频光频梳。实验通过对该光频梳的载波包络相位偏移频率的测量,验证了其频率梳齿分量间的高相干性(图3)。该GHz重频九字腔光纤光频梳在激光雷达、双梳测距、光谱检测等领域颇具应用前景。   研究工作得到中国科学院青年创新促进会、国家自然科学基金和上海市自然科学基金的支持。图1. 基于嵌套光纤环形谐振腔的9字腔光频梳装置图图2. 单孤子状态连续运行90分钟的稳定性:(a)测量光谱的时间演变,色条表示光功率谱密度;(b)重复频率的变化;(c)典型光谱和(d)80分钟时的射频频谱;(e)输出脉冲的典型自相关信号。图3. (a)基于f-to-2f的载波包络偏移频率检测;(b)在10 kHz RBW下自由运行ceo拍频信号。
  • 里德堡原子微波频率梳谱仪研制成功
    中国科学技术大学郭光灿院士团队在基于里德堡原子的无线传感上取得新进展。团队史保森、丁冬生课题组实现一种基于里德堡原子的微波频率梳谱仪,在宽带微波的探测领域具有应用前景。相关成果日前发表于《应用物理评论》。 微波测量在通信、导航、雷达、以及天文探测领域发挥重要作用。里德堡原子具有较大电偶极矩,可以对微弱电场产生很强的响应,因此可以用里德堡原子作为微波传感器。近年来,里德堡原子传感研究取得重要进展,但仍存在一些亟待解决的问题,比如目前可以实时接收的信号频率范围(瞬时带宽)受限于读出稳态信号的时间,通常只有几兆赫,严重影响该体系的实用化进程。 此次研究中,研究团队基于室温铯原子体系,利用里德堡原子对微波的混频响应性质,将微波频率梳信号设置为本振信号,演示了基于里德堡微波频率梳谱仪的微波绝对频率测量方案。 相比于之前系统瞬时带宽,目前可实现的实时响应范围(125兆赫)提高了数倍,并且还有进一步提升的空间。此外,通过利用不同主量子数的里德堡态,系统实现了对不同中心频率下具有1千赫兹调制带宽信号的接收。 该工作的创新之处在于利用微波频率梳谱仪拓宽了里德堡原子对微波信号的响应范围,一定程度上弥补里德堡原子在微波探测中瞬时带宽窄的不足,实现在更宽范围内对信号的绝对频率测量,可以充分发挥里德堡原子对微波的大响应带宽和高灵敏度的特性。此外,该方法也可有效接收相位信息,有望应用于微波通信和测量等领域。 中科院量子信息重点实验室博士研究生张力华为论文第一作者,丁冬生教授、史保森教授为论文的共同通讯作者。
  • 食品肉类安全检测仪使用年限多少
    食品肉类安全检测仪使用年限多少,食品肉类安全检测仪的使用年限取决于多种因素,包括仪器的制造质量、使用环境、使用频率以及维护保养等。一般来说,如果仪器的制造质量好,使用环境适宜,使用频率较低,并且得到了适当的维护保养,那么其使用寿命可能会更长。相反,如果仪器制造质量较差,使用环境恶劣,使用频率过高,或者缺乏适当的维护保养,那么其使用寿命可能会缩短。通常情况下,食品肉类安全检测仪的使用寿命在3~5年左右。但请注意,这只是一个大致的估计,实际使用年限可能会因具体情况而有所不同。此外,随着技术的不断进步和设备的更新换代,一些新型的食品肉类安全检测仪可能会具有更长的使用寿命和更高的性能。因此,在选择和使用食品肉类安全检测仪时,建议用户根据实际需求和预算进行综合考虑,选择适合自己的产品。
  • 水质检测仪器--在线电导率分析仪
    根据生态环境部在2020年6月发布的《生态环境监测规划纲要(2020-2035年)》,规划指出“十四五”期间,国控断面数量从2050个整合增加至4000个左右。水质国控监测点的增加将带来新的水质监测仪器采购和运营需求。同时,规划中明确提到,要深化自动监测与手工监测相融合的监测体系。  研究建立以自动监测为主的地表水监测评价、考核与排名办法,与手工监测评价结果平稳衔接。而目前非国控监测点中还有很大一部分采用手工监测,因此随着监测体系的完善,非国控点水质检测的自动化水平将得到提升,地表水自动监测仪器市场需求也有望随之逐步提升。B2010在线电导率分析仪采用全新的设计理念,可实现水质电导率的在线连续监测,适用于一般工业用水、纯水电导率的监测,广泛适用于电力、化工、石油、环保、制药等行业中多种水质的测量,是一台高精度、智能化、高性能现场测量仪表。仪器特点1、192×64点阵液晶、多参数显示、内容丰富2、采用先进的嵌入式系统设计、贴片工艺技术提高了产品性能和可靠性、符合EMC设计要求3、中、英文双语可编程切换,满足不同用户需求4、全中、英文引导式操作模式、使用简单、通俗易懂5、可编程的自动或手动温度补偿方式、使用灵活、方便6、两路完全隔离的电流信号输出,可分别设定输出电流范围7、带有上、下限报警功能,可分别设定报警值8、带有标准的485数字通讯接口,可实现远距离通讯9、具有历史数据、运行、校准记录存储、查询功能,可查询100000条历史数据、1000条运行记录、100条校准记录10、防护等级高,达到IP65,可以满足各种复杂环境应用要求11、可选择多种电极常数电极,每种电极均有2个量程且量程均可自动切换,满足用户测量范围和精度要求技术参数显 示:中、英文显示,192×64点阵液晶测量范围:K=0.01: (0.000~2.000)μS/cm、(0.000~20.00)μS/cm 2个量程自动切换;K=0.1 : (0.000~20.00)μS/cm、(0.000~200.0)μS/cm;2个量程自动切换;K=1 : (0.000~200.0)μS/cm、(0.000~2000)μS/cm,2个量程自动切换;K=10 :(0.000~2000)μS/cm、(0.000~20.00)mS/cm 2个量程自动切换;最小分辨力:0.001μS/cm引用误差:±1%FS温度传感器:Pt1000温度范围:(0.0~99.9)℃温度误差:±0.5℃温度分辨率:0.1℃温度补偿范围:自动或手动(0.0~60.0)℃温度补偿系数:0.0%/℃~9.99%/℃样品条件:温度范围:(5~50)℃流量范围:不大于6升/小时环境温度:(5~45)℃环境湿度:不大于90%RH(无冷凝)电流输出:(4~20)mA(二路隔离输出)电流精度:±1%F.S电流负载:800Ω报警输出:二路报警输出、直流5A/30V或交流5A/250V。储运温度:(-20~55)℃外形尺寸:144mm×144mm×115mm开孔尺寸:139mm×139mm供电电源:交流(85~265)V、频率(45~65)Hz功 率:≤10W重 量:约1.2 kg
  • 我国提出新的太赫兹时间频率特性分析方法
    “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。  激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。  在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。  飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。  谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。  太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。  邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。(2010年1月21日)
  • 频率计市场终遭破局,技术创新推动产品性能“五级跳”
    业内人士均知,计时器/频率计市场多年来可谓波澜不惊,缺乏竞争是创新的最大障碍,该领域的产品更新换代极其缓慢,用户的选择也是少之又少。  近日,随着泰克FCA和MCA系列计时器/频率计/分析仪的横空出世,江湖一时风云突变,频率计市场的统治局面被打破,新的“武林盟主”即将诞生,而广大用户则可享受到性能水平“五级跳”的创新产品,而且具备更有竞争力的价位。  据悉,泰克在这些产品的定义阶段广泛进行了用户调查,地域横跨美洲、欧洲、亚洲大陆,抽取了美国、中国、日本、法、德等重要国家的各应用领域用户来倾听他们的意见,以便新产品所具备的更优异的性能和特性真正是客户想要的。  FCA和MCA系列仪器可用于设计、生产和实验室校准,以及雷达设备测试等现场应用中的频率、时间或相位信号参数的测量与分析。下表以FCA3100为例,列举了泰克破局频率计市场的一些利器,以及如何实现产品性能和功能的“五级跳”。  泰克FCA3100系列频率计与同类产品的对比。  一级跳:更宽的频率范围保护客户投资  泰克的FCA3000和FCA3100系列提供了最高达20GHz的宽频率范围,其中包括了两个300MHz的标准输入,和一个可选3GHz或20GHz的输入通道。上述仪器实现了每秒12位数字频率分辨率和单次50 ps(FCA3100)或100 ps(FCA3000)的时间分辨率。  如上图,同类产品最多只能达到225MHz的标配,对于需要测250MHz或者275MHz信号的用户(如某些计算机时钟同步信号)来说,就要另外购买3G选件,成本要增加至少50%。如今,若选用泰克的产品,无需增加3GHz选件即可支持300MHz以内的信号频率。而对于雷达、合成器/混频器等微波通信应用很多信号时在Ku波段(12GHz-18GHz),那么FCA3000和FCA3100系列提供的20GHz选件也可使客户无需另外购买昂贵得多的微波频率计。  对于20GHz以上的高精尖开发项目,MCA3000系列提供了行业最先进的计时器/频率计方案。标配两个300MHz输入通道,和一个可选27 GHz或40 GHz高频输入通道,该仪器可实现每秒12位数字的频率分辨率和100ps的单次时间分辨率。MCA系列集成频率计能在任何支持的频段上通过单一连接实现频率和功率测量。  据称,泰克仪器返修率很低,这些频率计产品从电路研发、材料选用到生产工艺各个环节都具有严格的质量保证,泰克公司承诺3年保修服务,远高于同类产品1年的保修期,显示了泰克对其产品品质的信心。  二级跳:大幅提高研发和生产效率  对于要求快速测试的制造应用而言,FCA系列仪器可以提供每秒250,000次采样的内部存储器数据传输速度、高达每秒15,000次采样的USB/GPIB数据传输速度(block模式),以及每秒高达650次的独立触发测量,即每秒可完成650个产品的测量,相较同类产品只能完成200个产品测量,生产效率提高了三倍之多。泰克的产品更适合用于计算机、智能手机、平板电脑、元器件等要求较高测量精度的生产线,每条线可部署几十甚至上百台FCA频率计。“江苏的一家晶振厂商对我们的测量速度这项指标特别感兴趣,”泰克公司负责射频无线产品线的产品市场经理钱永介绍说,“他们以往采用的一些频率计设备,其测试速度已不能满足提高生产效率、扩大产能的需求。”  另外,FCA系列具有快速端口转换模式,可连接两个端口,进行信号的快速切换(小于30ms),几乎同时完成两个端口的测试。这一特性对生产企业也很有意义,可提高自动化生产的效率。  FCA系列和MCA系列频率计除了支持生产线使用很普遍的GPIB接口持续数据流测量之外,还提供实验室用户使用较多的USB接口,方便他们连接PC进行设计调试。另外,还独家提供移动通信应用所需的TIE(时间差)测试功能。  三级跳:3.75M样点存储深度实现统计分析功能  泰克此次推出的最新频率计/分析仪使设计工程师不仅能够精确测量出频率、周期、时间、脉冲或相位、占空比、Vmax、Vmin、Vp-p等超过13种不同的参数,还能通过内置的内存(对应375万个测试点)来提供数据统计、柱状图以及趋势图等分析模式进行全面分析。例如,要测试用于计算机时钟信号的晶振在实际电路中的表现,就需要测一段时间的变化值。以往的频率计不含内存,就只有几个计数器,本身无法显示信号随时间变化的图形,必须通过GPIB接口读取也不方便,还需设计软件进行统计,影响了速度和成本。  泰克的频率计由于可以将测试结果放入那个FIFO缓冲器内存中,本身就可以显示信号变化的情况,也可以外接电脑实现连续测试,确保零死区时间,从而实现了动态测量分析系统。该特性对必须检测每个单周期的机械和医疗测量而言至关重要。  另外,对于很多研发人员来说,很看重频率计能进行时域的Allan方差测试。因此,含缓冲器内存连续无死区时间测试的特性就很有价值,因为需要对一定时长内的采样点求均值才能计算Allan方差值。  四级跳:LCD显示直观掌握测量结果变化趋势  与传统LED段显示频率计不同,泰克的新款产品均采用LCD显示屏,因而可以方便显示各种测试结果随时间变化的趋势图、测试结果分布的柱状图、直方图等,并可显示测量统计结果,如跟踪测量结果的平均值、标准误差以及最大值和最小值等,让测试工作更加直观。另外,仪器上的专用按钮及显示菜单使用户能够快速进入常用功能,进而缩短设置时间。  测量统计结果显示示例。  五级跳:调制域分析软件实现高端的跳频测试  泰克提供可选的TimeView™ 调制域分析软件,针对基于Windows个人电脑可对信号特性进行更加深入的分析,当配合FCA和MCA系列使用时,使客户能够分析频率随时间的变化,实现调制域分析仪功能,同时测试Allan方差及各种数据统计和分析。  “市面上已买不到专门的调制域分析仪了,但不少研究所客户(如进行高端跳频测试)还是非常需要,”钱永表示,“通过我们的分析软件,客户可以实现调制域分析功能,测试调频信号跳频序列,跳频振铃等参数,对于锁相环、混频器等元器件的应用测试就不需要像以前一样自己费心编写软件来实现了。”  上述最新的计时器/频率计/分析仪可与泰克公司日前宣布推出的PWS4000系列直流电源配套使用。对于各种应用,这些频率计也可与泰克的示波器、万用表、信号源产品互连,组成一个强大的测试平台。为了简化复杂任务,客户可用配套提供的NI LabVIEW SignalExpress™ 泰克版软件,从基于Windows的个人电脑上远程控制所支持的泰克仪器。可以帮助客户自动测量、分析多个仪器上的数据、捕获和保存测
  • 中科院国家授时中心实现锶光钟绝对频率测量
    2022年举办的第27届国际计量大会(CGPM)通过“关于秒的未来重新定义”决议——将利用光钟实现时间单位“秒”的重新定义,计划在2026年第28届CGPM大会上提出关于“秒”的重新定义的建议,并在2030年第29届CGPM大会做出最终决定。中国科学院国家授时中心(NTSC)担负着“北京时间”的产生和发播任务。日前,中国科学院国家授时中心的锶光钟研制取得了重要进展——国家授时中心成功研制了频率不确定度5.1×10-17、频率稳定度6.6×10-16 (τ/s)-0.5的锶光钟NTSC-Sr1,并通过守时氢钟溯源至国际原子时(TAI),实现了在现行时间单位“秒”定义下的锶光钟绝对频率测量,测量值不确定度4.1×10-16。上述研究成果近日发表在国际计量权威学术期刊《计量学》(Metrologia)上。卢晓同特别研究助理为文章第一作者,常宏研究员和武文俊研究员为共同通讯作者。面向国家需求和世界科学前沿,在中国科学院国家授时中心常宏研究员带领下,自2008年起经过十余年的不懈努力,近年来在锶光钟研制方面取得了系列创新成果,如超越Dick极限的双激发谱锶光钟多项技术、弗洛凯准粒子干涉和浅光晶格钟跃迁窄谱,特别是国家授时中心负责研制的国际首台空间光钟于2022年10月搭载“梦天”实验舱入驻我国空间站。据介绍,中科院国家授时中心后续将推进锶光钟参与TAI守时研究,实现光钟在国家标准时间的应用,确保我国时间基准独立自主,并在“秒”定义变更中争取国际话语权。
  • 北京大学王兴军团队提出:全芯片化的微波光子频率测量系统
    移动通信、雷达、卫星遥感、电子对抗以及基础仪器科学等领域的进步,促使着微波系统向着高频、宽带、大动态范围、多功能的方向发展。面对这些新的发展需求,传统的微波技术在微波信号的产生、传输、处理、测量等各个方面均面临巨大挑战。微波光子学融合了微波技术和光电子技术,即利用光电子学的方法处理微波信号,可以突破传统射频电子器件的性能瓶颈,被认为是下一代各类微波系统应用的解决方案之一。传统微波光子系统一般使用分立的光电子器件与电学模块搭建链路,这使得微波光子系统样机或产品具有重量大、功耗高、稳定性差等不足。因此,实现微波光子系统的微型化、片上化和集成化,是推动微波光子技术真正落地与广泛应用的关键,也是近年来学术界和产业界关注的焦点。然而,目前已报道的研究工作仍未能实现微波光子系统的完全芯片化集成,需要借助分立的光电子器件(例如:激光器、调制器等)或电子器件(例如:电学放大器等)来构建完整的系统链路,这在成本、体积、能耗、噪声方面严重制约着微波光子技术的工程化与实用化。鉴于此,近日,北京大学电子学院区域光纤通信网与新型光通信系统国家重点实验室王兴军教授研究团队提出了融合硅基光电子芯片、磷化铟芯片和 CMOS 电芯片的多芯片平台混合集成方案,首次实现了微波光子系统光-电链路的完全集成化拉通。基于该技术方案,研究团队设计实现了一款全芯片化的微波光子频率测量系统,整体尺寸约为几十 mm²,功耗低至 0.88 W,可实现对 2-34 GHz 宽频段微波信号瞬时频率信息的快速、精准测量。该成果发表在 Laser & Photonics Reviews,题为“Fully on-chip microwave photonic instantaneous frequency measurement system”。北京大学博士研究生陶源盛与北京大学长三角光电科学研究院杨丰赫博士为论文的共同第一作者,王兴军教授为论文通讯作者。该团队设计的全芯片化微波光子频率测量系统原理如图1所示,他们在硅光芯片上有源集成了高速调制器(用于微波信号加载)、载波抑制微环、可调谐光学鉴频器和光电探测器等器件。基于磷化铟平台实现高性能的分布式反馈(DFB)激光器,并通过端对端对接耦合方式与硅光芯片实现互连。为在保证系统测量精度的条件下降低对后端采样与处理电路的要求,他们将硅光芯片的弱光电流输出通过金线键合的方式直接连接至 CMOS 跨阻放大芯片的输入。经跨阻放大后的电信号,仅需通过低速采样电路采集,通过离线处理即可还原出输入高频微波信号的瞬时频率信息。图1:全芯片化的微波光子频率测量系统。(a)系统三维示意图;(b)磷化铟激光器芯片与硅光芯片的光学显微图;(c)系统整体的集成封装实物图。图源:Laser Photonics Rev.2022, 2200158, Figure 1面向电子对抗、雷达预警等实际应用场景,研究人员们在实验演示了该全芯片化微波光子频率测量系统对多种不同格式、微秒级快速变化的微波信号频率的实时鉴别。如图 2 所示,依次是对 X 波段(8-12 GHz)范围内的跳频信号(Frequency hopping, FH)、线性调频(Linear frequency modulation, LFM)和二次调频(Secondary frequency modulation, SFM)三类信号的频率-时间测量结果,误差均方根仅 55-60 MHz,是迄今为止同类型集成微波光子系统所展示出的最佳性能。图2:复杂微波信号频率的动态测量结果。(a)跳频信号(Frequency hopping, FH)的频率测量;(b) 线性调频(Linear frequency modulation, LFM)的频率测量;(c)二次调频(Secondary frequency modulation, SFM)信号的频率测量图源:Laser Photonics Rev.2022, 2200158, Figure 4未来展望 本工作所提出的多平台光电混合集成工艺方案,除适用于微波测量应用,对于研究微波信号产生、信号处理、信号传输等其他各种类型微波光子系统的集成化、微型化也具有很高的参考价值,为推动微波光子技术的工程化应用提供了一种通用性的解决方案。
  • 土壤墒情监测仪在墒情监测中立下了汗马功劳
    土壤墒情监测仪在墒情监测中立下了汗马功劳。随着现在环境保护意识的越来越强,减少化肥的使用可以有效改善土壤的状况,通过土壤墒情监测,可以提高灌溉水和化肥使用的有效率,在保证农作物水充足的前提下,最大限度的节约灌溉水和化肥的使用,节约灌溉水和化肥,对于环境保护方面也有重要的意义。通过这款WX-TZSQ60土壤墒情监测仪可以快速的测定土壤含水量,以往依靠经验来预测的生产方式已逐步被淘汰,因此这款系统能被大范围应用,能够满足科研、生产、教学等相关工作需求。它主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量和温度值。土壤墒情监测仪是一款集土壤温湿度采集、存储、传输和管理于一 体的自动监测系统。在不同介电系数物质中的频率变化测得各土层的湿度,利用高精度数字温度传感器,测量各层土壤温度。可实现多参数环境监测。根据用户需求选配,具体选配,这款设备在农业、林业、环境保护、水利、气象等行业中立下了汗马功劳,值得选择。推荐阅读:便携式移动气象站——实现智慧农业、林业、城市的重要工具
  • 振动试验的重要用语:振幅、速度、加速度、频率、加振力
    ※频率(f)单位时间内(通常为1秒)振动的往返次数。单位:Hz5Hz即表示振动在1秒内往返5次。※振幅(D)振动位移的最大距离。单位:mm。单振幅(日语:片振幅):Do-p双振幅(日语:两振幅):Dp-p ※速度(V) 单位时间内振幅的变化率。单位:m/s。※加速度(A)单位时间内速度的变化率。单位:m/s2旧单位:G、gal1G = 9.80665m/s2 = 980gal1gal = 0.01m/s2 = 1cm/s2 (此单位在地震模拟试验中,经常出现。)1Gn = 10 m/s2(用于粗略计算中。)四者之间的关系式X = D0-psin(ωt+φ) φ:初始相位、 ω=2πf 角速度V0-p = dX/dt = ωD0-pcos(ωt+φ) = ωD0-psin(ωt+φ+π/2)A0-p = d²X/dt = dV/dt = -ω²D0-psin(ωt+φ) = ω²D0-psin(ωt+φ+π)相位关系速度超前位移90度,加速度超前速度90度(即超前位移180度)。这句话在理解冲击试验的加速度、速度、位移图中帮助很大,以后再述。※加速度(A)、速度(V)、振幅(D)、频率(f)的最大值关系式A0-p[m/s2] = 0.0394 D0-pf2 = 6.28 f VV0-p[m/s] = 0.00628 f D0-p= 0.159 A/fD0-p[mm] = 25.5 A/f2 = 159.2 V/f或者A0-p[m/s2] = (2πf)² × D0-p[m]V0-p [m/s] = ( 2πf ) × D0-p[m]四个量中,已知两个量,便知其他两个量。一般在振动控制仪中输入两个量,就会自动计算出其他两个量,所以,记不住这些公式关系也不大。但是,如果你在和客户商谈的时候,按照客户的要求,直接计算出来,按照这些参数,当场帮客户选定出能对应的振动试验机,相信客户一定对你另眼相看吧。这两套公式其实是同样的,下一套公式中的π=3.1416代入并将位移单位换成mm即可得到上一套公式。本人比较喜欢下一套公式,那么多数字记起来还是有点困难。另外,计算时,一定要注意单位。在振动控制仪的输入中,一定要注意振幅(位移)是全振幅还是单振幅。Dp-p = 2 D0-p。一般振动控制仪默认速度和加速度是单峰值,振幅(位移)是双振幅。如果搞错的话,那很有可能导致试验白做,试验体损坏等,造成经济损失,特别是长时间三综合试验(汽车零件的振动试验,一个方向300小时的三综合试验很多很多。)通过这些公式也可以推导出振动试验机的无负载或有负载最大能力特性曲线图,以后再述。※加振力(F)试验时,振动台需要加振的力,也称推力。单位:N、kN、kgf、tonf加振力的计算:单位N的场合:F[N] = m [kg] × A [m/s2]单位kgf的场合:F[kgf] = m [kg] × A [G]1kN = 1000N1kgf = 9.8N1tonf = 1000kgf ≑ 10kN公式中的m一般都是质量之和,即动圈质量、夹具质量(含垂直扩展台或水平滑台)、试验体质量之和。单位tonf就是我们行业常说的几吨推力中的吨,有人喜欢简写成t或ton,本人不是很喜欢这种不严谨的简写,t和ton是质量的单位,切不可混为一谈。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 瞬态吸收光谱法测量极紫外自由电子激光脉冲的频率啁啾
    【研究背景】快速发展的自由电子激光(FEL)技术在高光子能量下产生了飞秒甚至阿秒的脉冲,使得X射线能够用于状态选择性和相敏多维光谱分析和相干控制。直接和常规测量现有的极紫外(XUV)和X射线自由电子激光脉冲的光谱相位是充分实现这种非线性相干控制概念的关键,以便为它们与物质的相互作用找到和设置最佳的脉冲参数。自放大自发辐射XUV/X射线自由电子激光脉冲的直接时间诊断工具是线性和角度条纹法,它对脉冲的时间形状(包括啁啾)非常敏感。这些方法依赖于一个时间同步且足够强的外场的可用性。诊断SASE辐射脉冲的时间结构的一个补充途径是测量电子束中FEL激光诱导的能量损失(例如使用X波段射频横向偏转腔(XTCAV)),从中可以重建XUV/X射线发射的时间剖面。对于种子自由电子激光脉冲,两个几乎相同的自由电子激光脉冲的产生及其XUV干涉图的评估允许其光谱时间内容的完整表征。在这项工作中,科学家提出了一种直接测量XUV-FEL频率啁啾的技术,而不依赖于任何额外的外场或种子多脉冲方案。由于所报道的技术提供了对XUV辐射光谱时间分布的目标访问,它是对FEL激光性能敏感的用户实验的原位诊断的理想方法。例如,在这里,我们实验观察到频率啁啾对自由电子激光脉冲能量的系统依赖性(增加啁啾以减少脉冲能量)。【成果简介】由最先进的自由电子激光器(FELs)产生的极紫外(XUV)和X射线光子能量的高强度超短脉冲正在给超快光谱学领域带来革命性的变化。为了跨越下一个研究前沿,精确、可靠和实用的光子工具对脉冲的光谱-时间特性的描述变得越来越重要。科学家提出了一种基于基本非线性光学的极紫外自由电子激光脉冲频率啁啾的直接测量方法。它在XUV纯泵浦探针瞬态吸收几何结构中实现,提供了自由电子激光脉冲时能结构的原位信息。利用电离氖靶吸光度随时间变化的速率方程模型,给出了直接从测量数据中提取和量化频率啁啾的方法。由于该方法不依赖于额外的外场,我们期望通过对FEL脉冲特性的原位测量和优化,在FEL中得到广泛的应用,从而使多个科学领域受益。【图文导读】图1:频率分辨等离子体选通原理图2:等离子体选通效应的数值模拟图3:通过瞬态吸收光谱测量XUV-FEL频率啁啾图4:频率啁啾特性,自由电子激光脉冲能量依赖性分析图5:色散对部分相干自由电子激光场的影响原文链接:Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy | Nature Communications
  • 浙江计量院新建两项计量标准填补省内时间频率计量领域溯源空白
    时间作为重要的七个基本物理量之一,在信息化时代,高精度时间已经成为一个国家科技、经济、政治、军事和社会生活中至关重要的一个参量。近日,省计量院新建时间频率计量领域两项全省最高计量标准,填补了全省该领域的计量空白,技术能力达到国内先进水平。时间与频率远程校准装置用于时间标准的时间偏差、时间稳定度的远程校准以及频率标准的频率偏差、频率稳定度和频率日漂移率的远程校准。建立了原子时计量标准溯源系统、发布系统、显示及辅助系统,与中国计量科学研究院国家时间基准UTC(NIM)的时差保持在10纳秒(10-9s)以内。全球导航卫星系统(GNSS)接收机校准装置用于校准GNSS接收机(时间测量型)。GNSS接收机(时间测量型)主要利用GNSS卫星提供的高精度时间标准进行授时或时间测量,常用于天文台、无线通信及电力网络等领域中,用于实现时间同步,应用广泛。随着两项全省最高计量标准的建立,省计量院将为电力、医疗、交通、通讯、金融等行业提供准确可靠的时间频率量值溯源服务。
  • 养殖水质检测仪(养殖水质检测仪实时检测水质参数 )
    前言:在水产养殖产业中,水质的优良直接影响到水生生物的生长状况、繁殖能力以及最终产品的质量与安全性。养殖水质检测仪作为一种先进的监测工具,为养殖户提供了科学化、精细化管理水质的有效手段,对于提升养殖效益和保障食品安全具有重要意义。 产品链接https://www.instrument.com.cn/netshow/SH104275/C510819.htm 一、实时检测水质参数 养殖水质检测仪可以实时监测并记录水体中的多项关键指标,如溶解氧含量、pH值、氨氮、亚硝酸盐、硫化物、温度、浊度等。这些参数直接关系到养殖环境的健康程度和养殖动物的生活习性,通过仪器的持续监测,能够及时发现并调整水体环境的异常情况,确保养殖水质始终处于适宜状态。 二、优化养殖决策与管理 基于养殖水质检测仪提供的准确数据,养殖户可以根据实际情况调整饲料投放量、换水频率、增氧措施及疾病防控策略。这种基于实证的数据驱动管理模式,有助于减少因水质问题导致的经济损失,提高养殖生产效率,并有效预防潜在的生态风险。 三、强化环保意识与可持续发展 养殖水质检测仪的应用不仅推动了养殖行业的精细化与现代化进程,还促进了环保意识的增强。通过严格控制养殖过程中的污染物排放,养殖者可以遵循“绿色发展”理念,实现经济效益与环境保护的双重目标。同时,政府监管部门也可以利用此类设备进行常态化的抽检工作,落实严格的养殖业环保法规标准,共同推进水产养殖业的可持续健康发展。 总结:养殖水质检测仪在水产养殖领域的应用,实现了对水质的准确把控与科学管理,有力地提升了养殖生产的科学化水平和产品质量安全。它不仅是现代水产养殖技术的重要组成部分,也是促进养殖行业向绿色、快速、可持续方向发展的关键技术支撑。通过实时监测、智能分析与合理调控,养殖水质检测仪提高了养殖企业的管理水平和经济效益,也维护了生态环境的安全稳定。
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10 Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 如何选购扬尘监测仪?风途告诉你
    如何选购扬尘监测仪?风途告诉你 【风途厂家发布】How to choose dust monitor  当检测粉尘的主要手段是手工采样、分析,检测效率低,而且浪费大量人力物力。我公司为改善空气质量利用无线传感器技术和激光粉尘测试设备,自助研发的全天候户外扬尘监控系统,除了可以实现扬尘监控以外,还可以监测PM2.5、PM10,PM1.0、TSP、噪声、环境温度,环境湿度,风速、风向等环境因子,各测试点的测试数据通过无线通讯直接上传到监测后台,大大节省了环保部门监测成本,提高监测效率。  风途为改善空气质量利用无线传感器技术和激光粉尘测试设备,自助研发的全天候户外扬尘监控系统,除了可以实现扬尘监控以外,还可以监测PM2.5、PM10,PM1.0、TSP、噪声、环境温度,环境湿度,风速、风向等环境因子, 各测试点的测试数据通过无线通讯直接上传到监测后台,大大节省了环保部门监测成本,提高监测效率。    系统组成:  本系统由数据采集器、传感器、视频监控系统、无线传输系统、后台数据处理系统及信息监控管理平台。监测子站集成了大气PM2.5、PM10监测、环境温湿度及风速风向监测、噪声监测、视频监控及污染物超标视频抓拍(选配)、有毒有害气体监测(选配)等多种功能 数据平台是个互联网架构的网络化平台,具有对各子站的监控功能以及对数据的报警处理、记录、查询、统计、报表输出等多种功能。该系统还可与各种污染治理装置联动,以达到自动控制的目的。  产品特点:  1、实现了24小时候全天候实时的在线监测。  2、为了提供准确的颗粒浓度信息,可连接多个传感器并远程传输至大显示屏。  3、设定了报警管理,超限后向手机上发送短信,及时预警,提高实时监测的有效性。  4、外部电源和通讯系统出现的临时故障不影响数据采集,通讯恢复后可自动下载延误传输的数据 断电不丢失已采集存储的数据。  5、支持多种尺寸彩色液晶和LED户外显示屏等实时显示数据。(户外显示屏可根据客户需求定制)  6、实现数据的存储管理,对监测点的数据图形展示,曲线分析,超限超标报警统计等,为监管部门提供决策依据。  技术参数指标:  PM技术参数:  测量范围:0.3~1.0、 1.0~2.5、 2.5~10微米(um)  量程:0~500ug/m3  计数准确率:50%@0.3um、 98%@≥0.5um  称准体积:0.1升(L)  响应时间:≤10(s)  风速参数:测量范围:0-30m 0-60m 分辨率:0.1m/s 测量精度:±1m/s  风向参数:风向范围:0~360°/16方位 分辨率:1° 测量精度:±3°  温度参数:测量范围:-30~70℃ 分辩率:0.1℃ 准确度:±0.3℃  湿度参数:量程:0~100%RH 分辨率:0.1%RH 准确度:±3%RH  噪声参数:量程: 30~130dB 频率范围: 31.5Hz~8kHz 准确度: ±1.5dB噪声  TSP参数:测定范围:0.01-10000ug/m3 检测灵敏度:0.01ug/m3 测量精度:±10%(选配)  摄像机:室外网络红外高速球,采用高性能处理器,高效、稳定,水平360度连续旋转,垂直90°,双滤光(选配)  片自动切换,IP66防护等,支持有线/3G无线网络传输。  供电系统 AC220V 或 太阳能供电  通讯系统 RS485,GPRS,以太网等(选配)
  • 坚持科技创新 扬尘监测仪如何持续改进?
    坚持科技创新 扬尘监测仪如何持续改进?——访天津智易时代科技发展有限公司扬尘产品经理李怀奇导读:智易时代多年致力扬尘环境监测,为了解扬尘监测仪未来持续改进方向,特采访扬尘监测产品负责人李怀奇经理。作为环境监测领域的高新技术企业,天津智易时代科技发展有限公司(以下简称:智易时代)于2013年6月注册成立,依托高校及科研院所为研发支撑,秉持“为客户创造价值”的理念,围绕生态环境监测中的痛点及难点问题,持续创新开发新产品、新技术,推进生态环境发展建设,支持国家生态文明战略实施。近期,为更好了解智易时代扬尘监测产品技术、发展方向及持续改进点等问题,采访了扬尘监测产品的负责人李怀奇经理。 环境监测是环境保护的重要基础,是环境管理的基本手段,环境实际状况及环境治理效果最基本的话语权就来自于监测,监测数据的科学、准确、及时、可靠关系到整个环境监测甚至环境治理、环境保护工作的成败。采访中,李经理表示:为了让客户更好的了解到智易时代扬尘产品,满足客户应用需求,智易时代在现有扬尘监测产品的基础上,对扬尘监测未来发展、技术改进等问题进行详细解答。现有市场,扬尘监测仪 Ling 先优势智易时代扬尘监测仪所采用的技术符合国家有关技术方法、标准要求。设备机箱采用碳钢喷塑材料,外壳防护等级满足IP56以上,配备7寸液晶显示屏,可查看监测指标参数、修改设备系统设置等功能。采用工业级5G/4G无线通讯模块,支持无线5G/4G或有线网络传输,保证数据、图像和视频的实时上传。配置移动式SD卡,随时更新替换升级程序,储存历史数据可达1年以上,并支持远程升级功能。此外,扬尘监测仪还具有数据本地存储、动态加热除湿、自动校零、断点续传、全天候连续监测等功能,可以有效的保证监测数据的可靠性及准确性。仪器的数据采集与标识按1分钟频率自动采集,并设计了定时采样机构,可根据设定时间定时采样、定时启动及关闭,上传至数据处理系统和监控平台的数据与现场测量数据一致。具有报警联动功能,可以通过设置预警值控制治理设备的开启和闭合。仪器可设定粉尘浓度超标报警阈值,粉尘超标时自动声光报警,或将信号传输到控制中心进行监控。具备雾炮、雾联机自动联动功能,支持扩展联动控制,并预留其他监测接口。支持断点续传功能:当网络中断时监测数据可缓存到本地,待网络恢复后立即将数据补传至平台,保证数据在线率达到99%。仪器具有特别的保护气幕,避免了粉尘对仪器核心部件—光学系统的污染,并具有反吹系统,可保证气体采样气路通畅,无尘积,确保仪器高可靠性。研发过程,攻克“拦路虎”随着产品的应用,不足之处也逐渐体现,技术上的突破、新的监测方向需求等问题,都是我们需要一一攻克的“拦路虎”。总体来说,可将难点问题分为两类:一是产品。针对公司扬尘产品应用需要,亟需突破技术瓶颈,持续保证产品质量,增加新功能,完善扬尘产品硬件程序,加强产品功能化清单。二是市场。对于钢铁厂无组织监测等新市场,需要提供新建设、新方案,并根据客户提出的项目要求及时跟进更新迭代(例如:厂棚TSP可视化视频监测)等,进一步拓展服务方向,用品质赢得信赖。聚焦应用,持续改进扬尘监测仪技术为了更好的应对市场需求,满足市场应用,在未来扬尘监测仪将持续改进,主要可分为以下6点:针对于公司产品,将持续加强产品质量,保证产品寿命在实际使用中可达数年以上,保证产品出厂后基本不需要进行维护工作。将进一步规划扬尘产品出厂前统一化质检管理,严格按照国家标准化流程持续完善。在现有基础上改进扬尘产品使用过程中的数值准确性问题,提供完善且精准的针对措施。通过质控产品对项目进行标准化管理,完全按照国家标准化流程对我司设备进行检验,为数据准确性提供可靠依据。将持续改进对扬尘产品行业新需求方向点的内容增加并拓展推出新的产品功能设计,有利于增加产品销售。产品整体结构的美观性持续化增强。扬尘产品实现手机端数据随时查看,无需绑定等复杂操作。未来发展,扬尘监测前景广阔随着法律法规持续完善,整体产品要求性越来越高,所以持续改进和完善我们公司扬尘产品是未来发展的必要条件。根据十四五规划要求,为持续改善环境质量,增强全社会生态环保意识,深入打好污染防治攻坚战。继续开展污染防治行动,建立地上地下、陆海统筹的生态环境治理制度。强化多污染物协同控制和区域协同治理,加强细颗粒物和臭氧协同控制。为此我司将主要针对大气颗粒物重点监测进行细化研究,尤其从工地扬尘转化为智慧工地,以及各个地区企业扬尘或者针对于钢铁厂、港口等多项无组织在线建设要求。市场机会的增多,将会使扬尘产品的需求量持续扩大,因此未来的环保市场中,扬尘在线监测仪的发展前景广阔,有很大的上升空间。后记:智易时代扬尘监测技术的持续改进一直备受关注,随着扬尘治理的深入发展,扬尘监测技术需要不断改进、提升,以此响应“十四五”规划纲要中要求的“Jing准、科学、依法、系统治污”,坚决完善监测数据的科学性、准确性、及时性及全面性,凭借技术创新、产品持续改进及优质服务等优势在扬尘环境监测领域中拔得头Chou,勇做监测行业“领头军”。
  • 自主研发实现精度突破 光谱监测仪精准捕捉温室气体
    合肥蜀山:光谱“听诊器”,精准捕捉温室气体如何从大气中精准检测温室气体?这个问题,来到中国环境谷的安徽岑锋科技有限公司就能得到解答。该企业基于激光光谱检测分析技术开发出了不同类型高精度分析仪器,让光谱监测仪像一个个“听诊器”,把大气中蕴含的温室气体数据精确传感,提升监测敏感度、精确度。自主研发 实现“精度”突破10月26日,在安徽岑锋科技有限公司,车间里的工作人员正在加紧组装、测试专门订制的高精度温室气体光腔衰荡光谱监测仪(CRDS)。设备内密密麻麻分布着不同的线路,还未安装的电子屏显示着上一轮测量的数据。这个不到1米长的长方体盒子里有精心设计的光学腔室,在国内率先实现自主设计及产业化推广,解决了高精度温室气体测量领域仪器设备的“卡脖子”问题。“该类自研的光学腔室会‘魔法’,可让光束在光腔内形成共振反射,即在光腔内实现来回振荡传播,在传播的过程中,遇到目标气体分子后会被吸收。简单地说,这种仪器就像光谱‘听诊器’一样,光在设备内传播的过程犹如气体分子的‘诊断’过程,‘听诊时间’越长,‘诊断’结果越精准越细致,所反映的气体浓度检测也越精确。”工作人员崔芳生一边演示设备一边介绍,传统的检测技术在气体浓度低的情况下可能检测不出来,而这个仪器让多种温室气体实现同步测量,等效光程可达60km,具有高精度、高准确度等特点。公司自主研发生产的另一款基于激光吸收光谱技术(TDLAS)的开路式温室气体分析仪,体积小、重量轻,除了高精度还可保证高频响应。“目前国内或者国外的技术测量频率在20赫兹,我们这款产品能达到100赫兹,就是检测频率每秒钟达到100次,能更加精准的捕捉气流在大气环境下的微弱变化。”崔芳生介绍。技术向国际看齐,应用也日益广泛。高精度温室气体监测仪已经实现量产,目前有二十余台应用在我国西北、西南、东南等区域,用于气象环保、环境监测等实际需求。“追光”不止 做光学仪器设备拓荒者前不久,使用了光腔衰荡光谱技术(CRDS)的高精度温室气体监测仪代表安徽岑锋科技有限公司“出战”,获得了第十二届中国创新创业大赛安徽赛区三等奖。产品凝结着研发团队的技术结晶,也代表着企业的技术成果。这个成立一年多的公司已经获得了3项发明专利、1项实用新型专利,1项外观设计专利和多个软件著作权登记证书,发展势头强劲。该企业核心成员是6位来自中国科学院的光学专业博士,在40余名员工中,研发人员占比在50%左右。“公司是由6位博士组成的技术型团队,大家志同道合,有着共同的理想,就是做好国产光学仪器设备,实现相关领域自主知识产权。”总经理何俊峰博士介绍,产业化之所以能顺利实现,来源于团队每个成员深厚的技术沉淀,“我自己从事激光光谱研究十几年,其他老师也都在相关行业工作多年,公司能在研发、生产、销售整个链条上平稳运行离不开大家长期的技术积累。”开拓领域 面向更广市场成熟的产品、领先的技术,需要合适的平台,才能走向更大的舞台。最近,安徽岑锋科技有限公司向蜀山经开区申请了相关场地,准备在园区内搭建温室气体检测系统,等设备齐全后,将试点进行温室气体检测的实际应用。“线上申请后,工作人员就上门帮助我们在辖区范围找各个部门协调,两三天就找到并且批下来了,效率很高。”何俊峰说。中国环境谷现已聚集环境领域重点企业370余家,通过举办相关论坛、沙龙、学术交流会等方式,向政府部门和行业组织推介企业,积极为园区企业寻找应用场景。
  • 美研发出双扫描隧道显微和微波频率探针
    美国加州大学洛杉矶分校17日表示,该校纳米系统科学主任保罗维斯领导的研究小组开发出了研究纳米级材料相互作用的工具——双扫描隧道显微和微波频率探针,可用于测量单个分子和接触基片表面的相互作用。  过去50年中,电子工业界努力遵循着摩尔定律:每两年集成电路上晶体管的尺寸将缩小大约50%。随着电子产品尺寸的不断缩小,目前已到了需要制作纳米级晶体管才能继续保持摩尔定律正确性的地步。  由于纳米级材料和大尺寸材料所展现的特性存在差异,因此人们需要开发新的技术来探索和认识纳米级材料的新特征。然而,研究人员在研发纳米级电子元器件方面遇到的障碍是,人们没有相应的能力去观察如此小尺寸材料的特性。  元器件间的连接是纳米级电子产品至关重要的部分。就分子设备而言,分子极化性测量的范围涉及到电子与单个分子接触的相互作用。极化性测量有两个重要方面,它们分别是接触表面以次纳米分辨率精度进行测量的能力,以及认识和控制分子开关两个状态的能力。  为测量单个分子的极化性,研究小组研发出能够同时进行扫描隧道显微镜测量和微波异频测量的探针。借助探针的微波异频测探,研究人员将能确定单个分子开关在基片上的位置,即使开关处于“关”的状态也不例外。在开关定位后,研究人员便可利用扫描隧道显微镜变换开关的状态,并测量每个状态下单分子和基片之间的相互作用。  维斯说,新开发的探针能够获取单分子和基片之间物理、化学和电子相互作用以及相互接触的数据。维斯同时还是著名的化学和生化以及材料科学和工程教授。参与研究工作的还有美国西北大学的理论化学家马克瑞特奈和莱斯大学合成化学家詹姆斯图尔。  据悉,研究小组新的测量探针所提供的信息集中在电子产品的极限范围,而不是针对要生产的产品。此外,由于探针有能力提供多参数的测量,它有可能被研究人员用来鉴定复杂生物分子的子分子结构。
  • 290万!清华大学飞行时间质谱-气溶胶化学组分监测仪采购项目
    项目编号:清设招第20221470号(2241STC74185)项目名称:清华大学飞行时间质谱-气溶胶化学组分监测仪预算金额:290.0000000 万元(人民币)最高限价(如有):290.0000000 万元(人民币)采购需求:包号标的名称数量(台/套)简要技术需求或服务要求01飞行时间质谱-气溶胶化学组分监测仪1离子源:采用高稳定性、高精度的266nm Nd:YAG脉冲式固体激光器,能量≥5mJ,重复频率≥20Hz,无需载气设备用途介绍 :可实时监测气溶胶颗粒中重金属、矿尘、黑碳、硫酸盐等物质,同时给出大气气溶胶颗粒的粒径信息、化学成分信息、数浓度信息等;实现PM2.5在线源解析,无需任何人工操作;可适用于车载,满足快速、准确的应急监测分析要求。注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。合同履行期限:合同签订后90日内完成设备交货、安装及调试工作。本项目( 不接受 )联合体投标。
  • 智能数字式漏水检测仪
    智能数字式漏水检测仪/数字式漏水检测仪/漏水检测仪/测漏仪/查漏仪 型号:ZRX-7663ZRX-7663智能数字式漏水检测仪应用了的数字信号处理术和数字滤波电路,步提了仪器的抗干扰性能,其重要特点之是能够克服环境噪声的干扰行确探测,在大屏幕液晶显示屏上准确地显示出测量参数,自动区分环境噪声和漏水噪声信号,让操作人员直观地判断漏水疑点。 ●常用频率范围的频谱分析,实时显示出噪声信号在各频率上的相对分布。 ●自动记录(时间—信号噪声)曲线,连续监测噪声信号,为漏水点的确定提供可靠的分析依据。 ●拾振传感器内置有信号放大电路,拾振机构采用缓冲隔离,使得拾振的方向性更强,且有效降低了环境风和导线抖动对拾振传感器引起的噪声干扰。 ●采用品质传感器材料和电路,听音清晰度大大提。 ●可选配不型的拾振传感器,供操作人员选择使用。 ●频率覆盖漏水噪声范围,多达31个带通滤波器的选频范围,满足检漏人员在各种场合中选频使用。 ●可适时保存多段录音资料,能真实记录现场声音,随时重现探测现场实况。 ●操作手柄采用可靠性光电式无触点静音开关,杜了开关接触不良故障的发生。 ●手柄前端聚光照明,液晶显示屏和按键均具有背光照明。 ●采用性能、大容量可充电锂离子电池,无记忆效应;联机充电和脱机充电两种方式均可采用,充电方便快捷。 ●大屏幕液晶显示屏,信息量大,光条显示度,操作界面直观明晰,操作流程简单方便。 ●益求的电路板设计,消除了仪器中难以克服的由数字电路产生的脉动干扰噪声。
  • 食品奶粉蛋白质检测仪维护周期是多久
    食品奶粉蛋白质检测仪维护周期是多久,食品奶粉蛋白质检测仪的维护周期并不是固定的,因为它取决于多种因素,如设备的使用频率、环境条件、操作人员的维护意识等。然而,一般来说,为了确保设备的准确性和可靠性,建议定期进行以下维护和检查:日常清洁:每天或每次使用后,应对设备进行清洁,去除样品残留和灰尘。这有助于保持设备的卫生和准确性。定期检查:每周或每月进行一次全面的检查,包括设备的各个部件、连接线、电源等。确保所有部件都处于良好的工作状态,没有损坏或磨损。校准:根据设备的使用情况和制造商的建议,定期进行校准。校准是确保设备测量准确性的关键步骤。更换耗材:如果设备使用耗材(如过滤器、灯源等),应按照制造商的建议定期更换。软件更新:如果设备有软件支持,定期检查并更新软件,以确保设备具有最新的功能和修复任何已知的问题。具体来说,维护周期可能因设备型号、制造商和使用环境而异。因此,建议参考设备的用户手册或联系制造商以获取更具体的维护建议。此外,为了确保设备的长期稳定运行,建议对操作人员进行培训,使他们了解设备的操作和维护要求。同时,建立设备维护记录,以便跟踪设备的维护历史和性能变化。
  • 智易时代发布ZWIN-EC06恶臭在线监测仪新品
    ZWIN-EC06恶臭在线监测仪产品介绍 恶臭在线监测仪是天津智易时代科技发展有限公司运用多年大气环境监测经验,依照《恶臭污染物排放标准(GB14554-1993)》,专门针对垃圾处理、污水站、固定污染源、厂界等容易产生异味的场所,自主研发生产的一款恶臭浓度在线监测仪;ZWIN-EC06恶臭在线监测仪整套设备由供电单位、采样单元、样气过滤单元、传感器检测单元、数据处理单元、显示单元和传输单位组成。可同时监测包括恶臭在内的六种气体、外加PM2.5、PM10、温度、湿度、风速、风向、大气压等多项参数指标;工业级高精触摸屏,完美显示当前浓度值,内置大容量存储芯片,可轻松存储长时间数据,并通过专用接口数据导出;兼容TCP、IP、MODBUS等通信协议,即可无线数据上传对接当地环保局,也可有线远传组网;恶臭在线监测仪集气体采样、粉尘过滤、实时浓度显示、智能计算、GPRS无线数据上传为一身,并免费开放基准线调整、零点调整、数据修正、标气校准、时间调整等实用功能,是一款真正意义的智能化、标准化、模块化、专业化恶臭在线监测系统;可广泛适用于垃圾处理厂、垃圾转运站、污水处理厂、化工园区、医药车间、城市街道、厂界等行业; 产品性能指标:产品名称恶臭在线监测仪产品型号ZWIN-EC06产品描述集成对于OU、NH3、H2S和TVOC的恶臭在线监测设备主要技术标准规范恶臭污染物排放标准(GB14554-93)监测组份OU、H2S、NH3、TVOC、气象5参、可扩展环境适应性环境温度(-20~40)℃相对湿度 90%RH电压(220±22)VAC电源频率(50±1) Hz防护等级:IP53测量范围OU:5 ~ 1000H2S: 0 ~ 3 ppmNH3: 0 ~ 50 ppmTVOC: 0 ~ 50 ppm (异丁烯)甲硫醚:0~10ppm甲硫醇:0~10ppm二甲二硫:0~10ppm二硫化碳:0~10ppm苯乙烯:0~10ppm三甲胺:0~10ppm重复性≤ 10 % (OU: ≤ 15 %)准确度±10 % (OU: ±20 %)响应时间(T90)≤ 60 s 产品特点:? 多参数可以选配,功能强大? 国外原装进口四电极气体传感器,性能稳定,分辨率高? 智能化拔插式气体模组设计,维护方便? 集成简单,可拓展空气质量微型站监测因子、气象五参数? 数据和国控站数据一致性好? 体积小、重量轻、智能化、标准化、模块化、方便产品二次开发? 液晶显示具备数据存储功能创新点:本产品为智易时代首个专用于恶臭监测领域的产品,并且可同时监测包括恶臭在内的六种气体、外加PM2.5、PM10、温度、湿度、风速、风向、大气压等多项参数指标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制