当前位置: 仪器信息网 > 行业主题 > >

拼接处理器

仪器信息网拼接处理器专题为您提供2024年最新拼接处理器价格报价、厂家品牌的相关信息, 包括拼接处理器参数、型号等,不管是国产,还是进口品牌的拼接处理器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拼接处理器相关的耗材配件、试剂标物,还有拼接处理器相关的最新资讯、资料,以及拼接处理器相关的解决方案。

拼接处理器相关的论坛

  • 《针织棉服装》和《针织拼接服装》两项针织产品标准正式出台

    由国家质量监督检验检疫总局、国家标准化管理委员会于2011年5月12日正式批准发布的GB/T 26384-2011《针织棉服装》和GB/T 26385-2011《针织拼接服装》两项针织产品标准将于2011年9月15日正式实施,在各大标准信息中心可以购买获取。这两项新标准的出台弥补了针织服装产品标准体系中针对棉服装和拼接服装两类产品的标准空缺问题,也解决了生产企业对于相关产品长久以来标准选用的难题。GB/T 26384-2011《针织棉服装》适用于鉴定以针织物为主要原料,以各种纺织纤维为填充物制成的棉服装产品;GB/T 26385-2011《针织拼接服装》适用于以针织物为主要面料拼接而成的服装。若您的产品涉及到以上相关标准,应准确掌握新标准的内容,合理调整生产过程中相关的各种参数,以保证您的产品质量符合最新要求。

  • 【原创大赛】无人机高光谱内置推扫影像快速拼接方法

    【原创大赛】无人机高光谱内置推扫影像快速拼接方法

    [color=#333333]高光谱遥感具有光谱分辨率高、波段范围窄、图谱合一、连续成像等特点,能够区分出地物光谱的细微差别,探测到其他宽波段遥感无法探测的信息。因此,高光谱遥感在生态、大气、海洋、农业、林业、矿业等诸多应用领域具有非常大的优势。近年来随着成像光谱仪硬件技术不断发展,成像光谱仪的体积越来越小、重量越来越轻、成本越来越低,因而利用成像光谱仪获取高光谱影像更为方便、快捷。随着无人机技术的日益成熟,基于无人机平台的新型遥感技术异军突起,得到科研工作者的青睐,从而将成像光谱仪与无人机高度集成获取地物无人机成像高光谱影像成为新的研究热点。[/color][color=#333333] [/color][color=#333333]然而由于无人机航拍受飞行高度,相机本身参数的影响,单张无人机影像所覆盖的区域面积不大,需要对多张影像进行拼接,才能有效地覆盖研究区域。无人机载高光谱影像图幅较小,为每幅影像单独添加控制点信息工作量大、耗时长,而对影像统一添加控制点信息将大大缩短工作时间,提高工作效率。近年来,学者们对无人机影像数据的拼接做了很多研究,主要方法有基于姿态参数(POS数据)的拼接、基于非特征的拼接和基于特征的拼接等,其中无人机影像的拼接大部分是针对RGB图像或者多波段图像,而针对无人机高光谱影像的拼接方法较少,特别是对于无人机高光谱内置推扫获取的高光谱影像数据,目前还没有研究者对其拼接方法进行研究。[/color][color=#333333] [/color][color=#333333]鉴于目前对无人机高光谱影像数据拼接技术存在的不足之处,本文旨在研究一种低空无人机载高光谱影像自动拼接方法,其具有易于实现、拼接精度高、光谱畸变小等优点,可实现无地面控制点的无人机载高光谱影像的自动拼接,以解决当前单幅无人机载高光谱遥感影像图幅过小的问题。[/color][b][color=#333333]1 [/color][color=#333333]仪器设备与数据处理流程[/color][color=#333333]1.1 [/color][color=#333333]数据采集设备[/color][/b][color=#333333] [/color][color=#333333]本次试验地点在北京市大兴区南六环外黄村镇李村,无人机采用大疆无人机M600 Pro,在无人机平台上搭载的自主研发的高光谱成像仪GaiaSky-mini。无人机高光谱影像获取时间为2017年11月8日下午的12:00-14:00,天气为晴,无人机飞行高度为400米,采用的是2*4 binning方式获取高光谱影像(2是空间维的,4是光谱维),高光谱影像的空间分辨率约为20cm,此次飞行共获取24景高光谱影像数据,每景高光谱影像数据代表的地面幅宽约为190米*190米,面积约为36100平方米,其中每景高光谱影像数据之间的横向重叠率为50%,纵向重叠率为40%。[/color][b][color=#333333]1.2 [/color][color=#333333]数据的预处理与分析[/color][/b][color=#333333] [/color][color=#333333]无人机高光谱影像的预处理在SpecView软件中进行,包括镜像变换、黑白帧校准、大气校正。[/color][b][color=#333333]1.3 [/color][color=#333333]无人机高光谱影像拼接流程[/color][/b][color=#333333] [/color][color=#333333]对消除大气、水汽等因素影响的高光谱影像计算其波段信噪比,根据其信噪比的峰值筛选出特征波段,然后基于SIFT算法对选出的特征波段提取特征点并对特征点进行匹配,图像拼接过程中利用经纬度信息及墨卡托投影(Mercator)纠正图像的变形,同时利用重投影空三(Reproj)算法细化高光谱相机参数。在高光谱影像拼接之前选择是否对拼接图像进行匀色,最后得到拼接好的高光谱影像数据。[/color][b][color=#333333]1.4 [/color][color=#333333]高光谱影像拼接效果检验[/color][/b][color=#333333] [/color][color=#333333]为了准确地验证高光谱影像拼接结果的有效性,提取了拼接结果重叠区域和非拼接图像相同经纬度的8个采样点的光谱反射率,利用光谱角填图(SAM)、波谱特征拟合分类法(SFF)及二进制编码(BE)对拼接前后、是否匀色的光谱曲线进行匹配与相似性计算,得到一个0-1的匹配度分值,结果总分值越高,则相似性越好。[/color][b][color=#333333]2 [/color][color=#333333]高光谱影像拼接结果分析[/color][color=#333333]2.1 [/color][color=#333333]高光谱拼接图分析[/color][color=#333333] [/color][/b][color=#333333]以高光谱拼接图像的任意三波段作为RGB(R:red,G:green, B:blue)伪彩色合成图为例,从图1可知,从总体上看,对图像特征点明显的区域,是否选择匀色对高光谱影像的拼接无显著差异。但在特征点不显著区域则图像显示差异较大,如图2可知,对拼接图像是否采用匀色对高光谱影像的“图”有较为显著的差异,显然在采用匀色对拼接结果的“图”效果更好,而匀色是否对高光谱影像的“光谱”有较大的影响,则需要进一步的分析验证。[/color][align=center][color=#333333] [/color][img=,32,32]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,491,317]https://ng1.17img.cn/bbsfiles/images/2019/10/201910301711364656_1384_488_3.png!w491x317.jpg[/img][/align][align=center][color=#333333]图1 高光谱影像拼接前后效果图(以RGB伪彩色为例)[/color][/align][align=center][img=,404,223]https://ng1.17img.cn/bbsfiles/images/2019/10/201910301711509831_6894_488_3.png!w404x223.jpg[/img][/align][align=center][color=#333333]图2 高光谱影像重叠区域拼接匀色与否对比[/color][/align][b][color=#333333]2.2 [/color][color=#333333]高光谱影像拼接光谱分析[/color][/b][color=#333333] [/color][color=#333333]为了进一步验证高光谱影像拼接结果的有效性,本文提取了拼接结果重叠区域中典型地物(如植被、土壤、房屋等)的8个采样点的光谱反射率及拼接前2景图像对应位置的光谱反射率进行对比分析,这8个采样点的光谱反射率曲线如图3所示。图3中第一条光谱和第二条光谱代表的是拼接前2景图像重叠区相同位置的光谱反射率,未匀色和匀色分别代表的是未匀色和匀色拼接图像相应位置的光谱反射率。从图3可知,反射率较高的地物,其拼接前后的光谱重叠率较高,如第三类和第六类地物;而反射率较低的地物,其拼接前后的光谱差异较大,如第七类地物所示。总体而言拼接前后高光谱图像的光谱反射率曲线相似度非常高,拼接后其光谱反射率曲线保留了未拼接前高光谱图像的反射率曲线的大部分信息。[/color][align=center][img=,467,450]https://ng1.17img.cn/bbsfiles/images/2019/10/201910301712198573_4784_488_3.png!w467x450.jpg[/img][/align][align=center][img=,32,32]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,470,450]https://ng1.17img.cn/bbsfiles/images/2019/10/201910301712340082_5650_488_3.png!w470x450.jpg[/img][/align][align=center][color=#333333]图3 8个采样点拼接前光谱曲线与拼接后光谱曲线对比分析[/color][/align][b][color=#333333]2.3 [/color][color=#333333]高光谱影像拼接前后光谱匹配度分析[/color][/b][color=#333333] [/color][color=#333333]在高光谱影像的实际应用中不仅注重空间信息更加注重其光谱信息,因此为了更为准确地验证拼接方法的有效性,分别选用光谱角填图(SAM)、波谱特征拟合分类法(SFF)及二进制编码(BE)对拼接前后、是否匀色的光谱曲线进行匹配与相似性计算,得到一个0-1的匹配度分值, SAM、SFF和BE三者总分值越高,则相似性越好,具体计算结果如表1所示。[/color][color=#333333] [/color][color=#333333]从表1可以看出,在SAM方面,在8个采样点中,未匀色拼接结果图像的匹配度最小值为0.959,最大值为1,匀色拼接结果图像的匹配度最小值为0.958,最大值为0.995;在SFF方面,在8个采样点中,未匀色拼接结果图像的匹配度最小值为0.881,最大值为0.999,匀色拼接结果图像的匹配度最小值为0.807,最大值为0.995;在BE方面,在8个采样点中,未匀色拼接结果图像的匹配度最小值为0.942,最大值为1,匀色拼接结果图像的匹配度最小值为0.883,最大值为1;在SAM、SFF和BE三者总分值方面,在8个采样点中,未匀色拼接结果图像的匹配度最小值为2.826,最大值为2.999,匀色拼接结果图像的匹配度最小值为2.801,最大值为2.985,因此是否对高光谱图像的拼接结果采用匀色处理,对其光谱并无太大影响。[/color][color=#333333] [/color][color=#333333]不同采样点之间,当利用第一条光谱作为基准对其他光谱曲线进行匹配分析时,得出的匹配结果与利用第二条光谱作为基准对其他光谱曲线进行匹配分析时不一样,这是因为两景图像虽然有着重叠区域,但是受空间分辨率的影响,并不能保证存在重叠区的高光谱图像,其相应像素代表的地面物体完全相同,因此光谱曲线存在差异是正常的。为减少两景图像重叠区相同像素光谱的差异性,在选择采样点时尽量选择周边较为均一的地物。[/color][align=center][color=#333333]表1 影像拼接前后其光谱相似度评价[/color][/align] [table=327][tr][td=1,10] [align=center]采样点1[/align] [/td][td=1,2] [align=center][b] [/b][/align] [/td][td=4,1] [align=center]光谱匹配度鉴定结果[/align] [/td][/tr][tr][td]SAM[/td][td]SFF[/td][td]BE[/td][td]总分[/td][/tr][tr][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.965[/align] [/td][td] [align=center]0.883[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.848[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.959[/align] [/td][td] [align=center]0.901[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.859[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.958[/align] [/td][td] [align=center]0.897[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.856[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.965[/align] [/td][td] [align=center]0.889[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.854[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.971[/align] [/td][td] [align=center]0.881[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.853[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.973[/align] [/td][td] [align=center]0.872[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.845[/align] [/td][/tr][tr][td=1,8] 采样点2[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.987[/align] [/td][td] [align=center]0.951[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.933[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]0.955[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.938[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]0.949[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.927[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.996[/align] [/td][td] [align=center]0.993[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.989[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.987[/align] [/td][td] [align=center]0.930[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.911[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.970[/align] [/td][td] [align=center]0.880[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.845[/align] [/td][/tr][tr][td=1,8] 采样点3[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]0.999[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.999[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]0.999[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.999[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.985[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.985[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.985[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.985[/align] [/td][/tr][tr][td=1,8] 采样点4[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]0.999[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.999[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.978[/align] [/td][td] [align=center]0.881[/align] [/td][td] [align=center]0.989[/align] [/td][td] [align=center]2.848[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.968[/align] [/td][td] [align=center]0.882[/align] [/td][td] [align=center]0.972[/align] [/td][td] [align=center]2.821[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.968[/align] [/td][td] [align=center]0.886[/align] [/td][td] [align=center]0.972[/align] [/td][td] [align=center]2.826[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.968[/align] [/td][td] [align=center]0.886[/align] [/td][td] [align=center]0.972[/align] [/td][td] [align=center]2.826[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.837[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.801[/align] [/td][/tr][tr][td=1,8] 采样点5[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]0.996[/align] [/td][td] [align=center]0.972[/align] [/td][td] [align=center]2.968[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.942[/align] [/td][td] [align=center]2.927[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.883[/align] [/td][td] [align=center]2.859[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.931[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.922[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.985[/align] [/td][td] [align=center]0.903[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.882[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.890[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.866[/align] [/td][/tr][tr][td=1,8] 采样点6[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.970[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.961[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.970[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.960[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.978[/align] [/td][td] [align=center]0.927[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.905[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.971[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.961[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.987[/align] [/td][td] [align=center]0.956[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.944[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.982[/align] [/td][td] [align=center]0.942[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.923[/align] [/td][/tr][tr][td=1,8] 采样点7[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.979[/align] [/td][td] [align=center]0.940[/align] [/td][td] [align=center]0.977[/align] [/td][td] [align=center]2.896[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.970[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]0.969[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.954[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.979[/align] [/td][td] [align=center]0.936[/align] [/td][td] [align=center]0.977[/align] [/td][td] [align=center]2.892[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.989[/align] [/td][td] [align=center]0.968[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.940[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.985[/align] [/td][td] [align=center]0.955[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.923[/align] [/td][/tr][tr][td=1,8] 采样点8[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]0.930[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.920[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.985[/align] [/td][td] [align=center]0.910[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.877[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.899[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.863[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.996[/align] [/td][td] [align=center]0.974[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.970[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]0.949[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.923[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.889[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.853[/align] [img=,32,32]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][/table][b][color=#333333]2.4 [/color][color=#333333]图像拼接效率对比[/color][/b][color=#333333] [/color][color=#333333]为了验证无人机高光谱影像的拼接效率,本文选取了两台笔记本的电脑,分别是Dell7520和ThinkPad T440P对24景、50景、120景、500景无人机高光谱影像进行拼接,如表2所示。研究结果表明,硬件配置较好的DeLL7520拼接效率远远高于硬件配置较差的ThinkPad T440P,在处理24景无人机高光谱影像拼接时,DeLL7520比ThinkPad T440P处理速度快4个小时;在处理50景无人机高光谱影像拼接时,DeLL7520比ThinkPad T440P处理速度快7.7个小时;在处理120景和500景无人机高光谱影像时,ThinkPadT440P处理速度显然更慢,甚至出现笔记本卡死/蓝屏重启,而DELL7520则正常拼接。[/color][align=center][color=#333333]表2 硬件配置及图像拼接效率对比[/color][/align][table=323][tr][td=2,1] 笔记本[/td][td]DELL7520[/td][td]ThinkPad T440P[/td][/tr][tr][td=1,4] 硬盘配置[/td][td]CPU[/td][td]i7-7700HQ[/td][td]I7-4710MQ[/td][/tr][tr][td]内存[/td][td]64GB[/td][td]16GB[/td][/tr][tr][td]硬盘[/td][td]SSD[/td][td]SSD[/td][/tr][tr][td]显卡[/td][td]NVIDIA Quadro M2200,4GB[/td][td]NVIDIA GeForce GT 730M+Intel GMA HD 4600, 1GB[/td][/tr][tr][td=1,4] 效率对比[/td][td]24景[/td][td]1小时[/td][td]5小时[/td][/tr][tr][td]50景[/td][td]1.8小时[/td][td]9.5小时[/td][/tr][tr][td]120景[/td][td]3.5小时[/td][td]20小时,进程1/3[/td][/tr][tr][td]500景[/td][td]8.5小时[/td][td]笔记本卡死[/td][/tr][/table][b][color=#333333]3 [/color][color=#333333]结论[/color][/b][color=#333333] [/color][color=#333333]本文对消除大气、水汽等因素影响的高光谱影像计算其波段信噪比,并根据其信噪比的峰值筛选出特征波段,利用SIFT算法对选出的特征波段提取特征点并对特征点进行匹配,墨卡托投影(Mercator)纠正图像的变形以及重投影空三(Reproj)算法细化高光谱相机参数的方法对无人机高光谱影像进行自动拼接并对拼接结果进行匀色,同时运用SAM、SFF和BE光谱匹配算法验证了高光谱影像拼接算法的可行性。研究表明本文提出的无人机高光谱影像拼接算法解决了当前单幅无人机载高光谱影像图幅过小的问题,且对无控制点的无人机载内置推扫式的高光谱遥感影像可实现自动拼接,且拼接效果好、精度高、光谱畸变小,研究结果为其他无人机载高光谱遥感影像的自动拼接提供借鉴,同时无人机高光谱影像的拼接结果可应用于大范围的高光谱遥感影像分类与识别、土地利用/覆盖分类、精细农业、环保、矿产矿物勘测等多种领域中。[/color][b][color=red]本文参考文献[/color][/b][color=#333333]:黄宇,陈兴海,刘业林,等.无人机高光谱内置推扫影像快速拼接方法.测绘地理信息,2019,44(05):24-28.[/color]

  • 针织棉及针织拼接服装标准出台 第三方测试助企业保障品质

    今年六月,国家质量监督检验检疫总局、国家标准化管理委员会发布2011年第6号标准发布公告,批准了192项国家标准,其中,纺织服装相关标准8项, 包括《针织棉服装》、《针织拼接服装》、《抗电磁辐射精梳毛织品》等,均为首次制定。其中,GB/T 26384-2011《针织棉服装》和GB/T 26385-2011《针织拼接服装》两项针织产品标准于2011年9月15日正式实施。新标准的实施会对我国的纺织服装行业造成怎样的影响?带着这个问题,笔者走访了知名的第三方检测机构PONY谱尼测试,向消费品检测专家们寻求解答。PONY谱尼测试专家告诉笔者,GB/T 26384-2011《针织棉服装》适用于鉴定以针织物为主要原料,以各种纺织纤维为填充物制成的棉服装产品;GB/T 26385-2011《针织拼接服装》适用于以针织物为主要面料拼接而成的服装。上述标准包含了针织棉服装的号型、要求、试验方法、检验规则、判定规则、产品使用说明、标志、包装、运输、储存等多个方面的规定。这两项新标准的出台弥补了针织服装产品标准体系中针对棉服装和拼接服装两类产品的标准空缺问题,也解决了生产企业对于相关产品长久以来标准选用的难题。新标准旨在提高纺织品的品质,适应全球的绿色消费潮流,满足社会不断进步对绿色和生态消费的要求,挡住国外垃圾产品的进入,达到保证人们安全和健康的目的。PONY谱尼测试专家提醒相关纺织和服装企业,若您的产品涉及到以上相关标准,应准确掌握新标准的内容,合理调整生产过程中相关的各种参数,以保证您的产品质量符合最新要求。为了自身的声誉和百姓的健康安全着想,应严格依据标准要求,将产品及时送检。如自身缺乏相关检测能力,PONY谱尼测试专家建议您将产品送交具有相关资质的第三方检测机构协助检测。

  • 拼接加牙部位,是说的那个部位?

    拼接加牙部位,是说的那个部位?

    拼接加牙部位,是说的那个部位?这个是拼色互染的标准要求。[img=,690,59]http://ng1.17img.cn/bbsfiles/images/2018/05/201805291103571660_9521_2154459_3.png!w690x59.jpg[/img]

  • ARM发布有史以来功耗效率最高的应用处理器

    2011年10月20日,中国上海——ARM 公司近日发布了有史以来功耗效率最高的应用处理器ARM® CortexTM-A7 MPCoreTM。同时发布的还有big.LITTLE processing,一个重新定义传统功耗-性能关系的灵活的解决方案。Cortex-A7处理器是在 Cortex-A8处理器所代表的低功耗领先工艺基础上进行开发的。当今大多数的智能手机都采用Cortex-A8为内核。相比Cortex-A8,单个Cortex-A7处理器能在同等功耗水平上,带来5倍的性能提升,而尺寸只是前者的五分之一。Cortex-A7处理器为售价不足100美元的入门级智能手机带来丰富的用户体验,从而帮助众多发展中市场用户进行互联。当今科技界面临的一个巨大挑战是如何设计出一款片上系统,能兼顾消费者对高性能及更长的电池续航能力的双重需求。基于Cortex-A7的big.LITTLE processing,将高性能的Cortex-A15 MPCore处理器与超高效率的Cortex-A7处理器进行优化组合,从而达到要求。big.LITTLE processing 从性能要求出发,为每项任务选择最匹配的处理器。重要的是,这一动态选择过程对于在处理器上运行的软件或中间件都完全适用无碍。在支持这些技术的ARM合作伙伴中,包括博通、仁宝、飞思卡尔、海思、LG电子、Linaro、OK Labs、QNX、Redbend、Samsung、Sprint、ST-Ericsson和德州仪器。随着手机功能的巨大变化,如今更多的消费者将智能手机用于互联网生活,其中包括一些高性能任务,如浏览网页、导航和游戏,及一些对性能要求相对较低的、“永远在线”的基本任务,如语音电话、社交网络和邮件收发。由此,对于众多消费者,手机已成为了一个不可替代的计算设备。同时,新诞生的移动设备,如平板电脑,正在响应消费者的需求重新定义计算平台。这些移动设备,不仅为消费者带来一种全新的互动方式,更将曾经只有在网络共享设备上才能获取的信息带到移动世界。通过开发big.LITTLE processing和Cortex-A7处理器,ARM已经为科技界所提出的兼顾高性能和高功耗效率的挑战找到了答案。当更多的消费者将智能手机和平板电脑视为与我们日益互联的世界进行互动的首要平台,ARM两款产品的发布就显得尤为适时。Cortex-A7 – 扩展ARM低功耗领域的领先工艺ARM处理器产品能够实现更低的功耗和更小的尺寸,得益于ARM高效的结构体系。采用28纳米制程技术,Cortex-A7的面积小于0.5平方毫米,却拥有单核或多核构架下出色的性能表现。到2013或2014年,通过使用作为独立处理器的Cortex-A7,100美元以下入门级智能手机将能够提供相当于目前500美元高端智能手机的处理能力。ARM对于入门级智能手机市场的目标,是通过移动设备,为下一个10亿人提供互联网连接服务,从而在发展中世界重新定义手机的使用。big.LITTLE processing — 将处理器匹配到每项任务big.LITTLE processing能够将两个不同但相互兼容的处理器结合在同一个的片上系统,并允许功耗管理软件来为每项任务选择最匹配的单个或多个处理器。而从应用软件的角度看,不同的处理器之间并无区别。 “LITTLE”,最低功耗的处理器,这里指Cortex-A7,通过运行操作系统及某些应用程序来实现“随时随地网络接入”的基本任务,如社交媒体和音频播放。随后,操作系统和应用程序可以迅速切换至更高性能的处理器来满足更高性能需求的任务,比如导航和游戏。这一切换的时间大约为20毫秒的数量级。这个灵活的解决方案,为各项任务选择合适的处理器,使高度优化的处理技术成为可能,从而为常规工作量实现大幅节能。系统IP和工具确保多核处理方案的一致性和优化度两个处理器间工作量的高效无缝切换,离不开领先的ARM系统IP,例如AMBA® 4 ACE一致性扩展。它确保了Cotex-A15和Cotex-A7之间以及整个系统中全缓存、输入输出(I/O)、处理器之间的一致性。由此,软件和应用程序可以在用户不察觉的情况下实现无阻运行,随着任务的重新分配,big.LITTLE用户也将获得最优的用户体验。big.LITTLE功耗管理软件是由ARM生态系统合作伙伴采用ARM DS-5 工具和快速模型虚拟原型技术开发,比处理器的发布还要早几个月的时间。这一目前已向ARM的领先合作伙伴的虚拟平台,包括Cortex-A15和Cortex-A7处理器及能够进行全系统软件开发的缓存一致性互联系统IP。

  • 量块拼接比较工件测量不确定度

    工件外圆直径17.5mm(-0.006/-0.017)数显千分尺评定的不确定度是3微米,如果改为与四等量块拼接17.5mm进行比较测量,有效降低数显千分尺示值误差引入的分量,减小测量不确定度。拼接后不确定度该如何评定?在线求解?谢谢!!![img]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252158004617_7638_3535012_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252158005167_978_3535012_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252158005167_978_3535012_3.png[/img]

  • 【分享】针织棉服装和针织拼接服装等8项国家标准发布

    近日,国家质量监督检验检疫总局、国家标准化管理委员会发布2011年第6号标准发布公告,批准了192项国家标准,其中,纺织服装相关标准8项, 包括《针织棉服装》、《针织拼接服装》、《抗电磁辐射精梳毛织品》等,均为首次制定,若您的产品涉及到以上相关标准,应准确掌握新标准的内容,合理调整生产过程中相关的各种参数,以保证您的产品质量符合最新要求。相关纺织标准目录见下表:标准号 标准名称 代替标准号 批准日期 实施日期 GB/T 26378-2011粗梳毛织品 /2011-5-12 2011-9-15 GB/T 26379-2011纺织品 木浆复合水刺非织造布 /2011-5-12 2011-9-15 GB/T 26380-2011纺织品 丝绸术语 /2011-5-12 2011-9-15 GB/T 26381-2011合成纤维丝织坯绸 /2011-5-12 2011-9-15 GB/T 26382-2011精梳毛织品 /2011-5-12 2011-9-15 GB/T 26383-2011抗电磁辐射精梳毛织品 /2011-5-12 2011-9-15 GB/T 26384-2011针织棉服装 /2011-5-12 2011-9-15 GB/T 26385-2011针织拼接服装 /2011-5-12 2011-9-15

  • ShockMixer-1 脉冲振荡样品前处理器

    ShockMixer-1 脉冲振荡样品前处理器

    https://ng1.17img.cn/bbsfiles/images/2013/04/201304221153_436514_2690_3.jpg不同于拍击式均质器,脉冲震荡样品前处理器采用一种变革性的新技术,用于食品微生物检测时的样品前处理,具有独特的优势。ShockMixer-1 脉冲震荡样品前处理器通过高频率震动内装食品样品的专用胶袋,产生强烈冲击波与高速搅动联合作用,将食品中的微生物驱赶到样品悬液中。经实践显示,对于大部分的食品样品,ShockMixer减轻了对样品的破坏,从而极大地减少了样品碎片的产生。用拍击式均质器处理食品,会产生大量的食品碎片,导致采用某些快速检测新技术检测食源性病原菌时,会产生一些干扰。而ShockMixer-1 脉冲震荡样品前处理器的食品样液澄清度高,可避免以上的缺点,从而与快速检测方法更配套。2007年8月颁布的《ISO7218:2007食品及畜牧微生物检验总则》将ShockMixer-1 脉冲震荡样品前处理器指定为标准的样品前处理方法。产品优点2 《ISO7218:2007食品及畜牧微生物检验总则》指定标准处理方法;2 高效的样品处理方法,微生物的释放效果等同甚至优于其他方法;2 无需打碎样品,不会导致样品处理袋的破裂;2 样品碎片少,样液澄清,易于取样、过滤,节省时间;2 减少食品碎片的产生,最大限度地减少对一些快速检验方法的干扰因素。下面两个曲线表明用ShockMixer-1 脉冲震荡样品前处理器和拍击式均质器处理食品样品时,释放的细菌数量,两者是相当的:https://ng1.17img.cn/bbsfiles/images/2013/04/201304221153_436515_2690_3.jpg

  • 【原创】电子针头处理器---处理用完的针头

    《电子针头处理器》对用完的针头进行瞬间处理。消除针头血迹的扩散污染,根绝艾滋病毒等所有传染性病毒病菌的传染;减少医用垃圾处理的危险性,降低处理费用。咨询:159 4000 8578

  • 【求助】硬水软化处理器的怎么设计啊?

    我是今年才毕业的学生,才工作2个来月,我们厂打算搬迁,新厂那边是自己钻井,取地下水,我们老板要叫我设计个硬水处理器,主要是除钙镁离子,其实市场上也有卖的,可老板要我自己设计.要求处理量达到2吨/小时,在这里向各位GGJJ求助了..

  • 发反传统的便携式预处理器在超低排放的应用-气态除湿

    随着“超低排放”限值的实施,这种低浓度SO[sub]2[/sub]的排放现状对各级环境监测部门在执行适用性检测、技术验收以及比对监测过程中使用的现场监测系统的灵敏度、检测限、准确度等指标提出了更高要求。 各级环境监测部门使用的便携式烟气分析仪不断的更新换代,从早期定电位电解法便携式烟气分析仪到现在的非分散红外吸收法(NDIR)便携式烟气分析仪、非分散紫外吸收法(NDUV)便携式分析仪及差分光学吸收法(DOAS)便携式分析仪等。便携式分析仪的SO[sub]2[/sub]检测量程也从早期的0~1000PPM到0~200PPM,再到近年来0~50PPM乃至更低量程,目的都是为了能够在“超低排放”下更好、更稳定准确的测量出烟气中气态污染物的浓度。但常常会遇到在“高湿低硫”的烟气监测中,监测值几乎为0的情况,其主要原因则是监测系统中的便携式预处理器在除湿的过程中析出冷凝液,并与烟气接触,造成烟气中的SO[sub]2[/sub]组分被冷凝液吸收而引起。针对这个问题,我探讨了两种类型的便携式预处理器结构原理以及在“高湿低硫”烟气比对测试中的应用。 1. 便携式烟气预处理系统 烟气预处理系统的主要功能就是将烟气在不影响待测物浓度的情况下处理成接近标准气般的高品质气体,以满足分析仪的准确、稳定的分析要求,这主要就是指烟气的除尘和除湿。便携式烟气预处理系统一般包括过滤器、烟气“除湿”器、采样泵、蠕动泵和相关的控制部件,其中最为核心的就是“除湿”器。目前,最常见的就是冷凝器来对烟气除湿,采用的是冷却除湿法;冷凝器控制冷却温度位于2℃-5℃,将烟气中的水蒸气快速冷凝从而脱除水分,达到“除湿”的目的。另一种,独特技术的Nafion管进行烟气除湿,采用的是Nafion干燥法;Nafion管是以磺酸基的化学亲和力为基础,管内外的湿度差为驱动力进行水分子迁移,达到“除湿”的目的。1.1 基本原理 半导体制冷是由J.C.A.珀耳帖在1834年发现了热电致冷和致热现象-即[url=http://baike.baidu.com/view/2280842.htm][color=windowtext]温差电效应[/color][/url],由N、P型材料组成一对热电偶, 当热电偶通入直流电流后,因直流电通入的方向不同,将在电偶结点处产生吸热和放热现象,称这种现象为[url=http://baike.baidu.com/view/212653.htm][color=windowtext]珀尔帖效应[/color][/url]。通过改变电流的大小即可控制制冷温度,因此电子制冷器具有容易控温、无机械转动部件、无工作噪声、无制冷剂的腐蚀和污染、可小型化等特点应用在便携式烟气预处理器中。 将电子制冷器的冷端与圆柱形薄壁热交换器的外罩上紧密接触,通过制冷器来降低热交换器外壳的温度至设定值,烟气流经热交换器内时被迅速降温,烟气中的水蒸气冷凝,析出冷凝液存于热交换器内的内壁上,并逐渐从内壁上滑落,通过蠕动泵将冷凝液从排水口排出。烟气在通过热交换器后,去除存于烟气中的水蒸气而达到“除湿”的目的。电子冷凝器除湿后烟气的极限露点约为+2℃-+5℃。1.2应用分析 连接便携式采样探头,通电预热,设定冷却温度并待预处理稳定后,将采样探头放入烟道抽取烟气。烟气通过预处理内的取样泵进行抽取,流经采样探头与伴热管线后进入烟气预处理器进行“除湿”和“除尘”,输出干燥洁净的烟气至分析仪进行污染物的浓度分析。在“超低排放”的实际应用中,脱硫后的烟气露点约为45℃-65℃。烟气经过高温采样探头和高温伴热管线后进入便携式烟气预处理器,但由于伴热管线的后端至冷凝器入口端的管线没有任何的加温或者保温措施,烟气中的水蒸气会在此段管路内出现冷凝,造成SO[sub]2[/sub]组分被冷凝液吸收。其次,“高湿低硫”的烟气在热交换器内进行冷却除湿的过程中,同样会接触热交换器内壁上析出的冷凝液而引起SO[sub]2[/sub]组分的损失。研究发现,SO[sub]2[/sub]组分根据不同条件在电子冷凝器中的丢失率约为3%-10%,并随着烟气含水量的增大而增大;而在相同水分含量的烟气中,SO[sub]2[/sub]组分的丢失率随着SO[sub]2[/sub]浓度的降低而增大。 此外,由于电子冷凝器本身的局限性,制冷的效果将受到外部环境的影响。在室温环境25℃下,电子冷凝器可以处理含水量30%左右的烟气至出口露点约5℃~8℃左右,除湿率约为95%;当环境温度升高至35℃以上后,其制冷效率将直线降低,这将直接影响烟气的“除湿”效率,会将含有水蒸气的烟气送入分析仪,进而造成污染物浓度的偏差。因此,便携式电子冷凝预处理适用的烟气条件为“低湿低硫”或“高湿高硫”的情况下使用。2. 便携式烟气预处理器-Nafion干燥法2.1系统结构烟气Nafion干燥的方法主要运用Nafion管这个核心部件,Nafion管内外的湿度差为驱动力进行水分子迁移,进行气态除湿。2、基本原理 Nafion管的干燥原理完全不同于多微孔膜材料,没有物理意义上的小孔,且不会基于气体分子的大小来迁移气体。相反,Nafion管中气体的迁移是以其对磺酸基的化学亲和力为基础的。由于磺酸基具有很高的亲水性,所以Nafion管壁吸收气态水分子,会从一个磺酸基向另一个磺酸基传递,直到最终到达另外一侧的管壁,而气态水分子则会被干燥的反吹气带走。因此,Nafion管除湿的驱动力是管内外的湿度差,而非压力差或温度差。即使Nafion管内压力低于其周围的压力,Nafion管照样能对气体进行干燥。只要管内外湿度差存在,水分子的迁移就始终进行,因此Nafion的“除湿”过程,没有任何机械传动,无能量耗损,除湿反应快速等特点应用于便携式烟气预处理器中。便携式预处理采用了独特的设计方式,使用两根Nafion管来创建湿度差来进行烟气干燥。空气干燥管则是抽取环境空气进行干燥,将产生的干燥、洁净空气作为烟气干燥管的反吹气持续的对烟气进行干燥,将Nafion管内烟气里的水分子通过管壁迁移至管外,再由反吹气将水分子带走,进而达到“除湿”的目的。Nafion管除湿后烟气的露点突破了电子冷凝器的极限,到达0℃乃至-15℃烟气露点。2.3应用分析便携式Nafion干燥预处理器在“超低排放”的应用中,由于采用的是气态除湿将烟气内的水分子迁移走,需要杜绝烟气中水蒸气的冷凝的发生。便携式预处理器内则设立了一个独立的加温区域,通常设定至70℃-75℃,烟气干燥管的一半位于此区域,防止在水分子的迁移的过程中产生冷凝。在实际使用中,便携式的高温采样探头和高温伴热管线连接至预处理器的烟气入口,通电预热并稳定后,采样探头伸入烟道内抽取烟气。伴热管线的末端管线虽然没有加温或保温,但是连接在便携式烟气预处理的烟气入口上,位于预处理的独立加温区,这样就防止了此段管线内冷凝水的出现,同时减少了SO[sub]2[/sub]组分丢失率。另外,其独特的Nafion干燥技术在样气管路内不会产生冷凝水,再次大大降低了SO[sub]2[/sub]组分的丢失率。研究发现,SO[sub]2[/sub]组分根据不同条件在Nafion干燥管中的丢失率约为1%-2%,而且烟气含水量的变化及SO[sub]2[/sub]浓度的变化对此影响不大。便携式Nafion干燥预处理器可以处理含水量在40%左右烟气至出口露点约-5℃~0℃,除湿率约为98%~99%,并且外部环境温度对此影响较小,尤为适用于“高湿低硫”的烟气监测中。尽管Nafion便携式预处理器的除湿性能要优于冷凝便携式预处理器,但是Nafion材质的特性对其使用还有着些许限制。当Nafion管内附着大量颗粒污染物或油类聚集,将导致除湿性能的急速衰减;虽然Nafion可以快速的迁移水分子,但是对于液态水却无法迅速排出从而造成SO[sub]2[/sub]组分丢失; 使用Nafion预处理器的监测系统的监测结果相对于使用电子冷凝预处理器的监测系统更加的接近于CEMS的测量值。其中,二氧化硫的浓度差异相对于氮氧化物和氧含量来说则更加的明显,原因是电子冷凝预处理器在干燥烟气的过程中析出了大量的冷凝液,造成了二氧化硫组分的丢失,但氮氧化物和氧含量不会因冷凝液的产生而被吸收。

  • 有了解哈希氨氮预处理器的吗

    我厂安装的哈希在线监控设备是安恒代理的,最近氨氮预处理故障了,分析仪无法自动控制水泵取样,手动状态下能够采样,转到自动状态下,也是一直采样,必须关闭重新开启预处理器才能停止。现在买的分析仪已经出了质保,厂家过来维修,费用很高我想问一下,这个应该自己能维修吧

  • 原子力显微镜拼接缝合技术(Stitching)

    原子力显微镜拼接缝合技术(Stitching), 高分辨率成像技术例如AFM常常会受制于他们的最大扫描范围。当同时需要AFM高的侧向分辨率和一个大扫描范围时,图像拼接技术是一个解决方案。图像拼接常用于从批量制作的图片中生成一个单一的全景图像。在更先进的操作中,这项技术也能被用于结合批量AFM测量生成单一大图像。因此,大尺寸表面区域的AFM图像,例如1mm×1mm或100μm×100μm大小,能被简单的得到。

  • 首个可进行因式分解的量子处理器研制成功

    中国科技网讯 据物理学家组织网8月20日(北京时间)报道,美国加州大学圣巴巴拉分校的研究人员设计和制造了一个量子处理器,可成功地将合数15分解成3和5的乘积。虽然这只是一个最基本的质因数分解运算,但这项突破是研制可进行更复杂因式分解运算的量子计算机道路上的一个里程碑,对于数字加密和网络安全具有重要意义。研究结果提前发表于《自然·物理》杂志网络版。 “15虽是一个小数字,但重要的是,我们已经证明,我们可以在一个固态量子处理器上运行彼得·肖尔提出的质因数分解算法。这是此前从未进行过的。”论文的第一作者埃里克·卢塞罗说。他目前是IBM公司实验性量子计算的博士后研究员,这项研究是他在加州大学圣巴巴拉分校攻读物理学博士时进行的。 卢塞罗是出于实际应用的目的开展这项研究的。他解释说,大数的因式分解是网络安全协议的核心,比如最常见的RSA加密算法,其目前公开的最大密钥包含超过600个十进制数字,如果利用经典计算机和最知名的经典算法,对这个密钥进行因式分解需要花费的时间可能比宇宙的年龄还要长。而数学家彼得·肖尔于1994年构造了大数的质因数分解算法,证明利用量子计算机能够在多项式时间内对大数进行分解,从而从根本上动摇了当代密钥的安全基础。 因此,如果量子计算使得RSA加密不再安全,那用什么来取代它呢?答案是量子密码。卢塞罗说:“量子密码不仅更难以被破译,而且如果有人试图盗取信息,它就会改变系统,使发送方和接收方都能够察觉。”(记者 陈丹) 总编辑圈点 二战期间,英美两国研发计算机的初衷,是破解轴心国的密码。而量子计算机一开始引起科技界的兴趣,也是因为它能不费吹灰之力破解世界上最可靠的密码,这种加密算法已经历三十多年的考验。如果有一天量子计算机投入实用,它会是一根锐利的矛,能刺透最坚固的盾。而更加坚固的盾牌则是正在研发的量子密钥,它也是银行和网站的运营者期望的理论上不可攻破的终极方案。 《科技日报》(2012-08-21 一版)

  • 怎么维修哈希氨氮预处理器

    我厂安装的哈希在线监控设备是安恒代理的,最近氨氮预处理故障了,分析仪无法自动控制水泵取样,手动状态下能够采样,转到自动状态下,也是一直采样,必须关闭重新开启预处理器才能停止。现在买的分析仪已经出了质保,厂家过来维修,费用很高我想问一下,这个应该自己能维修吧

  • 求助-生活饮用水水质处理器卫生安全与功能评价规范

    谁有:生活饮用水水质处理器卫生安全与功能评价规范,请发一份给我,或告知链接,谢谢!我的邮箱:xmqhp@163.com1.生活饮用水输配水设备及防护材料卫生安全评价规范.doc 2.生活饮用水化学处理剂卫生安全评价规范.doc 3.生活饮用水一般水质处理器卫生安全与功能评价规范.doc 4.生活饮用水矿化水器卫生安全与功能评价规范.doc 5.生活饮用水反渗透处理装置卫生安全与功能评价规范.doc

  • 看旁流水处理器为你介绍水质污染原因及归类

    现在水污染现象是比较严重的,但是大多数人们并不太清楚造成水污染的原因有哪些,今天旁流水处理器小编就要简单的向大家介绍一下与这两部分内容相关的问题,他的污染原因主要有下面的几点,以及水污染的种类下面都是有介绍的,希望小编下面的介绍能够帮助大家了解这两部分的内容。  污染原因:  未经人类活动污染的自然界水的物理化学特性及其动态特征。物理特性主要指水的温度、颜色、透明度、嗅和味。水的化学性质由溶解和分散在天然水中的气体、离子、分子、胶体物质及悬浮质、微生物和这些物质的含量所决定。天然水中溶解的气体主要是氧和二氧化碳;溶解的离子主要是钾、钠、钙、镁、氯、硫酸根、碳酸氢根和碳酸根等离子。生物原生质有硝酸根、亚硝酸根、磷酸二氢根和磷酸氢根离子等。此外,还有某些微量元素,如溴、碘和锰等。胶体物质有无机硅酸胶体和腐殖酸类有机胶体。悬浮固体以无机质为主。微生物有细菌和大肠菌群。  基本归类:  饮用水类:饮用水I类:国家级自然保护区,水质未受污染。饮用水II类:较清洁,过滤后可成为饮用水。饮用水III类:过滤清洁后可用作普通工业用水污水类IV类:普通农业用水,灌溉用。V类:普通景观用水。劣V类:无用脏水。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制