偏振轴定仪

仪器信息网偏振轴定仪专题为您提供2024年最新偏振轴定仪价格报价、厂家品牌的相关信息, 包括偏振轴定仪参数、型号等,不管是国产,还是进口品牌的偏振轴定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合偏振轴定仪相关的耗材配件、试剂标物,还有偏振轴定仪相关的最新资讯、资料,以及偏振轴定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

偏振轴定仪相关的厂商

  • 深圳市激埃特光电有限公司,专业生产各种滤光片,滤色片:红外滤光片,窄带滤光片,彩色滤光片,带通滤光片,干涉滤光片,红外截止滤光片,偏振镜,衰减片(中性密度滤光片),长波通滤光片,短波通滤光片,隐形玻璃,人脸识别滤光片,虹膜识别滤光片,安防监控滤光片,反射镜,分光镜,隔热片,负性滤光片,RGB色片,光栅,来料镀膜,IR-CUT等专业的光学镜片、光学滤光片厂家、滤光片生产厂家.地处物流四通八达,供应资源丰富,技术及市场活跃,生产及加工高效率的深圳市龙岗区宝龙工业城深长岗科技园区内。酒店式工厂环境,激埃特是家精密光学滤光片及精密光学镜片生产厂家,拥有多台先进光学真空镀膜机,以及全套相关检测仪器和装置,采用先进电子枪蒸发离子辅助沉积多层薄膜技术(IAD),专注于光电器件及光学仪器滤光片的应用和开发。 公司产品批量应用于考勤机(手纹,掌纹,静脉及人脸识别),安防监控系统,防伪识别系统,智能灯具,卫橱感应器系统,舞台灯光及激光演示系统,投影光学器件,激光器件以及生化医疗光学器件。 公司人性化管理,注重人才,技术创新,为全体员工提供再学习深造机会,不断提升员工福利,注重员工工作环境改进,关心员工生活。 激埃特以追求质量,客户满意为宗旨,率先通过ISO9001:2008质量管理体系认证,产品通过SGS认证,符合ROHS指标要求.,对客户平等对待,合作创新,互惠互利,价格适宜,交期快捷,品质稳定,服务周到,竭诚为天下客户提供高质量的精密光学滤光片产品.公司的主要产品有:窄带滤光片带通滤光片长波通滤光片短波通滤光片红外滤光片反射镜增透膜偏振镜分光镜合光镜色片负性滤光片中性密度衰减片光学玻璃平面光栅OED光学镀膜代加工
    留言咨询
  • 广州优西科学仪器有限公司作为光电检测仪器仪表专业提供商,热诚为光通讯行业生产企业,教学、科研单位,提供自主品牌的仪器仪表等产品服务;产品包括:可调激光光源、光功率计、可编程光衰减器、插回损仪、光偏振发生器等等; 同时为客户提供PLC 、AWG 、EDFA、SFP、CWDM / DWDM/GFF、Isolater等光器件/模块的自动检测系统及自动化生产设备等定制服务。
    留言咨询
  • 瑞凯通信科技成立于2008年,总部位于深圳沙井众恒晟科技园,公司始终专注于研发和生产高性能的保偏高功光率无源器件。产品包括:保偏准直器,保偏隔离器,保偏环形器,保偏 FWDM/DWDM,保偏拉锥/波片式耦合器,保偏分路器(1x2,1x3,1x4,1x8,1x16),保偏跳线,起偏器,消偏器,偏振分束器,偏振合束器,高功率大光斑准直器(1W-20W),高功率准直输出隔离器(10W-20W),高功率隔离器(10W-20W),高功率环形器,高功率跳线(FC/APC,SMA,LC,SC接头)。产品销往欧洲,美国,加拿大,新加坡,印度,被广泛运用于光纤高速率通信系统,激光技术,传感探测,航天航空,环境监测,医疗设备等重要领域。瑞凯的保偏器件以卓越的性能,高可靠性,在高速光网络及超快测量领域有广泛的应用。我们自主研发的高功率光纤产品可以承受高达50W的平均功率。瑞凯一直是高功率器件和保偏器件用户的首选品牌之一。
    留言咨询

偏振轴定仪相关的仪器

  • 偏振片 400-628-5299
    1.偏振片:通常是指将二向色性物质涂在透明薄片上制成的偏振片,此种偏振片损伤阈值较小,而且无法分离出p偏振光和s偏振光;A. OPSP系列偏振片偏振片(Plastic Sheet Polarizers)选型表:偏振片(Plastic Sheet Polarizers)型号名称尺寸(mm)通光孔径Ф0(mm)波长范围(nm)OPSP12.7偏振片Ф12.7*4mm8.9400-700OPSP25.4偏振片Ф25.4*4mm20.3400-700B. 偏振片(进口)1)偏光板示意图及尺寸图:相关说明: 1.把含有卤化银的玻璃融解,再经过热处理,延伸,研磨和还原工序而制成的偏光器件。其制作过程大致如 下:在热处理工序中沉淀出卤化银粒子,然后把玻璃加热到软化点附近并延伸,这样卤化银粒子就会变成 椭圆形,研磨后再进行氢还原,把卤化银粒子还原为银。 2.玻璃中的银椭圆粒子的长轴方向平行的电场被吸收,具有和其长轴垂直方向的电场的光通过。 3.透过方向:100W/cm2(CW)、6J/cm2、脉冲宽度13ns(脉冲)吸收方向:25W/cm2(CW)、0.1J/cm2、 脉冲宽度13ns(脉冲)有效尺寸(mm)8.5× 8.5PLC系列铬膜分束镜(SIGMA)选型表:型号保护框尺寸(mm)波长范围(nm)最小透过率(%)PLC-10-660ø 30× 6630~70083PLC-10-800ø 30× 6740~86091PLC-10-900ø 30× 6840~96094PLC-10-1060ø 30× 6960~116095PLC-10-1310ø 30× 61275~134598PLC-10-1550ø 30× 61510~1590982)薄膜偏光板示意图及曲线图:相关说明: 1.薄膜偏光板是一种薄膜滤光镜,此膜夹在两块玻璃中间,并安装在一个铝框内; 2.它不仅可以从一个非偏光中提取线偏光,而且,还可以象ND 滤光片一样用作光衰减器; 3.三种波长可选:紫外用(320~400nm);可见光用(400~700nm);近红外用(760~2000nm); 4.使两块偏光板处于通光状态(开),通过一束直线偏光{两块透过率(平行放置)} 使两块偏光板处于 不通光状态(关),没有光通过{两块透过率(正交放置)}。我们称此时的透过率为消光比。薄膜偏光板(SIGMA)选型表:型号使用波长(nm)保护框尺寸(mm)厚度(mm)通光孔径(mm)防反射膜NSPFU-30C320~400Ф30× 62.4ø 24SLAR (双面)SPF-30C-32400~700Ф30× 63ø 24BMAR(双面)SPF-50C-32400~700Ф30× 63ø 44BMAR(双面)SPFN-30C-26760~2000Ф30× 63ø 24SLAR (双面) 3)塑料薄膜偏光板(进口)示意图及曲线图:塑料薄膜偏光板(SIGMA)选型表:型号设计波长(nm)D(mm)T(mm)USP-25.4C-38400~700ø 25.40.8USP-30C-38400~700ø 30.00.8USP-50C-38400~700ø 50.00.8USP-100C-38400~700ø 1000.8C. 超快激光用偏振片(进口)曲线图、示意图及相关参数: 选型表:
    留言咨询
  • A. 激光波长偏振分光立方体:Narrow Band Polarizing Beamsplitter命名规则:OPBS边长-波长型号名称透射率TP反射率RS波长消光比边长OPBS10-488488nm偏振分光立方体>95%>99%488>100:110mmOPBS20-488488nm偏振分光立方体>95%>99%488>100:120mm OPBS10-514514nm偏振分光立方体>95%>99%514>100:110mmOPBS20-514514nm偏振分光立方体>95%>99%514>100:120mm OPBS10-532532nm偏振分光立方体>95%>99%532>100:110mmOPBS20-532532nm偏振分光立方体>95%>99%532>100:120mm OPBS10-632.8632.8nm偏振分光立方体>95%>99%632.8>100:110mmOPBS20-632.8632.8nm偏振分光立方体>95%>99%632.8>100:120mm OPBS10-10641064nm偏振分光立方体>95%>99%1064>100:110mmOPBS20-10641064nm偏振分光立方体>95%>99%1064>100:120mmB. 宽带偏振分光立方体 Broadband Polarizing Beamsplitter命名规则:OBPS边长-波长范围(取微米数)型号名称波长范围透射率TP反射率RS边长OBPS20-0406宽带偏振分光立方体450-680>95%>99%20OBPS20-0608宽带偏振分光立方体650-850>95%>99%20OBPS20-0912宽带偏振分光立方体900-1200>95%>99%20OBPS20-1215宽带偏振分光立方体1200-1550>95%>99%20
    留言咨询
  • 偏振光纤(偏振起偏光纤)所属类别: ? 光纤/光纤器件 ? 特种光纤/光子晶体光纤 产品简介 偏振光纤(780nm—1550nm) 高性价比偏振光纤和起偏器! 偏振光纤(Polarizing fiber,即PZ 光纤)是一种特殊光纤,即在光纤中只能传播一种偏振态的光。通常偏振光纤(PZ)都是通过特殊的设计结构(如化蝶结型)来产生较高的双折射效应,这种双折射效应会使特定偏振方向的光沿着光纤传播,而其他偏振方向的光则会受到较高的光学损耗,迅速衰减。 偏振光纤、PZ fiber、PZ、单偏振光纤、蝴蝶结型偏振光纤、熊猫型偏振光纤、偏振控制器、起偏光纤、Polarizing fiber偏振光纤(Polarizing fiber)是一种特殊的光纤,类似于偏振起偏器,在这种光纤中有且只能使一种偏振态的光通过,其他偏振态的光则在较高的消光比(30dB)作用下迅速消失。PZ光纤是通过一个特殊的结构设计(蝴蝶结型、老虎型)产生较高的双折射效应进而产生较高的消光比引起其他偏振态的光迅速消失。此外,偏振光纤(PZ)在不同的波长处都具有较宽的偏振带宽(100nm)、高消光比(30dB)和低衰减特性,且偏振带宽及消光比可以通过盘卷PZ光纤线圈直径的大小进行调节(称为光纤排布)。当PZ线圈直径变小时其偏振带宽也会随之变窄,并向低波长方向偏移。偏振带宽定义为快轴20dB与慢轴3dB之间的波长范围。与线偏振不同,基于偏振光纤(PZ)的起偏器是一个全光纤方案,能够提供优越的消光比、低衰减和良好的温度稳定性。 主要特点:l 老虎型(Tiger)设计结构 l 偏振带宽: 100nm l 高消光比:30dB l 设计波长(nm):780、840、1060、1310、1550 主要应用:u 光纤陀螺仪;u 光纤激光器;u 线偏振器;u 相干通信;u 冷原子实验;u 光纤电流传感器; 图1、偏振光纤(PZ)工作原理及偏振带宽示意图 图2、偏振偏光纤应用于冷原子项目示意图 图2、光纤陀螺仪组件和光纤电流传感器应用 如您有需求或想要进一步了解抗辐射光纤(Rad Hard fiber),请登录上海昊量光电设备有限公司,拨打电话:或! 分享到 : 人人网 腾讯微博 新浪微博 搜狐微博 网易微博 相关产品 空间光-单模光纤耦合稳定系统 超宽带起偏器(消色差偏振片) 光子晶体光纤/微结构光纤(PCF) 陀螺专用保偏光纤 径向偏振转换器/径向偏振片/径向偏振器
    留言咨询

偏振轴定仪相关的资讯

  • 黑洞追踪者:伽马暴偏振探测仪
    在宇宙深处,像黑洞这样的神秘天体一直吸引着大量的天文学家和天文爱好者的目光,但是目前能够很好观测这种星体的手段并不多。  而天宫二号空间实验室携带的一台天文观测设备,就有可能在这一领域获得突破,它就是伽马暴偏振探测仪。  这台设备叫做伽马射线暴偏振探测仪,它的任务是对宇宙当中的伽马射线暴进行探测。在宇宙中,只有温度极高、密度极高、磁场极强的星体里,才可能产生这种射线,因此它的存在可能就是黑洞留下的痕迹。  伽马暴偏振探测仪首席科学家 张双南研究员:因为伽马射线暴,伽马射线的产生,是从极端相对论性的喷流里面产生的,这种极端相对论性的喷流,它的速度接近光速,这是在黑洞附近,或者是在中子星附近,极端的引力场里面所产生出来的。  在过去,对伽马射线的测量只能测到它的能量,方向,和时间等信息,但是这一次,天宫二号要从全新的领域来探寻这种宇宙中的神秘射线,这就是伽马射线的偏振信息。那么什么是偏振呢?这其实是电磁波,也就是光的一种特性。  伽马暴偏振探测仪首席科学家 张双南研究员:如果我们到海边,我们看到海面,白茫茫的一片,因为从海面来的这种光的偏振的,如果戴上偏振的镜子之后,我们就能够看到海面上的波浪,看得比较清楚。  同样伽马射线的偏振特性里,也记录了产生它的星体的结构甚至磁场的形态信息。解读这些信息,很可能让我们对黑洞有新的认识。所以天宫二号携带的这台伽马射线偏振探测仪就是要以独特的设计,对伽马暴的偏振性质进行系统性地高精度测量,填补这个国际天文研究的空白。  伽马暴偏振探测仪首席科学家 张双南研究员:它是一种特殊的天文望远镜,它实际上是由1600个,对伽马射线光子敏感的器件组成的,通过分析伽马射线在这1600个敏感器件上的信号分布,我们最终来推算伽马射线的偏振性质。  为了打造这个探索宇宙秘密的特殊望远镜,来自瑞士和波兰的科学家也参与到了它的研制当中,这也成了天宫二号上所携带的唯一一台国际合作的科学设备,因此,全世界的科学家都在对这次任务充满期待。  伽马暴偏振探测仪首席科学家 张双南研究员:我们希望这台仪器设计的灵敏度比国际上已有的,专门用于伽马射线暴偏振的仪器的灵敏度提高至少十倍,所以无论是从它的灵敏度和它的精度两方面来讲我们这个仪器都是最好的。
  • 等离子体“彩虹”芯片级智能光谱仪,可实现“光谱+偏振”双功能传感
    近年来,研究人员和业内主要厂商已将研发重心转向微型化、便携式且低成本的光谱仪系统,使之可以在日常生活中实现现场、实时和原位光谱分析的许多新兴应用。然而,受到过度简化的光学设计和紧凑型架构的机械限制,微型光谱仪系统的实际光谱识别性能通常远低于台式光谱仪系统。如今,克服这些限制的一种策略便是在光子方法学中引入深度学习(DL)进行数据处理。据麦姆斯咨询报道,近日,美国纽约州立大学布法罗分校(University at Buffalo,the State University of New York)与沙特阿卜杜拉国王科技大学(King Abdullah University of Science & Technology)的联合科研团队在Nature Communications期刊上发表了以“Imaging-based intelligent spectrometer on a plasmonic rainbow chip”为主题的论文。该论文第一作者为Dylan Tua,通讯作者为甘巧强(Qiaoqiang Gan)教授。在这项研究工作中,研究人员开发了一种紧凑型等离子体“彩虹(rainbow)”芯片,能够实现快速、准确的双功能传感,其性能可在特定条件下超越传统的便携式光谱仪。其中的分光纳米结构由一维或二维的梯度金属光栅构成。该紧凑型等离子体光谱仪利用普通相机拍摄的单幅图像,即可精确地获得照明光源光谱的光谱信息和偏振信息。在经过适当训练的深度学习算法的辅助下,研究人员仅用单幅图像就能表征葡萄糖溶液在可见光光谱范围内的双峰和三峰窄带照明下的旋光色散(ORD)特性。该微型光谱仪具有与智能手机和芯片实验室(lab-on-a-chip)系统集成的潜力,为原位分析应用提供新的可能。研究人员利用彩虹捕获效应(rainbow trapping effect)来开发片上光谱仪系统。图1展示了该研究工作所提出的片上光谱仪和一维彩虹芯片的设计原理。如图1a所示,该光谱仪利用等离子体啁啾光栅实现分光功能。这种表面光栅几何形状的逐渐变化,导致了局部等离子体共振的空间调谐(即为光捕获“彩虹”存储)。如图1b所示,研究人员采用聚焦离子束铣削技术,在300 nm的银(Ag)薄膜上制备了啁啾光栅。当白光垂直入射时,通过简单的反射显微镜系统(如图1c),就可以观察到明显的“彩虹”色图像,如图1d的顶部所示,该现象源于光栅引发的等离子体共振。图1 片上光谱仪的等离子体啁啾光栅根据这些空间模式图像,可以建立共振模式与入射波长一一对应的关系,这是片上光谱仪的基础。因此,研究人员探讨了该光谱仪对任意光谱特征的空间分辨能力。通过深度学习辅助的数据处理和重建方法,研究人员利用这种分光功能可以构建用于光学集成的智能化、微型化光谱仪平台。具体而言,研究人员提出了基于深度学习的智能彩虹等离子体光谱仪概念,并构建了带有等离子体啁啾光栅的光谱仪示例,如图2所示。该光谱仪利用深度神经网络预测了所测量的共振模式图像中的未知入射光光谱,而无需使用传统的线性响应函数模型。实验中的光谱仪架构如图2a所示。智能光谱仪主要由三部分构成:空间模式、预训练神经网络以及对应的波长。图2 基于深度学习的数据重建光谱分辨率是评价传统光谱仪性能的重要参数之一。因此,研究人员对该光谱仪的分辨率做了详细测试,测试结果如图3所示。图3 智能等离子体光谱仪的分辨率以上初步测试数据表明,智能彩虹芯片光谱仪具有实现高分辨率光谱分析的潜力,其性能可与传统台式光谱仪相媲美。随后,研究人员将一维光栅扩展到二维,以利用紧凑型智能等离子体光谱仪实现偏振光谱的测定,其性能超越了传统的光学光谱仪系统。同时,研究人员展示了等离子体彩虹芯片光谱仪可以引入简化、紧凑且智能的光谱偏振系统,具有准确且快速的光谱分析能力。图4a为具有梯度几何参数的二维光栅。图4 用于测定偏振光谱的二维啁啾光栅接着,研究人员利用该二维偏振光谱仪芯片对旋光色散进行了简单而智能的表征。图5a为传统的旋光色散系统测量由物质引起的旋光度随入射波长的函数变化。最后,研究人员展示了将二维光栅作为光谱偏振系统,并介绍了用于葡萄糖传感应用的示例。图5 更简单、准确且智能的光谱偏振分析综上所述,本研究中提出了一种集成了片上彩虹捕获效应与紧凑型光学成像系统的智能芯片级光谱仪。研究结果表明,该等离子体芯片可以在可见光光谱(470 nm - 740 nm)范围内区分不同的照明峰值。该芯片充分利用其波长敏感结构,能够根据照明光谱峰值显示不同的等离子体共振模式。随后将芯片扩展到二维结构,共振模式的复杂性增加,从而在入射光偏振方面提供更多信息。通过使用片上共振模式的空间和强度分布图像来训练深度学习算法,研究人员在同一系统内分别实现了光谱分析和偏振分析。随后,研究人员利用一种将旋光引入透射光的手性物质(即葡萄糖),证明了所提出光谱仪在旋光色散传感方面的可行性,旋光色散是一种有助于手性物质检测和定量的偏振特异性特征。深度学习模型的分析表明,该算法能够基于等离子体芯片的共振模式准确预测葡萄糖引入的旋光。即使在分析多峰照明下的共振模式时,这种性能也得到了保留。这种由深度学习支持的基于图像的光谱仪能够通过利用纳米光子平台的单幅图像同时进行光谱分析和偏振分析。因此,该光谱仪标志着在单一紧凑型且轻量化设计中实现了高性能的光谱偏振分析,为深度光学和光子学在医疗保健监测、食品安全传感、环境污染检测、药物滥用传感以及法医分析等领域的应用赋能。这项研究获得了沙特阿卜杜拉国王科技大学物理科学与工程部的科研基金(BAS/1/1415-01-01)和NTGC-AI项目(REI/1/5232-01-01)的资助和支持。
  • HORIBA 用户动态|中科院半导体所关于角分辨偏振拉曼光谱配置的研究
    撰文:刘雪璐等众所周知,实验上已经有多种手段可以实现角分辨偏振拉曼光谱(arpr)测试,但是不同配置往往会呈现出不同的结果。常用的arpr实验配置是固定入射激光和散射信号的偏振方向,旋转样品。但是,随着低维材料的兴起,样品尺寸往往只有微米量级,而旋转样品会导致样品点移动,很难实现对微米级样品的原位角分辨拉曼光谱测试。所以重新系统地研究各种arpr配置的优缺点并且找到对于微米级晶体材料优的实验方法显得十分必要。近,中国科学院半导体研究所谭平恒研究组系统全面地分析了三种测量arpr光谱的实验配置,给出了一般形式的拉曼张量在不同配置下拉曼强度的计算方法,并具体地以高定向热解石墨(hopg)的基平面和边界面为例,研究了这些arpr配置在二维材料拉曼光谱方面的应用。该工作使用了horiba公司labram hr evolution型全自动高分辨拉曼光谱仪,分析软件为labspec 6.0。全自动拉曼光谱仪快速的数据采集和强大的数据处理功能,为本工作的顺利完成提供了技术保障。今天在本文中,你将读到: 三种测量arpr光谱的实验配置及优缺点分析 高定向热解石墨的基平面和边界面arpr光谱测量及结果分析三种测量arpr光谱实验配置及优缺点分析图1. 三种测量arpr光谱的实验配置示意图:(a)αlvr和αlhr,(b)vlvr和vlhr以及(c)θlvr和θlhr。其中光路中偏振镜(polarizer)的使用是为了保证入射激光保持竖直偏振。单色仪入口的检偏镜(analyzer)用于选择沿竖直或水平偏振的拉曼信号。半波片用于改变入射激光或者散射光的偏振态。实验室坐标系(xyz)用黑色的箭头表示,而晶体坐标系(x’y’z’)用灰色的箭头表示。红色的双向箭头代表了照射到样品上的入射激光的偏振方向,蓝色的双向箭头代表了由竖直或水平检偏镜选择出的拉曼散射光的偏振方向。测量arpr光谱的实验配置如图1,三种配置的优缺点分别为:(a)αlvr和αlhr:改变入射激光的偏振方向,固定散射信号的偏振方向,而样品固定不动。这种偏振配置在测试过程中只需要通过旋转入射光路上半波片的快轴方向来改变入射激光的偏振方向。其优点在于便于操作,且保证了arpr光谱的原位测试。目前商业化的拉曼光谱仪,如labram hr evolution型拉曼光谱仪集成了自动化控制的半波片,这相比于手动旋转入射光路上半波片快轴方向的操作更为方便,测量结果更准确。(b)vlvr和vlhr:固定入射激光和散射信号的偏振方向,旋转样品。这种偏振配置被广泛应用于研究晶体材料拉曼光谱的各向异性,分别对应于常说的平行偏振(通常记为vv或yy)和交叉偏振(通常记为vh或yx)。其优点在于光路简单,而缺点为在旋转样品过程中不可避免地会导致样品点的移动,很难实现对微米级样品的原位角分辨拉曼光谱测试,使得测试技术难度增加。(c)θlvr和θlhr:在入射激光和散射信号的共同光路上设置半波片,通过旋转半波片的快轴-方向,同时改变入射激光及散射信号的偏振方向,而样品固定不动。这种偏振配置的优点同样是保证了arpr光谱的原位测试,但在低维材料的arpr光谱测量中尚未得到广泛的应用。上述三种arpr光谱的实验配置中,种配置(a)αlvr和αlhr可以借助自动化控制的半波片实现快速测量,是一种快速有效地测量arpr光谱的实验配置。第二种(b)vlvr和vlhr和第三种配置(c)θlvr和θlhr是等价的,这可以通过计算一般形式的拉曼张量在这两种配置下拉曼强度证实, 而后一种配置以其简便性和准确性等优势可以作为前一种的替代,从而可以更为高效地测量诸多微米级样品的arpr光谱。高定向热解石墨的基平面 & 边界面arpr光谱测量及结果分析二维层状晶体材料以其独特的物理、机械、化学和电学特性等迅速成为过去十余年国际科学研究的热点。近报道的一些垂直排列的二维层状晶体材料以及它们的异质结构,它们在边界面上能呈现出某些优于基平面的性质。这些各向异性材料的诸多性能随晶向而变,使其在纳米器件方面有着非常广阔的应用前景。hopg是石墨烯的母体材料,其由单层碳原子层即石墨烯依靠层间范德华力有序地堆垛而成,所以hopg可以作为二维层状晶体材料的代表。为了展示了不同arpr光谱的实验配置在二维层状晶体材料拉曼光谱测量以及各向异性研究方面的应用,研究人员对高定向热解石墨hopg的基平面(如图2)和边界面(如图3)分别进行了arpr光谱的测量。通过研究hopg基平面以及边界面上g模的拉曼强度对不同arpr光谱实验配置的依赖性,进一步证实了旋转样品的偏振测试技术(图1(b)vlvr和vlhr)和在入射激光及散射信号共同光路上放置半波片的偏振测试技术(图1(c)θlvr和θlhr)的等价性。后一种偏振测试技术可以作为前一种的替代,使得平面内各向异性材料的arpr光谱测量更为简便和准确。图2.(a)hopg基平面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr,hopg基平面的g模拉曼强度igb(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg基平面的g模拉曼强度igb(g)随变化的坐标图。(d)偏振配置θlvr和θlhr下,hopg基平面的g模拉曼强度igb(g)随θ变化的坐标图。图3.(a)hopg边界面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr下,hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg边界面的g模拉曼强度ige(g)随β变化的坐标图。(d) 偏振配置θlvr和θlhr下,hopg边界面的g模拉曼强度ige(g)随θ变化的坐标图。对于垂直排列的二维层状晶体材料,单层厚度仅有亚纳米的级别,无法用光学显微镜对它们的晶向进行准确判断,目前急需一种快速、无损的鉴别方法。中国科学院半导体研究所谭平恒研究组进一步发现,当入射激光偏振方向与hopg碳平面取向平行时,其g模强度达到大值。基于这一特征,研究人员利用arpr光谱对hopg的边界面进行了晶向指认。这种方法还将有望推广到其他垂直排列的层状材料晶向的无损快速鉴别。图4. (a)hopg的边界面的光学图像,hopg边界面碳平面的方向y’与实验室坐标系y轴的夹角为β0=0o,20o和40o。(b)偏振配置αlvr下,β0=0o,20o和40o时hopg 边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置αlhr下,β0=0o,20o和40o时hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。以上工作得到了国家重点研发计划和国家自然科学基金委的大力支持,并于近期以highlights文章发表于中国物理b《chinese physics b》上:liu xue-lu, zhang xin, lin miao-ling, tan ping-heng. different angle-resolved polarization configurations of raman spectroscopy: a case on the basal and edge plane of two-dimensional materials. chinese physics b, 2017, 26(6): 067802horiba科学仪器事业部结合旗下具有近 200 多年发展历史的 jobin yvon 光学光谱技术,horiba scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天horiba 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。

偏振轴定仪相关的方案

偏振轴定仪相关的资料

偏振轴定仪相关的论坛

  • 有没有使用红外偏振器的版友

    最近想给nicolet 370 配个红外偏振器附件,用来研究聚合物取向,不知道这个附件怎么使用,thermo公司的订货周期较长,有无其他公司的产品可以替代?

  • 红外偏振片

    想了解下红外偏振片的一些知识,用红外偏振片能做哪些工作?尤其在高分子材料方面的应用。有请知道的各位老师多给指导。

  • 光的偏振问题

    光的偏振问题

    各位牛人,http://ng1.17img.cn/bbsfiles/images/2011/07/201107192120_305843_2038004_3.jpg上面这个图中,第一个是P偏振,第二个是S偏振。假如我有一个拉伸的试样,;拉伸方向沿着上图中的偏振片上下摆放,请问P偏振器设为0°时平行于拉伸方向啊,还是90°是平行于拉伸方向啊?

偏振轴定仪相关的耗材

  • C、S 和 T 接口偏振片固定器
    C、S 和 T 接口偏振片固定器将偏振片集成到 C、S 或 T 接口系统中偏振片最多可在固定器内旋转 90°设计用于固定直径 12.5、20、25 或 50mm 的偏振片可用于安装 12.5 和 25mm 方形偏振片的适配器TECHSPEC® C、S 和 T 接口偏振片固定器用于将偏振片或延迟片轻松集成到 C、S 或 T 接口系统中。该固定器设计为允许偏振片旋转 90°,同时固定器的主体仍保持在原位。随附的杠杆可平滑旋转,使用户能够轻松控制系统内偏振轴的方向。TECHSPEC C、S 和 T 接口偏振片固定器可以固定直径 12.5、20、25 或 50mm,厚度在 1.5mm 至 9.0mm 之间的偏振片。使用适配器#12-836或#12-837分别安装 12.5mm 方形或 25mm 方形偏振片。这些固定器适合快速有效地为 C、S 或 T 接口系统增加偏振。注意:安装 12.5、25 或 50mm 的偏振片时,必须使用内六角扳手拆卸固定器的内螺纹部分。产品信息螺纹类型兼容光学直径(mm)Dimensions of Compatible Optics(mm)Max. Thickness of Compatible Optics(mm)Min. Thickness of Compatible Optics(mm)延展长度 (mm)产品编码T-Mount50.0-9.01.524.0#11-147S-Mount12.5-7.01.522.5#11-145C-Mount25.0-9.01.524.0#11-146C-Mount20.0-2.51.516.5#90-621--12.5 Sq.-0.7-#12-836--25.0 Sq.-0.7-#12-837技术数据
  • 非偏振同轴立方体分光镜
    非偏振同轴立方体分光镜可大大减少眩光和干扰反射/透过比率为 50/50非常适用于同轴照明TECHSPEC® 非偏振同轴立方体分光镜是TECHSPEC® 宽带非偏振立方体分光镜的特殊版本,它的一个表面有进行专门的表面处理。这一功能减少了眩光、干涉伪影,同时提高了图像对比度。这些立方体分光镜是同轴照明应用的理想选择,在对鬼影敏感的各种应用中起到显著作用。TECHSPEC® 非偏振同轴分光镜由高公差的直角棱镜构成,并有宽带抗反射(BBAR)镀膜,以最大限度地提高特定波长的透射。这些分光镜在其设计波长范围内是光谱平坦的,减少了入射角的变化或汇聚/发散光束造成的不良影响。通用规格波长范围 (nm):430 - 670涂层:VIS光束偏移(弧分):≤2基底:N-BK7反射/透射比 (R/T):50/50涂层规格:Ravg表面平整度:λ/8倒角:Protective bevel as neededAbsolute Transmission (%):45 ±10表面质量:40-20有效孔径 (%):90构造 :Cube平均透射率:45 ±5|Ts-Tp|:注意:Absorptive Surface Treatment on Blackened Face产品型号尺寸 (mm)产品编码25.0 x 25.0 x 25.0#20-09635.0 x 35.0 x 35.0#20-09750.0 x 50.0 x 50.0#20-098
  • 全光纤偏振光开关
    总览Phoenix公司的全光纤偏振光开关允许转换与输入保偏光纤轴对齐的输入线性状态,从而在任意一个正交输出轴之间进行切换。例如,可以在输出端将慢轴上的输入转换为快轴,或者在快轴和慢轴之间进行调制。该设备设计灵活,操作简单,只需控制电流源,即可应用于需要控制正交态之间偏振的应用。有在输入端集成,提供高度线性偏振态的直线式光纤偏振器可供选择技术参数特征简单电流控制全光纤高回波损耗兼容PCB线性模式切换应用偏振态转换光纤传感器测试与测量保偏型可变衰减器偏振控制版本1标准该版本允许单轴输入的输出光纤在任一轴之间切换。版本2集成偏振器该版本包括波片前的集成光纤偏振器,与输入光纤的慢轴对齐。偏振器的作用是“清理”线性输入状态。规格单位版本1 版本2波长范围1nm1300 - 1610插入损耗2dB0.51偏振器消光比3dB-30回波损耗dB7070最大电流mA70最高电压V10切换时间s11工作温度范围 ℃-5 to 70-5 to 70储存温度℃-40 to +85-40 to +85光纤类型PANDAPANDA输入和输出光纤长度mm10001000规格说明:1. 设备在全波长范围内工作,在更长的波长下需要更高的电流来实现开关。2. 版本2的插入损耗假设输入偏振轴是对准的。损耗不包括连接器。3. 消光比的定义是输入偏振器的偏振相关损耗 包装风格所有尺寸都是近似的,可能略有不同版本1 -标准
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制