当前位置: 仪器信息网 > 行业主题 > >

发酵生应器

仪器信息网发酵生应器专题为您提供2024年最新发酵生应器价格报价、厂家品牌的相关信息, 包括发酵生应器参数、型号等,不管是国产,还是进口品牌的发酵生应器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合发酵生应器相关的耗材配件、试剂标物,还有发酵生应器相关的最新资讯、资料,以及发酵生应器相关的解决方案。

发酵生应器相关的论坛

  • 抗生素发酵系统工艺配管设计

    抗生素发酵系统工艺配管设计1  简述 大多数抗生素初级原料药的生产均是通过生物发酵,然后经分离精制而成。提炼生产与一般的化学制药以至化工生产在管路配置的工艺要求是一致的:即保证工艺物料流程顺畅。发酵生产由于生产过程是连续的,且需满足菌种的正常生长、生产要求的环境条件如温度、PH、溶解氧及限制杂菌生长等,因而其管路系统配置有其特殊性,本文将就工艺物料管道、无菌空气系统、灭菌蒸汽系统及阀门选用谈一下自己的设计体会2  工艺物料管路 微生物发酵是抗生素生产的龙头。目前,抗生素发酵生产的基本工艺一般为:冷冻孢子→斜面培养→摇瓶培养→种子罐种子培养(一般1~3 级) →发酵罐发酵。发酵终了,放罐至提炼。从菌种分离培养开始至发酵放罐的整个生产过程中应始终保持在最适宜的生成环境中,杂菌的存在不利于抗生素菌种生长及整个发酵的生产,因而,发酵系统的无菌保证成了该部分管路设计的基本要求之一。发酵厂房的工艺物料管路按其用途分为培养基进料系统管路、移种系统管路和补料系统管路三种。下面对以上三种管路基本要求分别加以说明。2. 1  培养基进料管路 第一级种子罐培养基量较少时有时直接在罐内配制培养基。当种子罐和发酵罐培养基量较大一些,一般在配料罐内配制好后用泵输送至罐内。由于培养基消毒灭菌分为连消和实消两种,因而决定了进料管道的配置不同。所谓连消,是指培养基连续进入消毒塔与饱和蒸汽直接混合,瞬时加热至130 ℃左右,经维持罐保温5~8 分钟即达灭菌效果,再经冷却后进而已空罐消毒的种子罐或发酵罐。实消是指将培养基直接打入罐内,然后通入饱和蒸汽使罐内物料温度升到121 ℃左右,罐内保温保压约30 分钟,使培养基连同罐体一起被灭菌。此种方法所需蒸汽负荷较大,但流程较短,操作也较简单,现抗生素行业实消较为常用。不过,许多厂家采取先于配料池中预热物料,再进入罐内实消的做法,以降低较为集中的蒸汽负荷。然而,由于输料离心泵汽蚀现象的存在使得配料池升温不可能太高,这对于降低蒸汽高峰负荷作用有限。若在输料泵后设预热器,可使物料温度升至85~90 ℃再进入罐内实消,这不仅降低了蒸汽负荷,而且由于取消了配料池内的蒸汽系统,改善了配料室环境。早期的进料方式实罐消毒时多为人工手持软管通过人孔加料,近年来随着抗生素发酵罐容积的增大,培养基量也较大,且一般为预热后物料,故多采用固定管路进料。进料管路有时配在罐体上封头,有时位于罐体下部与放料管路共用一个管口,但不论从上部还是下部接管,实罐消毒时的培养基进料管道与罐体连接部分应能保证与罐体同时消毒为无菌状态。2. 2  移种管路 一级种子罐一般在罐体上封头开接种口接种,该接种口设计时一般为带盖管口,接种时将盖打开,用酒精擦拭消毒或用火焰灭菌后将摇瓶种子液直接倒入罐内。从一级种子罐至次级种子罐及至发酵罐间移种管道,其配置方式一般为管路两端均设置双阀,并于两阀之间接入灭菌蒸汽和放净口,接种管路靠近罐体的阀门与罐体内物料同时灭菌,操作时,灭菌蒸汽从双阀之间进入罐体。每一次种子罐间及种子罐至发酵罐移种操作前,均需对移种管路进行灭菌。2. 3  补料管路 多数抗生素发酵过程中需向发酵罐中补充培养基或对生产过程影响较大的物料,以满足菌种生产所需的碳源、氮源、葡萄糖等养分及维持PH 恒定和消除泡沫等。由于发酵生产是连续的,多个发酵罐的补料管道一般由补料主管道上接出,而系统主管不可能随每一个发酵罐放罐终止运行,一般在几个罐批后定期灭菌或根据生产情况需要消毒灭菌时才进行补料管道灭菌。因而,补料管道配管时设计时一般采用分支管路设隔断阀的方式进行分割,这样既保证管道能随罐体一起灭菌,又要保证管道单独灭菌操作时不至影响发酵罐的正常生产。

  • 发酵酒及配制酒新国标开始施行

    食品安全国家标准《发酵酒及其配制酒(GB2758-2012)》于8月1日起正式实施,用于代替GB 2758-2005《发酵酒卫生标准》。  新标准对发酵及其配制酒分别进行了定义。发酵酒是以粮谷、水果、乳类等为主要原料,经发酵或部分发酵酿制而成的饮料酒;配制酒是以发酵酒为酒基,加入可食用的辅料或食品添加剂,进行调配、混合或加工制成的,已改变了其原酒基风格的饮料酒。  新标准的变化主要有:修改了标准名称;取消了铅的限量指标;修改了微生物限量指标。  此外,新标准还增加了标签标识要求。其中,应以“%vol”为单位标示酒精度;啤酒应标示原麦汁浓度,以“原麦汁浓度”为标题,以柏拉图度符号“°P”为单位。果酒(葡萄酒除外)应标示原果汁含量,在配料表中以“××%”表示;应标示“过量饮酒有害健康”,可同时标示其他警示语,用玻璃瓶包装的啤酒应标示如“切勿撞击,防止爆瓶”等警示语。

  • 发酵工业污染的防止与挽救

    本文引用自laoding《发酵工业污染的防止与挽救》南山人编著 第一节 工业发酵染菌的危害 发酵工业自从采用纯种培养以后,产率有很大提高,然而,防止染菌的要求也更高了。人们在与杂菌污染的斗争中,积累、总结了很多宝贵的经验。为了防止染菌,使用了一系列的设备、工艺和管理措施。例如:密闭式发酵罐,无菌空气制备,设备、管道和无菌室的设计,培养基和设备灭菌,培养过程及其他方面的无菌操作等,大大降低了染菌率。但是至今一些现代发酵工业还遭受染菌的严重威胁,甚至由于染菌而造成巨大的经济损失。据报道, 国外抗生素发酵染菌率为2%~5%,国内的抗生素发酵、青霉素发酵染菌率2%,链霉素、红霉素和四环素发酵染菌率约为5%,谷氨酸发酵噬菌体感染率1~2%。染菌仍是发酵工业的致命伤。轻者影响产率、产物提取收得率和产品质量;严重者造成“倒罐”,浪费大量原材料,造成严重经济损失,而且扰乱生产秩序,破坏生产计划。遇到连续染菌,特别是又找不到染菌原因,未有防治措施时,往往会影响人们的情绪和生产积极性,造成无法估量的危害。 染菌对发酵产率、提取收得率、产品质量和三废治理等都有很大影响。然而,生产不同品种,污染不同种类和性质的杂菌,不同的污染时间,不同的污染途径、污染程度,不同培养基和培养条件,所产生后果是不同的。1、染菌对不同品种发酵的影响 由于各种发酵的菌种、培养基、发酵条件、发酵周期以及产物性质等不同,受污染的危害程度也不同。青霉素发酵,由于许多杂菌都能产生青霉素酶,当青霉素发酵无论是在前期、中期或后期感染都能产生青霉素酶的杂菌,都能使青霉素迅速破坏,使发酵一无所获。疫苗深层培养,一旦受污染,无论污染的是活菌、死菌或内外毒素,都应全部废弃。柠檬酸发酵,在产酸后,pH值很低,一般杂菌不易生长,柠檬酸主要防止前期染菌。谷氨酸发酵周期短,生产菌繁殖快,培养基不太丰富,一般较少污染杂菌,但噬菌体污染对谷氨酸发酵的威胁非常大。肌苷、肌苷酸发酵,由于生产菌是多种营养缺陷型,生长能力差,培养基营养丰富等,容易受杂菌污染,且杂菌污染后,营养成分迅速被消耗,严重抑制生产菌生长和代谢产物的生成。然而,无论哪种发酵,染菌后都由于糖等基质被消耗,影响发酵产物的生成,使产量大为降低。 2、感染不同种类和性质的杂菌对发酵的影响 抗生素发酵中,青霉素发酵污染细短产气杆菌比污染粗大杆菌危害更大,链霉素发酵污染细短杆菌、假单孢杆菌和产气杆菌比污染粗大杆菌更危害,四环素发酵最怕污染双球菌、芽孢杆菌和荚膜杆菌。柠檬酸发酵最怕污染青霉菌。肌苷、肌苷酸发酵最怕污染芽孢杆菌。谷氨酸发酵最危险的是污染噬菌体,因为噬菌体蔓延迅速,难以防治,容易造成连续污染。 3、不同污染时间对发酵的影响 (1)种子培养期染菌 (2)发酵前期染菌 (3)发酵中期染菌 (4)发酵后期染菌 (1)种子培养期染菌种子培养主要是生长繁殖菌体,菌体浓度低,培养基营养丰富,比较容易染菌。种子培养期染菌,带进发酵罐中危害极大,应严格控制种子污染。当发现种子受污染均应灭菌后弃去,并对种子罐、管道进行检查和彻底灭菌。 (2)发酵前期染菌 发酵前期主要是菌体生长繁殖,代谢产物生成很少,这个时期容易染菌,污染后杂菌迅速繁殖,与生产菌争夺营养成分和氧分,严重干扰生产菌的生长繁殖和产物的生成,要特别防止发酵前期染菌。当发酵前期染菌时,由于营养成分消耗不多,应迅速重新灭菌,补充必要的营养成分(如果体积太大,可放出部分受污染发酵液)重新接种进行发酵。(3)发酵中期染菌发酵中期染菌将严重干扰生产菌的代谢,影响产物的生成。有的杂菌繁殖后产生酸性物质,pH值下降,糖、氮消耗迅速,菌(丝)体自溶,发酵液发粘,产生大量泡沫,代谢产物的积累迅速减少或停止,有的已生成的产物也会被利用破坏,有的发酵液发臭。由于发酵中期染菌,营养成分大量消耗,一般挽救处理困难,危害性很大。所以,发酵中期染菌应尽力做到早发现,快处理。处理方法应根据各种发酵的特点和具体情况来决定。如:抗生素发酵,可将另一罐发酵正常、单位高的发酵液的一部分输入染菌罐中,以抑制杂菌繁殖,同时采取低通风,少流加糖;柠檬酸发酵中期染菌,可根据所染杂菌的性质分别处理,如污染细菌,可加大通风量,加速产酸,降低pH值,以抑制细菌生长,必要时可加入盐酸调节pH3.0以下,抑制杂菌;如污染酵母,可加入O.025~O.035 g/L硫酸铜,抑制酵母生长,并提高风量,加速产酸;如污染黄曲霉,可加入另一罐将近发酵成熟的醪液,使pH值下降,使黄曲霉自溶;但污染青霉则危害很大,因为青霉在pH值很低下能够生长,如果残糖较低,可以提高风量,促使产酸和耗糖,提前放罐。 (4)发酵后期染菌发酵后期产物积累较多,糖等营养物质接近耗尽。如果染菌量不太多,可继续进行发酵;如污染严重,破坏性较大,可以采取措施提前放罐。发酵后期染菌对不同产物的影响不同,如抗生素、柠檬酸发酵后期染菌影响不大,而肌苷、肌苷酸和谷氨酸、赖氨酸等发酵后期染菌会影响产物的产量、产物提取和产品质量。 在染菌严重时,有人主张加入不影响生产菌正常代谢的某些抗生素、呋喃鲁西林、对苯二酚、新洁尔灭等灭菌剂、抑制杂菌生长。例如:庆大霉素发酵染菌,可加入少量庆大霉素粉或对苯二酸;灰黄霉素发酵染菌时,可加入新霉素。但是,在发酵开始时都加入杀菌剂以防止染菌,似无必要,也增加成本,若当发酵染菌后再加入杀菌剂又为时已晚,实际效果值得探讨。 4、染菌程度对发酵的影响染菌程度愈太,即进入发酵罐的杂菌数量多,对发酵的危害愈大。当生产菌已迅速繁殖,在发酵液中占有优势,污染极少数杂菌,如每1L中有1~2个杂菌,对发酵不会带来影响,因为这些杂菌需要时间繁殖才能达到危害发酵的程度,而且环境对杂菌的繁殖已不利。当75m3发酵液污染1个杂菌,要达到大幅度(106个/mL)污染时需要的时间(h)为: 条件 污染10000000个/mL 污染100000000个/mL 增代时间tg=30 min 23 26 延迟6h tg=30min 29 32 增代时间tg=2h 92 10000000 延迟6h tg=2h 98 11*11但是污染幅度较大时,特别是发酵前期和中期污染,将造成严重的危害。5、染菌对产物提取和产品质量的影响对于丝状菌发酵被污染后,有大量菌丝自溶,发酵液发粘,有的甚至发臭。发酵液过滤困难,发酵前期染菌过滤更困难,严重影响产物提取收率和产品质量。在这种情况下可先将发酵液加热处理,再加助滤剂或者先加絮凝剂,使蛋白质凝聚,有利于过滤。染菌的发酵液含有较多蛋白质和其他杂质:(1)如果采用沉淀法提取产物,那么,这些杂质随产物沉淀而影响下工序处理,影响产品质量。如谷氨酸发酵染菌后,在等电点出现β-型结晶,使谷氨酸无法分离,β-结晶谷氨酸含有大量发酵液,影响下工序精制处理,影响产品质量。(2)如果采用溶媒萃取的提取工艺,由于蛋白质等杂质多,极易发生乳化,很难使水相和溶剂相分离,也影响进一步提纯。(3)如果采用离子交换法提取工艺,由于发酵液发粘,大量菌体等胶体物质粘附在树脂表面或被树脂吸附,使树脂吸附能力大大降低,有的难被水洗掉,在洗脱时与产物一起被洗脱,混在产物中,影响产物的提纯。 此外,发酵染菌也造成三废处理困难和对环境的污染。 第二节 染菌的检查、原因分析和防止措施 1、染菌的检查与判断

  • 发酵液气相测定

    近日打算做下发酵液中酸的含量测定,发现直接进样效果很差,后来看文献才看到要进行酯化或硅烷化衍生处理,求教各位老师,为何要进行这种处理 另外有何更简单的处理方法? 谢谢

  • 【分享】发酵罐系统操作规范

    一、灭菌操作1. 关闭所有供水管路及空气管路。开启蒸汽管路阀门。同时稍开启发酵罐夹套的排气阀门,排放夹套剩水。2. 开启发酵罐搅拌电机,转速至200rpm,使发酵液受热均匀。当温度升到95℃以上时,即可停止搅拌。然后待温度升至121℃(罐压在0.1~0.12Mpa)时即可计时开始。3. 当计时开始后,发酵时间一般为20-30分钟。在此时间内应保证温度不低于120℃.同时可进行空气过滤器及空气管道的灭菌。4. 空气过滤器及空气管道的灭菌:稍开过滤器的排水阀门,及空气管道的隔膜阀,保证空气管道的蒸汽灭菌。但不能开的太大,以免蒸汽大量进入罐内,而稀释培养基。5. 出料、采样阀的蒸汽阀门及出口阀稍开,保证该管路灭菌。在发酵罐的盖上的接种口,同样需要放气,使其达到灭菌要求。6. 当保温结束时,应先把空气管路中的隔膜阀关闭。把空气过滤器排水阀关闭,以及关闭取样阀出口阀门和接种口螺帽。然后再关闭各路蒸汽阀门。7. 打开冷却水阀门及排水阀门,同时打开空气流量计和空气放空阀门,把空气过滤器吹干。此时必须注意罐压的变化。绝对不能让罐压低于0.02Mpa。及当罐压达到0.05Mpa时,立即将空气管路打开,保证发酵罐的罐压在0.05Mpa左右。8. 当温度降到95℃时,即可打开搅拌。当温度低于50℃后,即可切入自动控温状态,使培养基达到接种温度,灭菌过程即告结束。二、发酵过程的操作1. 接种:接种方法可采用火焰接种法或差压接种法。(1)火焰接种法:在接种口用酒精火圈消毒,然后打开接种口盖,迅速将接种液倒入罐内,在把盖拧紧。(2)差压法:在灭菌前放入垫片,接种时把接种口盖打开,先倒入一定量的酒精消毒。待片刻后把种液瓶的针头插入接种口的垫片。利用罐内压力和种液瓶内的压力差,将种液引入罐内,拧紧盖子。2. 罐压 发酵过程中须手动控制罐压,即用出口阀控制罐内压力。调节空气流量的,须同时调节出口阀,应保持罐内压力恒定大于0.03Mpa。3. 溶解氧(DO)的测量和控制(1)溶解氧的标定:在接种前,在恒定的发酵温度下,将转速及空气量开到最大值时的溶解氧DO值作为100%。(2)发酵过程的溶解氧DO测量和控制:DO的控制可采用调节空气流量和调节转速来达到。最简单是转速和溶氧的关联控制。其次则必须同时调节进气量(手动)控制。有时需要通入纯氧(如在某些基因工程菌的高密度培养中)才能达到要求的DO值。4. pH 的测量与控制(1) pH值的校正:在灭菌前应对PH电极进行PH值的校正。(2)在发酵过程中PH值的控制使用蠕动泵的加酸加碱来达到的,酸瓶或碱瓶须先在灭菌锅中灭菌。三、控制器的操作1. 控制器的启动:打开电源,先按一下薄膜键盘上的“S/E”键,再按一下“确认”键,发酵控制程序启动;这时,如果加热器中水没有加满,程序会自动进行进水操作;待水加满后,用户可以按照上述的下位机控制器的操作方法进行对各个执行机构进行控制。2. 控制器的操作:使用F1~F6按键将液晶屏中的界面切换到用户需要控制的界面中,使用方向键将界面中的光标移动到需要控制的变量上,如果是改变运行模式,直接按确认键即可,如果需要键盘输入数字,在输入数字后按确认键即可。如:(1)温度控制:在手动方式中,对温度进行手动操作是比较简单,只需要改变手动状态的控制量即可。通过选择快捷键(F1~F5)进入到温度控制界面,然后移动光标使它指向到“手动方式”,按下“确认”键,即进入温度控制的手动方式中。此时,“手动方式”后面会出现一个小手来指示当前的选择是手动方式。将光标移动到手动设置区域, 通过上下移动光标选择到“控制量”。通过按数字键输入所需要设定的控制量输出值,如80,并按“确认”键确认;(注:控制量范围为0~100,当输入控制量大于50时为加热状态,反之为冷却状态)。(2)转速的控制:使用光标移动键,移动光标到“设定值”处。在数字键盘上输入 300, 此时的“设定值”后应该出现“300”的数值;然后按下“确认”键确定输入。若输入有错误,可以按“清除”键清除数据。四、蒸汽发生器的操作1. 打开进水管开关,使蓄水箱水位至最高,保持进水状态2. 连接发生器电源,向锅内供水至正常水位(液位管的50-80%),不得超过最高水位,且不得低于最低水位,关闭蒸汽出汽阀门3. 插上电源,打开电源开关工作指示灯亮,开始加热锅水4. 将蒸汽管连接至发酵罐体夹层管路系统,打开相关阀门,保持管路通畅,同时关闭发酵罐体出气阀。当压力升至工作压力后(2kg/cm2)打开蒸汽出汽阀,即可供汽5.使用完毕,先关闭电源,后关闭进水管,待发生器适当降温后,排掉锅体中污水。【注 意 事 项】1. 安全阀的调定压力已由厂家调整好,不得随意调整,若发现安全阀失灵,应更换新的安全阀。严禁私自改 变压力自动控制功能和参数。2. 在正常运行期间,至少每8小时排污一次,并及时用砂纸给水位探针除垢3. 在使用过程中,严禁关闭安全阀门,严禁私自改装或用堵头堵死4. 压力表存水弯管应定期拆下清洗五、空气压缩机的操作1. 插上空压机电源,开启空压机,使机器在无负荷状态下启动运转15分钟。2. 启动后若无异音,关闭空气出口,并将空压机出气管与空气净化器相连,一并联至发酵罐空气进气管路。3. 当气压升至2kg/cm2打开供气阀,开启空气开关,向已灭菌的发酵罐提供无菌空气。空气压力达到设定压力之后,压力开关自动切断电源,电机停止运转。4. 空气压缩机的使用压力不得高于额定工作压力,若需调整,必须有专门业务员进行,不得自行调整。

  • 关于发酵罐使用技巧

    [font=微软雅黑][color=#333333]1、发酵罐必须确保所有单件设备能正常运行时使用本系统。[/color][/font][font=微软雅黑][color=#333333]2、发酵罐在消毒过滤器 时,流经空气过滤器的蒸汽压力不得超过0.17MPa,否则过滤器滤芯会被损坏,失去过滤能力。[/color][/font][font=微软雅黑][color=#333333]3、发酵罐在发酵过程中,应确保罐压不超过0.17MPa。[/color][/font][font=微软雅黑][color=#333333]4、发酵罐在实消过程中,夹套通蒸汽预热时,必须控制进汽压力在设备的工作压力范围内,否则会引起发酵罐的损坏。[/color][/font][font=微软雅黑][color=#333333]5、发酵罐在空消及实消时,一定要排尽发酵罐夹套内的余水。否则可能会导致发酵罐内筒体压扁,造成设备损坏 在实消时,还会造成冷凝水过多导致培养液被稀释,从而无法达到工艺要求。[/color][/font][font=微软雅黑][color=#333333]做好以五项可以有效避免发酵罐在日常使用中遇到很多是技术难题[/color][/font][font=微软雅黑][color=#333333],[/color][/font][font=微软雅黑][color=#333333]给自己减少很多不必要的损失和麻烦。[/color][/font]

  • 发酵培养基的配制

    首先需了解微生物需要的营养物质。 (1)微生物需要的营养物质营养物质应满足微生物的生长、繁殖和完成各种生理活动的需要。它们的作用可概括为形成结构(参与细胞组成)、提供能量和调节作用(构成酶的活性和物质运输系统)。微生物的营养物质有六大类要素,即水、碳源、氮源、无机盐、生长因子和能源。① 水水是微生物的重要组成部分,在代谢中占有重要地位。水在细胞中有两种存在形式:结合水和游离水。结合水与溶质或其他分子结合在一起,很难加以利用。游离水(或称为非结合水)则可以被微生物利用。② 碳源碳在细胞的干物质中约占50%,所以微生物对碳的需求最大。凡是作为微生物细胞结构或代谢产物中碳架来源的营养物质,称为碳源。作为微生物营养的碳源物质种类很多,从简单的无机物(CO2、碳酸盐)到复杂的有机含碳化合物(糖、糖的衍生物、脂类、醇类、有机酸、芳香化合物及各种含碳化合物等)。但不同微生物利用碳源的能力不同,假单孢菌属可利用90种以上的碳源,甲烷氧化菌仅利用两种有机物:甲烷和甲醇,某些纤维素分解菌只能利用纤维素。大多数微生物是异养型,以有机化合物为碳源。能够利用的碳源种类很多,其中糖类是最好的碳源。异养微生物将碳源在体内经一系列复杂的化学反应,最终用于构成细胞物质,或为机体提供生理活动所需的能量。所以,碳源往往也是能源物质。自养菌以CO2、碳酸盐为唯一或主要的碳源。CO2是被彻底氧化的物质,其转化成细胞成分是一个还原过程。因此,这类微生物同时需要从光或其他无机物氧化获得能量。这类微生物的碳源和能源分别属于不同物质。③ 氮源凡是构成微生物细胞的物质或代谢产物中氮元素来源的营养物质,称为氮源。细胞干物质中氮的含量仅次于碳和氧。氮是组成核酸和蛋白质的重要元素,氮对微生物的生长发育有着重要作用。从分子态的N2到复杂的含氮化合物都能够被不同微生物所利用,而不同类型的微生物能够利用的氮源差异较大。固氮微生物能利用分子态N2合成自己需要的氨基酸和蛋白质,也能利用无机氮和有机氮化物,但在这种情况下,它们便失去了固氮能力。此外,有些光合细菌、蓝藻和真菌也有固氮作用。许多腐生细菌和动植物的病原菌不能固氮,一般利用铵盐或其他含氮盐作氮源。硝酸盐必须先还原为NH+4后,才能用于生物合成。以无机氮化物为唯一氮源的微生物都能利用铵盐,但它们并不都能利用硝酸盐。有机氮源有蛋白胨、牛肉膏、酵母膏、玉米浆等,工业上能够用黄豆饼粉、花生饼粉和鱼粉等作为氮源。有机氮源中的氮往往是蛋白质或其降解产物。氮源一般只提供合成细胞质和细胞中其他结构的原料,不作为能源。只有少数细菌,如硝化细菌利用铵盐、硝酸盐作氮源和能源。④ 无机盐无机盐也是微生物生长所不可缺少的营养物质。其主要功能是:① 构成细胞的组成成分;② 作为酶的组成成分;③ 维持酶的活性;④ 调节细胞的渗透压、氢离子浓度和氧化还原电位;⑤ 作为某些自氧菌的能源。磷、硫、钾、钠、钙、镁等盐参与细胞结构组成,并与能量转移、细胞透性调节功能有关。微生物对它们的需求量较大(10-4~10-3 mol/L),称为“宏量元素”。没有它们,微生物就无法生长。铁、锰、铜、钴、锌、钼等盐一般是酶的辅因子,需求量不大(10-8~10-6 mol/L),所以,称为“微量元素”。不同微生物对以上各种元素的需求量各不相同。铁元素介于宏量和微量元素之间。在配制培养基时,可通过添加有关化学试剂来补充宏量元素,其中首选是K2HPO4和MgSO4,它们可提供需要量很大的元素:K、P、S和Mg。微量元素在一些化学试剂、天然水和天然培养基组分中都以杂质等状态存在,在玻璃器皿等实验用品上也有少量存在,所以,不必另行加入。⑤ 生长因子一些异养型微生物在一般碳源、氮源和无机盐的培养基中培养不能生长或生长较差。当在培养基中加入某些组织(或细胞)提取液时,这些微生物就生长良好,说明这些组织或细胞中含有这些微生物生长所必须的营养因子,这些因子称为生长因子。生长因子可定义为:某些微生物本身不能从普通的碳源、氮源合成,需要额外少量加入才能满足需要的有机物质,包括氨基酸、维生素、嘌呤、嘧啶及其衍生物,有时也包括一些脂肪酸及其他膜成分。各种微生物所需的生长因子不同,有的需要多种,有的仅需要一种,有的则不需要。一种微生物所需的生长因子也会随培养条件的变化而变化,如在培养基中是否有前体物质、通气条件、pH和温度等条件,都会影响微生物对生长因子的需求。从自然界直接分离的任何微生物,在其发生营养缺陷突变前的菌株,均称为该微生物的野生型。绝大多数野生型菌株只需简单的碳源和氮源等就能生长,不需要添加生长因子;经人工诱变后,常会丧失合成某种营养物质的能力,在这些菌株生长的培养基中,必须添加某种氨基酸、嘌呤、嘧啶或维生素等生长因子。⑥ 能源能源是指为微生物的生命活动提供最初能量来源的营养物或辐射能。化能异养型微生物的能源即碳源;化能自养型微生物的能源都是还原态的无机物,如NH4+、NO2-、S、H2S、H2、Fe2+等,它们分别属于硝化细菌、亚硝酸细菌、硫化细菌、硫细菌、氢细菌和铁细菌等。一种营养物常有一种以上营养要素的功能,即除单功能营养物外,还有双功能,甚至三功能营养物。辐射能是单功能;还原态无机养分常是双功能的(NH4+既是硝化细菌的能源,又是它的氮源)甚至是三功能的(能源、氮源和碳源);有机物常有双功能或三功能作用。(2)配制培养基必须遵循的原则微生物的培养基通常指人工配制的适合微生物生长繁殖,或积累代谢产物的营养基质。广义上说,凡是支持微生物生长繁殖的介质或材料,均可作为微生物的培养基。一个适当的培养基配方,对发酵产品的产量和质量有着极大的影响。针对不同微生物,不同的营养要求,可以有不同的培养基。但它们的配制必须遵循一定原则。① 营养物质应满足微生物的需要。不同营养类型的微生物对营养的需求差异很大,应根据菌种对各营养要素的不同要求进行配制。② 营养物的浓度及配比应恰当。营养物浓度太低,不能满足微生物生长的需要;浓度太高,又会抑制微生物生长。糖和盐浓度高有抑菌作用。碳氮比(C∶N,以还原糖含量与粗蛋白含量的比值表示):一般培养基为C∶N=100∶0.5~2。在设计培养基配比时,还应考虑避免培养基中各成分之间的相互作用,如蛋白胨、酵母膏中含有磷酸盐时,会与培养基中钙或镁离子在加热时发生沉淀作用;在高温下,还原糖也会与蛋白质或氨基酸相互作用而产生褐色物质。③ 物理、化学条件适宜。pH:各种微生物均有其生长繁殖的最适pH,细菌为7.0~8.0,放线菌为7.5~8.5,酵母为3.8~6.0,霉菌为4.0~5.8。对于具体的微生物菌种,都有各自的特定的最适pH范围,有时会大大突破上述界限。在微生物生长繁殖过程中,会产生能够引起培养基的pH改变的代谢产物,尤其是不少微生物有很强的产酸能力,如不适当地加以调节,就会抑制甚至于杀死其自身。在设计培养基时,要考虑培养基的pH调节能力。一般应加入缓冲液或CaCO3,使培养基的pH稳定。其他:培养基的其他理化指标,如水活度、渗透压也会影响微生物的培养。在配制培养基时,通常不必测定这些指标,因为培养基中各种成分及其浓度等指标的优化,已间接地确定了培养基的水活度和渗透压。此外,各种微生物培养基的氧化还原电位等也有不同的要求。④ 培养目的:培养基的成分直接影响培养目标。在设计培养基时,必须考虑是要培养菌体,还是要积累菌体代谢产物;是实验室培养,还是大规模发酵等问题。用于培养菌体的种子培养基营养成分应丰富,氮源含量宜高,即碳氮比值应低;相反,用于大量积累代谢产物的发酵培养基,氮源应比种子培养基稍低;当然,若目的产物是含氮化合物时,有时还应该提高培养基的氮源含量。在设计培养基时,还应该特别考虑到代谢产物是初级代谢产物,还是次级代谢产物。如果是次级代谢产物,还要考虑是否需加入特殊元素(如维生素B12中Co)或特殊的前体物质(如生产青霉素G时,应加入苯乙酸)。在设计培养基,尤其是大规模发酵生产用的培养基时,还应该重视培养基组分的来源和价格,应该优先选择来源广、价格低廉的培养基。(3)几种培养基的配制原则① 种子培养基:适用于微生物菌体生长的培养基,目的是为下一步发酵提供数量较多,强壮而整齐的种子细胞。一般要求氮源、维生素丰富,原料要精。② 发酵培养基:用于生产预定发酵产物的培养基,一般的发酵产物以碳源为主要元素。发酵培养基中的碳源含量往往高于种子培养基。如果产物的含氮量高,应增加氮源。在

  • 发酵罐使用方法

    [font=微软雅黑][color=#333333]1、发酵罐必须确保所有单件设备能正常运行时使用本系统。[/color][/font][font=微软雅黑][color=#333333]2、发酵罐在消毒过滤器 时,流经空气过滤器的蒸汽压力不得超过0.17MPa,否则过滤器滤芯会被损坏,失去过滤能力。[/color][/font][font=微软雅黑][color=#333333]3、发酵罐在发酵过程中,应确保罐压不超过0.17MPa。[/color][/font][font=微软雅黑][color=#333333]4、发酵罐在实消过程中,夹套通蒸汽预热时,必须控制进汽压力在设备的工作压力范围内,否则会引起发酵罐的损坏。[/color][/font][font=微软雅黑][color=#333333]5、发酵罐在空消及实消时,一定要排尽发酵罐夹套内的余水。否则可能会导致发酵罐内筒体压扁,造成设备损坏 在实消时,还会造成冷凝水过多导致培养液被稀释,从而无法达到工艺要求。[/color][/font][font=微软雅黑][color=#333333]做好以五项可以有效避免发酵罐在日常使用中遇到很多是技术难题[/color][/font][font=微软雅黑][color=#333333],[/color][/font][font=微软雅黑][color=#333333]给自己减少很多不必要的损失和麻烦。[/color][/font]

  • 含有抗生素的奶能不能发酵成酸奶?

    我所掌握的是不能,因为酸奶的制作过程是需要乳酸菌发酵才可以的,如果里面含有抗生素,就会抑制乳酸菌的生长,所以不能。但还从来没经历过,毕竟没几个生产厂家会冒这个理论上的风险。亲们,你们的意见呢? 抗生素可以直接在奶源中或者生产工艺环节中消除吗?

  • 【资料】酵母菌:发酵之旅

    我们平常所吃的馒头、面包,都是面经过发酵而制成的,它们蓬松有弹性,口感很好,还带有特殊的香味。而用来发酵的无论是从前的酵头,还是现在的发酵粉,其实都是添加剂酵母菌。现在酵母菌的作用已经不仅仅只停留在发酵作用上了,由于其独特的品性,酵母菌的用途也越来越广,成为一种多功能的食品添加剂。 酵母菌功用之一发酵 发酵是酵母菌最主要的功用。人类很早就开始将酵母菌应用于食品生产中,例如酒精饮料、酱油、食醋、馒头和面包的发酵等等。在面包和馒头的生产中,酵母发酵产生大量二氧化碳.使面团膨胀,形成松软的组织。 在食品工业上常见的酵母菌有啤酒酵母,用于生产啤酒、白酒和酒精,以及制做面包;葡萄酒酵母,也称酿酒酵母,用于酿造葡萄酒和果酒,也用于啤酒和白酒的酿造。其中啤酒酵母是食品工业上应用最为广泛的微生物之一,啤酒酵母菌体内维生素、蛋白质含量很高,其药用价值也很高,还可以用于做饲料,提取核酸、麦角醇、谷胱甘肽、凝血质和三磷酸腺苷等。

  • 发酵罐使用技巧

    [font=微软雅黑][size=10.5pt][color=#333333]1、发酵罐必须确保所有单件设备能正常运行时使用本系统。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]2、发酵罐在消毒过滤器 时,流经空气过滤器的蒸汽压力不得超过0.17MPa,否则过滤器滤芯会被损坏,失去过滤能力。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]3、发酵罐在发酵过程中,应确保罐压不超过0.17MPa。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]4、发酵罐在实消过程中,夹套通蒸汽预热时,必须控制进汽压力在设备的工作压力范围内,否则会引起发酵罐的损坏。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]5、发酵罐在空消及实消时,一定要排尽发酵罐夹套内的余水。否则可能会导致发酵罐内筒体压扁,造成设备损坏 在实消时,还会造成冷凝水过多导致培养液被稀释,从而无法达到工艺要求。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]做好以五项可以有效避免发酵罐在日常使用中遇到很多是技术难题[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333],[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]给自己减少很多不必要的损失和麻烦。[/color][/size][/font]

  • 【发酵工程】与【生物化工】

    发酵工程概况 发酵是指利用微生物制造工业原料或工业产品的过程。根据各种微生物的特性,在有氧或无氧条件下利用生物催化 ( 酶 ) 的作用,将多种低值原料转化成不同的产品的过程。如酿酒、制酱和醋等发酵技术古已有之。 20 世纪 40 年代中期美国抗菌素工业兴起,大规模生产青霉素以及日本谷氨酸盐 ( 味精 ) 发酵成功,大大推动了发酵工程的发展。 70 年代以石油为原料生产单细胞蛋白,使发酵工程从单一依靠碳水化合物 ( 淀粉 ) 向非碳水化合物过渡,从单纯依靠农产品发展到利用矿产资源,如天然气、烷烃等原料的开发。 80 年代初基因工程发展,人们能按需要设计和培育各种工程菌,在大大提高发酵工程的产品质量的同时,节约能源,降低成本,使发酵技术实现新的革命。 发酵工程的内容 发酵工程主要包括菌种的培养和选育,发酵条件的优化,发酵反应器的设计和自动控制,产品的分离纯化和精制等。除食品工业外,化工、医药、冶金、能源开发、污水处理、防腐、防霉等开发,给发酵工程带来新的发展前景。http://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/11.jpghttp://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/12.jpg(菌种的培养)(食品工业)http://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/13.jpghttp://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/14.jpg(医药工业)(污水处理)目前已知具有生产价值的发酵类型有以下五种: 微生物菌体发酵 这是以获得具有某种用途的菌体为目的的发酵。传统的菌体发酵工业: 有用于面包制作的酵母发酵及用于人类或动物食品的微生物菌体蛋白发酵两种类型。新的菌体发酵可用来生产一些药用真菌:如香菇类、天麻共生的密环菌、以及从多孔菌科的获苔菌获得的名贵中药获答和担子菌的灵芝等药用菌。这些药用真菌可以通过发酵培养的手段来生产出与天然产品具有同等疗效的产物。http://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/pic006.jpghttp://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/pic005.jpg面包酵母生产工程(气升环流式反应器,50 M3)(药用菌) 微生物酶发酵 酶普遍存在于动物、植物和微生物中。最初,人们都是从动、植物组织中提取酶,但目前工业应用的酶大多来自微生物发酵,因为微生物具有种类多、产酶的品种多、生产容易和成本低等特点;微生物酶制剂有广泛的用途,多用于食品和轻工业中,如微生物生产的淀粉酶和糖化酶用于生产葡萄糖,氨基酰化酶用于拆分DL一氨基酸等。酶也用于医药生产和医疗检测中,如青霉素酰化酶用来生产半合成青霉素所用的中间体6一氨基青霉烷酸,胆固醇氧化酶用于检查血清中胆固醇的含量,葡萄糖氧化酶用于检查血中葡萄糖的含量等等。 微生物代谢产物发酵 微生物代谢产物的种类很多,已知的有37个大类,其中16类属于药物。在菌体对数生长期所产生的产物,如氨基酸、核并酸、蛋白质、核酸、糖类等,是菌体生长繁殖所必需的。这些产物叫做初级代谢产物,许多初级代谢产物在经济上具有相当的重要性,分别形成了各种不同的发酵工业。在菌体生长静止期,某些菌体能合成一些具有特定功能的产物,如抗生素。生物碱、细菌毒素、植物生长因子等。这些产物与菌体生长繁殖无明显关系,叫做次级代谢产物。次级代谢产物多为低分子量化合物,但其化学结构类型多种多样,据不完全统计多达47类,其中抗生素的结构类型,按相似性来分,也有14类。由于抗生素不仅具有广泛的抗菌作用,而且还有抗病毒、抗癌和其他生理活性,因而得到了大力发展,已成为发酵工业的重要支柱。 微生物的转化发酵 微生物转化是利用微生物细胞的一种或多种酶,把一种化合物转变成结构相关的更有经济价值的产物。可进行的转化反应包括:脱氢反应、氧化反应、脱水反应、缩合反应、脱梭反应、氨化反应、脱氨反应和异构化反应等。 最古老的生物转化,就是利菌体将乙醇转化成乙酸的醋酸发酵。生物转化还可用于把异丙醇转化成丙醇甘油转化成二羟基内酮、葡萄糖转化成葡萄糖酸,进而转化成2一酮基葡萄糖酸或5一酮基葡萄糖酸,以及将山梨醇转变成L一山梨糖等。此外,微生物转化发酵还包括甾类转化和抗生素的生物转化等等。生物工程细胞的发酵 这是指利用生物工程技术所获得的细胞,如DNA重组的"工程菌",细胞融合所得的"杂交"细胞等进行培养的新型发酵,其产物多种多样。如用基因工程菌生产胰岛素、干扰素、青霉素酚化酶等,用杂交瘤细胞生产用于治疗和诊断的各种单克隆抗体等。4.l.2 发酵技术的特点及应用 由于微生物种类繁多、繁殖速度快。代谢能力强,容易通过人工诱变获得有益的突变株,而且微生物酶的种类很多,能催化各种生物化学反应。同时由于微生物能够利用有机物、无机物等各种营养源,不受气候、季节等自然条件的限制,可以用简易的设备来生产多种多样的产品。所以,在酒、酱、醋等酿造技术上发展起来的发酵技术发展非常迅速,且有其独有的特点:①发酵过程以生物体的自动调节方式进行,数十个反应过程能够象单一反应一样,在发酵设备中一次完成。 ②反应通常在常温常压下进行,条件温和,能耗少,设备较简单。③原料通常以糖蜜、淀粉等碳水化合物为主,可以是农副产品、工业废水或可再生资源(植物秸杆、木屑等),微生物本身能有选择地摄取所需物质。④容易生产复杂的高分子化合物,能高度选择地在复杂化合物的特定部位进行氧化、还原、官能团引人等反应。⑤发酵过程中需要防止杂菌污染,设备需要进行严格的冲洗、灭菌;空气需要过滤等。 发酵过程的这些特征体现了发酵工程的种种优点。在目前能源。资源紧张,人口、粮食及污染问题日益严重的情况下,发酵工程作为现代生物技术的重要组成部分之一,得到越来越广泛的应用:医药工业:用于生产抗生素、维生素等常用药物和人胰岛素、乙肝疫苗、干扰素、透明质酸等新药。食品工业:用于微生物蛋白、氨基酸、新糖原、饮料、酒类和一些食品添加剂(柠檬酸、乳酸、天然色素 等)的生产。能源工业:通过微生物发酵,可将绿色植物的秸杆、木屑。工农业生产中的纤维素、半纤维素、木质素等废弃物转化为液体或气体燃料(酒精或沼气)。还可利用微生物采油、产氢、产石油以及制成微生物电池。化学工业:用于生产可降解的生物塑料、化工原料(乙醇、丙酮\丁醇、癸二酸等)和一些生物表面活性剂及生物凝集剂。冶金工业:微生物可用于黄金开采和铜、钢等金属的浸提。农、牧业:生物固氮、生物杀虫剂的应用和微生物饲料的生产,为农业和畜牧业的增产发挥了巨大作用。环境保护:可用微生物来净化有毒的高分子化合物,降解海上浮油,清除有毒气体和恶臭物质以及处理有机废水、废渣等等

  • 发酵罐的设计

    前言生物反应工程与设备课程设计是生物工程专业一个重要的、综合性的实践教学环节,要求我们综合运用所学知识如生化反应工程与生物工程设备课程来解决生化工程实际问题,对培养我们全面的理论知识与工程素养,健全合理的知识结构具有重要作用。在本课程设计中,通过生化过程中应用最为广泛的设备,如机械搅拌发酵罐、气升式发酵罐、动植物细胞培养反应器,蒸发结晶设备、蒸馏设备等的设计实践,对我们进行一次生化过程发酵设备设计的基本训练,使我们初步掌握发酵设备设计的基本步骤和主要方法,树立正确的设计思想和实事求是,严肃负责的工作作风,为今后从事实际设计工作打下基础。

  • 发酵罐使用的注意事项

    发酵罐的使用有严格的要求,使用过程中注意事项主要有以下几个方面:   1) 罐体灭菌前务必检查其中液面高度,要求所有的电极都没于液面以下。   2) 打开发酵罐电源前务必检查冷却水是否已打开,温度探头是否已插入槽中,否则会烧坏加热电路。   3) 发酵过程中一定要保持工作台的清洁,用过的培养瓶及其它物品及时清理,因故溅出的酸碱液或水应立即擦干。   4) 对罐体安装,拆卸和灭菌时要特别小心pH电极和罐体的易损又昂贵部件。   5)必须确保所有单件设备能正常运行时使用本系统。   6) 在消毒过滤器时,流经空气过滤器的蒸汽压力不得超过0.17MPa,否则过滤器滤芯会被损坏,失去过滤能力。   7) 在发酵过程中,应确保罐压不超过0.17MPa。   8)在实消过程中,夹套通蒸汽预热时,必须控制进汽压力在设备的工作压力范围内(不应超过0.2MPa),否则会引起发酵罐的损坏。   9)在空消及实消时,一定要排尽发酵罐夹套内的余水。否则可能会导致发酵罐内筒体压扁,造成设备损坏;在实消时,还会造成冷凝水过多导致培养液被稀释,从而无法达到工艺要求。   10)在空消、实消结束后冷却过程中,严禁发酵罐内产生负压,以免造成污染,甚至损坏设备。   11) 在发酵过程中,罐压应维持在0.03~0.05MPa之间,以免引起污染。   12)在各操作过程中,必须保持空气管道中的压力大于发酵罐的罐压,否则会引起发酵罐中的液体倒流进入过滤器中,堵塞过滤器滤芯或使过滤器失效。   13)如果遇到自己解决不了的问题请直接与公司售后服务部门联系。请勿强行拆卸或维修。

  • 质谱仪直接监测生物发酵尾气方法过验收

    生物发酵涉及到医药、轻工、食品、农业、海洋、环保等众多领域,在我国国民经济发展中占有极其重要地位,是当前经济社会发展急需突破的技术领域,也是当前世界各国发展的热点领域。在生物发酵过程中,对发酵尾气中各种气体组分的检测有着相当重要的地位。发酵尾气的组分变化,反映了整个发酵过程中物质的变化情况,对尾气数据的分析,可对发酵过程起到监测的作用。 在项目完成过程中,项目组根据发酵尾气的特点以及现场应用环境的要求,对尾气预处理、采集、分析、数据处理等进行了一系列的条件优化,最终建立了一套“在线质谱仪直接分析生物发酵尾气的方法”和标准操作程序。采用SHP8400PMS在线质谱仪可对发酵尾气进行直接分析,实现实时自动在线监测,能够获得连续稳定的准确测量结果,对氧气、二氧化碳、氮气、氩气以及各种挥发性的物质进行高精度定量分析,提高了监测效率。目前该方法已成功应用于国家生化工程技术研究中心(上海)的发酵工程研究和多家生物制药企业的生产现场监测,具有推广应用的示范意义,为建立行业标准方法打下基础。专家组在给予项目肯定和高度评价的同时,也提出了相当中肯的进一步研究建议,希望能将国产质谱仪更好的应用于现场监测领域。

  • 【讨论】生化培养箱在多管发酵法注意事项

    1.样品的保存采样用的容器使用前应盖好瓶盖,用牛皮纸将瓶盖和瓶颈处包裹好,置干燥箱160℃-170℃干热灭菌2h,或用高压蒸汽灭菌器121℃灭菌15min。采样后水样的正确保存也很重要,如保存不当可使样品中的大肠菌群细菌死亡或在一定条件下再生长,这些都将影响检测结果的准确性。检测室接到水样后,应立即检测,如因故不能检测时,应立即将样品置于冰箱内(2℃-10℃)并于2小时内检测。    2.培养温度的要求总大肠菌群中的细菌除生活在肠道中外,在自然环境中的水与土壤中也经常存在,但此等在自然环境中生活的大肠菌群培养的最合适温度为25℃左右,如在37℃培养则仍可生长,但如将培养温度再升高至44.5℃,则不再生长,而直接来自粪便的大肠菌群细菌,习惯于37℃左右生长,如将培养温度升高至44.5℃仍可继续生长。因此,可用提高培养温度的方法将自然环境中的大肠菌群与粪便中的大肠菌群区分,两种方法也都基于此理。将接种好的样品或装有滤膜的培养基放入生化培养箱时,箱内温度一定要达到所要求的温度(44.5±0.5℃)时,方可放入。如用恒温水浴箱时,其水面要高于接种物面,放滤膜的培养皿要沉到水浴箱底部。    3.加氯水样的处理经氯处理消毒过的水样,水中含有一定量的余氯,使大肠菌群处于受损或受抑制状态,在采集水样时应提前在采样瓶中加硫代硫酸钠,硫代硫酸钠可以脱氯,使受损的细菌得以复苏与修复,从而避免出现计数结果偏低甚至假阴性的现象。此外余氯对滤膜法培养的细菌其抑制作用尤为明显,所以抽滤时应对水样进行大量无菌水稀释,以减少余氯的残留。    4.培养物质的制备与保存    ⑴.多管发酵法所使用的培养液在分装于各发酵管中后,应将发酵管尽快放于高压蒸汽灭菌器中,在115℃灭菌20min(注意:这个温度也应控制好,既达到灭菌的作用,还要防止培养物质分解流失),然后贮存于冰箱或暗处备用。    ⑵.滤膜法所采用的M-FC培养基多使用外购的成品,培养基中苯胺蓝的纯度和质量往往影响菌落的颜色,因此,无菌包装的成套培养基在使用前,最好先接种典型粪大肠菌,以观察对比菌落的颜色,来鉴定其稳定性。    5.结果统计    ⑴.多管发酵法的结果是根据不同接种量的发酵管所出现阳性结果的数目,从MPN表中查得相应的MPN指数,来计算每升水中粪大肠菌群细菌的MPN值。MPN是“MostProbableNumber”的缩写,指最大可能数,它是根据统计学理论,估计水体中的菌群密度和卫生质量的一种方法,所以准确判断不同接种量发酵管的阳性数是非常重要的,否则将导致较大偏差。    ⑵.滤膜法的结果是计数滤膜上呈蓝或蓝绿色的菌落,来计算出每升水样中的粪大肠菌群数。所以为便于计数,减少误差,理想的水样体积是一片滤膜上生长20-60个粪大肠菌群菌落。(来源于www.ibuy17.com麦仪网)

  • 金霉素发酵过程DO自控节能报告

    核心提示:华中正大 关锋义一、在发酵过程中溶解氧进行控制的意义  在反应器中氧参与菌体的生长、产物的形成和维持细胞的代谢。氧是难溶华中正大 关锋义一、在发酵过程中溶解氧进行控制的意义·  在反应器中氧参与菌体的生长、产物的形成和维持细胞的代谢。氧是难溶于水的气体,在室温及常压条件下,纯氧的溶解度仅为36mg/L,空气中氧的溶解度仅为8mg/L。当水中溶有糖或其它盐类时,氧的溶解度则更低。·   以谷氨酸发酵一、在发酵过程中溶解氧进行控制的意义为例,同化100g葡萄糖需耗氧41.4g,而培养基中溶解氧只够菌体生长14s的消耗。因此足够的通风供氧对好氧氨基酸发酵非常关键。·   在工业发酵中产率是否受氧的限制,单凭通气量的大小是难以确定的。因溶解氧的高低不仅取决于供氧、通气搅拌等,还取决于需氧状况。故了解溶解氧是否够的最简便又有效的办法是就地监测发酵液中的溶解氧浓度。从溶解氧变化的情况可以了解氧的供需规律及其对生长和产物合成的影响。·   在发酵过程中溶解氧低于某一临界值,就会影响菌体的生长与产物的合成,但并不是维持溶解氧越高越好。即使是专性好气菌,过高的溶解氧对生长可能不利,而且有可能改变其代谢途径,不利于目的产物的合成。·  了解发酵过程中溶解氧和其他参数间的关系,可以通过观察发酵溶解氧的异常变化,及时发现生产可能出现的问题,如某些操作故障或事故、中间补料是否得当、污染杂菌等,以便尽早采取措施补救。·   在发酵过程中进行溶解氧的控制,可以“按需供风”,调节不同发酵罐批不同发酵时段间的供氧水平,以达到节能降耗,降低生产成本之目的。二、在金霉素发酵过程中溶解氧的变化规律·  金霉素生长、代谢过程可从培养液中溶氧浓度的变化反映出菌体的生长生理状况。·   在金霉素发酵过程的不同阶段,随着发酵培养体积的不断增加和菌体的生长代谢的不断变化,发酵罐内溶氧值不同,按一定规律变化。一般情况下,发酵接种后1-5小时为适应期,溶氧值最高;5-15小时,经过适应期后,需氧量上升,溶氧值较高;15-40小时,随着菌体的生长代谢旺盛,需氧量大增,溶氧值最低;40-80小时,需氧量中等,溶氧值回升;80-124小时,需氧量较少,溶氧值较高。 三、金霉素发酵罐DO控制系统·  1. 空气流量检测与控制系统·  1.1 空气流量检测系统使用由重庆耐德仪器仪表有限公司生产的涡街流量计,型号为YYW-A-125-DIII R/DBLU-20125A2B1PAT1P1/S/YYW-A1-200-DXQIIIR-B ,量程为0-2218.2m3/0-4800m3·  1.2 空气流量控制系统使用ZJHP-16B-125/ZJHP-16B-200气动单座调节阀,适用温度-17℃-220℃、流量特性为线性。·  2. 溶解氧检测系统使用由Mettler生产的InPro6800/120溶氧电极,可适应发酵高温消毒条件;DO变送器4100e ,具有自动手动自检、编程、校准等功能。·  3. 溶解氧控制系统采用美国Honeywell公司S9000控制系统/北京康拓生化公司的KT3000控制系统的2个PID回路组成1个串级PID调节单元。达到可分时段改变设定值,各时段空气流量在不低于设定值前提下溶氧值按设定值调节的控制目标。均由北京康拓生化公司集成、指导安装与调试运行。·  发酵罐DO未控制罐批曲线·  发酵罐DO控制罐批曲线·  溶氧控制发酵中的一些现象·  溶氧控制发酵前期和后期因空气流量较小,罐压较低有时出现泡沫大的现象,可关小排气阀门进行改善。·  溶氧控制改善了发酵10-30h的过速生长现象。·  发酵前期偏低的通气量会使生长迟滞,偏高的通气量会使生长过速,失去控制溶氧的意义,前期通气量需控制在合适的水平。·  发酵过程DO自控实施效果·  金霉素发酵DO自控试验总结论·  采用单因素方差分析方法,分析结论为:对发酵过程进行DO自控,与发酵最为紧密的发酵指标:发酵周期、发酵效价、补糖量、通氨量、提炼收率均无显著性差异,产品质量指标无显著性差异。·   通过对三个发酵车间对照组与试验组数据对比,发现试验组通氨量会有所降低(2-7%),TC会有所升高(2-3%)。·   三个发酵车间同时实施DO自控,总节气率为26.9%,每年可节电1200万KW·h。

  • 实验室生化培养箱在多管发酵法注意事项

    培养箱 生化培养箱在多管发酵法注意事项 1.加氯水样的处理经氯处理消毒过的水样,水中含有一定量的余氯,使大肠菌群处于受损或受抑制状态,在采集水样时应提前在采样瓶中加硫代硫酸钠,硫代硫酸钠可以脱氯,使受损的细菌得以复苏与修复,从而避免出现计数结果偏低甚至假阴性的现象。此外余氯对滤膜法培养的细菌其抑制作用尤为明显,所以抽滤时应对水样进行大量无菌水稀释,以减少余氯的残留。 2.培养温度的要求总大肠菌群中的细菌除生活在肠道中外,在自然环境中的水与土壤中也经常存在,但此等在自然环境中生活的大肠菌群培养的最合适温度为25℃左右,如在37℃培养则仍可生长,但如将培养温度再升高至44.5℃,则不再生长,而直接来自粪便的大肠菌群细菌,习惯于37℃左右生长,如将培养温度升高至44.5℃仍可继续生长。因此,可用提高培养温度的方法将自然环境中的大肠菌群与粪便中的大肠菌群区分,两种方法也都基于此理。将接种好的样品或装有滤膜的培养基放入生化培养箱时,箱内温度一定要达到所要求的温度(44.5±0.5℃)时,方可放入。如用恒温水浴箱时,其水面要高于接种物面,放滤膜的培养皿要沉到水浴箱底部。 3.培养物质的制备与保存 ⑴.多管发酵法所使用的培养液在分装于各发酵管中后,应将发酵管尽快放于高压蒸汽灭菌器中,在115℃灭菌20min(注意:这个温度也应控制好,既达到灭菌的作用,还要防止培养物质分解流失),然后贮存于冰箱或暗处备用。 ⑵.滤膜法所采用的M-FC培养基多使用外购的成品,培养基中苯胺蓝的纯度和质量往往影响菌落的颜色,因此,无菌包装的成套培养基在使用前,最好先接种典型粪大肠菌,以观察对比菌落的颜色,来鉴定其稳定性。 4.样品的保存采样用的容器使用前应盖好瓶盖,用牛皮纸将瓶盖和瓶颈处包裹好,置干燥箱160℃-170℃干热灭菌2h,或用高压蒸汽灭菌器121℃灭菌15min。采样后水样的正确保存也很重要,如保存不当可使样品中的大肠菌群细菌死亡或在一定条件下再生长,这些都将影响检测结果的准确性。检测室接到水样后,应立即检测,如因故不能检测时,应立即将样品置于冰箱内(2℃-10℃)并于2小时内检测。 5.结果统计 ⑴.多管发酵法的结果是根据不同接种量的发酵管所出现阳性结果的数目,从MPN表中查得相应的MPN指数,来计算每升水中粪大肠菌群细菌的MPN值。MPN是“MostProbableNumber”的缩写,指最大可能数,它是根据统计学理论,估计水体中的菌群密度和卫生质量的一种方法,所以准确判断不同接种量发酵管的阳性数是非常重要的,否则将导致较大偏差。 ⑵.滤膜法的结果是计数滤膜上呈蓝或蓝绿色的菌落,来计算出每升水样中的粪大肠菌群数。所以为便于计数,减少误差,理想的水样体积是一片滤膜上生长20-60个粪大肠菌群菌落。培养箱

  • 发酵液中化学成分的气相检测

    发酵液中化学成分的气相检测

    最近在做一个项目,是检测发酵液中癸酸的含量,选择气相检测。发酵液为了溶解癸酸,加了油酸甲酯。气相色谱柱:Rtx-1 30m柱长×0.25mm内径 0.25μm膜厚载气:氮气 45.4cm/sec柱箱温度:60℃保持2min 60℃-300℃ 20℃/min 300℃保持4min进样方式:分流(50:1) 2μl 290℃检测器:FID 310℃发酵液预处理:发酵液,PH调到3.0(或者不调pH),加乙酸乙酯,离心,上清检测附件中图从上到下分别是:1:Blank (乙酸乙酯)2:癸酸标样(1.825mg/ml)0.25ml+预处理后发酵 0.25ml (未PH处理)3:癸酸标样(1.825mg/ml)0.25ml+预处理后发酵 0.25ml (PH处理)4:未pH处理发酵液 0.25ml+pH处理发酵液0.25ml混合5:往3中加少量水,离心,取上清检测6.:发酵液,PH到3.0,加等体积乙酸乙酯,离心,上清检测7:发酵液,PH到3.0,加标样癸酸1.825mg/ml 200ul ,加等体积乙酸乙酯,离心,上清检测目前的问题:癸酸标样基本在7.6min出峰,但是发酵液PH处理后的有两个峰,一个在癸酸标样很近的7.7min左右,后一个峰在9.5min左右,而未有PH处理只有7.7min左右一个峰。原来认为7.7min左右的就是癸酸,但是和标样混合后,不在一个峰,是不是代表不是一种物质。

  • 转帖:发酵罐使用及其注意事项

    一、准备1、检查蒸汽管道、阀门、电机、电源、饮用水管是否有泄漏点或接通;如果有的管有泄漏点,及时更换乳胶管!2、检查发酵罐轴封、夹层、搅拌、视镜阀是否正常;出现异常则及时添加甘油(密封用)。3、用自来水清洗洁净本机内壁;一般上午开机后清洗3-5次,直至流出的水清亮为止。4、用蒸汽空消发酵罐设施及相关管道系统;5、拧开投料口盖镙栓,启动饮用水泵电源按钮,按工艺要求加入饮用水和投入生产用原、辅物料,拧紧投料口盖镙栓;6、关循环水进水阀,开排水阀,将夹层储水排干净;7、检查机器各部份紧固件是否松动和齐全。乳胶塞子要及时更换新的,避免染菌造成不必要的麻烦!!补充:空消在投料前,气路、料路、种子罐、发酵罐、碱罐、消泡罐必须用蒸汽进行灭菌,消除所有死角的杂菌,保证系统处于无菌状态。1. 空气管路的空消(1) 空气管路上有三级预过滤器,冷干机和除菌过滤器。预过滤器和冷干机不能用蒸汽灭菌,因此在空气管路通蒸汽前,必须将通向预过滤器的阀门关闭,使蒸汽通过减压阀、蒸汽过滤器然后进入除菌过滤器。(2) 除菌过滤器的滤芯不能承受高温高压,因此,蒸汽减压阀必须调整在0.13Mpa,不得超过0.15MPa。(3) 空消过程中,除菌过滤器下端的排气阀应微微开启,排除冷凝水。(4) 空消时间应持续40分钟左右,当设备初次使用或长期不用后启动时,最好采用间歇空消,即第一次空消后,隔3~5小时再空消一次,以便消除芽孢。(5) 经空消后的过滤器,应通气吹干,约20~30分钟,然后将气路阀门关闭。2. 种子罐、发酵罐、碱罐及消泡罐空消(1) 种子罐、发酵罐、碱罐及消泡罐是将蒸汽直

  • 固态发酵的分类知识

    版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://cnfjgc.blogbus.com/logs/68539628.html 一、传统固态发酵与现代固态发酵 虽然固态发酵与液态发酵相比,具有它独特的优势,但也存在着许多不足。特别是传统固态发酵是发酵工业中古老而又落后工艺的代名词。甚至,在发酵工程或生化工程的教科书中,也很少提到固态发酵。现代发酵技术的关键条件是纯种大规模集约化培养.随着科学技术发展和可持续发展的影响,国内外逐步重视对固态发酵的研究开发,已取得了很大进展。因此,依据固态发酵过程中是否能实现限定微生物纯种培养,分为传统固态发酵与现代固态发酵。现代固态发酵是为了充分发挥固态发酵的优势,针对传统固态发酵存在的问题,使之适应现代生物技术的发展而进行的,可以实现限定微生物的纯种大规模培养。 二、固态发酵的形式 1.按微生物的情况和形成的产品条件不同分类 固态发酵可以以许多不同的形式进行,按照使用的微生物的情况和形成的产品条件不同,固态发酵可分为自然富集固态发酵、强化微生物混合固态发酵、限定微生物混合固态发酵和单菌固态纯种发酵。 自然富集固态发酵是指利用自然界中的微生物,由不断演替的微生物进行的富集混合发酵过程。典型的例子是传统酒曲和酱油、腌莱、烟草发酵、茶叶发酵、青贮、堆肥等。它不需要人工接种微生物,其所需发酵的微生物主要依赖于当地空气和物料中的自然微生物区系,多种微生物演替成最适于生长代谢或共生协作的小生态环境。其微生物富集区系不仅与当地空气和物料中的自然微生物区系有关,而且与小生态环境自然变化密切相关。 强化微生物混合固态发酵是指在自然富集固态发酵的基础上,根据人们部分掌握的微生物代谢机制,人为强化接种微生物茵系不明确的富集培养物或特定微生物培养物所进行的混合发酵过程。强化微生物混合固态发酵除应用于沼气发酵、白酒发酵作用外,在石油采收、湿法冶金、食品发酵等领域同样显示其优势。人们在长期的科学研究和生产实践中却不断发现,不少生命活动及其效应是借助于两种以上的生物在同一环境中的共同作用下进行的,甚至是单独不能或只能微弱进行的。例如废物的处理,纤维索和本质素的降解,甲烷的产生和利用等。自然界的微生物没有一种是单独存在的,单靠纯培养很难反映它们的真实活动情况。因此,强化微生物混合固态发酵微生物资源具有非常广阔的应用前景。 限定微生物混合固态发酵是在对微生物相互作用和群落认识的基础上,接种混合培养的微生物是已知和确定的,通常使用两种或两种以上经过分离纯化的微生物纯种,同时或先后接种同一灭过茵的培养基中,在无污染条件下进行的固态发酵过程。人类对微生物的利用经历过天然混合培养到纯种培养两个阶段,纯培养技术使得研究者摆脱了多种微生物共存的复杂局面,能够不受干扰地对单一目的菌株进行研究,从而丰富了人们对微生物形态结构、生理和遗传特性的认识。但是,在长期的实验和生产实践中,人们不断地发现很多重要生化过程是单株微生物不能完成或只能微弱地进行的,必须依靠两种或多种微生物共同培养完成。虽然微生物混合培养在很多领域中的作用已得到充分肯定,部分成果己成功应用于实践,但对大多混合菌体系中菌间相互关系和作用机制的研究尚不够深入。因此,目前对于具有协同作用关系的菌株筛选和组合还是一个随机过程的,缺乏有效的理论指导,而且对于已经应用的混合培养体系也不能有效地协调菌间的关系,使其达最佳生态水平,发挥最大效应。这严重地阻碍了混合菌培养的发展和应用。因此,如果从生理、代谢和遗传角度对混合茵间关系和协同作用机制进行深入研究,对混合菌培养的理论和应用都将有巨大的突破。随着混合菌培养在各方面应用研究的深入,人们不再满足于传统的反应模式,已开始引人一些新兴的生物工程技术,使该领域的研究更具活力。采用固定化细胞技术固定混合菌可使反应系统多次使用,降低成本,增加效率,在实际应用中很有意义。利用细胞融合技术和基因工程技术由具有互生或共生关系的微生物构建工程菌,可使工程菌既具有混合培养的功能,又拥有纯培养菌株营养要求单一、生理代谢稳定、易于调控等优点,也是极有前景的研究方向。 单菌固态纯种发酵是在纯培养基础上建立起来的,对于选育良种、保持生理活性和代谢过程中的稳定起很大作用。它对于扩大固态发酵的应用范围和潜力的发挥起到非常重要作用,同时,也是固态发酵一个重要方向。 2.按固态发酵固相的性质分类 根据固态发酵固相的性质,可以把固态发酵分为两种类型。一种是以农作物(如麸皮、豆饼等)为底物的固态发酵方式。这些底物既是固态发酵过程中的固相组成部分,又为微生物生长提供营养,在这里可以称这种发酵为传统固态发酵方式(或固体底物基质固态发酵)。另一种固态发酵方式是以惰性固态载体为固态发酵过程令的固相,微生物生长的营养是吸附在载体上的培养液,称这种发酵方式为惰性载体吸附固态发酵。 同体底物基质固态发酵利用的培养基是既充当固相,又为微生物生长提供营养的初级农作物产物,如麸皮、马铃薯、谷子、豆饼以及其他含淀粉和纤维素的农作物产品。第二种固态发酵采用的固体是惰性载体,这些载体可以是天然的,也可以是人工分成的。这些载体材料有珍珠岩、聚氨酯泡沫体、蔗糖渣和聚苯乙烯等。 固体底物基质固态发酵的一个主要的不足之处就是碳源是它们的结构组成部分,在微生物发酵生长过程中,培养基被分解了,底物容易结块,孔隙率也降低,结果底物的外形和物理特性都发生了变化,降低了发酵过程中的传质和传热。例如,麦片在发酵过程中由于淀粉的降解和水的挥发,会导致固体底物变形结块,结果使传质和传热受到影响。而具有稳定结构的固态载体充当固态发酵的固相可以克服这一缺点,从而更有利于微生物的生长和产物产量的增加。例如,采用聚氨酯泡沫体为载体吸附固态发酵核酸酶P1时,产量和活力分别比采用麸皮固态发酵提高9倍和4倍。 另外,惰性载体吸附固态发酵与固体底物基质固态发酵相比,还具有产物提取简便的优点。可以很容易地从惰性载体中提取到胞外产物,而且所得到的产物含有较少的杂质,载体还可以重复使用。例如,利用聚苯乙烯作为载体,以肋生弧茵产生L-谷氨酰胺酶时,产物比采用麦麸粉固态发酵时得到的产物黏性要低。另外,前者的产物不含蛋白质污染物,而后者含有多余的淀粉酶和纤维素酶等。 与固体底物基质固态发酵相比,惰性载体吸附固态发酵还具有其他很多优点,如:能够对培养基营养成分进行合适的调节;容易了解产物中的各成分并进行分析,从而有利于发酵过程的控制以及动力学研究与模型建立等。

  • 谈工业发酵各阶段培养基的要求

    引用氮氮的欢乐 的 谈工业发酵各阶段培养基的要求工业发酵中利用生产菌发酵得出最终产物是一个逐级放大的过程,各个不同的阶段对于营养成分的要求也各有特点,根据发酵不同阶段的要求,培养基可分为孢子培养基、种子培养基和发酵培养基三种。 孢子培养基孢子培养基是供菌种繁殖孢子的一种常用固体培养基,对这种培养基的要求是能使菌体迅速生长,产生较多优质的孢子,并要求这种培养基不易引起菌种发生变异。所以对孢子培养基的基本配制要求是:第一,营养不要太丰富(特别是有机氮源),否则不易产孢子。如灰色链霉在葡萄糖-硝酸盐-其它盐类的培养基上都能很好地生长和产孢子,但若加入0.5%酵母膏或酪蛋白后,就只长菌丝而不长孢子。第二,所用无机盐的浓度要适量,不然也会影响孢子量和孢子颜色。第三,要注意孢子培养基的pH和湿度。生产上常用的孢子培养基有:麸皮培养基、小米培养基、大米培养基、玉米碎屑培养基和用葡萄糖、蛋白胨、牛肉膏和食盐等配制成的琼脂斜面培养基。大米和小米常用作霉菌孢子培养基,因为它们含氮量少,疏松、表面积大,所以是较好孢子培养基。大米培养基的水分需控制在21%-50%,而曲房空气湿度需控制在90%-100%。 种子培养基种子培养基是供孢子发芽、生长和大量繁殖菌丝体,并使菌体长得粗壮,成为活力强的“种子”。所以种子培养基的营养成分要求比较丰富和完全,氮源和维生素的含量也要高些,但总浓度以略稀薄为好,这样可达到较高的溶解氧,供大量菌体生长繁殖。种子培养基的成分要考虑在微生物代谢过程中能维持稳定的pH,其组成还要根据不同菌种的生理特征而定。一般种子培养基都用营养丰富而完全的天然有机氮源,因为有些氨基酸能刺激孢子发芽。但无机氮源容易利用,有利于菌体迅速生长,所以在种子培养基中常包括有机及无机氮源。最后一级的种子培养基的成分最好能较接近发酵培养基,这样可使种子进入发酵培养基后能迅速适应,快速生长。 发酵培养基发酵培养基是供菌种生长、繁殖和合成产物之用。它既要使种子接种后能迅速生长,达到一定的菌丝浓度,又要使长好的菌体能迅速合成需产物。因此,发酵培养基的组成除有菌体生长所必需的元素和化合物外,还要有产物所需的特定元素、前体和促进剂等。但若因生长和生物合成产物需要的总的碳源、氮源、磷源等的浓度太高,或生长和合成两阶段各需的最佳条件要求不同时,则可考虑培养基用分批补料来加以满足。 根据发酵生产各阶段菌体对营养的需求可以大概看出,孢子阶段培养基要求营养简单少量;种子阶段培养基要求丰富完全,特别是氮与维生素含量要高;发酵阶段培养基要求在足够维持适当生长之余与产物相关联,能提供部分前体、特定成分。安琪酵母公司生产的安琪酵母浸出物采用纯化培养的高蛋白面包酵母,经过自溶酶解、分离、真空浓缩、喷雾干燥等工序精制而成。有安全性好,适用面广;稳定性高,重复性好;营养全面,量化控制;澄清度高,利于提取;颜色浅,营养损失少等诸多优点。富含蛋白质、多肽、氨基酸、核苷酸、维生素、微量元素等营养成分,比例协调,同时采用生物酶解技术,使营养物质高效定向降解,可为菌体生长培养提供全面均衡的营养。除了作为优质的种子阶段培养基氮源外,在发酵阶段同样能为维持菌体茁壮稳定提供充足的营养,尤其是以初体产谢产物为终产物的发酵,安琪酵母浸出物所含的种类齐全的氨基酸,核苷酸,各种维生素与矿质元素更是作为前体、促进剂发挥着重要的作用;而且其澄清度高,发酵残留少的特点,又大大减少了产品的提取纯化的难度与消耗,协助企业向清洁化,高效化,环保化生产发展。 安琪酵母浸出物以其优异的品质,在发酵工业飞速发展的今天,定会得到更广泛的应用,为生物产业的腾飞作出更大的贡献[/

  • 微生物制剂发酵发酵的物理条件

    [size=10.5pt][font=微软雅黑][b]微生物制剂发酵[/b]的物理条件研究主要有[b]发酵温度[/b]、[b]初始[/b]、[b]溶解氧[/b]。温度是微生物生长的重要环境条件之一。微生物的生长实际是生物体的一系列生物化学反应和酶反应的有机组合,温度是影响这些反应的主要因素。由于不同来源、不同菌株和培养基成分的差异,zui适培养温度有一定的差异。[/font][/size][size=10.5pt][font=微软雅黑]PH值影响微生物的发育增殖和各种能量代谢的化学活性等,在工业发酵过程中,值PH直接影响菌体的生长和目的产物的产生和积累,菌体还会产生酸碱物质导致发酵液值的变化,为保持值的稳定以至于不影响菌体的生长及产物的生成,常常需要补加酸碱来平衡值。[/font][/size][size=10.5pt][font=微软雅黑]在好氧微生物发酵时溶解氧是重要的限制性因素,尤其是液体深层发酵对氧的供应要求更高。溶解氧的调节主要靠通气量、搅拌速度、罐压等进行调节。[/font][/size][size=10.5pt][font=微软雅黑]此外,在液体发酵过程中往往要产生大量的泡沫,为了防止逃液和染菌,保证生产顺利进行,需在发酵液中加入消泡剂。常用的消泡剂有植物油,如花生油、豆油等,还有的用一些高分子化合物,如聚醚类消泡剂、高碳醇、有机硅消泡剂等,这类消泡剂的消泡抑泡[/font][/size]

  • 分清发酵格瓦斯和格瓦斯饮料 格瓦斯好喝更营养

    “格瓦斯”是以面包等为底物,经酵母菌和乳酸菌发酵而生产的饮品,具有丰富的营养,它的酒精度一般低于1%,因此不同于啤酒,不属于酒类。格瓦斯中所含的二氧化碳是自然发酵而产生的,而非充加二氧化碳,因此也不属于碳酸型饮料。   目前市场上有发酵格瓦斯产品,也有格瓦斯饮料。格瓦斯饮料是以麦芽汁、面包浸汁或果汁为原料,再配以各种添加剂(防腐剂、甜味剂、香料、色素等)并冲加碳酸水而生产,有的经发酵,有的不经发酵,没有发酵格瓦斯所具有的丰富营养和健康价值,不能称为发酵格瓦斯。  发酵格瓦斯是由酵母和乳酸菌发酵的产品,所以其香味主要源自于所用菌种发酵过程中的代谢物,如醇、醛、酸、酮等的呈味物质,这些不同性质的化合物会发生极其复杂的化学反应,最终形成复合香味,其中乙酸乙酯是主体香味;此外还有所用原料的香味。因此,发酵格瓦斯的香味非常浓郁怡人。而格瓦斯饮料的口味主要来自添加剂和原料。  格瓦斯营养成分的种类有碳水化合物、蛋白质、维生素、有机酸和微量元素等。  碳水化合物中有麦芽糖、葡萄糖、果糖、蔗糖等。格瓦斯的干物质含量按标准规定为5.6%,有的为7.3%。蛋白质含量为2克/升。氨基酸含量为202.2毫克/升,其中含量高者有缬氨酸、亮氨酸、异亮氨酸、赖氨酸、苏氨酸、蛋氨酸(26.6毫克/升)、谷氨酸(24.8毫克/升)、苯丙氨酸(22.2毫克/升)、谷氨酸(24.8毫克/升)。而格瓦斯饮料中的氨基酸含量仅为8.7毫克/升,比发酵格瓦斯少二十多倍。格瓦斯所含维生素有维生素C、维生素B1、维生素B2、维生素P和维生素D。格瓦斯所含有机酸有乳酸、醋酸、柠檬酸等,其含量为3克/升。格瓦斯所含矿物质元素有钙、磷、铁、铜、锰、钼、锌、钴等。每100毫升格瓦斯的热量约30千卡。  格瓦斯中的二氧化碳是由酵母菌和乳酸菌在发酵过程中产生的,为天然成分。当二氧化碳从体内呼出时,会将体内热量带出,赋与人以清凉感,与此同时还会将格瓦斯的香味成分带出来,使人感到怡人的香味。但现代医学中,对二氧化碳是有争议的,认为高含量二氧化碳对人的消化系统有损害,二氧化碳从胃里向上返出后,会刺激食道,导致胃炎等疾病风险,所以饮料中二氧化碳含量不宜过高。格瓦斯二氧化碳含量以0.3%—0.4%为宜,可以保证泡沫的高度和稳定性,而且口感也很好。

  • 【第三届原创参赛】微生物发酵放大研究

    【第三届原创参赛】微生物发酵放大研究

    维权声明:本文为gl19860312原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 本实验室主要工作就是:微生物发酵与代谢调控 、蛋白的分离纯化 、生物材料的研发与生产( 化妆品 、面膜、人工血管 、人工骨................)http://ng1.17img.cn/bbsfiles/images/2010/12/201012061908_264953_2019107_3.jpg 微生物发酵放大研究摘要: 工业发酵过程的研究一般可分为三个阶段: 首先在实验室进行菌种选育和培养基及培养条件的优化;再进行小试、中试, 以验证并完善发酵工艺, 获得适合发酵罐的发酵工艺;最后进行大规模生产。由于发酵过程的复杂性, 往往存在着“放大效应”, 即在实验室研究中, 目标产物的产量较高, 而在放大过程中, 随着发酵规模的扩大,目标产物的产量反而不断下降, 无法重复实验室试验的结果, 影响了工业发酵过程的效率, 因此对“放大效应”进行研究, 采用适当的放大策略, 去降低“放大效应”, 既具有重要的理论意义, 又会产生良好的经济效益。过程优化与放大技术具有潜在的深远意义,是永恒的话题。关键词: 发酵工艺,放大,动力学Key words :fermentation technology , enlarge, dynamics 发酵工程是细胞大规模培养技术中最早被人们认识并发展利用的。迄今, 利用发酵技术进行包括医药、轻工、食品、农业、环保等产品生产, 在国民经济中占有很大比重, 可以分为以常规微生物的传统生物技术和以基因工程细胞培养的现代生物技术产业, 无论对当前或今后发展均具有重要的经济和社会意义。 对具体某一体系来说,用何种放大规模可以快捷的成功过渡到工业化生产,没有固定模式,必须针对具体菌种生理生化及培养基及环境条件的放大效应综合考虑。反应器的不足可以通过工艺及控制手段来弥补,工艺的欠缺有时也可以通过改善反应器形式来修正。一、发酵工程中涉及的主要技术问题与工程学观点为了提高发酵生产水平, 人们首先考虑的是菌种选育或基因工程构建, 往往忽视了生物反应器中工程问题所必须加以考虑的工艺变化和过程优化。在得到一个高产菌株后, 随后的逐级放大与优化基本上是以最佳工艺控制点为依据, 采用人工经验为主的静态操作, 在方法上基本以正交试验为基础。 随着对细胞大规模培养技术的深入研究和对以分批培养为主要对象的发酵过程参数的时变性、多样性、耦合性和不确定性的认识, 建立了以过程动力学为基础的数学模型, 引进了一系列现代控制理论, 其中有静态和动态优化、系统识别、自适应控制、专家系统、模糊控制、神经元网络、直到各种混沌现象的研究。这种适应发酵过程非线性特征的研究方法对细胞大规模培养技术研究的深入开展以及提高学术研究水平起到很大的推进作用。但是, 也应该看到, 在实际工厂生产上仍有很大局限性, 效果不明显。 从发酵过程放大来说, 有人把“放大”分为两个基本问题, 其一是发酵条件的研究与设计; 其二是设计满足这些过程条件的反应器。就某种意义上, 第一个问题实质上是发酵过程动力学的问题,第二个是工程水平的传递和混和问题。必须认识到, 除非完全以微生物反应动力学与周围环境传递条件相结合的模型建立, 否则过程放大最终还是落实到系统几何相似、流体运动学相似和流体动力学相似等, 具体来说有因次分析法、经验法则法、综合机理的数学模拟法以及时间常数法等放大方法。事实上, 要同时满足这些相似条件是不可能的, 于是, 发酵过程放大仍旧是一个使人感到困惑的问题, 从摇瓶到发酵罐的差异, 甚至尽可能采用同样的操作条件, 只不过发酵罐的容积从几十升放大到几十立方米, 但结果往往面目全非。1.1、放大相关的参数及放大准则 在放大过程中必须考虑到各种参数随培养规模的变化所发生的改变。其中表面通气放大效应和培养基粘度效应必须给予重视。一般归纳为下列几种放大准则:(1)氧传递系数KLa,它代表氧的供应情况,在放大过程中常以大、小罐KLa=常数法进行放大;(2)单位输出功率Pg,在放大时,可维持Pg=常数法;(3)混合特性参数——混合时间,在放大过程中可以维持小罐的混合时间为t=5~30s,大罐的混合时间维持t=30~120;(4)剪切强度——可以用搅拌转速来衡量,在放大过程中要维持相似的剪切强度,常以叶尖搅拌线速度Vtip=常数法来放大;(5)维持相同的空气线速度Vs;(6)维持相同的热传递速度;(7)保证同样的培养基质量。放大的必要前提必须使大型设备和小型设备中的环境条件完全相同,一般的过程放大都是通过摇瓶所得最初工艺条件,进而通过实验室小规模摸索其发酵条件,在这些工艺参数中,从摇瓶转化到小型发酵罐过程中常见的为培养基成分的改变,往往是培养基不适合小型发酵罐中菌体代谢物的积累。放大成功与否,与所采用的放大模型有关,因为所采用的模型常常不是根据机理推导而是一种近似的黑箱操作;第二,与主体溶液的混合、热交换、空气线速度有关;第三,与表面活性剂(消泡剂、鼓泡特性)等有关。而在放大过程中最关键的还是氧的供应问题和细胞形态的变化。大多情况下,放大的主要矛盾来自氧的供应问题,成功的关键在于氧供应问题的好坏。总之,传统的工业放大均无一例外的是通过摇瓶——实验小试——中试-工业化生产逐级放大的模式,这样既浪费时间,又缺乏科学依据,完全靠试验摸索,其结果往往不尽人意。1.2、发酵放大过程 一般来说, 放大成功与否来自两方面的因素: 一是氧的供应, 二是菌丝形态。由于微生物是一个复杂的体系,在发酵放大时必须考虑到它本身的特性,如微生物对机械剪切力的敏感程度及丝状菌易形成菌丝团增加传质困难等。现在常用的发酵放大方法是使KLa或溶解氧浓度基本相等,它主要考虑使不同发酵规模的微生物生理活动条件相一致,而不着重考虑发酵罐的几何相似性。1.2.1[fon

  • 制药发酵工艺优化方法与思路

    发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。 为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。 发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率。 在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。 基于此,华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化的有关现象,研究细胞代谢物质流与生物反应器物料流变化的相关性,高度重视细胞的生长变化,尽可能多地从生长变化中做出有实际价值的分析,进一步建立细胞生长变量与生物反应器的操作变量及环境变量三者之间的关系,以便有效控制细胞的代谢流,实现发酵过程的优化。 补料分批发酵技术该技术可以有效地减少发酵过程中培养基黏度升高引起的传质效率降低、降解物的阻遏和底物的反馈抑制的现象,很好地控制代谢方向,延长产物合成期和增加代谢物的积累。 所需营养物限量的补加,常用来控制营养缺陷型突变菌种,使代谢产物积累到最大。氨基酸发酵中采用这种补料分批技术最普遍,实现了准确的代谢调控。 超声波的应用超声波有很强的生物学效应。可应用于发酵过程的上、中、下游三个阶段。其在发酵工艺上的应用,可增加细胞膜的通透性和选择性,促进酶的变性或分泌,增强细胞代谢过程,从而缩短发酵时间,改善生物反应条件,提高生物产品的质量和产量。 超声波的作用机制分为热作用、空化作用和机械传质作用。热作用是超声波在介质内传播过程中,能量不断被介质吸收而使介质的温度升高的一种现象,可用于杀菌或使酶失活。空化作用是超声波在介质中传播时,液体中分子的平均距离随着分子的振动而变化。当其超过保持液体作用的临界分子间距,就形成空化(空泡)。空泡内可产生瞬间高温高压并伴有强大的冲击波或射线流等,这足以改变细胞的壁膜结构,使细胞内外发生物质交换。机械传质作用是超声波在介质中传播时,可使介质质点进入振动状态,加速发酵液的质量传递,提高发酵过程的反应速度。 超声波可广泛应用于生物发酵工程。不同频率和强度的超声波对发酵过程的作用是不同的,使用时应视具体的发酵工艺和使用条件进行选择。 增加前体物的合成增加目的产物的前体物的合成或是直接添加前体物,均有利于目的产物的大量积累。如:在氨基酸的发酵中,通常在微生物的培养中加入前体,生产氨基酸;在花生四烯酸的发酵中,通过增加前体物或是加强糖代谢的途径,增加其前体物的合成,均有助于提高花生四烯酸的产量。 去除代谢终产物改变细胞膜的通透性,把属于反馈控制因子的终产物迅速不断地排出细胞外,不使终产物积累到可引起反馈调节的浓度,即可以预防反馈控制。 发酵工艺优化的方法有很多,它们之间不是孤立的,而是相互联系的。在一种发酵中,往往是多种优化方法的结合,其目的就是要控制发酵,按照自己的设计,生产出更多、更好的产品。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制