当前位置: 仪器信息网 > 行业主题 > >

发光光谱仪

仪器信息网发光光谱仪专题为您提供2024年最新发光光谱仪价格报价、厂家品牌的相关信息, 包括发光光谱仪参数、型号等,不管是国产,还是进口品牌的发光光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合发光光谱仪相关的耗材配件、试剂标物,还有发光光谱仪相关的最新资讯、资料,以及发光光谱仪相关的解决方案。

发光光谱仪相关的资讯

  • 稳态瞬态荧光光谱仪在力学存储/可视化行为的自充能、可持续力致发光的应用研究
    自充能、可持续力致发光力致发光是指材料在力学刺激下产生的一种发光行为。由于其独特的力学-光学响应特性,力致发光为实现力学传感及其可视化提供了新思路和新途径。目前发现的力致发光材料多数仅表现出动态力学刺激下的瞬态发射行为,极大地限制了其在力学的可视化显示和成像方面的应用。可持续力致发光材料能够在力学刺激停止后继续保持发光行为,对可持续力致发光材料的开发是应对上述问题的有效方式。此前,研究人员通过陷阱工程设计,在特定材料体系中获得了力学刺激后可持续的力致发光现象。然而,该类可持续力致发光材料在使用前必须经历预辐照,在其结构内部预先储存能量,这不仅增加了实际应用时操作的难度,也难以实现该类材料的循环稳定使用。因此,实现无需预辐照的自充能、可持续力致发光成为当前研究的热点之一。中国科学院兰州化学物理研究所王赵锋团队在国际知名期刊Advanced Science上发表的题为“Self‐charging persistent mechanoluminescence with mechanics storage and visualization activities”的研究论文。本文研制出一种自充能、可持续力致发光材料——Sr3Al2O5Cl2:Dy3+/PDMS(SAOCD/PDMS),该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光,有效避免了此前材料在使用时的预辐照需求,极大提升了长寿命力致发光材料的应用便利性。本工作通过将SAOCD (SAOCD) 粉末复合到PDMS基质中,创建了一种新型的力致发光材料,即自充能、可持续力致发光材料。无需任何预辐照,所制备的SAOCD/PDMS弹性体可以直接在力学刺激下表现出强烈且持久的力致发光,这极大地促进了其在力学照明、显示、成像和可视化中的应用。通过研究基体效应以及热释光、阴极发光和摩擦电特性,界面摩擦起电诱导的电子轰击过程被证明是机械刺激下SAOCD中自充能能量的原因。基于独特的自充电过程,SAOCD/PDMS进一步展现出力学存储和可视化读取行为,为机械工程、生物工程和人工智能领域 处理力学相关问题带来了新颖的思路和方法。 自激活、长寿命力致发光材料的设计制备与性能研究 图1 SAOCD/PDMS复合弹性体的制备流程、性状及力致发光性能 当施加拉伸、摩擦、压缩等力学刺激时,复合弹性体呈现出直接的自激活力致发光,不需要额外的预辐照(图1c)。复合弹性体的力致发光性能随SAOCD颗粒中Dy的含量增加呈现出先增后减的趋势(图1d)。随着施加应变的增加,SAOCD/PDMS弹性体的ML强度随之增加,其在应力/应变传感方面表现出良好的应用价值。此外,该复合弹性体的力致发光还表现出良好的热稳定性(图1f)。图2 (a)SAOCD的力致发光和余辉示意图;(b)SAOCD/PDMS复合弹性体在拉伸、摩擦、压缩条件下的力致发光和余辉照片;(c)不同浓度Dy离子掺杂SAOCD/PDMS复合弹性体的摩擦余辉光谱图。 该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光(图2),有效避免了此前材料在使用时的预辐照需求,极大提升了可持续力致发光材料的应用便利性。图3 SAOCD的自激活力致发光及余辉机理明确了SAOCD/PDMS的自激活力致发光和余辉的物理过程,即在外力刺激下SAOCD与PDMS产生界面摩擦电作用,SAOCD的电子转移到PDMS表面,SAOCD与PDMS间形成高能电场,PDMS表面电子被加速,轰击SAOCD,使得SAOCD中的电子受激从价带跃迁至导带,一部分直接和发光中心结合产生力致发光,另一部分被陷阱捕获,外力撤除后自发释放转移至发光中心产生余辉。机械力学信息的存储与可视化读取器件研究图4 (a)力致发光复合材料的应力存储和可视化读取示意图;(b)SAOCD/PDMS复合弹性体对机械力学信息的存储、读取原理及功能展示。 通过利用SAOCD/PDMS材料中特有的自充能物理过程,进一步发展出了一种力学信息的存储与可视化读取技术(图4)。在机械刺激下,力学信息将会以陷阱捕获载流子的方式在材料内部进行存储,随后,在热刺激下,所存储的力学信息将以可视化的形式得到读取,所存储和读取的力学信息主要包括力学强度、发生时间及其空间分布等。作者简介王赵锋简介:中国科学院兰州化学物理研究所研究员,博士生导师,2006年毕业于兰州大学材料化学专业,获理学学士学位,2011年毕业于兰州大学材料物理与化学专业,获工学博士学位。2011年至今,先后于中国科学院兰州化学物理研究所固体润滑国家重点实验室、美国德克萨斯州立大学化学与生物化学系、美国康涅狄格大学材料科学研究所进行科学研究。主要研究方向为摩擦/力致发光材料及应用,在Nat. Commun., Angew. Chem. Int. Ed., Adv. Funct.Mater., Nano Energy, Mater. Horiz., Adv. Sci.等期刊发表论文100余篇(被引用5000余次,h因子40),编写书籍章节两部,申请/授权国家发明**10余项,研究成果被国内外知名媒体如中国科学报、中国科普博览、人民日报、中科院之声、New Scientist、Nanowerk、Science Trends等专题报道。现为国内知名期刊《稀土学报(英文版)》、《材料导报》、《发光学报》青年编委,以及中国机械工程学会表面工程分会青年学组特邀专家。2015年获美国环境保护署P3提名奖,2017年获甘肃省自然科学二等奖,2018年获中科院高层次人才计划择优支持,2020年获甘肃省杰出青年基金支持,所带领的研究团队获2021年度甘肃省“青年安全生产示范岗”荣誉称号,2022年获中科院区域发展青年学者称号。相关产品推荐 本研究的力致发光光谱数据采用卓立汉光搭建的组合荧光系统采集,配置Omni-λ300i系列“影像谱王”光栅光谱仪对光谱进行分光。目前,该组合荧光系统已经升级为OmniFluo900 系列稳态瞬态荧光光谱仪,如需了解该产品,欢迎咨询。 免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会*一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 天美公司隆重发布新一代的荧光光谱仪FL970
    2017年4月6日,天美公司在北京国家会议中心隆重发布了新一代的荧光光谱仪FL970。FL970的设计制造是由天美集团主要控股的上海三科仪器的团队完成的,上海三科仪器成立于1992年,最初由上海第三分析仪器厂派出的主要科研人员组成,是中国首先研制和批量生产荧光分光光度计的企业之一,经过20年的发展和壮大,产品已经覆盖国内所有的地区和部分出口国外高端用户。推出的930A、960CRT、970CRT等荧光分光光度计由于其良好的品质,在用户中赢得了很好的口碑。 此次发布的FL970较之前的产品性能上有了很大的提升,集多种光谱技术于一身,可以实现高灵敏度和宽范围的荧光光谱和生物发光、化学发光、电致发光光谱的测量。  宽范围的光电倍增管(波长至900 nm),满足客户不同测试波段的需求。超快30000 nm/min的扫描速度,可以实现高速三维荧光采集,实现三维荧光快速定位。FL970的FluoSpectro软件带有中文界面,分析流程十分简单。软件内置仪器性能自动确认功能,方便用户掌握仪器的状态。FL970机身设计紧凑简洁,大样品仓适合多种分析和应用,带有丰富的功能和配件,可以满足客户对仪器越来高的性能和应用需求。天美公司一直致力于国产仪器的研发和制造,FL970就是一款在国内研发国内制造的仪器,是实实在在的中国制造的高品质荧光光谱仪,相信在日后可以很好地帮助广大用户解决日常测试和科研上的难题。
  • 海光仪器:原子荧光光谱分析技术及未来发展方向
    北京海光仪器公司周志恒总经理  周志恒总经理在报告中从原子荧光技术发展史谈起,详细介绍了原子荧光技术的国内外研究现状,现有商品仪器情况尤其是仪器结构和原子荧光仪器的基础核心、关键技术,以及海光商品仪器相关情况 分析了原子荧光光谱分析法的主要优点,以及原子荧光光谱分析原理 分别从激发光源、形态分析、符合EPA标准的测汞技术、多元素同时测量技术、便携或车载式现场测量仪器五个方面论述了原子荧光技术的未来发展方向。
  • HORIBA发布收购PTI后的首款荧光光谱仪新品
    2014年2月,HORIBA宣布收购PTI(Photon Technology International, Inc.)及其附属子公司的全球资产。收购PTI两年多以后,日前HORIBA发布了PTI QuantaMaster系列产品的新成员——PTI QuantaMaster 8000系列光谱仪。  PTI QuantaMaster 8000系列模块化研究级荧光光谱仪具有世界上最高的灵敏度,水的拉曼信噪比(SNR)为30000:1,目前只有HORIBA 的Fluorolog-3能与之相媲美。PTI QuantaMaster 8000  作为一款模块化、研究级荧光光谱仪,PTI QuantaMaster 8000可以用于稳态和荧光寿命的测量。它配备了四个激发光源和六个检测通道,采用三光栅系统拓展波长范围,使用一个单色仪或双单色仪进行杂散光的抑制。同时,通过TCSPC增加灵活性和适应性,提供最快的速度,并提供260nm到2000nm之间可调的UV/Vis/NIR超连续激光。此外,该产品还可以实现覆盖到5500nm的光谱和磷光寿命检测。  PTI QuantaMaster 8000是一款完全自动的仪器,FelixGX软件控制所有的硬件功能, 为光谱和动态测量提供了一套完整的数据采集协议。使用SSTD转换器或VCI可以进行激发和发射光谱扫描、时间扫描、光谱和时间偏振扫描、同步激发/发射扫描、TCSPC寿命和磷光衰减以及时间分辨激发和发射光谱的扫描等。  “PTI QuantaMaster 8000系列产品是下一代稳态和寿命荧光光谱仪的代表,同时也是HORIBA收购PTI后发布的第一款荧光光谱仪新品,”HORIBA荧光部门全球产品经理Cary Davies说,“现在,研究人员拥有了一款从UV到NIR (280 to 5500 nm)的高度灵活性,同时具有超高灵敏度以及许多其它很多独特优势的荧光光谱仪。”HORIBA荧光产品发展历史
  • 爱丁堡仪器一体化荧光光谱仪FS5 全球发布
    英国Edinburgh instruments是一个专注于生产和研发高性能研究级光谱仪的公司。产品线有激光,传感器和光谱仪三个方向。其中光谱仪有瞬态吸收和荧光光谱两个大类。爱丁堡的激光闪光光谱仪和瞬态稳态荧光光谱仪是全球公认的领导者。此次BCEIA,天美在展台进行一体化荧光光谱仪:FS5的全球发布,这台全新的仪器首次在国内亮相。 这是爱丁堡苏格兰工厂全新打造的新一代紧凑型一体化荧光光谱仪。这款仪器基于高标准进行设计,具有高灵敏度,快速数据获取,操作简单的特点,同时还有丰富的样品支架可以进行选择。拥有爱丁堡仪器在荧光光谱仪上超过35年的制造经验,FS5可以为您提供您所能想到的各种测试需求。FS5为中档价位的荧光光谱仪在全球分析和研究市场上设立了一个全新的标准,针对不同的应用方向,我们都有相应测量模式可以进行选择。 . 单光子计数的高灵敏度 . 高动态范围和数据获取速度 . 独一无二的软件&mdash &mdash 为荧光光谱仪量身定做 . 升级的可选模式 PSP&mdash &mdash 纯光谱,极低的杂散光,无 高级散射光干扰 NIR&mdash &mdash 可扩展光谱范围至1700nm POL&mdash &mdash 测量各向异性和偏振度 MCS&mdash &mdash 完成微秒到秒级的寿命测试 TCSPC&mdash &mdash 完成皮秒到微秒的寿命测试 . 极其丰富的样品支架选项 除了拥有FS5标准荧光测试功能以外,这款升级还能实现皮秒、纳秒到微秒范围的寿命测量(10&mu s)。FS5-TCSPC型号需要皮秒脉冲二极管和LED作为激发光源,我们只需要简单地将光源连接到FS5-TCSPC特制的样品仓中,这个样品仓与所有样品支架相兼容。 寿命测试的时候不需要单独的激光驱动和数据分析模块。软件完全兼容所有的测试功能,提供重卷积和曲线拟合。皮秒激光二极管(EPL)和皮秒脉冲发光二极管(EPLED)都是单一波长输出。我们至少需要一个或者一个以上的皮秒脉冲光源来激发样品,激发波长根据用户的具体应用方向进行选择。 TCSPC寿命测试可以使用FS5标准的检测器,仪器响应为~800ps。实际的仪器响应数值取所使用的EPL或者EPLED。当我们使用快速响应检测器的时候可以优化仪器响应函数,对应的仪器型号为FS5-TCSPC+。使用EPL作为激发光源可以得到~250ps的仪器响应。 几乎针对所有应用,FS5都有相应的样品支架可供用户进行选择。这些附件的安装使用十分简单方便。绝大多数的附件安装只需要十几秒的时间就可以完成。专用的Fluoracle软件可以自动识别每一个样品支架,用户使用界面十分友好,操作十分便捷。BCEIA创办于1985年,每两年举办一次,今年即将在10.23-10.26日举办第十五届。国内外专家、学者,众多仪器厂商都将汇聚于此,共同分享有关分析测试的经验收获以及探讨科技发展方向。天美公司将参加此次盛会,请关注展台:2090-2093,2020-2027(2号馆主席台旁)作为BCEIA的忠实参与者,天美公司积极响应会务组的各项创新活动。今年BCEIA最新推出了依托于展会的手机应用软件,可直接在手机上浏览展会相关报告、交通灯信息,以及参展商情况,展品情况及各项资料下载。天美公司已经提交相关宣传资料,欢迎大家下载关注。下载二维码:天美公司仪器通讯月刊在9月刊推出BCEIA专题,集中介绍展示新品的各种应用,以及相关活动介绍。欢迎您点击查看:http://www.techcomp.cn/tongxun/09/index.html 。公司介绍:   天美(中国)科学仪器有限公司(&ldquo 天美(中国)&rdquo )是天美(控股)有限公司(&ldquo 天美(控股)&rdquo )的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。   更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 新加坡国立大学合成新型近红外发光量子点,光致发光量子效率可达25%|国际用户简讯
    作者:Sophie编辑:Joanna对于太阳能转换器件和生物成像应用程序来说,使用发射近红外光、具有显著斯托克斯位移且再吸收损失小的材料非常重要。近期新加坡国立大学化学系便合成了这样一种新型材料——四元混合巨壳型量子点(InAs?In(Zn)P?ZnSe?ZnS)。这种新型量子点可以实现显著斯托克斯位移,且光致发光量子效率可达25%,非常适合应用于太阳能及生物领域。Tips: 斯托克斯位移是指荧光光谱较相应的吸收光谱红移(斯托克斯位移=发射波长-吸收波长)。斯托克斯位移越大,荧光太阳能光电转换效率越高。图片来源于网络 单锅连续注射&结构比例控制合成新型量子点的关键新加坡国立大学使用单锅连续注射的方法来合成该量子点。四元混合巨壳型量子点结构主要成分由内到外比例为1: 50: 37.5: 37.5合成过程分为4步,由内向外,依次为:1. 合成该量子点InAs内核2. 向InAs核反应容器中注射As前驱体溶液、醋酸锌和磷酸氢,完成第2层In(Zn)P壳层的合成3. 向反应体系注射Se前驱体溶液合成第3层ZnSe壳层4. 注射S前驱体溶液和醋酸锌完成ZnS壳层的合成四元混合巨壳型量子点合成过程图示合成过程中,研究人员会定时从反应容器中取出小部分溶液测量其紫外可见吸光度和光致发光特性来跟踪反应进程,并调整量子点间的结构比例。他们利用HORIBA高能量窄脉宽 Nanoled-440L皮秒脉冲激光光源对样品进行激发,在FluoroLog-3 荧光光谱仪上测试荧光寿命。在新的荧光光谱技术中,FluoroLog-3 系列荧光光谱仪配置CCD检测器新技术,实现快速动态荧光光谱检测,实现实时反应发光测试,分子相互作用的动态检测。新型量子点材料助力太阳能及生物应用用领域终合成的巨壳量子点,In(Zn)P壳层能够吸收400-780 nm的可见光,并将吸收后的能量传递到InAs内核,使其在873nm处发射,进而实现显著的斯托克斯位移和很小的吸收-发射光谱重叠;经统计计算,该量子点光致发光量子效率可达25%,这对于近红外发射器来说相当可观,且它在873nm的发射光与硅太阳能电池的光敏响应区匹配良好。并且这一新型量子点为可调色发光,不含有害金属。种种优点使得该量子点不仅非常适合应用于荧光太阳能领域用以提高光电转换效率;且在生物领域,该量子点也可作为荧光材料用于生物成像,给疾病的诊断和治疗带来巨大进步。该工作以“Large-Stokes-Shifted Infrared-Emitting InAs?In(Zn)P?ZnSe?ZnS Giant-Shell Quantum Dots by One-Pot Continuous-InjectionSynthesis”为题,发表于《Chemistry of Materials》。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • “港东科技”2013年原子荧光光谱仪产品发布
    AFS-GD300型原子荧光光度计是港东公司自主研发的双通道原子荧光光度计,拥有全自动进样系统,仪器采用简洁大方的流线型外观设计,多功能的人性化软件工作站。整机拥有稳定性能好、灵敏度高、检出限低、精密度小、重复性好等优点,可对各种物质中的砷As,汞Hg,硒Se,铅Pb,锗Ge,锡Sn,碲Te,铋Bi,锑Sb,镉Cd,锌Zn进行超痕量检测。  产品特点 高精度原子化器高度自动调节装置专利设计的原子化器高度自动调节装置采用人机对话,自动控制原子化器高度调节,更加方便快捷,而且保证了仪器的稳定性,提高了仪器灵敏度。 高效屏蔽式石英炉原子化器特制的双层石英炉芯,有效地减少了荧光猝灭的发生,提高了仪器的精密度。 实用型空心阴极灯固定装置专利设计的空心阴极灯固定装置,不需要人工调节灯的方向角度,使空心阴极灯的安装固定和更换更加的简单、便捷。而且全遮盖式黑色固定套防止了激发光源的散射。 智能型无级调速阀门流量控制系统先进的气体流量控制器分开控制载气和屏蔽气的流量,无级调速使气体流速调节更加精确化,在气流控制上更加灵敏。 双通道设计能够实现两种元素的同时测试与任意组合,以满足不同用户的应用要求,同时提高了工作效率,节省了样品量和试剂用量,大幅度降低了检测成本。 全自动化120位进样系统进样器采用横纵走位进样方式,进样准确、快捷。样品盘可整盘取下进行更换,并且有详细的数字编号,防止样品管混乱。 全新设计的气液分离器采用两级气液分离系统,气液分离更加彻底,接口更加严密,消除了蒸汽对测试结果的影响。 高集成化电路微机系统仪器内置高集成度主板,采用总线功能模块化设计,以最新原理实现准确的信号分离,去除了道间干扰,大大降低了噪声并且提高了仪器的检测精度和灵敏度。 独特设计的光路系统短焦距光路设计合理优化了空间布局,而且采用无色散光学系统,减少了原子荧光的辐射能量损失,提高了检测器信号和灵敏度,降低了仪器检出限。 可靠的安全保障设计软件采用开机自检功能,检查仪器的各项系统是否正常工作,当意外断开气体时,软件控制仪器立即停止工作。 功能强大的软件工作站全新自主设计的中英文分析软件,兼容Windows XP、Windows 7等系统,更加人性化的操作界面,使用户方便、快捷的操作软件控制仪器。技术指标元素As、Sb、Bi、Se、Te、Pb、SnHg、CdGeZn检出限DL(ug/L)<0.01<0.001<0.05<1.0精密度RSD<1.0%线性范围大于三个数量级相关系数>0.997 更多原子荧光光谱仪产品信息请登录http://www.tjgd.com 联系我们:天津港东科技发展股份有限公司地址:天津市华苑产业园区鑫茂科技园G座EF单元二层邮编:300384电话: 022-23859771/23858877传真: 022-83711608/83712698
  • 生态环境部又发布一项水质指纹溯源方法(征求意见稿)涉三维荧光光谱
    为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》,规范入河入海排污口水质指纹溯源技术,提升入河入海排污口溯源调查科学化水平,9月14日,生态环境部办公厅发布关于公开征求国家生态环境标准《入河入海排污口监督管理技术指南 水质指纹溯源方法(征求意见稿)》意见的通知。  该标准规定了入河入海排污口水质指纹溯源方法的技术流程、技术要求、结果校核与记录的具体要求。适用于对有排水的入河入海排污口开展溯源,尤其适合于排放混合污水且污染来源不明、溯源难度大的入河入海排污口。标准采用三维荧光光谱仪或者内置三维荧光光谱仪的水质指纹溯源仪进行水质指纹检测。  入河入海排污口溯源主要包括三种方式,即资料溯源、人工排查和技术溯源。技术溯源包括管道检测法、同位素解析法、图谱比对法等。本次公布的标准采用了水质指纹溯源法。水质指纹是指水体中溶解性有机物在特定波长的激发光照射下会发出特定波长的发射光(即荧光),将水样荧光强度以等高线方式投影在以激发光波长和发射光波长为横纵坐标的平面上得到的三维荧光光谱。  水质指纹溯源法具有高选择性、操作简便、试剂耗量少、测量精度高、检测快速等优点,目前可识别包括生活污水、城市雨水、农业面源、养殖废水、印染废水、电子废水、造纸废水和电镀制造废水等 10 余种污染类型的污水。  针对入河入海排污口进行污染溯源,可以确定责任主体,从而落实入河入海排污口整治和管理职责,有效管控污染物入河入海。这对维护流域、海域水生态安全,推动水环境质量改善和高质量发展具有重要意义。  以下是通知原文:关于公开征求国家生态环境标准《入河入海排污口监督管理技术指南 水质指纹溯源方法(征求意见稿)》意见的通知  为贯彻落实《中华人民共和国环境保护法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》等法律法规及《国务院办公厅关于加强入河入海排污口监督管理工作的实施意见》(国办函〔2022〕17号)要求,指导各地开展入河入海排污口溯源,我部组织编制了《入河入海排污口监督管理技术指南 水质指纹溯源方法(征求意见稿)》,现公开征求意见。征求意见稿及其编制说明可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。有关意见建议请于2023年10月16日前通过信函或电子邮件的方式反馈我部。  联系人:生态环境部海洋生态环境司 吴彤  通信地址:北京市东城区东长安街12号  邮政编码:100006  电话:(010)65645536  传真:(010)65645500  电子邮箱:hysjgec@mee.gov.cn  联系人:生态环境部华南环境科学研究所 赵庄明  通信地址:广东省广州市黄埔区瑞和路16-18号  邮政编码:510530  电话:18122329667  电子邮箱:zhaozhuangming@scies.org  附件:  1.征求意见单位名单1.pdf  2.入河入海排污口监督管理技术指南 水质指纹溯源方法(征求意见稿)2.pdf  3.《入河入海排污口监督管理技术指南 水质指纹溯源方法(征求意见稿)》编制说明3.pdf  生态环境部办公厅  2023年9月12日
  • ZOLIX发布三维荧光光谱仪SmartFluo-Pro新品
    三维荧光光谱仪可快速检测液体中的有机化合物(DOM),每个样品仅需数十秒或者几分钟,即可及时识别液体中的有机物成分。具体应用如下:提供水中有机污染物的检测;自来水中微生物污染的检测;评价净水工艺及再生水对环境的危害;食品中各组成成分定量分析及农药残留检测; 应用实例:水中微生物检测研究水环境中的荧光物质和微生物的活动可为水体污染提供预警、水质污染溯源、水质净化等提供强有力的技术支持。测试过程中,瑞利散射和拉曼散射会对荧光信号进行干扰,结合相关算法进行瑞利校正和拉曼校正之后,可以得到更加准确的三维荧光光谱,使得分析更准确、高效。图:原始图谱,标注位置为瑞利和拉曼干扰区图:去除瑞利散射和拉曼散射的光谱 食品安全检测可检测食品中的成分以及各组分的含量(包括农药残留等),为食品定级以及判定是否合格提供有力证据。 标准库中菜籽油光谱疑似菜籽油成分,可信度85% 某品牌芝麻油 白酒检测根据三维荧光光谱可进行不同白酒品牌和同一品牌不同系列白酒的鉴定,结合标准数据库和客户自建数据库,可进行真假白酒的鉴定和白酒品质的定级。 品牌一46度 品牌一56度 品牌二46度 品牌二56度三维荧光系统产品优势:1、简单易操作的软件可进行荧光光谱测量、激发光谱测量、同步荧光光谱测量、三维荧光光谱测量、三维同步荧光光谱测量。三维数据可进行大小、俯仰和旋转调节。 2、激发/发射较正功能激发校正前 激发校正后 3、三维数据提取功能可根据三维荧光光谱数据得到测试区域内的荧光光谱、激发光谱、同步荧光光谱和等高线视图。 仪器性能参数参数规范参数规范光源150W连续氙灯光源波长准确度±1nm激发单谱仪200mm焦距,CT结构,低杂散光波长重复性±0.5nm光栅1800g/mm@400nm积分时间100μs~24s激发范围200~800nm检测限0.1μg/L@硫酸奎宁*激发带宽5nm样品架标准石英比色皿发射范围200~800nm仪器体积620×415×300mm(L*H*W)发射带宽5nm仪器重量25Kg* 硫酸奎宁溶于0.1mol/L硫酸溶液中 创新点:"1. 检测限达到0.1μ g/L2. 全新的样品室光路设计,使得相较于普通光路信号强度提高了3倍以上3. 优化的氙灯光源室设计,更换氙灯灯泡无需专业技能,且更换后无需调节既能达到/接近最佳效果。4. 整体化的结构设计,使得仪器整体重量降到了25Kg,不仅可应用于实验室,也试用于工业应用。"三维荧光光谱仪SmartFluo-Pro
  • 国产分子荧光光谱仪的“差异化”竞争路线
    p style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  随着科研需求的发展,分子荧光光谱相关的新技术和新应用也在不断的深入拓展中,尤其是在附件的多样化、联机,以及其他功能性拓展方面表现得越来越明显。为了多方位展现分子荧光光谱领域的最新成果,仪器信息网特别策划制作《不可或缺 分子荧光光谱技术及应用进展》网络专题,旨在展现分子荧光光谱仪的最新技术及应用情况。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  作为国产分子荧光光谱领域的代表企业,北京卓立汉光仪器有限公司(简称:卓立汉光)不仅推出了科研用稳态瞬态荧光光谱仪,而且从“差异化”竞争的角度寻求更长远的发展。日前,我们特别邀请了卓立汉光荧光光谱产品经理杨泽鑫来分享其在分子荧光光谱产品方面的战略布局。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 257px " src="https://img1.17img.cn/17img/images/202012/uepic/97ef1194-9083-4420-a287-4aad1c4b8f87.jpg" title="微信图片_20201216145530.png" alt="微信图片_20201216145530.png" width="200" height="257" border="0" vspace="0"//pp style="text-align: center "strong北京卓立汉光仪器有限公司荧光光谱产品经理 杨泽鑫/strong/pp style="text-align: justify " strong 仪器信息网:与其他分析仪器相比,分子荧光光谱新产品的推出不是很活跃,市场也略显“沉寂”,请问您如何评价该类仪器的市场活力及竞争格局?/strong/pp style="text-align: justify "strong  卓立汉光:/strong分析型分子荧光产品推出很早,技术难度不大,不论是国内还是国外都有多个厂家在做,可以说分析型分子荧光光谱市场已经是一个非常成熟的市场。/pp style="text-align: justify "  换个角度,相比于分析型市场,我国对科研的投入力度越来越大,科研端应用需求广且差异较大,市场活力实际上是只增不减,传统荧光分析必然竞争激烈,“复制”市面上已有的产品难免让自己处于不走量又回报低的境地,寻求差异化竞争推出针对应用的专用方案可以补充市面上没有或者是和需求不匹配的产品。例如,现在闪烁晶体比较热门,闪烁体的荧光测试必不可少,但是进口设备中暂时没有可以耦合X射线作为激发源的厂家,很多从事此类研究的用户都是以自己搭建为主,卓立汉光推出针对性的解决方案,包含了X射线源,样品架及收集光路,并充分考虑了使用的安全性,用铅箱将这部分整合,目前良好地掌握了这一块的市场。另外例如钙钛太阳能电池,荧光寿命的测量对于其异质结的研究非常有帮助,卓立汉光针对该市场也有推出专用方案。/pp style="text-align: justify " strong 仪器信息网:从技术的角度出发,您认为目前分子荧光光谱有哪些新的技术值得期待?/strong/pp style="text-align: justify "strong  卓立汉光:/strong基于光学显微镜的显微荧光光谱目前能做到的空间分辨率能达到微米、亚微米尺度,高空间分辨比如纳米、几十纳米尺度的荧光光谱、荧光寿命、荧光寿命成像测量,对于生物成像、化合物半导体的载流子动力学研究意义非凡,普渡大学的Libai Huang教授在超快显微光谱动力学的实验搭建上已经实现了50nm空间分辨率的惊人成果,是否有机会转换为商用产品,这部分值得期待。/pp style="text-align: justify "  strong仪器信息网:从应用的角度出发,当前分子荧光光谱仪器的应用和研究热点分布在哪些领域?在科研过程中能给大家带来哪些“惊喜”?/strong/pp style="text-align: justify "strong  卓立汉光:/strong当前分子荧光研究热点主要集中在发光材料、光电半导体、有机溶解物等领域,对于研究材料合成结果、组分分析,机理研究具有重要的作用。举个例子,目前相当火热的钙钛矿型太阳能电池,就有相关课题组采用显微时间分辨光谱的表征方法,在空间尺度上揭示了有机-无机混合钙钛矿型CH3NH3PbI3(Cl)薄膜的光致发光衰减动力学,类似的光物理研究对于解释材料性能起到至关重要的作用,对于基础科学研究意义非凡。我司的OmniFluo900系列稳态瞬态荧光光谱仪就可以搭配显微光路,耦合皮秒脉冲激光器,搭配TCSPC板卡,实现这些亚微米空间尺度的荧光寿命测量。/pp style="text-align: justify "  strong仪器信息网:分子荧光光谱仪相关的应用标准情况怎样?在应用拓展方面,有哪些制约因素?/strong/pp style="text-align: justify "strong  卓立汉光:/strong事实上我司的客户开发方向和群体主要在科研市场,对于应用快检类的市场接触较少,三维荧光光谱技术确实有应用于石油炼化行业,我们也给针对石油做快检设备的公司提供OEM。三维荧光方法涵盖的信息比较丰富,是比较有可能用于行业快检的分子荧光测量手段,但是目前出现的标准还是比较少,我们接触到的仅有石油领域,其他的比如酒、饮料、水污染这些也是有高校课题组在研究,我司推出的SmartFluo-Pro系列三维荧光光谱仪,体积小且可快速现场测样,极大提高现场初步筛选的效率,我们也期待其他领域能够建立完善的标准。/pp style="text-align: justify "  strong仪器信息网:贵公司当前主推的产品?今年刚推出的或者即将推出的新品?最具优势的领域?/strong/pp style="text-align: justify "strong  卓立汉光:/strong目前我司的荧光产品线主推科研级稳态瞬态荧光光谱仪和三维荧光专用光谱仪。/pp style="text-align: justify "  稳态瞬态荧光光谱仪是开放性设计的大科研平台,目前最具备优势的领域主要是稀土发光材料、闪烁体的稳态光谱、瞬态光谱测量,针对一些薄膜光电材料/器件如第三代半导体、二维材料、钙钛矿薄膜电池、铜基薄膜电池,硅基锗材料进行Micro-PL以及Micro-TRPL的测量。/pp style="text-align: justify "  三维荧光专用光谱仪是我们设计的一台以150W氙灯为激发源,阵列探测器作为荧光信号探测的快速三维荧光光谱仪,通过优化光路结构,达到极优信噪比,期望能为石油、DOM、CDOM、水污染、海洋海水成分等物质的三维荧光分析提供快速检测,提高检测效率,为日后三维荧光在快检领域广泛应用提供支持。/pp style="text-align: justify "  strong仪器信息网:针对当前的市场格局,贵公司在分子荧光光谱产品方面有什么样的定位和布局?/strong/pp style="text-align: justify "strong  卓立汉光:/strong我司的分子荧光产品定位在高端科研级别,以稳态功能为基础,瞬态功能为主导,提供变温台、显微光谱模块、量子产率等多种附件,是国内第一台商用的达到科研级灵敏度且能够测量荧光寿命的荧光光谱仪。我们期望建立一个大的平台满足多种测量需求,再根据科研市场应用需求做差异化的调整,这里我们所说的差异化主要是针对某些应用提供一个合适又简化的方案,比如钙钛矿电池的TRPL几乎是必测的,但是TRPL的测量对于电池性能表征毕竟还是辅助为主,不是必要设备,购买五六十万甚至上百万的瞬态系统投入产出比太低,这时候对大荧光平台做减法就显得很有必要,客户也乐于接受。再比如,目前深紫外AlGaN量子效率很低,用常规宏光路的方式想要测得好的信号,就得借助功率较高的激光器,这时候激光器的价格可能成倍增加,如果我们将激光器耦合到显微镜里,改用显微光路将激光光斑聚焦到微米尺度,就可以大大提高激发效率,显微光路增加的成本显然比深紫外激光器增加的成本低,这也是我们根据应用的特点会做的一些差异化调整。/pp style="text-align: justify "  简单来说我们通过调整,在保证性能的前提下,把设备的性价比调高,更多客户容易接受,市场也就活跃了。近年来我国对科研投入力度越来越大,想要覆盖市场,产品必须是有层次的,有差异的,不能太单一,作为国产设备厂商我们最大的优势就是可以敏锐接触到市场需求和动向并及时做出响应,我们后续会持续关注各类应用并尽可能全的覆盖发光材料如稀土掺杂材料、量子点发光、有机发光二极管、聚集诱导发光材料、闪烁晶体、激光晶体,光电半导体如第三代宽禁带半导体材料器件、二维材料、微腔、钙钛矿型太阳能电池、钙钛矿型X射线探测器、石墨烯复合材料等应用。2020年12月23日,卓立汉光稳态瞬态荧光光谱仪全球同步发布,线上线下同步直播,尽在中建雁栖湖景酒店:三大环节,四大亮点,让我们一起揭秘国产荧光好仪器,让更多人一起共享荧光大平台!/p
  • 近红外有机电致发光研究取得新进展
    高效率近红外发光材料因其在生物成像、医疗、光通信和夜视器件等方面的重要应用而备受关注。但受制于能隙法则,即随着激发态和基态之间的能隙差减小,非辐射跃迁速率常数呈指数增加,导致开发高效率的有机近红外发光材料一直是一个巨大的挑战,从而严重限制了相关器件电致发光效率的提升。到目前为止,尽管已有极少量性能较好的近红外有机发光二极管(NIR-OLED)获得超过15%的外量子效率,但表现出纯近红外发光的NIR-OLED电致发光效率通常低于5%。针对这一问题,西安交通大学化学学院杨晓龙、孙源慧、周桂江等人与五邑大学陈钊合作报道了电致发光效率达到16.43%的纯近红外发光NIR-OLED。研究人员通过优化Ir(III)配合物的分子结构设计降低金属中心到配体电荷转移跃迁,提高三线态激发态中的基于配体的ππ跃迁成分,成功地将发光光谱半峰宽降低至43 nm,获得了最大发射峰位于730 nm附近的高效率纯近红外发光材料。研究人员采用溶液旋涂法制备了相应的电致发光器件,获得了与对应材料光致发光光谱近乎一致的纯近红外电致发光光谱,且最高电致发光效率分别高达15.00%和16.43%,显著超过了已报道的基于近红外Ir(III)配合物的NIR-OLED最高电致发光效率,也显著超过了采用溶液旋涂法制备的基于不同有机近红外发光材料的NIR-OLED最高电致发光效率。用于溶液法制备外量子效率超过16%的有机发光二极管的窄光谱纯近红外发光铱配合物。(论文课题组供图)近日,该研究成果以《用于溶液法制备外量子效率超过16%的有机发光二极管的窄光谱纯近红外发光铱配合物》为题发表在国际化学领域期刊《德国应用化学》上。论文第一作者为西安交通大学化学学院杨晓龙副教授,通讯作者为西安交通大学化学学院孙源慧副教授、周桂江教授与五邑大学陈钊博士。西安交通大学化学学院是论文第一通讯单位。
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》
  • 天美公司助力2019国际发光材料研讨会
    2019年11月14日至17日,第十一届国际发光材料研讨会在享有“海上花园城市”美誉之称的福建厦门召开。此次会议吸引了来自国内外发光领域500多名专家和学者参会。 厦门大学解荣军教授致开幕词 2019国际发光材料研讨会大会现场  本次会议设置大会报告、主题报告、邀请报告及墙报展等多个环节,议题涵盖稀土和过渡元素发光、有机光学材料、光化学合成、超分子光化学、生物光化学、环境和大气光化学、理论光化学、光谱学、光功能材料及其他与光化学交叉的前沿学科等方面,全方位展示国内外发光材料的研究成果。天美(中国)科学仪器有限公司携爱丁堡仪器公司全程参加此次会议。会议期间,天美公司受邀作了会议报告。爱丁堡仪器公司的首席执行官Roger Fenske博士分享了一个为什么要测试量子效率极限的发光光谱报告,并重点介绍了荧光光谱技术在发光材料上的应用。   天美展台展出爱丁堡仪器公司最新研发的实时双光束UV-Vis分光光度计 DS5新品。众多专家及学者莅临展台进行了解和咨询DS5详情,同时关注稳态瞬态发光的先进技术及广泛应用。    天美旗下爱丁堡仪器公司旨在开发和寻找更多更新的应用方向和解决方案,推动荧光光谱技术在科研中更广泛地应用,更好地帮助研究者解决科研中的问题。天美公司也将始终秉承助力科研领域,为广大用户提供更优质的仪器和更专业的技术服务。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • “新型原子荧光光谱仪器开发及产业化”重大科学仪器设备开发项目评估会议召开!
    我国是原子荧光光谱(AFS)技术、生产、应用的大国强国。如今,已有十余家原子荧光光谱仪生产商和上百种不同型号和用途的原子荧光光谱仪,其年销量在2500台以上,颁布的相关国家或行业标准也有百余项。原子荧光光谱方法广泛应用于食品、农产品、环境检测、水质监测等领域,也是众多实验室的常规分析方法,更是进入国家级实验室为数不多的国产仪器!然而,原子荧光光谱仪器仍存在光谱干扰和散射干扰等问题,对其更深入研究开发势在必行,国家也特别关注相关技术的研发工作。2016年,北京博晖创生物电技术集团股份有限公司牵头承担了“重大科学仪器设备开发”重点专项项目——“新型原子荧光光谱仪器开发及产业化”。经过5年的时间,2021年9月24日上午9点,“新型原子荧光光谱仪器开发及产业化”重大科学仪器设备开发项目评估会议在北京博晖创生物电技术集团股份有限(以下简称博晖创新)举办,多位专家参与了项目评估,并给出了专业性修改建议。项目评估会现场中科院生态环境研究中心江桂斌院士、中国农业科学院农产品加工研究所王锋研究员、北京市理化分析测试中心张经华研究员、机械工业仪器仪表综合技术经济研究所欧阳劲松教授级高工、中国疾控中心闫慧芳研究员、北京市食品安全监控和风险评估中心主任黄华高工、中国食品药品检定研究院食品化妆品检定所曹进研究员、中国环境科学研究院王圣瑞研究员等组成了此次评估会的专家组。本次评估会议由项目总负责人博晖创新首席科学家周志恒开场主持,博晖创新运营总裁王玮先生和国家市场监督管理总局谢正文处长分别致辞。北京博晖创新光电技术股份有限公司运营总裁 王玮国家市场监督管理总局 谢正文处长江桂斌院士主持项目及任务介绍环节,期间还由相关人员带领各位专家参观了项目样机和关键部件。分任务负责人分别介绍了该承担任务完成情况、考核指标完成情况、取得的重要成果以及经费执行情况等后,专家质询讨论形成了专家意见,最后由推荐单位总结发言。中国科学院生态环境研究中心 江桂斌院士《新型原子荧光光谱仪器开发及产业化》项目设立了如下目标:研制新型原子荧光光谱仪,克服原子荧光光谱仪光谱干扰、散射干扰,提高仪器长期稳定性;在食品、农产品等领域建立重点样品中重金属元素的新检测方法,形成标准操作规程,开展应用示范;达到小批量试产要求,在项目验收后3年内达到3200万销售额;提升原子荧光产业竞争力,促进国际认可,获得更大市场空间。分任务承担单位、研究内容及负责人任务研究内容承担单位任务负责人一新型原子荧光光谱仪总体设计、系统集成及工程化北京博晖创新光电技术股份有限公司周志恒二新型原子荧光光谱仪系统稳定技术开发北京博晖创新光电技术股份有限公司舒迪三新型原子荧光光谱仪测控系统及软件开发吉林大学田地四新型原子荧光光谱仪光学系统开发中国科学院长春光学精密研究所于宏柱五新型原子荧光光谱仪在进出口高关注食品中重金属监测的应用示范检科院食品所雍炜六新型原子荧光光谱仪在农业领域高风险样品中重金属监测的应用示范农科院质标所毛雪飞左一:北京博晖创新光电技术股份有限公司首席科学家周志恒 右一:北京博晖创新光电技术股份有限公司 舒迪左二:吉林大学 田地 右二:中国科学院长春光学精密研究所 于宏柱左三:中国检验检疫科学研究院食品安全研究所 雍炜 右三:中国农业科学院农业质量标准与检测技术研究所 毛雪飞经过5年的不断努力,项目组开发了预激发及灯泡高能量技术,研制了汞、砷、铅、镉、硒5种无极放电灯及配套的控制器;开发了非损失能力取样技术,研制了激发光源漂移校正部件;开发了摆扫刻蚀技术,研制了高衍射效率凹面光栅;开发了DMD窗口无损更换技术,研制了高紫外反射率DMD器件和配套的专用设备;研制了专用数字微镜控制器、色散信号采集器和测控系统,开发了分析测试软件;研制了工程化样机7台,建设了300m2生产车间,具有年产100台的生产能力;完成了在食品和农业的应用方法6套和标准操作规程6套,并提供8家单位的验证报告,其中异地验证测试报告4份、可靠性测试报告1份。共获得授权发明专利15项、实用新型7项、软件著作权3份;发表论文17篇,培养博士研究生2名、硕士研究生9名。专家组一致认为该项目完成了任务书的研究内容,达到了考核指标。与会者参观新型原子荧光光谱仪关键部件与会者合影
  • AFM:整合扭转分子内电荷转移和聚集诱导发光的超快光谱研究
    【案例分享】AFM:整合扭转分子内电荷转移和聚集诱导发光的超快光谱研究摘要近日,《Advanced Functional Materials》刊登了中国科学技术大学周蒙教授团队与陕西师范大学房喻院士团队合作研究工作《Integrating Aggregation Induced Emission and Twisted Intramolecular Charge Transfer via Molecular Engineering》。该研究工作通过分子工程设计合成了同时具有扭转分子内电荷转移(TICT)和聚集诱导发射(AIE)特性的荧光发色团,将看似矛盾的TICT和AIE特性整合在同一分子内,并通过瞬态光谱等手段揭示了上述类型荧光发色团发射机制,提出了调控TICT和AIE特性的分子工程策略,为设计高可调性和强发射的荧光发色团提供了新的思路和发展方向。研究背景荧光发色团在生物成像、环境传感、光动力治疗等领域有着广泛应用前景。TICT和AIE是荧光发色团中普遍存在的两种现象,但这两种现象看似相互矛盾,不能同时存在于同一个荧光发色团分子内。TICT过程通常伴随着剧烈的构象变化,分子运动剧烈;而AIE过程通常伴随着分子聚集,分子运动受限。在良性溶剂中,TICT会被激活,而AIE会被抑制;在不良溶剂中,AIE会被激活,而TICT会被抑制。具有TICT或AIE性质的荧光发色团可调性极强,能够通过调控分子性质满足不同应用需要。如果能够构建同时兼具TICT和AIE特性的荧光发色团,将极大增强荧光发色团的可调控性,并拓宽荧光发色团的应用场景。因而,构建同时具有TICT和AIE特性的荧光发色团受到了广泛关注。研究内容该研究工作通过分子工程设计合成了具有供体受体(D-A)结构的DMA-NAP荧光发色团和MP-NAP荧光发色团。相比DMA-NAP荧光发色团,MP-NAP荧光发色团的给体含有吡咯单元,具有更强的给电子特性和更好的疏水特性。通过比较两种荧光发色团的斯托克斯位移、量子产率、发射峰位,研究人员发现MP-NAP比DMA-NAP具有更强的溶剂极性敏感度。利用瞬态吸收光谱,研究人员研究了两种荧光发色团在正己烷、四氢呋喃、乙腈三种不同极性溶剂中的发射机制。由于极性溶剂中TICT猝灭荧光,而分子聚集可以有效抑制化学键旋转,研究人员推测DMA-NAP和MP-NAP两种荧光发色团会表现出突出的AIE现象。经过不懈努力,研究人员在水-甲醇混合溶剂中观察到了两种荧光发色团的AIE现象,随后又研究了两种荧光发色团在水含量不同的水-甲醇混合溶剂的发射机制。通过以上工作,研究人员证明了可以通过分子工程设计同时具有TICT和AIE特性的荧光发色团,并阐释了两种荧光发色团的发射弛豫机制,为调控设计同时具有TICT和AIE特性的荧光发色团指明了方向。 图文导读图1. (a) LE/ICT到TICT的激发态构象转变示意图。(b) DMA-NAP和MP-NAP的分子结构。 (c) DMA-NAP和(d) MP-NAP在不同极性环境下的稳态吸收(实线)和荧光光谱(虚线)。 (e) DMA-NAP和(f) MP-NAP在不同极性环境下的荧光寿命衰减曲线。图2. 溶剂极性相关的DMA-NAP和MP-NAP的飞秒瞬态吸收光谱二维彩图。图3. 甲醇和水混合溶剂中,不同混合比例下,DMA-NAP和MP-NAP的AIE效应。图4. 水含量不同的水-甲醇混合溶剂中的DMA-NAP和HP-NAP的飞秒瞬态吸收光谱二维彩图。图5. 两个分子在不同环境中的激发态弛豫途径,以及整合TICT与AIE的示意图。仪器推荐该工作中的时间分辨荧光光谱,由武汉东隆科技有限公司提供的德国PicoQuant高性能稳瞬态一体式荧光光谱仪FluoTime300完成。FluoTime300是一款全自动模块化荧光光谱仪,专注于稳态及时间分辨荧光光谱测试。该系统采用自研的EasyTau2测试分析软件实现人机交互,向导式操作,方便易用。文章信息Integrating Aggregation Induced Emission and Twisted Intramolecular Charge Transfer via Molecular EngineeringWei Zhang*#, Jie Kong#, Rong Miao*, Hongwei Song, Yalei Ma, Meng Zhou*, Yu Fang Adv. Func. Mater.文章链接https://doi.org/10.1002/adfm.202311404
  • 我国科研团队成功研制皮摩尔级小型荧光光谱仪
    作者:孙丹宁 来源:中国科学报利用紫外激发产生特征荧光的原理,用于测试微量物质的含量与成分,是当前最灵敏的痕量检测方法之一,在生命科学、食品安全和环境监测中具有重要应用。但在这一领域,国产高端仪器仍是空白。大连理工大学黄辉教授课题组与范剑超教授、赵剑教授和刘蓬勃副教授合作,发明了一种小型高灵敏度的荧光光谱仪。相关成果发表在《分析化学》。小型荧光光谱仪示意图。大连理工大学供图该小型荧光光谱仪基于发明的导光金属毛细管技术,可大幅提高荧光检测的信噪比,因此能够采用便宜微型的LD或LED作为激发光源,以取代昂贵笨重的氩离子激光器或大功率氙灯。同时,合作团队还发明了荧光光谱的同步校准技术,可克服光源功率波动和样品吸收导致的干扰。目前,研制的光谱仪已通过国家计量院的鉴定,并在国家海洋环境监测中心(大连)进行测试和试用。检测精度超过国外主流高端产品,海洋溢油检测指标处于国际领先水平。其水体有机碳TOC的检测精度达4ng/mL,可媲美大型专业仪器。相关论文信息:https://doi.org/10.1021/acs.analchem.3c02200
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 天美公司参加第十九届国际发光会议
    2021年7月26日至30日,第十九届国际发光会议在长春召开。国际发光会议是全球发光学领域高水平的学术性会议。本届会议由东北师范大学承办,吉林大学、中国科学院长春光学精密机械与物理研究所、中国科学院长春应用化学研究所协办。受新冠疫情影响,本次会议采用线上与线下相结合的形式进行。东北师范大学校长刘益春教授,国际发光会议程序委员会主席、荷兰皇家科学院院士Andries Meijerink教授,吉林省副省长安立佳出席开幕式并致辞。天美公司携旗下爱丁堡仪器作为本次会议的赞助方全程参与了此次会议, 众多专家学者等莅临展台,了解爱丁堡稳态瞬态荧光光谱仪在发光材料应用表征的测试解决方案。会议期间,天美科学仪器公司还受邀进行了会议报告。天美分子光谱工程师王晨晨进行了题为“爱丁堡光谱仪在先进发光材料检测中的应用”的报告,介绍了爱丁堡公司新推出FLS1000光谱仪的主要特点及其在发光材料中的重要应用。本次报告,不但加深了新老用户对仪器的了解与应用,同时了也吸引了很多感兴趣的参会老师前来咨询讨论。
  • 上海光机所在氟化物玻璃自发光方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室陈丹平研究员团队发现BaF2-B2O3玻璃的橘红色自发光现象,相关研究成果发表于Journal of Non-Crystalline Solids。稀土离子4f壳内强烈而尖锐的电子跃迁,使其常被用来制备激光材料和荧光粉。但是稀土掺杂的LED材料面临着两个问题,一是由于荧光粉涂层透明度较低,光散射较大,导致LED的发光效率降低。二是稀土材料的不可再生性以及环境污染问题。开发较为环保的无稀土高效荧光LED材料成为以后的研究方向。   本研究发现,在CO还原气氛下制备的不含稀土离子的透明BaF2-B2O3玻璃体系在近紫外光下表现出橙红色自发光,在约397 nm的宽带光激发下,产生以650 nm为中心的550~850 nm宽带发光。图1 玻璃样品在(a)365 nm紫外灯和(b)日光灯下的照片 图 2(a)xBaF-C玻璃的激发光谱;(b)xBaF-C 和40BaF-A玻璃的荧光光谱   为了探究自发光现象的机理,研究人员在还原气氛和空气气氛下的进行了对比实验。并基于荧光光谱、电子自旋共振、拉曼和X射线光电子能谱的结果,推断在还原气氛导致玻璃中B3+被还原为B2+,B2+的s→p跃迁引起的荧光发射。本论文提出B2+的发光现象,为此玻璃发光现象的研究提供新的思路。该研究开发的橙色自发光玻璃材料,无稀土离子掺杂、透明性高、原料成本低、制备工艺简单、具有较宽的荧光发射带,在新型橙光LED玻璃中具有潜在的应用前景。图3 40BaF-C和40BaF-A样品电子顺磁共振谱图4 (a)40BaF-C和(b)40BaF-A样品的B 1s XPS图谱
  • 首届中国光电仪器发展论坛暨荧光光谱仪新品发布会即将开幕
    p style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "稳态/瞬态荧光光谱/span/strongsup[1]/sup主要应用在span style="color: rgb(63, 63, 63) "strong材料科学、生命科学、环境科学、法医科学与安全以及地质学/strong/span等。稳态/瞬态荧光光谱仪是测量光致发光的光谱仪器,适用于液体、粉末和薄膜样品。往往具有具有高灵敏度、高分辨率、覆盖的光谱范围广以及优异的杂散光抑制率等特性。/pp style="text-align: justify text-indent: 2em "利用荧光光谱技术sup[2]/sup可以研究不同自由基型光引发剂的瞬态及稳态荧光光谱特性,从分子结构出发分析了共轭结构对光引发剂荧光光谱的影响。/pp style="text-align: justify text-indent: 2em "相关实验结果表明:随共轭效应的增强,荧光激发与发射峰波长逐渐增大;瞬态荧光谱的衰减受电子基团的影响较为明显,含有吸电子基团的光引发剂荧光衰减快,而含有给电子基团的光引发剂荧光衰减慢。/pp style="text-indent: 2em text-align: center "img style="max-width: 100% max-height: 100% width: 469px height: 337px " src="https://img1.17img.cn/17img/images/202012/uepic/071f126e-65e4-40de-aac6-f936e1921994.jpg" title="衰减谱图.png" alt="衰减谱图.png" width="469" vspace="0" height="337" border="0"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 14px "图1:光引发剂的瞬态衰减谱(可以看出不同光引发剂的衰减曲线变化不同,苯酮类光引发剂Irg.184,Irg.369,Irg.907以及二苯甲酮BP的衰减较快 安息香衍生物Irg.651和酰基氧化磷类Irg.819和Irg.TPO以及硫杂蒽酮ITX的衰减较慢。/span/strong/span/pp style="text-align: justify text-indent: 2em "通过对溶剂极性及粘度研究发现:光引发剂荧光发射峰随溶剂的极性增加出现明显红移现象,表明激发跃迁类型主要是π-π* 跃迁,并且随溶剂粘度的增大光引发剂荧光衰减明显得到延缓。/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 469px height: 345px " src="https://img1.17img.cn/17img/images/202012/uepic/2e3faa71-ef1f-4484-ab1b-e97e4375633e.jpg" title="粘性变化.png" alt="粘性变化.png" width="469" vspace="0" height="345" border="0"//pp style="text-indent: 2em text-align: center "strongspan style="font-size: 14px color: rgb(0, 112, 192) "图2:随溶剂的极性增强光引发剂Irg.ITX 的荧光发射峰有红移的现象,并且发射谱的峰值强度随溶剂及粘度的增加逐渐增大。异丙醇和乙酸乙酯的极性相同,但在前者中光引发剂的发射峰440 nm明显不同于后者的424 nm,这可能是两溶剂粘度不同造成荧光激发谱红移的结果。/span/strong/pp style="text-align: center margin-top: 10px "a href="https://www.instrument.com.cn/webinar/meetings/1223zolix" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 200px " src="https://img1.17img.cn/17img/images/202012/uepic/dbc802d8-3d03-44ab-adca-357ed7ef085c.jpg" title="w1035h345zolixhy.jpg" alt="w1035h345zolixhy.jpg" width="600" vspace="0" height="200" border="0"//a/pp style="text-align: justify text-indent: 2em margin-top: 10px "为响应国家整体布局,及更好地为科学研究提供技术服务,由北京卓立汉光分析仪器有限公司、北京怀柔仪器和传感器有限公司联合举办的a href="https://www.instrument.com.cn/webinar/meetings/1223zolix" target="_blank"span style="color: rgb(192, 0, 0) "strongOmniFluo990稳态瞬态荧光光谱仪全球发布会暨第一届中国光电分析仪器发展论坛/strong/span/a,将于2020年12月23日在北京召开。大会期间将重磅推出国内商业化的span style="color: rgb(192, 0, 0) "strong稳态和荧光寿命测量系统/strong/span,并邀请来自“产、学、政、研、用”不同领域的专家学者,深化产学研用,探讨中国国产光电分析仪器的行业现状与未来走向。/pp style="text-align: left text-indent: 2em margin-top: 10px "【a href="https://www.instrument.com.cn/webinar/meetings/1223zolix" target="_blank"点击链接参会/a】a href="https://www.instrument.com.cn/webinar/meetings/1223zolix" target="_blank"https://www.instrument.com.cn/webinar/meetings/1223zolix/a/pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/meetings/1223zolix" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/8baac84b-c90c-4041-ab35-5ae95f628083.jpg" title="我要参会.png" alt="我要参会.png"//a/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/meetings/1223zolix" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 235px " src="https://img1.17img.cn/17img/images/202012/uepic/e6657c2a-5fef-4686-bf54-43d039a305ae.jpg" title="prize.png" alt="prize.png" width="600" vspace="0" height="235" border="0"//a/pp style="text-align: justify text-indent: 2em "span style="font-size: 14px "strong/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 452px " src="https://img1.17img.cn/17img/images/202012/uepic/46fe1460-8354-4828-80a9-2bc149d1572f.jpg" title="会议日程.png" alt="会议日程.png" width="600" vspace="0" height="452" border="0"//ppbr//pp style="text-align: justify text-indent: 2em "span style="font-size: 14px "strong参考文献:/strong/span/pp style="text-align: left text-indent: 2em "span style="font-size: 14px "[1].稳态/瞬态荧光光谱仪简介[J].渤海大学学报(自然科学版),2019,40(04):389./span/pp style="text-align: left text-indent: 2em "span style="font-size: 14px "[2].李新政,李晓苇,赖伟东,等.自由基型光引发剂的瞬态及稳态荧光特性研究[J].光谱学与光谱分析, 2011,31(09):2442-2445./span/pp style="text-align: justify text-indent: 2em "span style="font-size: 14px "/span/pp style="text-indent: 2em margin-top: 10px "span style="color: rgb(0, 112, 192) "strong关于北京卓立汉光仪器有限公司/strong/span/pp style="text-align: justify text-indent: 2em "卓立汉光秉持 “研发创新、快速反应、优质服务”的理念,为光电行业从业者提供全方位产品解决方案。2020年卓立汉光出资成立北京卓立汉光分析仪器有限公司,并正式引入国内商业化全功能型稳态及瞬态荧光光谱仪等产品。/p
  • 天美-爱丁堡仪器倾力支持第四届长余辉与光激励发光国际研讨会
    2018年4月5日-2018年4月7日,第四届国际长余辉与光激励发光国际研讨会在北京航空航天大学举行,天美(中国)科学仪器有限公司及英国爱丁堡仪器作为大会赞助方参加会议并参展。  最近几年长余辉与光激励发光材料发展迅速,本会议的主要目的是报道和研讨发光材料最新的实验和理论进展,展望未来的发展方向。另外,本次会议将促进和加强研究人员之间的合作。  各类与长余辉、光激励发光、电致发光、阴极射线发光的方向都是本次会议的议题。在众多科研议题中,爱丁堡荧光光谱仪扮演了重要的角色,很多学者非常信赖这款仪器,作为世界领先的单光子计数和时间相关单光子计数(TCSPC)荧光光谱仪的制造商,爱丁堡仪器在为用户提供个性化定制的仪器上已经有超过30年的历史并致力于提供最具灵活性和高品质的荧光光谱仪。  通过此次会议中的交流,更多的新老用户也增进了对天美公司以及爱丁堡产品的了解,天美公司作为国内主要的科学仪器供应商,将一直致力服务于科研领域。为广大用户提供更专业的仪器和技术服务。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡sgx主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 froilabo公司、瑞士precisa公司、美国ixrf公司、英国 edinburgh instruments公司等多家海外知名生产企业和布鲁克公司scion气相和气质产品生产线,加强了公司产品的多样化。
  • 【HORIBA学术简讯】发光、光催化领域 | 2021年第14期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对发光、光催化领域,涉及CL、拉曼光谱、荧光光谱技术。发光光催化更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • Angew:近红外有机电致发光(NIR-OLED)新突破
    近年来,高效率近红外发光材料因其在生物成像、医疗、光通信和夜视器件等方面的重要应用而备受关注。除了无机近红外量子点和卤化物钙钛矿等材料外,各种有机近红外材料包括传统的荧光小分子材料、共轭聚合物、稳定的发光自由基、热激活延迟荧光(TADF)材料和金属有机配合物磷光材料等因其具有化学结构可调、稳定性好、便于制备近红外有机电致发光器件(NIR-OLED)的优势而得到迅速的发展。在这些有机近红外材料中,后三种材料在OLED中对单线态和三线态激子的利用率能够达到100%,从而提高了器件的效率。尽管如此,受制于能隙法则 (energy gap law),即随着激发态和基态之间的能隙差减小,非辐射跃迁速率常数呈指数增加,导致开发高效率的有机近红外发光材料( 700 nm)一直是一个巨大的挑战,从而严重限制了相关器件电致发光效率的提升。目前,扩展π-共轭和增强发光分子的电荷转移(CT)是红移材料发光波长的两种常见方法,通常需要将两种方法相结合才能获得近红外区的发光。因此,以前报道的近红外发光材料由于具有很强的CT性质,发光光谱半峰宽(FWHM)通常高达70-150 nm。当最大发光波长小于770 nm时会有部分光谱覆盖可见光区域,严重降低近红外光的纯度,这种情况不利于高性能纯近红外发光或夜视器件的制备。如若为了提高近红外光纯度,将材料的最大发光波长红移至超过770 nm,则发光效率将进一步显著降低。因此,到目前为止,尽管已有极少量性能较好的NIR-OLED获得超过15%的外量子效率,但表现出纯近红外发光的OLED电致发光效率通常低于5%。近日,西安交通大学化学学院杨晓龙、孙源慧、周桂江等人与五邑大学陈钊合作报道了电致发光效率达到16.43%的纯近红外发光NIR-OLED。作者通过优化Ir(III)配合物的分子结构设计降低金属中心到配体电荷转移跃迁,提高三线态激发态中的基于配体的ππ跃迁成分,成功地将发光光谱半峰宽降低至43 nm,因此获得了最大发射峰位于730 nm附近的纯近红外发光材料 (图1)。图1. 近红外Ir(III)配合物的分子设计策略和发光性质。与其他纯近红外材料相比,由于具有相对较短的发射波长,因此可以缓解能隙法则的不利影响。此外,理论计算表明论文报道的配合物激发态形变非常小,因而最终获得了优异的近红外发光效率。作者采用溶液法制备了具有传统结构的电致发光器件(图2),选取的功能层材料具有合适的能级,能够有效地促进从主体到客体之间的能量传递,并将激子限制在发光层内,因此,器件的电致发光光谱与其对应的光致发光光谱近乎一致。基于BIqThIr和BIqThIrO的器件电致发光波长分别为737 nm和733 nm,半峰宽仅有47 nm和44 nm,这使整个光谱中近红外成分超过98%,实现了纯近红外发光。图2. (a) 器件结构。(b) 电致发光光谱。(c) 电流密度(J)-电压(V)-辐射度(R)曲线。(d) 电致发光效率与电流密度的特性关系。由于具有优异的近红外发光性能,溶液法制备的NIR OLED最高电致发光效率分别高达15.00%和16.43%,显著超过了已报道的基于近红外Ir(III)配合物的器件最高电致发光效率,也显著超过了采用溶液旋涂法制备的基于不同有机近红外发光材料的器件最高电致发光效率 (图3)。图3. (a) 基于Ir(III)配合物的溶液旋涂法和真空沉积法NIR-OLED发光峰在700-900 nm范围内的最大电致发光效率。(b) 基于不同有机发光材料溶液旋涂法NIR-OLED发光峰值在700-900 nm范围内的最大电致发光效率。综上所述,作者提出了一种开发高效率纯近红外发光材料的新策略。通过合理地设计分子结构来调控三线态性质,减少能隙定律的不利影响,为如何改善近红外材料发光性能提供了新的思路。这一成果近期发表在Angewandte Chemie International Edition 上,该论文第一作者为西安交通大学化学学院杨晓龙副教授,通讯作者为西安交通大学化学学院孙源慧副教授、周桂江教授与五邑大学陈钊博士。原文(扫描或长按二维码,识别后直达原文页面): Narrowband Pure Near-Infrared (NIR) Ir(III) Complexes for Solution-Processed Organic Light-Emitting Diode (OLED) with External Quantum Efficiency Over 16 %Xiaolong Yang, Shipan Xu, Yan Zhang, Chengyun Zhu, Linsong Cui, Guijiang Zhou, Zhao Chen, Yuanhui SunAngew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202309739
  • 爱丁堡荧光光谱仪新变化 无需低温液体温度可降至3K
    爱丁堡仪器最近升级了FLS980荧光光谱仪,使其可以在一个比较大的温度范围内(从 3 K到300 K)进行测量,而不需要液氮,甚至是液氦等低温液体,这是通过集成牛津仪器的光谱学恒温器Optistat Dry实现的。Optistat Dry利用氦气闭合回路的Gifford-McMahon冷却器,可以不需要持续供应液氦的条件下,将稳态和时间分辨光致发光测量的温度降到3 K。这样的温度对半导体和非线性晶体的研究至关重要,因为在室温和液氮温度条件下光致发光是非常微弱的。  牛津仪器的Optistat Dry在仪器的易用性和运行成本方面有比较大的好处。此外,新开发的 F980软件可以让FLS980荧光光谱仪直接控制低温恒温操作。通过使用这种新技术,爱丁堡仪器可以使客户在较宽的温度范围内进行各种各样样品的研究,而不需要低温耗材,并可以保证长时间实验的不间断运行。  此外,据悉,爱丁堡仪器也正在考虑将Optistat Dry集成到FS5荧光谱仪中,让更多的用户可以使用到这项技术。  FLS980系列稳态瞬态荧光光谱仪是爱丁堡公司于2012年推出的产品,可以根据用户的需要进行模块化搭建,型号丰富,用户购买后也可以根据科研项目的进展和具体需求进行各种附件和波长扩展的升级。
  • 海洋光学亮相“第十届有机发光和光电性质学术会议”
    由中国物理学会发光分会主办,太原理工大学承办的“第十届有机发光和光电性质学术会议”于2017年7月7日至9日在历史悠久的文化古城—山西省太原市召开。此次会议主要就目前OLED的市场前景和光谱仪应用环境展开热烈讨论。 海洋光学在有机发光薄膜材料的检测方面,致力于电致发光光谱、量子效率、薄膜厚度等测量。 海洋光学不仅为客户提供系统、模块化产品,更可以提供定制化服务。会议现场展出的绝对辐射颜色测量装置以及紫光LED激发荧光光谱检测装置中,搭载的QE Pro科研级光谱仪拥有高达90%(peak)的量子效率,超高的灵敏度可以在低光度应用中进行检测,其优异的性能赢得了参会者强烈的反响与认可。 绝对辐射颜色测量装置 紫光LED激发荧光光谱检测装置QE Pro科研级微型光谱仪通过为期两天的会议,海洋光学的产品得到充分的展示和分享,也让海洋光学的工作人员了解到客户需求,便于在日后的设计中做出改良,让产品应用更符合实际需求。在不断自我改进中,海洋光学的品牌和产品将更深入人心,深入使用。我们也将整合期间收集到的客户需求以及意见,继续努力,扩充新的本地化产品以及日益革新的技术。
  • 关注|原子荧光光谱法及其联用技术将写入《中国药典》
    近日,国家药典委官网发布了《关于做好2023年度国家药品标准提高工作的通知》。根据通知,本次标准提高工作,共有159个药品品种标准、80个通用技术要求标准列入项目课题。详情请见:这些仪器方法有望进入《中国药典》。其中,2322 汞、砷形态及价态测定法的修订课题已经成功立项。根据相关课题说明,本次修订拟在现有砷、汞形态及价态测定法基础上进一步开发更优化色谱条件,细化色谱参数,为提高汞、砷形态及价态分析的耐用性和准确性提供参考。虽然在研究目的中没有体现,但是在具体的研究内容中:1. 汞元素形态及价态分析的优化研究;2. 砷元素形态及价态分析的优化研究;3. 通过典型海洋、动物类药材中汞、砷形态及价态的分析方法和形态分布规律研究,提出相应品种的合理安全性评价方法和标准;4. 研究液相色谱-原子荧光光谱联用法测定中药材中汞、砷形态及价态的含量,考察其分离效果、检测灵敏度、抗干扰性和稳定性;5. 优化液相色谱-电感耦合等离子体质谱联用法的色谱条件,提高方法的耐用性和准确性;6. 对比与液相色谱-电感耦合等离子体质谱联用法检测结果准确性;包含了研究液相色谱-原子荧光联用技术(LC-AFS)应用于汞、砷形态及价态的含量的内容。元素形态分析目前已经成为分析科学领域的一个重要分支。元素形态分析,传统化学法用的比较少,使用较多的是仪器联机分析方法,其实质是分离技术与检测技术的联用。其中,国内外比较认可LC-ICP-MS联用方法。ICP-MS方法灵敏度高、选择性强、检出限佳、可以同时测定多种元素,是元素形态分析的有力检测工具。在目前现行的《中国药典》四部2322 汞、砷形态及价态测定法中,就采用了LC-ICP-MS联用法作为检测手段。但是,也存在着ICP-MS仪器主要依靠进口、成本高、运行费用也高等问题。实际上,在分析测试领域,还有一种联用技术常用于测定汞、砷形态及价态——LC-AFS联用法。AFS是中国具有自主知识产权的分析仪器,具有分析灵敏度高、线性范围宽、光谱干扰及化学干扰少、仪器结构简单、成本低廉、易于维护等优点。LC-AFS其最大特点在于对含有特定元素的化合物具有高度的专一性和较高的灵敏度,具有与ICP-MS相似的分析性能(检出限、精密度和灵敏度),特别是在As、Hg、Se、Sb四种元素的形态和价态方面有很好的应用。与ICP-MS相比较,LC-AFS在采购成本、使用成本上具有极大优势,并且具有操作简单、容易上手的特点。目前,LC-AFS技术应用领域与行业越来越广泛,涵盖了食品卫生检测、环境样品检测、地质冶金样品检测、水样品检测、农产品检测、临床检验、教育及科研等领域。但是,相关标准的缺失一直限制该技术的发展。2015年,2322 汞、砷形态及价态测定法第一次增订进入《中国药典》时,原子荧光形态分析技术就未能被引入。虽然药典标准中同样指出,只要分析方法经过验证,检出限低于标准的限量,该方法即可应用。从仪器条件与系统适用性试验可以看出,高效液相色谱法-原子荧光光谱法完全符合2015年中国药典相关要求,满足其测试条件。但是由于药典中原子荧光光谱法测量砷元素和汞元素的方法未能写入其中,如想把其价态测定的方法写入药典,就需要先把原子荧光法测量砷汞的方法写入药典。让原子荧光及相关联用技术进入药典的工作一直在努力进行中。2022年,药典委发布的年度国家药品标准提高工作的通知中,就包含了原子荧光光谱法的建立课题。该课题拟选取典型药品品种,开展原子荧光光谱法测定汞、砷元素含量等的研究,研究制定《中国药典》四部原子荧光光谱法,包括原子荧光光度计的一般要求、测定方法和方法学验证要求等。具体内容,包括1.确定方法的适用范围。 2.调研市场上不同品牌的原子荧光光度计参数及其特点,制定原子荧光光度计的一般要求,包括激发光源、单色器、原子化器、检测系统等。 3.制定测定方法要求:根据原子荧光光谱法测定汞、砷元素的技术原理及特点,考察前处理条件、氢化反应条件、仪器参数、校正方法,建立合理的测定方法。 4.制定方法学验证要求:收集不同类型的药品,充分考察方法学特点,对比不同品牌仪器的灵敏度、专属性、准确度、耐用性等因素,以及仪器之间的 重现性,制定可行的方法学验证要求。原子荧光进入《中国药典》不远了。
  • 爱丁堡荧光光谱仪FLS & FS5系列培训班成功在北京举办
    天美(中国)科学仪器有限公司于2016年6月28-29日在北京总部成功举办爱丁堡荧光光谱仪FLS & FS5系列应用技术培训班。  来自全国各地高校及研究所的老师及同学共22人参与了培训。 培训人员全体合影  本次培训从基础的荧光理论知识到光谱仪的应用,从仪器的操作到设备的维护及注意事项,从稳态荧光到瞬态荧光的测试都进行了详细的介绍。天美公司参与培训的有副总裁张海蓉女士,产品工程师覃冰和吕碧琪。  在实际上机操作环节中,用户们还把带过来的未知样品亲自进行测试,通过加载爱丁堡荧光光谱仪标配的自动滤光片轮进行激发/发射三维光谱的扫描,得到了完全不受激发光倍频峰干扰的样品激发及发射峰的信息。爱丁堡荧光光谱仪还擅长于与第三方光源的耦合,所以上转化发光的测试也是我们的强项,不论是上转换稳态发光,瞬态寿命还是量子产率,都可以给出一个满意的解决方案。  用户们表示在本次培训中有很大收获,并感谢天美公司提供这样一个平台让更多使用爱丁堡仪器的用户进行交流。天美公司也感谢国内有这么多爱丁堡仪器的用户们对于我们仪器的厚爱,我们也将会尽最大的努力来支持及回馈大家。  为了让用户更好地使用产品,天美(中国)全年针对不同产品都开设培训课程,更多相关课程欢迎您关注天美公司官网和官方微信(天美中国)。 关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 天美公司赞助参加第十五届全国发光学学术会议
    第十五届全国发光学学术会议于2019年8月13日至16日在素有“东北小江南”之称的吉林集安召开。本届会议由中国物理学会发光分会主办,由中科院长春光机所发光学及应用国家重点实验室,长春理工大学高功率半导体激光国家重点实验室联合承办。来自国内外发光领域的专家学者300多人出席参加了此次会议,会议中共有各类报告123个,进行了稀土和过渡元素发光、半导体材料发光、新型发光材料/器件等领域的交流与研讨。     天美(中国)科学仪器有限公司携爱丁堡公司应邀作为赞助商之一,全程参加了此次会议。会议期间,众多老师及学者莅临展台,了解稳态瞬态发光的先进技术及其广泛应用。     为期4天的会议圆满结束,天美公司希望能通过与发光学领域的研究专家、用户以及同行之间的交流,更加深入地了解到各位用户对于相关仪器的应用需求,开发和寻找更多更新的应用方向,推动荧光光谱技术在科研中更广泛地应用,更好地帮助研究者解决科研中的问题。同时,天美(中国)也将始终秉承助力科研领域,为广大用户提供更优质的服务,助力我国发光产业的发展。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 中国化学发光产业图谱
    p  中国体外诊断市场生化诊断、免疫诊断、分子诊断、POCT的竞争格局已经形成,2010-2014年,生化诊断市场份额由27%降低至19%,免疫化学的市场份额由33%增加至38%,分子诊断由5%增加至15%。化学发光为最先进的免疫诊断技术,2015年国内市场规模达160亿元,近年来维持20%-25%的增速,为IVD企业必争之地。/pp  免疫诊断经历了同位素放射免疫(RIA)、胶体金、酶联免疫(ELISA)、时间分辨荧光(TRFIA)、化学发光(CLIA)等技术的演进。目前我国酶联免疫和化学发光并存,近年来化学发光市场份额越来越大,已经逐渐替代酶联免疫成为免疫诊断的主流。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/05d34011-007a-4823-9b1d-bef2db81ac1c.jpg"//pp  化学发光免疫分析(chemiluminescence immunoassay,CLIA)广泛应用于肿瘤标记物、传染病、内分泌功能、激素等方面的诊断。目前,在大多数三甲医院,化学发光已经取代酶联免疫(ELISA)成为主流。检测内容涵盖肿瘤标志物、心脏标志物、甲状腺能、胰岛素、糖尿病、感染性疾病、细胞因子、激素、过敏反应和治疗药物浓度监测等。/pp  酶促化学发光、直接化学发光、电化学发光是目前主流化学发光技术,国内目前化学发光市场渗透率依然较低,市机市场愿为得到满足。2015年国内化学发光市场份额预计为69亿人民币,远未达到测算的230亿市场容量。/pp  中国263家化学发光相关企业分布相对集中,形成以北京、广东、江苏、山东、上海、浙江为主的产业集聚区。/pp  从企业成立时间来看,中国化学发光企业主要企业已经基本进场完毕,化学发光产业新成立公司数量下降,产业新进入者活跃度降低。新产业、安图生物、迈克生物为国内化学发光产业佼佼者,到2017年7月为止化学发光领域超过20家上市/新三板企业进行相应布局。/pp  从一级市场资本层面,近年来化学发光领域投资几乎绝迹,在行业龙头已经出现的情况下,早期投资机会基本丧失。国际化学发光产业资本整合已经完成,格局已定,以罗氏、雅培、西门子、贝克曼为首的龙头企业地位难以撼动,通过资本整合,拓展企业化学发光上下游产品线,中国企业才刚刚起步。/pp  中国化学发光产业图谱分为仪器、试剂两部分,仪器包括半自动化学发光仪、全自动化学发光仪、便携化学发光仪,试剂包括微孔板化学发光是机、磁微粒化学发光是集以及其他试剂(蛋白芯片、杂交捕获、酶免疫点印迹等)。/pp  化学发光仪经历了半自动、全自动、到便携化的发展过程,截止2017年6月底,共有51家企业的80个未过期仪器批件在市场流通、销售。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/3c7d1ad2-7a59-49db-b6b8-ed0d8a4e9902.jpg"//pp  国内化学发光仪市场,罗氏诊断占据中国化学发光29.8%市场份额,专利到期给国内企业带来机会。罗氏以电化学发光为核心产品,由宝灵曼1996年研发而成,具有核心专利保护,被称为第四代化学发光。罗氏公司1997年收购宝灵曼公司后,产品不断升级换代,目前以170 T/H的E170和86T/H的E411为主要产品。2016年罗氏电化学发光专利正式过期,为国内企业带来发展机遇。新产业、迈克、安图等国内化学发光领军企业快速发展。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/6fc56e0f-3750-44f2-8863-55a092eda967.jpg"//pp  国内化学发光试剂市场则经历了由微孔板到磁微粒主导的技术更新,到2017年6月底共有91家企业2313个未过期试剂批件在市场销售。其中激素、抗体、蛋白类化学发光检测试剂占据批准产品83%。安图生物是国内化学发光试剂企业的翘楚,公司已掌握了酶联免疫、微孔板化学发光、磁微粒化学发光、胶体金等多个免疫诊断技术,其中磁微粒化学发光技术是公司重要收入来源。2016年上半年化学发光产品销售收入占公司56.5%,达到2.3亿元人民币。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/ccc69d5e-376f-411f-abe1-31a2a11fadd8.jpg"//pp  无论试剂还是仪器,进入2017年国内化学发光相应产品审批数量均明显减少。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/1bc95e47-566d-442f-b7ae-111172ae7bea.jpg"/  /pp  从化学发光检测项目来看,甲功、肿瘤检测是化学发光企业必争之地。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/28af80ca-8f62-418b-8f0d-13f80108e7c7.jpg"//pp  从行业发展趋势来看,技术突破、分级诊疗、价格优势等加速进口替代,2015年化学发光国产化10%左右,与生化诊断70%市场占有率有巨大差距,进口替代空间巨大。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/ef86d8bc-0489-44ca-9a9e-9d3eb761d4d7.jpg"//pp  另外一方面国家分级诊疗战略的大力推进,不断快速增加的基层医疗、诊断需求也在推动我国化学发光产业的进一步发展。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/43312dd4-fe25-4c0e-9fc6-c302ecedb3bd.jpg"/  /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制