当前位置: 仪器信息网 > 行业主题 > >

粘片装置

仪器信息网粘片装置专题为您提供2024年最新粘片装置价格报价、厂家品牌的相关信息, 包括粘片装置参数、型号等,不管是国产,还是进口品牌的粘片装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粘片装置相关的耗材配件、试剂标物,还有粘片装置相关的最新资讯、资料,以及粘片装置相关的解决方案。

粘片装置相关的资讯

  • 飞恩微“芯片粘接质量检验方法、装置、设备及存储介质”专利获授权
    天眼查显示,武汉飞恩微电子有限公司近日取得一项名为“芯片粘接质量检验方法、装置、设备及存储介质”的专利,授权公告号为CN113506758B,授权公告日为2024年8月9日,申请日为2021年6月30日。背景技术在对于芯片的贴片工作开始生产前,往往需利用贴片机加工几只样品,然后对样品进行线下测试,主要通过人工抽检、手检。但是这种方式无法在生产过程保证加工的每只产品贴片的质量。并且由于胶水粘度会随环境温度、湿度发生变化,出胶量也会发生相应变化,会使胶厚也随之变化。若此时只是开始生产前进行抽检,则无法保证产品质量。上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。发明内容本发明属于芯片粘接技术领域,公开了一种芯片粘接质量检验方法、装置、设备及存储介质。该方法包括:获取胶水外观图像信息;根据胶水外观图像信息得到胶水高度信息;在胶水高度信息满足贴片加工条件时,对芯片进行贴片加工;在贴片加工完成后,获取芯片的芯片高度信息;若芯片高度信息满足预设合格条件,则判定芯片粘接质量合格。通过上述方式,获取胶水外观图像信息检验胶水高度是否达标,当胶水高度合格时进行芯片贴片加工,加工完成后再对芯片进行高度检测,以判断加工后的芯片是否翘曲,当加工后的芯片的翘曲范围在合格范围内时判定芯片加工合格,实现了在芯片的贴片加工时实时监测芯片的粘接质量,提高了芯片粘接加工质量检测的效率和准确性。
  • 全球首次将共振偏移测定装置“RSM-1”投入生产并开始进入市场
    ULVAC  ---------------------------------------------------  全球首次将共振偏移测定装置“RSM-1”投入生产并开始进入市场  可以评价以纳米为单位计量厚度的液体的粘性以及摩擦润滑特性  阿里巴克理工株式会社  阿里巴克理工(株)(横浜市绿区 代表董事兼总经理石井芳一)利用独立行政法人科学技术振兴机构的独创性展开事业(独创典型化),作为学校法人、东北大学多元物质科学研究所的栗原和枝教授独自开发的评价微细空间液体特性的方法——共振偏移测定法,通过承接测定非透明基板间的表面附着力的双通道型表面附着力测定技术,成功地将共振偏移装置(Resonanca shear Measurement System)“RSM-1”投入生产。下面将就此装置进行说明。  【背景】  众所周知,夹在两个固体表面的液体,在两表面的距离缩减到纳米级(分子大小的数倍程度)以下之后,相贴及界面的效果影响使形成规格构造和粘度急剧上升会导致体积有很大的变化。  此距离强烈依存液体分子间以及液体分子与固体表面间的相互作用。在以前,也有利用表面附着力装置(Surface Force Apparatus)评价纳米级厚度液体的粘性、摩擦润滑特性的偏移测定装置,但是,一个装置无法完全测量这些特性(表1)。  这次投入市场的共振偏移测定装置“RSM-1”,是使夹在两个固体表面间的液体,按纳米级刻度连续改变液膜的厚度,同时,进行共振偏移测定。从测定结果可以得到液体的构造化活动、粘附、摩擦润滑等特性通过距离函数对其进行评价。此外,还可以评价表面附着力表面电位、粘着力、吸附性等特性。     本次投入生产的装置,在表面间距离的测定中,在运用以前常用的透过型干涉法(FECO法)的基础之上还利用反射型双镜干涉法可测试以前不能测定的非透明试料。  而且,本装置配备了通过测定连接下表面弹簧的松弛度,用弹簧秤法精密地测定表面间作用力的距离依存性的表面力测定图。  【主要特征】  ① 双通道型共振偏移测定装置,使用共振法,能抗噪音,可测定高敏感度偏移反应。  ② 利用傅利叶变换法,可以快速测定偏移反应(2~10秒)。  ③ 可以测定、控制表面间的距离,双通道型干涉法的分辨率(1nm),FECO法的分辨率(0.1nm)  ④ 不仅适用于透明试料,也适用于非透明试料,大大扩展了实用试料的评价范围。  ⑤ 可以以纳米单位控制表面间的距离,连续地测定从液流状态到摩擦状态的特性。  【测定案例】  ¨ 夹在云母间纳米级厚度的水  →观测在表面间距离1nm以下逐渐发生的构造化、粘性的增加。  ¨ 润滑剂、以及它的模型系列  →观测摩擦润滑特性、变为润滑剂的添加剂效果以及细长形蠕变现象。  ¨ 用于增粘剂的碳酸钙钠粒子间的表面修饰的效果  →利用分解溶媒(邻苯二甲酸二辛脂)阐明增粘结构  【应用】  以前摩擦机构的理解只停留在现象理论层面,如今利用本装置可以评价分子级别的具体摩擦机构,可以设计更加有效的系统,有效减少了摩擦、磨耗引起的能量损失,从而为实现低碳社会做出技术革新方面的贡献。  而且通过利用本装置可以从纳米单位评价高端材料的特性,可以构建纳米级的设计方针,因此可以更有效率地进行材料设计,从而振兴高附加价值的新型材料制造产业。  【装置规格及使用】  1、 装置规格  测定温度:室温  必要试料量:20~30µ l的非挥发性试料  测定方式:表面附着力测定  共振偏移测定:频率扫描方式  :傅利叶变换方式  表面间距离最高分辨率:1nm(根据选件0.1nm)由测试环境决定  表面间驱动距离:5µ l到接触  2、 使用  电源:AC 100V 20 A  安装面积:约900mm(W)×约700mm (D)  【销售体制】  本装置的应用为涂料密封胶、润滑剂、化妆品的测验,以及机械、设备、陶瓷的表面评价,以上行业的厂家、研究开发机构为使用目标客户。     【测定原理】  共振偏移测定(如图所示)将夹在两个平滑的固体表面的液膜厚度从微米级开始接触并通过纳米级的分解能进行控制,使上表面左右振动,然后根据共振法测定其对应的偏移。利用此装置上部的偏移单元的机械性共振反应,可以从共振频率和反应强度评价被夹液体特性的变化。因利用了共振频率的较大反应,可在高敏感度,高噪音的环境下进行测定。
  • “DNA损伤单分子偏振成像检测装置研制”项目通过验收
    12月9日,中国科学院计划财务局组织专家对生态环境研究中心汪海林研究员承担的“DNA损伤单分子偏振成像检测装置研制”项目进行现场验收。验收组专家听取了项目组的工作报告、使用报告、财务报告、测试组的测试报告,现场检查了实验装置的运行情况,审核了相关档案材料,经提问和讨论,验收专家组认为,该项目完成了任务书规定的各项任务,一致同意通过验收。  研制完成的“DNA损伤单分子偏振成像检测装置”,将高效快速分离和激光诱导荧光检测技术集成为一体,可高灵敏地检测DNA损伤产物 融入荧光偏振成像技术,可提供污染物引起DNA损伤的分子转动和构象等动态信息。  该装置为阐明环境暴露引起的DNA损伤的分子识别、修复及突变机制等环境健康风险评估研究提供了新颖的分析平台,在提高人们的健康卫生水平方面也具有潜在的应用价值。
  • 我国大科学装置发展的现状、问题及建议
    大科学装置(large scale scientific facility)是人类发现自然规律、探索未知世界、实现技术变革的大型设施,是取得重大科学突破的保障之一。在中国,大科学装置也常被称为“国家重大科技基础设施”。大科学装置具有推进多学科综合交叉发展、突破高新技术瓶颈的强大支撑能力,是国之重器、科技利器。大科学装置具有明确的科学目标,建设时间长、体量大、投资大,产出是科学知识和技术成果,而不是直接的经济效益。按照不同的应用目的,大科学装置可以被分为专用研究装置、公共实验平台和公益基础设施3种类型。大科学装置已经成为衡量一个国家科技实力和综合国力的重要标志,是维护国家安全、促进经济社会可持续发展必不可少的重要基础设施。中国大科学装置发展基本情况中国大科学装置经历了从无到有、从小到大、从学习模仿到自主创新的过程(图1),在提高国家自主创新能力方面占据重要地位。20世纪80年代,中国以北京正负电子对撞机(BEPC)为标志开始了大科学装置建设的新阶段。之后以中国科学院为主导,陆续建设了一批大科学装置,对促进科技事业和其他各项事业发展起到了积极作用。目前,中国在建和运行的重大科技基础设施项目总量已达57个,数量位居全球前列。中国大科学装置在不同时期呈现出了不同的发展特点。图1 中国大科学装置发展历程1)萌芽期(1949年至改革开放前)。1949年之后,国家主要围绕“两弹一星”的研制工作,布局建设了一些如材料试验堆、点火中子源等研究设施。这些设施虽然不能完全称之为大科学装置,却是大科学装置的萌芽。2)起步期(20世纪80年代初至2000年)。这一阶段布局了10余个大科学装置,主要集中在高能物理学、光学、遥感科学等领域,且主要用于公益科技和专用研究。区域分布上主要以北京地区为主,依托单位基本为中国科学院各个院所。总体来说,此时期大科学装置布局不均衡,发展内容不够全面。3)发展期(2001—2010年)。这一阶段大科学装置呈现出均衡发展趋势,区域分布由北京为主扩展到了中国东部。其中“十一五”期间设施数量呈跨越式增长,共部署了散裂中子源、强磁场等12项大科学装置,覆盖了环境科学、地球科学、粒子物理与核物理、天文学、生命科学等领域,总投资超过60亿元。4)追赶期(2011至现在)。这一阶段中国对大科学装置进行了前瞻部署和系统布局,投入力度持续加大。中国的大科学装置建设无论从数量,还是从投入金额来看,都呈现逐年增加的趋势。在国家发展和改革委员会的规划组织和投资支持下,“十二五”期间,中国启动建设了地球系统数值模拟装置(Earth System Numerical Simulation Facility)、高海拔宇宙线观测站(LHAASO)、高效低碳燃气轮机试验装置等16项重大科技基础设施,总投资超过了100亿元“。十三五”期间,在基础科学、能源、地球系统与环境、空间和天文以及部分多学科交叉领域,按照“成熟一项、启动一项”的原则,启动建设了高能同步辐射光源、硬X射线自由电子激光装置等9项设施。“十四五”期间,中国拟新建20个左右国家重大科技基础设施,在数量和质量上有新的跃升。党的十八大以来中国大科学装置建设发展特点党的十八大以来,中国大力实施创新驱动发展战略,在大科学装置建设上多点发力。围绕战略导向、前瞻引领、应用支撑、民生改善等方面建设一批大科学装置。北京怀柔高能同步辐射光源(High Energy Photon Source,HEPS)已完成全部土建结构施工;合肥聚变堆主机关键系统综合研究设施(CRAFT)园区已经启用;稳态强磁场、500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)、散裂中子源等一批“国之重器”陆续建成使用;“慧眼”“悟空”“墨子”等科学实验卫星成功发射,“奋斗者”号全海深载人潜水器成功挑战马里亚纳海沟等。总之,近10年来,中国大科学装置建设持续推进,正在加速实现从跟跑、并跑向领跑的转变,为原始创新和关键技术攻关提供更强力的支撑。01 统筹规划、政策支持力度不断加大党的十八大以来,为促进大科学装置健康发展,党中央、国务院及省市等机构不断出台相关政策,从国家层面、省市层面进行战略部署。《国家创新驱动发展战略纲要》《国家重大科技基础设施建设中长期规划(2012—2030年)》《国家重大科技基础设施“十三五”规划》《国家重大科技基础设施管理办法》等政策文件均强调要以大科学装置为核心,打造高端引领的创新增长极,并对中国大科学装置的布局、投资、建设和管理进行了阐述,有效地推动了大科学装置建设与发展。“十四五”时期,《“十四五”国家科技创新规划》明确了“十四五”大科学装置建设重点。北京、上海、安徽作为综合性国家科学中心所在地,围绕科技前沿和国家重大战略需求,在各自的“十四五”规划中明确提出要加强大科学设施布局,跨区域整合创新资源,形成大科学装置集群。《粤港澳大湾区发展规划纲要》提出,大湾区深入实施创新驱动发展战略,深化粤港澳创新合作,加快推进大湾区重大科技基础设施建设。在这些规划、政策的推动下,中国大科学装置规模不断增长,综合效应日益显现。02 世界级大科学装置集群初步成型大科学装置集群在技术突破、科学研究和支撑经济社会发展等方面具有一定优势。北京、上海、合肥、粤港澳等地依托建设综合性国家科学中心,初步形成集群化态势、具有一定国际影响力的大科学装置集群。北京怀柔综合性国家科学中心距核心城区相对较远,重点聚焦基础研究;上海张江综合性国家科学中心紧邻上海市中心,重点推动小而精的应用转化;合肥综合性国家科学中心集中布局一批大科学装置集群和交叉前沿研究平台,侧重于科学发现;粤港澳大湾区综合科学中心依靠深圳、广州、东莞、香港等多点城市构建大科学装置集群。1)怀柔是北京地区大科学装置最为密集的区域。北京怀柔综合性国家科学中心自获批建设以来,在空间科学、物质科学、能源科学等领域布局建设了5个大科学装置(表1),同时集聚了一批前沿交叉研究平台、科教基础设施、重大产业技术开发平台,初步形成了促进重大原始创新成果产出的战略高地。落户于这里的5个大科学装置中,有的抢先“开跑”,也有的正在加速建设。地球系统数值模拟装置、综合极端条件实验装置已投入运行;多模态跨尺度生物医学成像设施工程已于2022年11月竣工;子午工程二期在2023年建设“收官”;高能同步辐射光源预计2025年完成装置建设。这些大科学装置将为北京国际科技创新中心建设提供重要支撑。表1 北京怀柔综合性国家科学中心大装置基本情况2)上海张江基本建成光子大科学装置集群。上海以张江实验室为依托,以重大任务实施、重大平台建设为牵引,先后建设了上海光源一期、国家蛋白质科学研究(上海)设施、硬X射线自由电子激光装置、软X射线自由电子激光装置等一批大科学设施,覆盖了生命科学、光子科学、能源科学、海洋科学等领域。据《2021上海科技进步报告》显示,截至2021年底,上海在建、在用的大科学设施已达到14个,其中已运行的有8个、在建的有6个(表2)。经过多年建设发展,上海张江初步形成了全球光科技领域规模大、种类全、功能强的光子大科学装置集群,为建设张江综合性国家科学中心,实现上海建设具有全球影响力的科技创新中心目标奠定了坚实基础。表2 上海运行、在建设施基本情况3)安徽合肥着力打造世界一流的大科学装置集中区。为更好推进合肥综合性国家科学中心建设,合肥在滨湖科学城布局建设了大科学装置集中区,布局建设8个大科学装置。截至2022年,安徽合肥已建成同步辐射装置、全超导托卡马克、稳态强磁场装置3个大科学装置。2017年9月,稳态强磁场实验装置通过国家验收,标志着中国成为继美国、法国、荷兰、日本之后第5个拥有稳态强磁场的国家。2022年3月,合肥第4个大科学装置——聚变堆主机关键系统综合研究设施(CRAFT)园区正式交付启用(表3)。大科学装置是合肥综合性国家科学中心的重要基石,以大科学装置为基础,提高原始创新能力,支撑综合性国家科学中心高质量发展,打造有国际影响力的创新之都指日可待。表3 合肥运行、在建设施基本情况4)粤港澳大湾区依靠产业发展构建大科学装置集群。加快布局建设大科学装置,是建设粤港澳大湾区综合性国家科学中心科技和产业创新高地的必然选择。粤港澳大湾区综合性国家科学中心的核心大科学装置——中国散裂中子源于2018年8月通过验收工作。作为继英国、美国、日本散裂中子源之后的世界第4台脉冲式散裂中子源,它的建成改变了以往中国科学家只能到国外散裂中子源上申请实验机时的历史。目前,深圳正在规划建设大科学装置集群,加快布局“高精尖”实验室。光明科学城规划建设提速,材料基因组、合成生物研究、脑解析与脑模拟等方面的大科学装置加快建设(表4)。这些重要的大科学装置,未来将为粤港澳大湾区产业升级提供重要保障。表4 大湾区部分设施基本情况03 自主创新设计能力不断增强“十二五”以来,中国大科学装置设计建造由以前的跟跑为主,逐步转到跟跑、并跑的局面,许多装置自主创新设计能力不断增强。从20世纪80年代末,依托于北京正负电子对撞机的第一代同步辐射光源,到安徽合肥光源(第二代)、上海同步辐射光源(第三代),再到北京怀柔高能同步辐射光源(第四代),大装置分辨率、亮度等性能不断提高。同时,怀柔同步辐射光源采用了研究团队自主研制的新型X射线像素阵列探测器样机,实现了加速器、光束线等多个关键技术的创新。北京怀柔的地球系统数值模拟装置是中国研制成功的首个具有自主知识产权的地球系统模拟大科学装置。被誉为“中国天眼”的FAST是世界上最大和最灵敏的单口径射电望远镜,且具有中国自主知识产权。被誉为“人造太阳”的合肥全超导托卡马克核聚变实验装置是中国自行设计研制的世界上第一个全超导非圆截面托卡马克核聚变实验装置。04 集聚人才的“磁石效应”日益凸显人是科技创新中最关键的因素。大科学装置在培养和凝聚人才、促进国际科技合作方面能够发挥独特作用。例如,中国科学院合肥物质科学研究院强磁场中心为王俊峰、张欣、王文超等“哈佛八剑客”提供了施展才华的舞台;上海光源不仅吸引集聚了世界顶尖科学家,也培育了大量经验丰富的大科学装置建设和运营工作人员,支撑着中国光子科学的创新发展。大科学装置在建设和运行过程中,集聚和培养了一大批懂科学、懂工程、懂技术、懂管理的领军人才,建成后还依托设施吸引大批高水平国内外人才开展科学研究和科技合作。以中国散裂中子源为例,中国科学院高能物理研究所在东莞集聚和培养了一支有400多人的高水平工程和科研团队及大批青年学生,包括有着丰富设施建设与开放运行经验的战略科学家,以及在专业领域颇有建树的学科领军人才和蓬勃奋进的青年科学家。05 开放共享程度有所增加大科学装置作为推动科技创新的重要平台,具有开放性、国际化特点,其不仅能够向世界展示中国科技水平与经济实力,同时也能够促进全球科学家与中国的合作交流。中国大科学装置正向世界敞开怀抱。2021年3月,“中国天眼”正式向全球开放,征集观测申请,共收到15个国家31份申请,14个国家的27份申请获得批准,并于2021年8月启动科学观测。这为世界注入了中国力量和中国贡献,充分彰显了中国科学家与国际科学界携手合作的理念。北京怀柔综合性国家科学中心的综合极端条件实验装置首批5个实验站进入开放运行阶段,2022年1月起正式面向中外用户开放预约使用,截至2022年2月已收到来自国内外团队的50余份申请。江门中微子实验获得国际实物贡献约3000万欧元,共有境外16个国家和地区约300多位科学家参加。自2007年超导托卡马克核聚变实验装置正式投入运行以来,中国科学院等离子体物理研究所已与30多个国家的近100多个研究机构建立了广泛而深入的合作伙伴关系,近年来多次帮助国际合作伙伴建造聚变研究部件。这些都充分表达了中国国际科技合作开放包容的积极态度。高水平的科研成果不断涌现01 突破一批关键核心技术党的十八大以来,中国在大科学装置建设上持续发力,也催生出一批世界级成果,覆盖能源、物理、材料、生命科学等多个前沿交叉和高科技研发领域,提升了基础前沿研究水平和自主创新能力。“中国天眼”实现了跟踪、漂移扫描、运动中扫描等多种观测模式,于2018年4月首次发现距地球约4000光年的毫秒脉冲星。2017年,全超导托卡马克核聚变实验装置首次实现了稳定的101.2s稳态长脉冲高约束等离子体运行,创造了新的世界纪录。2022年5月,中国“墨子号”实现1200km地表量子态传输新纪录,抢占了量子科技创新的制高点。大亚湾反应堆中微子实验发现了一种新的中微子振荡,并精确测量到其振荡几率,该结果对中微子物理的未来发展方向起着决定性作用。02 产生一批高水平项目和研究成果截至2021年底,上海光源一期累计提供实验机时388649h,用户累计发表SCI论文近8000篇。国家蛋白质科学研究(上海)设施全年为用户提供科研机时8.27万h,用户发表SCI论文445篇。截至2021年9月,合肥稳态强磁场实验装置共运行了45万多h,依托装置开展了近2700项课题研究、发表学术论文1700余篇,其中一区期刊论文404篇、Nature Index期刊文章接近400篇,推动了中国稳态强磁场下前沿科学研究。散裂中子源的高度开放共享也吸引了大批国内外的用户,包括科学家和工程技术人员开展科学研究和技术攻关,用户单位及完成课题数逐年增加,自建成投入使用以来,全球注册用户超过3400人,完成课题600多项,有力推动了中国中子散射应用和关键技术的重大发展。03 催生一批新成果和新应用大科学装置产生了一大批重大原创成果,催生了一批战略性产业技术。通过建设若干重大科技成果概念验证中心和中试平台,推动大科学装置衍生技术就地交易、就地转化、就地应用,促进“国之重器”走进日常生活。“中国天眼”在建造过程中突破了很多技术瓶颈,如抗疲劳索网技术在港珠澳大桥工程建设中得到了应用。依托合肥稳态强磁场装置取得了超预期的转化成果,包括催生出多个国家I类创新靶向药物,授权发明专利30余项,孵化出高科技企业4家。国家蛋白质科学研究(上海)设施解析了新冠肺炎病毒结构,有效助力疫情防控和疫苗研发。上海光源助力破解新冠肺炎病毒关键蛋白结构,为抗病毒药物研制提供了必要的基础数据。总之,中国大科学装置正以越来越多世界级创新成果,显示着“国之重器”的巨大能量。中国大科学装置建设发展过程中存在的问题及建议01 现存问题近年来,中国大科学装置在推进科技强国建设、打造战略科技力量中发挥了重要作用,取得了一系列原始创新成果,但因中国大科学装置建设起步较晚,与美国、德国等世界先进国家相比,在建设、管理等方面仍有一定差距,主要存在以下问题。1)后续经费投入仍需充分考虑。大科学装置建成后,还有后续巨大的运营成本,在运行过程中每年仍需要大量的投入,如运行费用、科研费用和改进发展费用等。例如,兰州重离子加速器国家累计投资逾10亿元,每年还需1.1亿元用于运行和维护更新。散裂中子源每年投入进行设备维护,保障运行和开放的经费达到设备建设经费的10%~20%。发达国家经验显示,对于大科学装置后续的科研投入尤其是人员经费,大多要占建设经费的10%~50%。总体来看,中国基础研究投入只占研发经费的5%,而大科学装置建设经费仅占基础研究经费投入的约5%,对比美国这2个数据分别是15%和10%。可见中国大科学装置建设经费投入与发达国家还有一定差距。2)关键部件的自主创新需进一步加强。中国目前在役大科学装置技术水平总体上以跟踪为主,支撑大科学装置建设的很多相关设备从国外采购,关键设备与工艺技术对国外产品依赖严重,存在卡脖子风险。以北京怀柔综合性国家科学中心多模态跨尺度生物医学成像设施为例,设施有价值12亿的仪器装备,其中30%由改造升级而来,30%由中国自主研发制造,其余40%来自国外购买。3)开放合作共享还不足。中国大科学装置建设主要是采取自行建设,建成后依托设施参与国际合作的模式。从国际合作来看,中国在运行的大科学装置中,由国内外共同参与重大科技项目建设的大科学装置占比不足10%,以自身大科学装置为基础参与国际科技项目合作的大科学装置占比约30%。而且在国际形势较为复杂的背景下,大科学装置国际合作和人才引进存在一定困难。02 建议统筹推进大科学装置布局建设,充分发挥大科学装置促进科技创新的重要作用是建设科技强国的必然要求。利用大装置解决国家战略需求中的前瞻性、基础性和战略性问题,突破“卡脖子”技术,是实现高水平科技自立自强,把创新发展主动权牢牢掌握在自己手中的重要举措。面对以上问题,结合中国大科学装置建设、发展的实际情况,提出以下几方面建议。1)拓展大科学装置经费投入来源。据统计,过去10年,大科学装置投资建设基本稳定在每5年160亿元左右,平均每年约32亿元,而且这些费用往往不包括研究经费、人员费、配套经费等。应遵循全生命周期管理理念,在大科学装置申报论证阶段就充分考虑到大科学装置维护、更新和提升所需的资金。明晰国家和地方权责,协调地方政府和社会力量共同参与大科学装置的建设。在中国科学院与国家自然科学基金委员会联合设立“大科学装置科学研究联合基金”支持基础研究的基础上,由企业和政府共同出资设立设施后期保障基金,参与企业在使用设备时可优先考虑或降低收费标准等。2)建立技术联盟,解决大科学装置关键技术卡脖子风险。以大装置常用的仪器仪表为例,目前中国高端仪器仪表产品等的关键核心零部件基本依赖进口,仪器仪表整机厂家存在着核心技术“空心化”问题。高端科研仪器设备市场基本由美国、欧洲、日本的企业控制。美国《化学与工程新闻》杂志公布的2018年度全球仪器公司TOP20排位榜中,有8家是美国公司,7家来自欧洲,5家为日本公司。为降低大科学装置核心零部件对国外产品的依赖度,鼓励具有专项技术的高科技企业、科研院所与高校形成大科学装置技术研发联盟,对相关技术联合攻关,突破大科学装置相关工艺与装备技术难点,实现器件自主研发和国产化。3)利用大科学装置开展更多国际合作。在大科学装置建设运行中,面向国外开放,引入国际合作者,依托这些设施开展联合研究、人员交流、人才培养等,提升中国国际科技合作水平。充分考虑国际科技安全,加强以中国为主的大科学装置的国际合作。同时积极参与国际大科学装置项目,积累建设管理、运行和维护经验等。结论大科学装置的出现是科学发展的必然趋势,大科学装置本身也是科技自立自强必备的科技基础设施。面向未来,需前瞻性谋划和系统性布局一些重大的大科学装置,不断夯实国家科技创新的平台基础。依托大科学装置,推动中国在基础研究和原创性、引领性科技攻关方面取得更多、更大的突破,助力实现科技强国的伟大梦想。
  • 新品 | 为NEXTA DSC系列推出Real View®偏光显微样品观察装置,可进行高精度结构分析
    2024年3月6日,日立高新技术集团旗下的日立分析仪器有限公司(以下简称为“日立分析仪器”)推出了可在NEXTA DSC系列热分析仪上使用的偏光显微镜配件。NEXTA DSC被用于不同的热分析领域,包括聚合物、制药、电子、化学、学术研究、石油和天然气、食品和金属等,以对热流进行测量从而获得材料特性。其可测量熔点、玻璃化转变和结晶等热性能。在开发高性能材料的行业和研究设施中,作为日立NEXTA DSC可选配件的Real View®偏光显微样品观察装置用途广泛,可扩展应用到样品晶体取向、多层薄膜质量控制和故障分析等。高级显微分析NEXTA DSC的Real View®偏光显微样品观察装置配备一个2,000万像素的高分辨率摄像头,与标准Real View®摄像系统相比,分辨率提高了10倍,数码变焦倍率提高了50倍。此外,可控偏光技术增强了图像的对比度,使操作人员能够探索样品的方向性,即各向异性。摄像头装置具有专门为偏光观测设计的专用图像处理功能。该系统采用与NEXTA DSC系列类似的简单操作,可对多层薄膜进行逐层熔点分析。这些功能有助于对各种材料进行高精度结构分析,能够清晰地观测微小区域,包括多层薄膜质量的异常。日立分析仪器热分析仪产品经理Olivier Savard表示:“NEXTA DSC系列的Real View®偏光显微样品观察装置引入了高精度结构分析的创新方法,为需要增强材料特征的公司和研究实验室扩展了差示扫描量热仪的功能。”日立高新科学热分析仪产品经理西村晋哉表示:“偏光显微样品观察装置采用由日立创新开发的图像处理功能对微区域进行热分析。该产品为研发和质量保证/质量控制市场提供了创新应用和解决方案。"*“NEXTA”和“Real View”是日立分析仪器在日本、美国、欧盟及其他国家/地区的注册商标。
  • 代表委员谈科技自立自强:加快发展大科学装置
    国家重大科技基础设施再立新功!面向世界科技前沿,我国在天文学领域取得新进展。3月2日,中科院国家天文台传来好消息:在国家重大科技基础设施郭守敬望远镜“加持”下,我国天文学家发现,最古老的银河系薄盘恒星年龄约为95亿年。该成果为深刻认识银河系薄盘的早期形成演化历史,提供了重要的观测依据。被称为“大科学装置”的国家重大科技基础设施,是推动科技创新、建设科技强国的利器。近年来,随着科学研究的不断深入,相当数量的前沿科学突破都是依靠重大科技基础设施取得的。“在基础性、前沿性科学研究中,大科学装置发挥着策源地作用,基础研究工作越来越离不开大科学装置。”3月3日,全国人大代表、中科院高能物理研究所所长王贻芳院士在接受科技日报记者采访时感慨道,加强基础研究,实现科技自立自强,必须建好、用好大科学装置这一“国之重器”。大科学装置是基础研究支撑平台想揽“瓷器活”,就要有“金刚钻”。“目前,有不少基础研究完全依赖大科学装置,它们通过大科学装置做无穷大或无穷小的研究,比如粒子物理、核物理以及天文学。没有大科学装置,这些研究无从谈起。”王贻芳说,还有相当一部分基础研究,如果没有大科学装置提供手段条件,研究就无法达到很高的高度,在同行竞争中就会落后。可以说,大科学装置为开展前沿性、基础性研究提供了重要平台,对于获取原创成果、抢占科技竞争制高点意义重大。全国政协委员、国家重大基础科技设施——强流重离子加速器装置总工程师、中科院近代物理研究所研究员杨建成也持有相似的看法。大科学装置是开展基础前沿研究的支撑平台,而且,基础研究领域取得理论突破后,还需要实验验证,大科学装置在实验验证上同样发挥着非常重要的作用。杨建成说,在过去的40多年,获得诺贝尔物理学奖的成果中,大约有40%来自大科学装置。王贻芳曾做了一个统计:2011年以来,依托重大科技基础设施产生的成果有22项入选国家科技“三大奖”,其中9项国家自然科学奖、3项国家技术发明奖、10项国家科学技术进步奖。因此,为了夯实基础研究根基,我国必须高度重视大科学装置建设,支持我国科学家在科技前沿领域开展研究。目前,我国在建和运行的大科学装置总量达57个,部分设施综合水平迈入全球“第一方阵”;根据规划,“十四五”期间,我国拟新建20个左右的大科学装置,我国大科学装置建设迎来了实现历史性跨越的快速发展期。大科学装置性能指标必须国际领先在充分肯定成绩的同时,我们也要清醒地认识到,我国在大科学装置建设方面还存在一些不足。王贻芳多年参与设计、建设、运行和使用大科学装置,对此有深入思考和独到见解。他说,相比国外,我国现有的大科学装置总投资规模偏小,这会限制重大原始创新成果的产生。而且,虽然我国大科学装置的数量有了较大增长,但这些装置的质量还有待进一步提高。“现在,有一些大科学装置的独创性、领先性不够,看到别人取得成绩,我跟着照做,一哄而上,存在低水平重复的问题。”王贻芳坦言。杨建成也认为,大科学装置的综合性能指标还需要进一步提升。“我们建设的大科学装置在性能指标上必须是国际领先的。有了国际一流的平台,我们才可能做出国际一流的成果。”他说。“从支撑基础研究的角度看,大科学装置可以分为两类:一是通用型,比如高能同步辐射光源;二是专用型,比如‘中国天眼’。”王贻芳认为,目前通用型大科学装置获得了更多的支持,因为它可以支撑各方面的用户,而专用型大科学装置占所有大科学装置的比重却在逐年下降,“这显然不太合适”。王贻芳建议,未来应该优化大科学装置投入的比例,建设更多国际领先的、有独创性的、开展前沿科学研究的专用大科学装置。通过这些装置的引领,取得重大一流的科学成果。结合自己多年深耕加速器研究的经历,杨建成表示,为了更好支撑基础前沿研究,我国要作好大科学装置建设的整体规划,优化大科学装置的学科和地域布局,从而加强大科学装置对基础研究的支撑作用。大科学装置在面向基础前沿科学研究的同时,也会发展很多高精尖技术。“有一些技术有很好的应用前景。比如我们基于兰州重离子加速器研发的医用重离子加速器,就取得了很好的社会效应。”杨建成建议,国家对大科学装置产生的高精尖技术的转移转化应给予更多关注。
  • 依托大科学装置 抢占未来科技竞争制高点
    中科院是我国承担大科学装置建设、运行和管理的“国家队”——截至“十一五”,我国已建、在建和立项待建的大科学装置中,由中科院建设、运行和管理的约占80%。在科研生涯始自大科学装置、现在又是中科院分管此项工作副院长的詹文龙院士看来,“大科学装置集中体现了国家科学基础设施的水平和技术制造能力,是一个国家综合科技实力的象征”。  所谓大科学装置,通俗地理解,是人类感知觉能力的延伸,是对诸如距离更远、信号更弱、时间更短、能量更高、温度更低、压力更强、规模更大等观测能力极限的突破,是现代前沿科学研究必不可少的条件。现实中,它是同步辐射光源,是强磁场,是大型粒子对撞机,是有望帮助人类找到终极科学问题答案的机器,通过它,人类或许能够知道:我们来自何处,我们由何物构成,以及生命和宇宙的意义何在。总之,它本身就是科学的“加速器”。  2009年,中科院决定与国家自然科学基金委员会共同设立“大科学装置科学研究联合基金” (简称联合基金),自掏腰包,3年共投入6000万元,在全国范围而不仅仅是中科院系统,支持基于大科学装置的研究。如今,第一期联合基金执行已近尾声,双方第二期的合作协议也于7月12日续签,联合基金由原来的4000万元/年增加至6000万元/年,执行期为2012—2014年。近日,科技日报记者就相关问题专访了詹文龙。  中科院为何把这笔经费用途的决定权交出去  联合基金由中科院和基金委各出一半,所有项目按照科学基金“依靠专家、发扬民主、择优支持、公正合理”的原则进行评审,也就是说,中科院相当于把每年几千万元经费的决定权交给了基金评审的专家。在自身已是大科学装置的主要运行、管理方的情况下,中科院这么做是出于什么考虑?  詹文龙介绍说,为了充分发挥大科学装置作为国家科技基础设施的建设效益,中科院长期以来都在积极探索和实践大科学装置开放共享的运行模式和管理机制,包括设立开放经费、发挥装置科技委员会与用户委员会作用等。“不过限于支持体量、受众范围等诸多因素,大科学装置的开放共享虽在不断改善,但总体上仍有潜力可挖。”  他表示,设立联合基金,可以利用基金委面向全国的申请受理平台,依靠其项目评审体系和专家资源,以基金项目的形式,引导全国的科研人员将自己的研究工作与我国的大科学装置密切结合,在充分发挥大科学装置强大科研支撑能力的同时,一方面提升科学家的研究水平和创新能力,培养一批依托大科学装置开展工作的研究队伍,另一方面不断更新和补充大科学装置实验终端的测试能力,持续增强其多学科研究支撑能力。  第一期联合基金共3年(2009—2011年度),经过全面论证,双方选择了北京正负电子对撞机、上海同步辐射光源、兰州重离子研究装置和合肥同步辐射光源4个装置,面向全国受理项目申请。詹文龙介绍,选择这4个装置的原因是,它们都属于具备多学科研究支撑能力的平台型装置。第二期联合基金协议中,稳态强磁场实验装置也被纳入其中,成为第5个依托装置。  促进大科学装置开放共享新模式初见成效  “联合基金这两年的执行情况基本实现了我们设立时的初衷。”詹文龙说。  据介绍,2009年和2010年两年中,联合基金共收到项目申请533项,资助133个项目。这些项目的学科主要分布在10个学科方向。其中,材料学交叉、化学交叉、凝聚态物理和生命科学交叉是份额最大的4个研究方向,四者总数接近三分之二。  詹文龙还介绍说,这两年,中科院之外有38个单位(含中国科技大学)获得了3780万元的支持,另外,大科学装置的用户中,出现了四分之一的新面孔。  他总结认为,大装置联合基金的明显效果主要体现在4个方面:一是在稳定原有队伍的同时,促进了新队伍的培养,增强了人员合作 二是激发了研究新思路,加强了多学科交叉,促进了重大成果的产生,部分项目已有研究论文发表或接收 三是进一步提升了大科学装置的开放共享度及其与全国研究单位的合作 四是增强了大科学装置的科研支撑和服务能力。联合基金项目覆盖了广泛的学科领域,提出了大量新的科学问题,为解决这些问题,从装置性能到各实验线站都得到了进一步发展。“以前我们有些实验方法是借鉴国外的,现在,科学家提出的新的科学问题是国际上所没有的,只能自己创新了。”詹文龙说。  建设大型多学科综合研究基地 抢占未来科技竞争制高点  “虽然项目进展都不错,但也有些遗憾,比如联合基金没有收到一份来自企业的申请,获得资助的研究单位中,只有两家是中科院和大学以外的。”詹文龙说,第二期联合基金应当吸引地方科研单位、企业等更多用户依托大科学装置开展研究工作。  他介绍,国家越来越重视发挥大科学装置在国家科技和社会经济发展中的战略作用。从“十五”后期开始,国家发改委由以往“提一个议一个”的审批模式改变为中长期规划指导下的成批次建设的模式。据悉,“十一五”期间,发改委批准了12个建设项目,“预计‘十二五’期间批准的建设项目将不少于‘十一五’。除了物理学科外,可能还会包括能源等学科的装置”。  具体到中科院在这方面的计划,詹文龙指出,目前,我国已有和在建的大科学装置主要集中在北京、上海、兰州、合肥、广东5个地方,另外还有分布在全国各地的天文台。5个地方的大科学装置要在提高水平和效益上做文章,并逐步形成集聚效应。谈到此,詹文龙提出了一个概念——大型多学科综合科研基地。  他指出,西方发达国家的科学技术水平和强大的国际竞争能力,相当大程度上是通过一批高水平的大型科研基地体现的。这些基地科研力量集中,科研任务集中,国家投资集中,科学技术成果累累 学科多样,学科交叉,发展新型、边缘科学和突破重大新技术的能力强。而这些基地往往是在大科学装置的基础上发展起来的,逐渐拥有了大科学装置群,作为支撑其强大科技竞争力的基本条件。  建设大型科研基地,抢占未来科技竞争制高点,是提升国家科技创新能力、发展高科技的要求。根据大科学装置目前的布局,中科院决定,把第一个依托大科学装置建设的大型科研基地选在北京。  在他的描述中,记者了解到,这将是一个拥有同步辐射光源、综合极端条件实验设施、超级计算设施等多个装置的科学中心,论文不再是在这些装置上产出的唯一“产品”,纳米、生物等多个产业的集聚会让成果迅速转化,这里将是吸引国际高水平人才的“梧桐树”,不同学科的研究人员会在这里比邻而居……  詹文龙说,这不仅仅是一幅愿景图。按照计划,“十二五”期间将重点进行装置的建设,争取在2020年前使这些“速度更快、温度更低、压力更大、电磁场更强”的高水平装置全部投用,而其运行模式也将是全新的。  前不久的一则新闻算是詹文龙这番话的一个注脚:中科院怀柔园区北京综合研究中心规划用地约2200亩,将重点规划建设国家“十二五”规划中部分大科学装置项目。初步估算,项目总投资达到60亿元,计划于“十二五”至“十三五”规划期间分步建设。
  • 微重力大科学装置海淀竣工验收
    近日,中建二局安装公司一项被喻为航天领域“跳楼机”的高科技实验装置项目竣工验收,正式进入核心试验装置安装阶段。“跳楼机”名为4秒电磁弹射微重力实验装置项目,坐落在海淀区中国科学院北京新技术基地内,是国家大科学装置,为亚洲首例、世界第二例工程。该装置采用一种类似于炮弹造型的直线电机驱动实验舱体,通过电机全程控制加速度过程,以“2秒弹射到40米高空再2秒回落”的方式来产生微重力和超重环境,最终实现模拟微重力、月球重力、火星重力等运动模式,为航天大规模空间科学项目提供地基短时微重力实验服务。如此神奇的装置,藏身在一座40米高、占地136平方米的“高塔”里,总用钢量不足千吨。“136平方米约等于一个三室两厅,干了十几年工程,没见过这么小的。”项目经理李长龙介绍,平地竖起一座高塔,看似容易,实际上“麻雀虽小,五脏俱全”。为实现微重力环境,发射装置被包裹在两层六边形钢结构中,内塔钢结构用于连接电机设备,外塔钢结构则是用来控制整体轨道装置的稳定性。与高精尖的国家大科学装置相对应的是2毫米的精度要求,施工难度集中在了钢结构安装环节。一开始,拥有丰富的钢结构项目施工经验的李长龙面对如此之“小”的项目也犯了难。“施工技术与质量标准要求极高,‘零焊接’‘全螺栓’方式,让常规施工方法和工艺难以保证。为了保证整个钢结构体系的分毫不差,所有的现场安装全部采用螺栓与法兰盘栓接形式,仅拇指粗细的高强螺栓就用了1.6万余个。”李长龙介绍,4秒落塔项目钢结构安装过程中,一千多根构件组合成的空间几何体及近千块连接板的平面度、平行度、垂直度、正对距离误差不能超过2毫米,2毫米相当于一枚一元硬币的厚度。为将安装误差控制在2毫米内,项目团队构建了4秒落塔可视化三维模型,对钢结构安装全过程模拟,实现可视化施工,避免与其他专业的冲突与碰撞,有效解决了钢结构安装精度及变形控制这一难点问题。“栓接相比焊接有可调整的空间,人工作业很难保证一次成型,过程中需要不断地调整钢结构位置,才能确保万无一失。”李长龙说,考虑到安装时的紧密性,他们特别制作了0.5毫米和1毫米两种垫片,并在钢结构两端各留出2毫米的空间,确保钢结构之间能够以最小的空隙塞到一起,再用螺栓和垫片对缝隙进行填充。记者了解到,如此高精尖的装置,在安装过程中还采用了最传统的“线坠儿”技术纠偏。整个钢结构安装完成后,在顶部拉出8根0.5毫米的钢丝绳,尾部绑上铅坠,确保自上而下自然垂落,根据结构与钢丝绳的位置进行最后的修正,最终成功地把安装精度控制在2毫米以内。这是继“中国天眼”之后,中建二局安装公司再次助力国家大科学装置成功实现预期目标,该项目的建设经验也将为后续国内千米落井装置的关键技术验证项目提供重要技术支持和施工保障。下一阶段,项目团队将继续与各方密切配合,努力把4秒落塔项目打造成为“中国第一、世界领先”的微重力实验设施,助力国家探索浩瀚宇宙实现新突破。(记者 孙颖 通讯员 王东坡)
  • “高安全成套专用控制装置及系统”斩获国家科技奖
    “人类生活的各个领域,都离不开自动控制技术。可以说,控制系统就是工业装备的‘大脑’。这个‘大脑’聪明不聪明,不仅直接决定了企业的生产规模,也直接决定了产品的质量和生产安全。”谈到最熟悉的“控制系统”,浙江大学控制科学与工程学院王文海研究员打了个形象的比喻。高安全成套专用控制装置及系统-项目应用照片  1月9日,王文海第二次站在了国家科技奖励大会的领奖台上。凭借“高安全成套专用控制装置及系统”,包括浙江大学、上海电气、上海三菱电梯、杭州优稳自动化、上海大学等在内的项目团队,斩获了2016年度国家科学技术进步奖二等奖。  “如果说,2013年得奖的‘高端控制装备及系统的设计开发平台研究与应用’专注的是通用控制系统领域,那么这次的项目则聚焦于专用控制设备领域,比如汽轮机控制、电梯控制等,”王文海告诉记者,“专用控制装置跟工业设备紧密耦合,成套、专用、软硬件高度集成,具有二次开发工作量小,实施效率高,高安全、高性能,高精度等特点”。  以电梯而言,通用控制技术可以在普通电梯上得到应用,但摩天大楼所需要的高速/超高速电梯在能量回馈、多机调动和紧急刹车上都有更高的要求,这时候就需要在通用平台的基础上深度耦合,即“挖的更深”,实现成套专用,及高安全与高性能。  据王文海介绍,上海三菱电梯与上海电气、浙江大学等开发的高速/超高速电梯成套专用控制系统的制动器寿命可达1800万次,是国内其他产品的9倍,其可靠性、舒适性、能效等性能指标在国内都具有领先水平,应用该控制系统的高速/超高速电梯已占据国产电梯的80%。  除此之外,项目团队还成功研制出超临界/超超临界汽轮机成套专用控制系统、超临界/超超临界直流炉成套专用控制系统,并广泛应用于脱硫、脱硝、除尘、污水处理等领域,产品出口美国、日本、韩国、俄罗斯等20多个国家。  而“挖的更深”,在同一领域不断发现新的问题、迎接新的挑战,也是王文海团队二十年来一贯奉行的理念。  “研究生阶段,我们发现很多企业的控制系统经常出毛病,我们最常去的就是企业,给他们解决各种问题”。王文海从1985年起就在浙江大学学习和工作,当时,我国大型企业的高端控制装备全部依赖进口,成为中国工业大而不强、受制于人的关键之“痛”。“这不单是一个成本问题,更隐含安全问题,于是在导师孙优贤院士的支持下,我们决定做一套自己的控制系统。”王文海说。  如果说当初走上研发控制系统这条路,王文海凭借的是激情,那么之后,他和他的团队靠的则是“沉得下去、足够专注”的韧性。王文海(左一)及团队在进行高安全成套控制装置及系统的运行实验  从上世纪90年代初第一套控制系统面世,到“全集成新一代工业自动化系统”,到“高端控制装备及系统的设计开发平台”,再到 “高安全成套专用控制装置及系统”,如同通讯领域的2G、3G到4G、5G,控制系统也在一代一代升级,每一个问题解决的同时,新的问题又冒出头来。  “刚开始并没有想象到事情这么复杂”王文海说。二十余年来,他们不仅把自己领域的边边角角都摸了个遍,还悉心钻研跨领域的其他相关知识,终于得以在控制系统这条路上越走越远、越钻越精。  “接下来这几年,您还会专注于控制系统的研发吗?”  “当然。我们就是专做控制系统,只做控制系统。”  当记者抛出这个问题时,王文海拿出了最新的计划书,“随着智能制造的升级,工业控制系统信息安全面临很大的挑战,这是我们接下来要解决的问题。”  “专做控制系统,只做控制系统”,这也是采访过程中王文海经常脱口而出的一句话。除了深厚扎实的专业基础,这种“一生只做一件事”的专注与执着,想必也是他和他的团队收获成功的法宝。
  • 新型光学装置为超级计算机提速
    美国每日科学网站12月22日报道题:更强大的超级计算机?新装置或可传输光信息。  研究人员们已经研制出一种新型光学装置,其体积极小,一个计算机芯片就足以安装数百万个这种装置。该装置可提高信息处理速度和能力,让超级计算机变得更快、更强大。  这种“无源光学二极管”是由两个微小的硅质环状物制成的,环状物的直径仅有10微米,大约是人的一根头发直径的1/10。与其他光学二极管不同,这种“无源光学二极管”无需外部能源就能传播信号,还很容易被集成到计算机芯片上。  珀杜大学电子和计算机工程学副教授齐明豪说,这种二极管可进行“非交互性传输”,即单向信号传输,由此可具备信息处理能力。  齐明豪解释说:“这种单向传输是逻辑电路的最基本要素。因此,我们研制的这种二极管为实现光信息处理敞开了大门。”  虽然光缆可用于跨洋和跨大洲传输海量数据,但其信息处理速度会变慢,传输数据也容易遭到网络攻击,因为光学信号须转换成电子信号才能在计算机上使用,反之亦然。  研究人员说:“进行这种转换需要十分昂贵的设备。而你希望能做到的是,将这种光纤直接插入计算机而无需进行转换,那样的话,你就可以获得大量带宽,安全方面也会大有保障了。”  研究人员樊丽(音)说:“这些二极管非常小,它们身上还有一些特性也很有吸引力。这些二极管或可成为未来光子信息处理芯片的零部件。”  用这种新型光学二极管就无需进行光学-电子信号的转换了,因此有可能提高信息处理速度和安全度。这种装置现已接近投入商业生产。使用这种新型光学二极管将多个处理器连接起来,还有可能提高超级计算机的信息处理速度和能力。  研究人员利奥瓦尔盖塞说:“当今导致超级计算机受限的一个主要因素就是,系统内各种独立的超级芯片进行信息传输的速度和带宽。我们研制的这种光学二极管或可成为光互联通信系统的一个组成部分,而该系统或许就可以解决这样的瓶颈问题了。”  激光器以通信用波长发出的红外线通过光导纤维,并由被称为“波导管”的微结构进行控制。红外线会按顺序通过两个硅质环状物,并在微型环状物内进行“非线性相互作用”。根据先进入哪个环状物,光束要么向前通过,要么向后耗散,从而完成单向传输。环状物还可通过“微加热器”加热的方式进行调整。微加热器会改变传输波长,因此可对范围广泛的波段加以处理。
  • 走进中国散裂中子源:这个装置挺“卷”
    作者:倪思洁 来源:中国科学报8月中旬,广东东莞。天气时晴时雨,空气潮湿闷热,郁郁葱葱的荔枝林里,我国迄今为止已建成的、单项投资规模最大的大科学工程——中国散裂中子源正在进行暑期停机检修。2018年8月23日,中国散裂中子源项目通过国家验收,正式投入运行。从那时起,这片昔日的荔枝林里,人气就起来了。这里的年均公众参观访问量超1万人次,最火爆的一次线下科普活动中,科研人员半天里就接待了6000人次,前来参观的小汽车一直从中国散裂中子源的大门口排到高速路口。不仅如此,科学界和产业界对中国散裂中子源机时的竞争也很激烈,项目申请书逐年成倍增加,以至于每100份申请书中,只有29份能成功。这台已运行4年的大装置为何如此“火爆”?趁着停机检修,《中国科学报》记者深入实地一探究竟。红的、绿的、蓝的、黄的… … 好看:五彩斑斓的“黑科技”每年,中国散裂中子源都会放“暑假”,停机时间长达一个半月到两个月,这段时间,科研人员要给装置做“保养”。中国散裂中子源是由国家发改委立项支持建设的国家重大科技基础设施,法人单位是中国科学院高能物理研究所。这个装置让中国成为继英国、美国、日本后世界第四个拥有脉冲散裂中子源的国家。散裂中子源常被比作“超级显微镜”,因为它能够用加速器加速质子打到靶上产生的中子,来探索物质微观结构。它的源头——加速器系统,像卧龙一般,藏在地下。地下17米,空调和新风系统让原本湿热的空气变得干爽。沿着亮绿色走道向前,人们能看见一个五彩斑斓的“黑科技”世界。黄色的是可以让粒子“飞奔”起来的漂移管直线加速器系统,蓝色的是可以把粒子聚成一束的四极磁铁,红色的是可以让粒子以15度角“拐弯”的二极磁铁… … 它们先是串成一条长串,之后又围出一个大环。长串部位是直线加速器,环形部位是快循环同步加速器。看似庞大笨重的装备,安装精度要达到10微米到百微米级别,使得自然界微小的物质-质子,能够按要求得到控制并加速。一旦运行起来,每1秒钟,快循环加速器会像旅游大巴一样“接待”25波等待加速的负氢离子。每波负氢离子“上车”后,会转换为质子,并在0.02秒里沿着快循环同步加速器跑约20000圈,直到速度达到0.92倍光速。接着,接近光速的质子束像“微型子弹”一样,冲向重金属靶,金属靶的原子核被撞“碎”,科学家又用特殊装置把“碎片”里不带电的中子降速后,引入一台台谱仪中。谱仪位于离加速器隧道不远的地方,同样五彩斑斓。中国散裂中子源一期共建了3台谱仪,分别是有着绿色外壳的通用粉末衍射仪、小角中子散射仪,以及有着蓝色外壳的多功能反射仪。4年来,中国散裂中子源还与粤港澳大湾区高校、研究机构等合作建设了若干条谱仪,以满足全国及地方研究机构和企业的需求。红的、绿的、蓝的、黄的… … 以靶站为中心,已经建成和正在建设的谱仪向四面伸展,让中国散裂中子源看起来像一朵绽放的七色花。“我们的设备国产化率达到90%以上。”散裂中子源科学中心主任、中国科学院高能物理研究所副所长陈延伟告诉《中国科学报》,全国近百家合作单位完成了装置各项设备的研制与批量生产,许多设备达到国际领先或先进水平。5000、97%、800、122%… … 好用:超级显微镜的“超能力”在中国散裂中子源,科研人员喜欢用数字说话。最让他们自豪的一个数字是“5000”。在这里,时间不按年、月、日算,而是按小时算。“我们每年打靶提供中子束流的时间在5000个小时。”陈延伟说。5000小时,意味着一年8700多小时里,中国散裂中子源大部分时间都在产生中子,开展实验。“国际上的其他三台散裂中子源,英国、日本每年的中子束流时间一般都在4000小时左右。”陈延伟说。另一个让他们自豪的数字是“97%”。“2020年到2021年,我们的实际运行效率超过了97%,这是全球其他散裂中子源都无法达到的效率。”散裂中子源科学中心副主任、中国科学院高能物理研究所研究员王生说,实际运行效率是散裂中子源实际运行时间与计划运行时间的比值。数字越高,说明散裂中子源故障率越低,按计划运行的稳定性更好。在描述中国散裂中子源的运行成效时,他们则喜欢用课题的数量来说明。“4年,中国散裂中子源开放运行8轮,共完成800余项课题,重点支持国家重大需求项目的机时。”陈延伟说。面向国家重大需求,他们完成了航空航天发动机叶片应力测试,对“奋斗者”号焊接工艺进行验证… … 面向世界科技前沿,他们开展了超级钢、分子筛吸附剂、量子材料等研究。面向经济主战场,他们在高性能芯片、电池、材料、应力检测等领域,为钢铁研究总院、国电电力发展股份有限公司、中国石油天然气集团有限公司等高技术企业和研究机构提供了重要支撑。面向人民生命健康,他们在2020年8月成功研制出我国首台具有完全知识产权的硼中子俘获治疗实验装置,并于今年7月底在东莞市人民医院开始安装。好的数据和成果,使用户像滚雪球一般激增。陈延伟介绍,目前,注册用户已超过3800人,2021至2022年度申请课题数同比增长了122%,课题申请的通过率为29%。提功率、优性能、加终端、做交叉… … 好谋:未来的“小目标”日渐激增的机时申请和正在加剧的科技战,让中国散裂中子源的“升级”成为现实需求。早在工程设计之初,科研人员就为装置升级预留了空间。正因如此,未来可以直接在一期工程的基础上升级改造。陈延伟介绍,目前,中国散裂中子源已经完成一期的全部设计指标。2020年2月,打靶束流功率达到100千瓦的设计指标,比原计划提前一年半;2022年2月,打靶束流功率达到125千瓦,超过设计指标25%,并且实现了稳定高效运行,大幅度地提高了装置性能。提升打靶束流功率,会使装置在同等时间里生产出更多中子,进而使实验时间缩短,样品分辨率提高。“就好比白天光线强时拍照,曝光时间会比晚上拍照时短,而且拍出来的照片也会更清晰。”陈延伟解释。科研人员对未来的“小目标”之一,就是将打靶束流功率提升到500千瓦,让中子源变得更“亮”。此外,散裂中子源科学中心副主任梁天骄介绍,中国散裂中子源升级改造后,有望覆盖用户需求的绝大部分领域,满足更多尺度结构和动力学表征,为多学科交叉研究提供更有力的支撑。如今,趁着暑期停机检修,这里的科研人员正在为即将安装的新谱仪和实验终端做前期准备。对于该装置未来的进展,《中国科学报》还将持续关注。中国散裂中子源加速器局部 李子锋摄王生向记者介绍直线加速器工作原理 倪思洁摄蓝色的四级磁铁 倪思洁摄红色的二级磁铁 倪思洁摄中国散裂中子源部分线站与实验终端 李子锋摄
  • 稳态强磁场实验装置:探索科学宝藏的“国之重器
    p  2008年5月,由中科院合肥物质院强磁场科学中心承担的稳态强磁场实验装置项目启动 2011年7月,试验磁体通电测试成功 2016年11月,混合磁体大口径外超导磁体研制成功 2017年2月,专家组对混合磁体工艺测试完成验收 2017年9月27日,“稳态强磁场实验装置”通过国家验收,验收专家组给予了很高评价,认为项目全面完成了建设目标,各项关键参数达到或超过设计指标,“技术和性能达到国际领先水平”。/pp  九年时间里,强磁场的科研人员完成了一个又一个跨越,使我国成为国际五大稳态强磁场研究机构之一,中国的强磁场科学技术事业迈上了一个新台阶。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/869ce1bd-adaa-4e62-b5da-a9ff1c35ab0b.jpg" title="1_副本.jpg"//pp style="text-align: center "①2016年底混合磁体首次调试成功。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/c43cc087-9520-4092-b997-350c4e51976e.jpg" title="2_副本.jpg"//pp style="text-align: center "②安装在水冷磁体上的扫描隧道显微镜。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/db639ee9-02c5-409b-8e70-117373bf43d4.jpg" title="3_副本.jpg"//pp style="text-align: center "③混合磁体。/pp  strong“极端条件就是把不可能变成可能”/strong/pp  高秉钧是中科院强磁场科学中心首席科学家,也是“稳态强磁场实验装置”项目总工程师。他对记者说:“物质在强磁场情况下会改变它本身的电子态,从而产生新的现象。强磁场是一个极端条件,我们在设计和研制稳态强磁场实验装置过程中,常会遇到许多难以克服的困难,甚至是无路可走。我们必须坚持不懈,实现超越,把不可能变成可能。”/pp  强磁场是调控物质量子态的重要参量,在发现新现象、揭示新规律、探索新材料、催生新技术等方面具有不可替代的作用。自1913年以来,已有多项与磁场相关成果获诺贝尔奖,因此,强磁场极端条件已成为科技界公认的探索科学宝藏的“国之重器”。我国因缺乏相应的强磁场条件,屡次错失在物质科学等诸多领域开展前沿探索的机遇。/pp  据了解,“稳态强磁场实验装置”是一个针对多学科实验研究需要的强磁场极端实验条件设施,包括十台强磁场磁体装置和六大类实验测量系统。/pp  混合磁体由内部水冷磁体和外部超导磁体组合而成,是追求更高稳态极端场强的首选,但此前国际上已有多个失败案例,而我国在高场超导磁体技术方面的基础较为薄弱,项目所有科研人员都面临着巨大挑战。/pp  对水冷磁体而言,必须解决材料和结构的优化选择、巨大电磁力和发热问题,与之配套的数千万瓦级的稳态直流电源系统、低温冷却系统、去离子水冷却系统等均是一个个不容置疑的难关。/pp  谨慎起见,超导磁体组决定先研制一款磁场强度低、口径小,但选材、加工工艺完全相同的试验磁体,试验磁体在2011年7月通电测试成功。混合磁体研制真正开始之后,所有科研人员都秉持着一种谨慎严肃的工作状态,为了达到验收要求而不断努力着。/pp  strong国际领先水平的科学实验系统/strong/pp  水冷磁体WM1原设计是超世界纪录的38.5T,但在磁体组装后的预测试中,科研人员却发现磁场强度比预期的要低得多,且已是板上钉钉,超纪录无望了。水冷磁体总设计高秉钧带领工作人员排查原因,最终发现绝大部分bitter片厚度不是原设计的0.27毫米,而是0.29~0.30毫米。/pp  高秉钧说:“面对几千片bitter片,我们就用天平称重量、算体积,来实测每片的实际厚度。将实测厚度的bitter片优化配置,重新组合,使组装的磁体达到原设计的目标。”这样,WM1最终实现了38.5T的磁场强度,打破水冷磁体场强世界纪录。/pp  2016年底混合磁体首次调试,磁场强度达到40特斯拉,符合工程验收指标。就在科研人员欢欣鼓舞之时,磁体系统却发生了故障。春节将至,项目组的人却集中在场地,不断调试设备排除故障。/pp  大年三十上午八点,装置准时通电测试,所有人在文化走廊吃了一顿简单而又难忘的“年夜饭”。但是那天因为降温没到位,再一次失败了。项目组的科研人员在春节假期继续加班,大年初四,混合磁体终于通电励磁,再次成功。/pp  经过多年自主创新,强磁场研制团队打破国际技术壁垒,成功克服关键材料国际限制、关键技术国内空白等重大难题,建成继美国之后世界第二台40T级混合磁体,建立了国际领先水平的科学实验系统,实现了我国稳态强磁场极端条件的重大突破。/pp  “稳态强磁场实验装置”国家验收意见中写道:“项目提出了一种水冷磁体设计创新方案,发展了一套全程可量化检测的高精度装配工艺。建成的水冷磁体中有三台磁体的性能指标创世界纪录,其中两台保持至今 突破了800毫米室温孔径、磁场强度达10特斯拉的铌三锡超导磁体研制的技术难关,建成了40特斯拉稳态混合磁体装置,磁场强度世界第二 建成了国际首创水冷磁体扫描隧道显微镜系统、扫描隧道—磁力—原子力组合显微镜系统,以及强磁场下低温、超高压实验系统,使得我国稳态强磁场相关实验条件达到国际领先水平。”/pp  strong“边建设边开放”的管理新模式/strong/pp  强磁场下的应用研究对于高技术产业具有很强的催生和带动作用,“强磁场效应”其实就在我们身边。/pp  高秉钧介绍道:“大家都比较熟悉的医院的核磁共振成像、磁悬浮列车等就运用了强磁场技术。此外,强磁场在化学合成、特殊材料、生物技术、医药健康等多种新技术研发方面都有可能发挥关键作用,孕育新的发明。”/pp  据了解,强磁场有助于促进多学科交叉研究,尤其是生命科学、物理学、材料与化学、新技术之间的交叉研究。2014年,合肥物质院技术生物所吴跃进研究组和强磁场科学中心钟凯研究组合作,研究了造影剂对水稻生长的潜在影响,并用磁共振成像技术获得了造影剂在根系中的动态信息。这也是世界上首次利用造影剂研究磁共振成像技术在水稻根系无损检测中的应用,为植物根系研究提供了一种新的研究方法。/pp  在中科院“十二五”验收中,“强磁场科学与技术”重大突破入选院“双百”优秀。2017年3月,中共中央政治局委员、国务院副总理刘延东视察装置,对团队取得的成绩给予了充分肯定。/pp  同时,项目提出并实践了国家大科学装置“边建设边开放”管理新模式。从2010年试运行以来装置已经为包括北大、复旦、中科大、浙大、南大、中科院物理所、中科院固体物理所、上海生科院、福建物构所等在内的百余家用户单位提供了实验条件,有力支撑了强磁场下前沿研究,产出了一大批具有国际影响力的科研成果。/pp  随着稳态强磁场装置工程建设的推进,一支能打硬仗的强磁场技术攻关队伍在锻炼中成长。稳态强磁场实验装置将成为科学研究、科技发展的创新源头,将为合肥综合性国家科学中心的建设贡献更多的科技力量。/p
  • 上海崛起世界最密大科学装置群
    p  浦东张江的“超级光源”将闪出更耀眼的光芒:今年夏天,能拍摄“分子电影”的软X射线自由电子激光装置,将有望得到第一束自由电子激光 超强超短激光装置,将于年内完成挑战瞬时输出功率10拍瓦的“世界纪录” 上海光源二期线站也在紧锣密鼓地建设中……br//pp  算上已经建成的国家蛋白质科学中心、已经开工的活细胞结构和功能成像平台等,上海张江已成为世界上大科学装置密度最高的地区。依托先进的大科学基础设施群,这里已集聚起全球高端创新资源,向着跻身世界一流实验室行列的目标不断接近。/pp  strong大科学装置群营造大科学生态/strong/pp  去年2月,上海张江综合性国家科学中心获批建设。一年来,超强超短激光实验装置、软X射线自由电子激光用户装置、活细胞结构与功能成像平台等顶级大科学装置,实现了当年立项、当年开工的目标,展现出令人赞叹的“上海速度”。/pp  “这些项目建成后,张江地区将成为全球规模最大、种类最全、综合能力最强的光子大科学设施集聚地之一。”上海市科委主任寿子琪说,目前张江还在积极争取硬X射线自由电子激光装置、高效低碳气轮机实验装置、国家生物医药大数据等项目落地。/pp  前沿探索的科研利器汇聚,一个世界级基础研究平台呼之欲出。眼下,超强超短激光装置正在冲击10拍瓦的“世界纪录”,它的未来目标是100拍瓦。/pp  它的“前身”———中科院上海光学精密机械研究所的嘉定园区内,1拍瓦的超强超短激光装置已开始科学实验探索。去年,我国科学家已利用该装置产生了反物质,成果列入2016年中国十大科技进展新闻。/pp  超强超短激光装置项目负责人、上海光机所研究员冷雨欣说,比建造一个“世界第一”的装置更重要的,是让更多优秀科学家利用装置,做最前沿的基础原创性研究。/pp  已建成运行8年的上海光源,截至去年底,共接待用户3.2万多人次,发表论文3200多篇。比这更重要的是,它更加强烈地激发出了中国科学家探索前沿的热情和勇气。曾参与光源建设,目前正负责二期线站工程的中科院上海应用物理研究所研究员邰仁忠说,8年来,光源机时一直供不应求,中国科学家已从被动使用光源,到根据自己学科的发展需求,对光源线站建设提出明确需求。围绕上海光源,一个冲击前沿的创新生态氛围正在形成。/pp  strong大科学装置群呼唤大科学计划/strong/pp  事实上,张江综合性国家科学中心的建设,已经引起国际科技界的广泛关注。中科院上海应用物理研究所党委书记赵明华告诉记者,已进入可行性研究阶段的硬X射线自由电子激光,建成后将成为世界上最先进的同类装置。闻讯后,“一些身在海外的华人科学家主动联系我们,表示想到张江工作,他们有的已在美国工作20多年,这个装置很可能把他们吸引回国”。/pp  作为当今全球生命科学领域首家综合性大科学装置,上海蛋白质设施已经吸引了国内外近200家单位、1.3万多人次科学家,开展2000多项重大前沿创新课题研究。中心主任雷鸣认为,评判一个大科学装置的功用,应该看它关注了多少根本而重大的科学问题,“张江大科学装置群的崛起,正呼唤与之相匹配的大科学计划。”/pp  放眼全球,大科学装置的崛起无不推动和孕育着超越前人的创新。例如美国布鲁克海文国家实验室聚集了同步辐射光源、成像设施、相对论重离子对撞机、自由电子激光等一大批重要的科研装置,1947年至今,该实验室催生了至少7个诺贝尔科学奖。而作为世界高能物理研究的高地,欧洲核子中心也成就了多个国际大科学计划,比如大型强子对撞机,以及由华裔物理学家丁肇中领导的阿尔法磁谱仪项目等。/pp  在建设具有全球影响力的科技创新中心的历史机遇下,作为赶超者的张江大科学装置群,正等待着创新灵魂的注入。据市科委总工程师傅国庆介绍,正在谋划的张江综合性实验室的主要构架是“1+N”。“1”指一个大科学设施群,“N”指若干研究方向,包括光子科学与技术、生命科学、能源科技、类脑智能、纳米科技等。这意味着,张江国家科学中心已在各学科领域前沿筑好“巢穴”,引“凤”前来。/ppbr//p
  • 大科学装置陆续投用 “国之重器”高速前行
    p  散裂中子源、强磁场装置、同步辐射光源、大型天文望远镜……近年来,一项项神秘的大科学装置陆续建成并投入使用,它们或隐世于高山峡谷,或藏身在喧嚣城市的地下,虽然不被世人所熟悉,却自带耀眼的光环。它们作为重大科技基础设施,伴随着一项项大科学计划,缔造着中国乃至世界科学的未来。/pp  这些大科学装置何以成为“国之重器”?它们究竟发挥着怎样的作用?又将承载什么样的使命?/pp  strong大科学装置发展进入快车道/strong/pp  在国家蛋白质科学研究(上海)设施运行之前,中国科学家想要完成蛋白质结构的解析,只能去日本、美国。而现在,一批又一批跨国企业和国外优秀科学家纷纷来到中国,使用国家蛋白质科学研究(上海)设施的设备和服务开展前沿课题研究,一系列诞生于此的重要成果发表在Nature、PNAS等高水平国际学术刊物上。/pp  国家蛋白质科学研究(上海)设施何以有如此吸引力?这项大科学装置集中了我国自主研发的规模化蛋白质制备系统,实现了蛋白质制备全流程的高度集成和流水线作业,而且在样品处理通量上超过半自动化系统10倍、超过传统的人工系统100倍,居于国际领先水平。因此,它很快就成为国际上有重要影响的大型综合研究创新基地,也是我国科学家探索生命奥秘的利器。/pp  作为当今全球生命科学领域首个综合性的大科学装置,国家蛋白质科学研究(上海)设施能够满足80%以上研究用户的需要。在开放试运行的第二年底,就已经执行用户课题800多个,服务150多家单位,各系统累计运行95000多小时。/pp  从无到有、从小到大、从学习跟踪到自主创新,这些年,我国一大批大科学装置横空出世,惊艳世界。中国“天眼”FAST,500米口径球面射电望远镜,将覆盖30个足球场大小的信号,聚集在药片大小的空间里,实现了新的突破 中国西南野生生物种质资源库,主要收集和保存云南及周边地区和青藏高原的种质资源,与世界其他著名的种子库相比,是唯一建立在“生物多样性热点地区”的种质资源库 上海同步辐射光源,是世界上性能最好的第三代中能同步辐射光源之一……/pp  这些各领风骚的大科学装置不但覆盖面越来越广,包括时间标准发布、遥感、粒子物理与核物理、天文、同步辐射、地质、海洋、能源和国家安全等众多领域,而且近年来装置设施的数量、建造规模也逐步扩大。中科院高能物理研究所北京正负电子对撞机国家实验室主任陈和生表示,我国的大科学装置发展已经进入快车道,取得了很多重大科学成果,有些已经处于国际领先地位。/pp  这批“国之重器”为研究物质结构提供了最先进的技术手段,支撑着国内外科学家开展物质基本结构、宇宙起源与演化、生命起源等重大科学问题的探索,在世界科学研究的舞台上熠熠生辉。/pp  strong“神兵利器”带来累累硕果/strong/pp  对于大科学装置,建好仅仅是开始,用好才是关键。大科学装置陆续投入使用,满足了国内日益增长的科研需求。/pp  自上世纪90年代以来,中科院高能物理研究所借助北京正负电子对撞机,获得了多项重大成果,居于国际领先水平,成为世界领先的高能物理研究中心之一。同时还“一机两用”,成为我国众多学科的同步辐射大型公共实验平台。/pp  上海光源一期虽然只有7条光束线站,但是自2009年建成后需求极大,去年已有近400家单位、1万多人成为用户,线站供不应求,取得了众多有价值、有影响力的科研成果。从地域分布上看,上海光源的用户几乎覆盖我国所有省区市,还有10多个国家和地区的科研人员以合作形式来到这里,开展研究工作。/pp  有这些“神兵利器”加持,我国的科研水平迅速提升,取得的成果日益丰富。/pp  世界最大单口径、最灵敏的500米口径球面射电望远镜(FAST)落成启用,大幅提升我国深空测控能力。上海超强超短激光实验装置达到国际最高激光脉冲峰值功率,合肥稳态强磁场装置实现了40万高斯稳态强磁场,全超导托卡马克装置(EAST)创造聚变等离子体稳态高约束模大于60秒的世界纪录,大亚湾中微子实验发现了新的中微子振荡并精确测量其振荡几率。/pp  除了大科学装置结出的累累硕果外,反观大科学装置的存在本身,已经远远超出一件新“神器”的意义。因为它们本身就集成了许多科学前沿领域的重大原创突破,凝聚了各个方面的创新驱动力,培育了一批科研后备力量。它们更多在发挥着“科技航母”的关键作用,直接促进了大批原始创新成果、核心关键技术的产生。/pp  当承建单位研发出符合FAST要求的新钢索时,申请了12项专利 上海光源不仅推动生命科学、材料科学、环境科学等多学科领域科技创新,还对现代高性能加速器、高精密机械加工、X射线光学等先进技术和相关产业升级起到了重要作用 不少过去参与北京正负电子对撞机建造的厂家现在已经成长为领军企业,他们都谈到,当年对撞机的建造对于企业自身生产工艺带来很大提升。/pp  每建设一项大科学装置,对我国工业基础就是一次严峻的考验。在高标准的技术要求筛选下,大科学工程建设培养和汇聚了一批国内最牛的施工单位和高技术企业,它们边“追赶”边“补课”,创造了一个又一个“中国制造”的奇迹。/pp  strong面向未来抢占科技制高点/strong/pp  从2011年9月到2015年6月,经过3年多巡天,LAMOST共观测了2669个天区,对外释放了约570万条光谱数据,成功获取高质量恒星光谱462万个,比世界上所有已知光谱巡天项目获取的数据总数还要多,让我国占据了学术的高地。/pp  当LAMOST在探望苍穹之时,一艘名叫“科学”号的海洋科学综合考察船桅杆高立,威武浩荡地驶向大海。目前,借助“科学”号,科学家已经成功开展了西太平洋冲绳海槽热液、南海冷泉、主流系、马努斯海盆和雅浦海山等航次综合调查,获得了大量珍贵的海洋资料。/pp  不同领域的先进科技装备使我国走向自主创新高地,抢占科学前沿阵地。这些集“颜值”与“实力”于一体的大科学装置,代表着各种大型复杂科学的研究系统,为科学家探索未知世界、发现自然规律及实现技术变革提供极限研究手段,也是经济社会发展不可或缺的技术基础设施。它们推动了我国粒子物理、核物理、生命科学等领域的科研水平进入国际先进行列。通过发挥大科学装置的最大能量,让我国在国际合作与竞争中更具话语权,更好地参与国际前沿科技的竞争。/pp  如何帮助人们远离越来越频繁发生的灾难?在煤炭、石油等资源枯竭后,人类将依靠什么能源继续生存下去?怎样保持这颗美丽星球的生物多样性?这一系列未知的难题,大科学装置正在一一破解。/pp  EAST,是我国自行设计建设的世界首个“全超导托卡马克”核聚变实验装置,被誉为“人造太阳”。据中科院合肥分院等离子物理研究所助理研究员鄢容介绍,依靠环形磁场作为“容器”,聚变原料实现可控的核聚变反应,获得大量能量,进而得到清洁能源。“核聚变的原料从海水中提取,非常安全,一升海水可以提取33克原料,相当于300升石油释放的能量。海水里的核聚变原料非常丰富,可以供人类使用上亿年。”鄢容说。/pp  不仅未来可期,当前人类已经在大科学装置的建设中受益。如今,一种新的治疗癌症的方法诞生,它利用高速的重离子束对病变组织进行治疗。重离子治疗癌症是当代世界上公认的先进有效的放疗方法,与传统的放射治疗相比,重离子束对健康组织辐射损伤轻、疗程短、治愈率高。而重离子治疗技术的开展,正是依托于一个属于“大科学装置”的机器——重离子加速器。/pp  这批重大科技基础设施,不光是高高在上的科研利器,它还解决了一批关乎国计民生和国家安全的重大科技问题,在载人航天、资源勘探、防灾减灾等方面也发挥着不可替代的作用。可以说,大科学装置正在加速改变我们的现在和未来。/ppbr//p
  • 王贻芳院士:未来10年应增加大科学装置投入
    全国两会上,全国人大代表、中国科学院院士王贻芳提出,大科学装置的出现是科学发展的必然趋势,大科学装置本身也是科技强国必备的科技基础设施,但目前我国大科学装置建设方面存在投入经费占基础研究经费比例偏低的问题,未来十年我国应增加大科学装置建设经费投入,下好先手棋。在接受采访时,王贻芳算了一笔账:“过去十年,大科学装置的建设投资基本稳定在每五年160亿元,平均每年32亿元左右,没有随国民生产总值的增长而增长。即使加上财政部、科技部、国家自然科学基金委和地方政府的研究经费、人员费、配套经费等,我国大科学装置相关经费每年也不会超过60亿元。”“目前我国的基础研究经费只占研发经费的6%,而欧美日等国的这个比例均超过15%。假设所有的大科学装置都属于基础研究,我国大科学装置占全国基础研究的经费比例为4%,远低于欧美日等发达国家约10%的水平。这样我国大科学装置经费占国民生产总值的比重只有不到欧美日等国的1/6。这个比例与大科学装置的作用、意义和成果并不相配。”王贻芳说。为推动我国大科学装置发展,应对未来十年科技发展态势和国际竞争,他提出国家应该增加大科学装置的建设经费投入,并协调地方政府和社会力量参与大科学装置的建设,将其贡献的比例从目前的平均20%左右提高到30%~50%。由于大科学装置建设一般需要5~10年的酝酿期,王贻芳认为,必须提早规划准备,开展前瞻性的设计和技术预研。王贻芳说:“在选择建设大科学装置时,既要保证一定程度的领域覆盖面,确保重要方向有机会从填补空白逐渐发展到国际并跑,也要有亮点,确保装置国际领先,取得有重大国际影响的基础科学重大成果。”同时,在建设中要统筹考虑大科学装置建设规划,确保大科学装置中基础研究项目的数量和规模,避免低水平重复建设。“用于基础研究的大科学装置一定要有充分的国际合作,要积极争取国外的参与和实物贡献,在项目的选择上要做到国际评审,项目的运行效益要有国际评估。”王贻芳说。
  • 大科学装置铸就“中国枢纽”
    实验装置是科学家的“枪”,随着知识探索的不断深入,科学家对实验装置的需求也向着大型、复杂、综合的方向迅速发展。  现在,世界上许多国家级实验室里,人们都可以见到不同肤色、不同语言的学者在一起工作 而在一些大科学计划、大科学装置的建立中,对资金、技术和人力的需求往往超过了一个国家的能力。国际合作由此日渐成为各国科研机构的不二选择。  实验室里的国旗墙  在中科院高能物理所北京谱仪III(BESIII)狭长的地下实验室尽头,有一面特殊的墙,墙上挂满了五颜六色的各国国旗。  “墙上的国旗代表着现在参与北京谱仪III的合作单位。”高能物理所常务副所长、BESIII国际合作组发言人王贻芳告诉《科学时报》记者,“现在搞高能物理研究的人,都知道北京谱仪。”  截至今年6月,BESIII合作组国内外成员单位已扩大到49个,其中外国单位20家,中国香港2家,合作组专家达300多人。  用王贻芳的话说,在北京谱仪之前,中国对高能物理的贡献度“几乎为零”。直到1988年,BESIII的前身——北京正负电子对撞机(BEPC)和北京谱仪建成并投入运行后,这样的局面才得以扭转。  基于北京谱仪,高能物理所也取得了一批重要成果,发表科学论文达150多篇,跻身于世界八大高能物理研究中心之一。  “中国现在已经是世界高能物理界的一支举足轻重、不可或缺的力量。”提起这几十年的变化,王贻芳感到自己和合作组同事的努力全都值了。  中国的,世界的  坐落在上海张江高科技园区的上海光源,是我国迄今为止最大的大科学工程,同时也是目前世界上性能最好的第三代中能同步辐射光源之一。  2004年开工不久,上海光源工程经理部就发现了人力资源的严重短缺。根据当时的测算,上海光源工程建设期间需要约380人的骨干队伍,但开工时却只有130人左右。因此,工程经理部开始注意从国外引进或短期聘请工程建设特别需要的专家,不久就收到了明显效果,工程在编人员很快超过了200 人。  为了保证上海光源建成时仍居国际先进水平,工程经理部积极开展国际合作工作,与国外各主要同步辐射实验室建立了良好的合作关系,进行人员和技术的交流,及时了解国际同步辐射装置的发展趋势、新技术的发展方向,在工程建造过程中得到了国际上的帮助与支持。  上海光源开工一年内,就已有外宾来访47人次,涉及11个国家 出访40人次,涉及8个国家。  安装在中科院近代物理研究所兰州重离子加速器上的ECR离子源,也离不开以“ECR离子源之父”、法国格勒诺布尔技术研究所物理学家Richard Geller为代表的国际同行们的鼎力帮助。  Richard Geller曾几次到近代物理所介绍有关技术。经过与外国专家的交流,近代物理所离子源组在过去十几年间,先后自主研制了4台具有国际先进或领先水平的高电荷态ECR离子源。  2008年,该所副研究员孙良亭获得了首届Richard Geller奖。近代物理所离子源组也在两年内获得了国际离子源领域两项最重要的国际奖项,被认为是目前国际上最活跃和最具创新能力的离子源小组之一。  像Geller这样“无私奉献”的老外,在中科院各大科学装置的建设和运行中还有很多。科学家们明白,大科学装置是技术复杂的综合性工程,它涉及到许多不同的学科领域和高新技术,只有大家通力配合,才能解决关键的技术问题,为人类共同的科学事业争取时间和节省经费。  始于装置 瞄准未来  不管是中科院大科学装置里的“老大哥”北京谱仪,还是近年来赫赫有名的上海光源和合肥强磁场,这些大科学装置都不约而同地冠上了中国的地名。它们在各学科领域发挥重要作用的同时,也让长期以来发达国家在高技术领域对我国的“冷战”思维迅速转变。  这些大科学装置的落户,让中国终于有条件作为东道国,组织多国科学家参与的大规模科学实验,推进以我国为主的国际科技合作。  托卡马克(Tokamak)是一种利用磁约束来实现受控核聚变的环性容器。通电时,托卡马克内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。因此,托卡马克被公认为是探索、解决未来稳态聚变反应堆工程及物理问题的最有效的途径。  在国外同行研究的基础之上,1994年,中科院等离子体物理研究所通过国际合作,研制出HT-7超导托卡马克,使我国成为继俄、日、法之后第四个拥有该类装置的国家,中国聚变事业从此走上了国际舞台。  2007年,该所独立设计制造的世界上首个全超导托卡马克装置“东方超环”(EAST)通过验收,进入实验阶段后,“东方超环”面向全世界聚变领域的专家开放。2010年,近百人次的国内外同行参加了实验,并取得了许多重要的成果。  作为“十一五”国家重大科技基础设施,稳态强磁场实验装置尚未全部完工,主持建设的中科院合肥物质科学研究院就迎来了一波又一波的国外考察团队,一些世界知名的学者也陆续被聘为中科院强磁场科学中心的研究员。  而上海光源的用户则几乎“挤破头”。从2009年5月6日试运行以来,上海光源在短短半年多时间里,中外用户的数量就上升到了4位数。  承担上海光源建设的中科院上海应用物理所也因此受益。通过上海光源项目,应用物理所与英国、日本、法国、德国等国家的同步辐射光源及其研究机构建立了全面的合作与交流关系,并与美国五大实验室保持着密切的人员交流与技术合作。  2007年,大亚湾反应堆中微子实验在我国启动,它不仅成为具有重要国际影响力的大型基础科学研究项目,也是中美两国历史上最大的合作项目之一。  这样的例子不胜枚举。截至2010年底,中科院已与全球50多个国家和地区签署院级合作协议200多个,所级合作协议1000多个,每年在研国际合作项目800余项。  2009年、2010年两年间,有近500名国外高水平专家来华参与大科学装置的建设和研究。而2010年6月30日中科院与国家外国专家局签署的《引进国外智力为大科学装置服务合作框架协议书》,则标志着我国大科学装置引智工作进入了新的层面。  相识系于缘,相交系于诚。透过这些扎根中国的大科学装置,国际合作的含义早已超越了“凑份子”的阶段。中外科研人员互访、合作开展科研项目、联合培养研究生等越来越丰富的手段,让中国在科技全球化的浪潮中,逐渐成长为一个融合与开放的枢纽。
  • 自由电子激光装置和反质子加速器研究取得进展
    欧洲自由电子激光装置(EXFEL)及反质子和离子研究装置(FAIR)是德国牵头组织的两个国际合作重大科学装置,我国参与了其中部分探测器研制、低温系统研究、高性能波荡器研制、超导材料及特殊材料研究等,主要目的是跟踪国际物理学最前沿的发展趋势、开展相关关键技术研究、锻炼科研队伍、提高基础研究水平。  973计划项目“自由电子激光装置和反质子加速器重大基础研究”自立项以来,在FAIR加速器相关科学问题研究、大型实验探测器研究,EXFEL高性能超长波荡器系统物理及关键技术研究、大型恒温器关键技术研究、超导加速器用超导腔以及大晶粒高纯铌片的研制等方面取得多项重要进展。例如:在反质子加速器重大基础研究方面,完成了大型室温和超导二极磁铁样机的研制,并通过了国内外专家测试,同时完成了非烘烤超高实验真空样机研制和测试,主要性能达到或超过了设计指标,达到国际先进水平 在高性能超长波荡器系统物理及关键技术研究方面,我国研究人员参加了德国组织的波荡器系统总体设计、组织开展样机研究及磁测实验,了解并逐步掌握了高性能波荡器涉及的理论和关键技术 在大型恒温器关键技术研究方面,对最关键的漏热和支撑部件进行专门研究,在液氮冷激、压力、真空、漏率等环节攻克了一系列难关,成功研制出高质量,符合和优于国际标准的EXFEL恒温器样机,样机在零下271度低温实验下,各项指标均优于设计标准,并已经被德国成功应用在其试验装置上,为今后国内各种大型恒温器的研制奠定了研究基础 在超导腔相关的研究方面,研制出了用于超导加速腔的大晶粒高纯高性能的铌片,各项性能指标均能满足要求,并已研制出低电阻玻璃和高计数率MRPC样机。在超导加速器用大晶粒高纯铌片的研制、大晶粒9-CELL超导腔的研制和物理性能研究方面取得重要进展,材料性能达到国际先进水平,东方钽业已列入EXFEL供应商名单 在STAR-TOF MRPC探测器的生产方面,成功研制并批量生产了MRPC探测器,产品合格率超过95%,已提供RHIC-STAR使用。此外,在加速器设计思想、新材料和特殊材料性能探索和使用方面也取得了多项成果。  该项目由中国科学院高能物理所姜晓明研究员为首席科学家,近代物理所、北京大学、清华大学、东方钽业集团等研究单位参加。8月6-7日,项目年会在宁夏银川举行,陈佳洱、王乃彦、陈和生、张焕乔、方守贤、陈森玉、何季麟等来自国内高能物理、加速器和特殊材料研究的专家,科技部基础研究司、中科院基础局负责人参加了会议。
  • 垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置
    垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置【新闻导读】众所周知,垃圾投放站、垃圾中转站、垃圾分拣站散发出的恶臭问题一直以来都是市民反映的热点问题,为了加强对城市垃圾的处理,垃圾中转站的数量也会越来越多。关于垃圾投放站、垃圾中转站、垃圾分拣站环境治理的要求也会越来越严高。  特别是在炎炎夏日,在垃圾投放站、中转站、压缩站、分拣区、堆放区等场所,各种垃圾混杂在一起都会散发着难闻的恶臭气体,大量的臭气飘散对周边或附近的住宅小区、厂区等众多场所造成很大的影响,为了解决垃圾除臭难题,采用智能垃圾站除臭设备有效改善站内环境空气质量是势在必行的。  如今,很多垃圾投放站、垃圾中转站、垃圾分拣站为了彻底解决垃圾恶臭带来的不利影响,采用了新型的科技手段—植物液雾化除臭装置--正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除湿机,实现了垃圾站环境的科学治理。这项工程不仅造福于民,更是直接关系到城市居民的身心以及市民对政府工作的满意度。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机采用的是超声波雾化技术,将除臭剂(或植物液)均匀喷洒在整个除臭空间,只有1-10微米的雾化颗粒能够迅速扩散,在空气中快速有效去除硫化氢、氨、有机胺、硫醇、硫醚等恶臭分子 具有高效、节能、维护方便等特点,受到广大用户与环卫部门的一致好评。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机,注入中性除味剂可自动为酒店、商场、写字楼、厕所等空间除味,注入中性消毒水可为室内自动消毒,注入自来水可为场所空气自动加湿。根据上海、广东、福建、湖北、湖南、北京等地垃圾站喷淋除臭装置试运营的情况来看,垃圾房使用该设备主要的优势有以下几点:  ◎高效除臭:将用于除异味浓缩液雾化成气态,使其能与异味分子充分混合,从而发挥高效除臭、除异味作用。  ◎杀菌灭蚊:可定时喷天然植物液不仅除臭、除异味,还能杀菌灭蚊,清新空气,大大降低使用成本维护费用。  ◎节约成本:雾气主要成分是水,成本低 添加少许除异味的浓缩液,超声波雾化技术将浓缩液的活性高效发挥。  ◎超细雾滴:经过超声后的雾滴极其细密,因此表面活性强、吸附力大,使植物液对臭味分子的包裹反应效果好。  ◎节省人工:添加一次用于除臭、除异味的浓缩液之后,半个月或一个月无需打理,自动完成喷雾除臭、除异味。  正岛植物液雾化除臭装置ZY-1800垃圾分拣站除臭机控制方式及技术参数:  正岛植物液雾化除臭装置ZY-1800垃圾分拣站除臭机,控制方式采用数字时序控制器自动循环控制,自动循环控制周期由一秒钟到九十九分钟五十九秒,可任意设置工作时间及停止时间,设定好后可连续工作,无需人员职守 配有5.5公斤水容量的自备水箱,水箱上端连接有注水口,下端配有放水开关 可根据实际需要连接⊙75mm的PVC管路,其传输距离可在5-8米左右 操作简单、维护方便!欢迎您来咨询垃圾分拣站除湿机,垃圾分拣房植物液雾化除臭装置的详细信息!  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机产品,是采用超声波高频振荡的原理,从而达到均匀喷雾除臭的目的 对于其他喷雾除臭方式的除臭机而言,具有【雾化颗粒细】 、【使用能耗低】 、【雾化能效高】,【加湿速度快】的显著优势,箱体采用全不锈钢材质,表面喷塑处理,此举既保证了外形美观大方又满足了设备防腐的要求。  正岛植物液雾化除臭装置ZY系列垃圾分拣站除臭机(型号:ZY-10/ZY-20/ZY-30/ZY-40/ZY-60/ZY-80/ZY-100)技术参数:  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机所产生的雾粒直径只有 小于10μm,颗粒均匀,能长时间悬浮于空气当中,具有空气加湿、除臭净化、消毒灭菌、以及预防静电和减少粉尘、降温降尘等多种用途 既可以较大空间进行均匀喷雾除臭,也可对特殊空间进行局部喷雾除臭,具有较高的使用灵活性,改善你我共同呼吸的空气。  杭州某个垃圾投放分拣站由于站内设备陈旧、设备设施不足等原因,造成该站运营效率不高,只能基本满足镇内各类垃圾收集和转运要求,而且密闭不严,容易产生和散发恶臭气体,苍蝇蚊子较多,尤其是夏季高温天气,臭气散发,影响环卫工人和周边街坊的工作、生活,引起群众的不满。 在使用了喷雾除臭装置--正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机后经检测显示,该站臭气浓度由原来的7244(单位:无量纲)下降至316(单位:无量纲) 氨浓度由原来的36.3(单位:PPM)下降至1.01(单位:PPM) 硫化氢浓度由原来的1.8(单位:PPM)下降至0.05(单位:PPM)。其效果比原来的掩盖除臭方法好的太多。  综上所述:一直以来,垃圾投放站、垃圾中转站、垃圾分拣站等站内的恶臭问题都是广大市民关注的一个热点问题 为了有效解决城市垃圾处理问题,垃圾投放站、垃圾中转站、垃圾分拣站的站点也会越来越多,对中转站的管理和环境治理的要求也越来越高,这是一项重大工程。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机相比其他除臭方法来说,喷雾除臭更加简单有效,性价比也更高。相比用喷雾除臭使用掩盖臭味的方式,不但耗费人力物力财力,除臭效果也不是很好,而它不但能够有效吸附空气中的污染因子90%左右,而且耗能小,可采用自动化控制,也不耗费人工,经济实惠,是垃圾站、垃圾投放站、垃圾中转站、垃圾收集站、垃圾分拣站以及垃圾处理厂等除臭、杀菌、消毒的理想选择!以上关于垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置的全部新闻资讯报道是正岛电器为大家提供的,仅供大家参考与学习!
  • 应对新国标——这些前处理装置需升级!
    2023年新版《生活饮用水标准检验方法》于今年实施,自上版标准实施已经历了16年。这些年以来,随着经济的发展和人口的增加,水质污染问题日益突出;同时,随着科学技术的不断进步,人们对水质检测的要求也越来越高,国际上关于生活饮用水检测的标准也在不断更新。我国生活饮用水检测技术标准的发展经历了以下阶段初期阶段:在20世纪70年代至80年代初,我国开始建立生活饮用水检测技术标准体系,主要依据国际标准和国内实际情况进行制定。发展阶段:在20世纪80年代至90年代,我国逐步建立了较为完善的生活饮用水检测技术标准体系,并不断修订和完善标准,提高了检测方法的准确性和可靠性。现代化阶段:从21世纪初至今,我国生活饮用水检测技术标准不断更新,引入了先进的仪器设备和分析方法,提高了检测的灵敏度和精确度。新版标准引入了一些新的前处理技术,如流动注射法和连续流动法等,传统的吹扫捕集、顶空、液液萃取、固液萃取等也被应用于多种化合物的检测方法中;并且新版标准对传统的前处理方法进行了优化,改进了操作步骤和条件,提高了方法的可重复性和准确性;同时,新版标准更新了前处理方法的参数要求,如提高了富集倍数、降低了检出限等,以适应对更低浓度污染物的检测需求。仪器信息网特别建立“《生活饮用水标准检验方法》——前处理篇”话题,聚焦前处理技术在生活饮用水检测工作相关的最新应用解决方案,以增强业界专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供饮用水检测领域更丰富的前处理产品、技术解决方案。本文邀请到北京中仪宇盛科技有限公司(以下简称“中仪宇盛”)市场部经理李国良分享对生活饮用水检测相关的技术及解决方案。中仪宇盛深耕水质检测前处理仪器领域十四年,非常关注饮用水新标准中的变化。新标准中重点关注的是吹扫捕集气相色谱质谱法、顶空毛细管柱气相色谱法、顶空气相色谱法。新标准新增了四氯化碳的顶空毛细管柱气相色谱法,五氯丙烷的顶空气相色谱法,四氯化碳、1,2-二溴乙烯、五氯丙烷、苯甲醚、二甲基二硫醚的吹扫捕集气相色谱质谱法。新标准中,对于顶空进样系统,增加了“高速振荡模式”的要求,没有振荡功能的顶空进样器将不再适用新标准;对于吹扫捕集装置,新标准参考条件中吹扫流量和反吹流量不同,因此需要配置MFC质量流量计,此外还增加了添加内标的条件,因此还需带有自动添加内标功能。目前,中仪宇盛的顶空进样器中的所有采用三轴机械臂的产品均配备高速振荡功能,完全满足新标准的要求;PT-8200全自动吹扫捕集装置内置两个质量流量计,保证了流量控制的准确性,并且采用高精度的内标阀,实现了1微升级内标添加,更有自动监测消泡、双向除水、12路温度独立控制、高精度载气流量控制等各种先进技术加持,完全满足各种水质检测的要求。图1 PT-8200全自动吹扫捕集装置未来,预计固相微萃取技术将会在饮用水检测中发挥更大的作用,我们的研发团队也在加紧这方面研发。此外,前处理方法将会越来越注重自动化、智能化和精细化。比如,人工智能和机器学习等技术将会在前处理过程中发挥更大的作用,它们能够帮助我们更加准确地检测分析饮用水中的各项指标。我们相信,随着社会的发展和科技的进步,前处理技术在水质检测领域会发挥更大的作用,我们的生活饮用水也将会越来越安全。总的来说,新版《生活饮用水标准检验方法》的实施,是我国生活饮用水检测技术发展的重要里程碑。它不仅提高了检测标准的精确性和全面性,也展示了我国检测技术发展的崭新成果。北京中仪宇盛科技有限公司将持续致力于研发更先进的水质检测前处理技术和仪器,为保障人们的饮用水安全贡献自己的力量。投稿人:北京中仪宇盛科技有限公司市场部经理李国良
  • 评论:要大科学装置,更要大科研队伍
    国外国家实验室建设的启示  打造国家实验室,是上海加快建设具有全球影响力的科创中心、围绕张江综合性国家科学中心建设的一项新使命。发达国家的国家实验室是如何运作管理的?能给上海带来怎样的启示?本报今起推出分析,希望对上海的国家实验室建设有所借鉴。  国家实验室是一种世界通行的科研基地形式,兴起和发展于二战前后,主要围绕国家使命,从事基础性和战略性科研任务,通过多学科交叉协助,解决事关国家安全和经济社会发展全局的重大科技问题。在不同国家,国家实验室名称各异,有的叫“国家(或联邦)实验室”,有的叫“国家科研中心或研究所”,也有的叫“学会、协会或联合会”等。一些发达国家已建成一批高水平的国家实验室,诞生了一大批诺贝尔奖得主,获得了许多科技创新成果。  集中式科研攻关,避免各自为政  美国从20世纪上半期就开始建立国家实验室,迄今已建成一个比较完善的国家实验室系统,在全球具有较大影响力。上海科技情报研究所研究员崔晓文介绍,美国国家实验室的建设布局一般充分考虑大学及大型工业企业的需求及优势,从而有效凝聚和整合全国科技资源,更好发挥国家创新平台和增长引擎的功能。  中科院院士、中科院高能物理所研究员柴之芳表示,综合性强是美国国家实验室一大特点。美国能源部对国家实验室的要求是:“应当更注重科学领域的交叉点,而不是各个学科内部。国家实验室的价值,在于它们能从事高校或民间研究机构难以开展的交叉学科综合性研究。”以位于纽约长岛的布鲁克海文国家实验室为例,它有4个研究方向:先进加速器、同步辐射、分子影像和核成像、计算科学 下设8个科学中心:功能纳米材料中心、神经成像转化中心、计算科学中心、辐射化学中心、环境科学中心、国家核数据中心、加速器物理中心、与日本理化学研究所共建的脑科学中心,可谓“一业(核科学技术)为主,惠及其他”。  国家实验室实体化、大规模运营的好处,是便于组织管理科研团队,集聚优势力量,在重大前沿科技领域快速取得突破,避免各科研团队各自为政。中科院上海应用物理所研究员何建华说:“我国的重大科技专项虽然也是目标导向、任务导向,但都分散在多家单位进行。这种集中式科研攻关,值得我们借鉴。”  大科学装置,不能仅仅是一个平台  还记得人类首次在琥珀里发现的恐龙尾巴吗?科学家们借助上海光源等装置发出的同步辐射光,获得了这段尾巴的纳米级“X 光片”,最终确认这是来自白垩纪手盗龙的尾巴。正在建设的上海张江综合性国家科学中心,拥有上海光源、国家蛋白质科学研究(上海)设施、超强超短激光实验装置等大科学装置。这与同样依托大科学装置的美国国家实验室相比,有什么明显不同?  上海市科学学所研究员任奔认为,上海的大科学装置作为一个专业性研究机构和研发平台,在我国科技界发挥了积极作用,但与美国国家实验室相比,它在开展综合性、跨学科研究方面还存在较大差距。  曾在美国劳伦斯伯克利国家实验室工作的何建华介绍,拥有先进光源(ALS)、粒子加速器、分子铸造工厂、电子显微镜等大科学装置和先进仪器的劳伦斯伯克利国家实验室,有雇员5000人左右,其中的科研人员分为长期人员(类似于固定人员)、项目聘用(聘期通常为5年)、短期聘用等类型。不少科研人员在高校兼职做教授,使实验室项目与高校科研、人才培养紧密结合。  何建华回忆,他在劳伦斯伯克利国家实验室物理生命科学部工作时,部门主任、副主任都是加州大学伯克利分校教授。  市科委基地处处长过浩敏认为,上海的大科学装置目前较好地发挥了平台作用,为许多科学成果的产出做出了贡献,但除了继续对外开放,也要建立起一支颇具实力的科研队伍,使大科学装置的价值最大化。  成立专业机构,“吆喝”科研成果  上海交通大学周岱教授曾牵头有关国家实验室管理体制与运行机制的课题研究。据介绍,德国的国家科研机构每两年会对研究项目进行同行专家评议,其结果作为下一阶段给予该研究所经费的参考依据。一般是先阅读定量数据为主的状态报告,随后实地考察了解情况,最后通过集体讨论形成评价报告。日本的理化学研究所于 1993年设立了由海外诺贝尔奖获得者和国内著名学者组成的“顾问委员会”,每隔7年对主任研究员进行一次非常严格的科研成就评价。目前我国的国家重点实验室,一般由政府主导进行周期性评估,以国内专家为主,只有在某些领域会聘请一些国外专家。周岱指出,对于未来国家实验室的科研项目,政府要逐渐实现“管评分离”,在同行专家评议中引入一定比例的国际权威,使得评价更加国际化和更有针对性。  据了解,美国国家实验室都把技术转移作为服务国家的一个重要使命,国会通过了一系列的法律来促进技术转移并形成激励机制,使国家实验室和美国的企业不仅在技术上,而且在人员、设备、方法、专业知识以及广泛的技术信息上实现共享。眼下,上海一些科研机构在成果转化上做了许多有益尝试,周岱建议,未来的国家实验室可以建立并不断加强专门的知识产权管理和技术转移机构,为科研成果大声“吆喝”,提高科技成果转化率,促进科技与经济的结合,促进产业转型升级。
  • MBR艺市污水处理模拟装置
    MBR艺市污水处理模拟装置 型号:H27986H27986 MBR艺市污水处理模拟装置术参数:设备本体材质:池体由有机玻璃制成;处理水量:10~18L/h;BOD去除率:95%~99%、COD去除率:90%~96% 、SS去除率:99%、NH3-N去除率:75%~83%、T-P去除率:94%~98%、MLSS:3000~15000mg/L;设备外形尺寸:1900mm×500mm×1400mm;电源 220V 率600W。H27986 MBR艺市污水处理模拟装置设备配置:1、200L原水箱(含提升泵1台、软管1套);2、格栅(8cm宽、3mm间距格栅网1套、机械转动电机1套);3、曝气沉砂池1套,10L;4、竖流式初沉池1套,20L;5、30L中间水箱1台;6、100L膜生物反应器(自动控制);7、水泵1台、液体流量计2台、曝气泵1台、曝气流量计1台、曝气管道1套、平板膜组件1套(PVDF平板膜,面积:0.1m2/片,共10片),出水蠕动泵1台,出水流量计1台、出水真空表1台等;8、混合液回流装置:回流泵1台、回流管道1套;9、30L有机玻璃清水池;10、紫外杀菌装置1套:紫外灯1套、有机玻璃柱1根、遮光铝铂纸1套;11、电控箱1只、漏电保护开关、按钮开关、连接管道和阀、带移动轮子不锈钢台架等组成
  • 大科学装置助力材料高通量表征
    仪器信息网讯 2014年10月20日,材料基因组计划&mdash 高通量表征报告会在北京国际会议中心举行。与会的数位科学家介绍了材料基因组计划,以及散裂中子源和同步辐射光源等大科学装置在材料高通量表征中的应用及其在我国的建设情况。会议现场北京科技大学刘国权教授  材料基因组计划(又名Materials Genome Initiative),简称MGI,最早在2011年由美国政府提出。北京科技大学刘国权教授介绍说:&ldquo 今年5月,王崇愚院士、南策文院士等数十名专家组成的咨询专家组撰写了《材料基因组计划与高端制造业先进材料咨询建议报告》。另外,中国工程院撰写了《材料科学系统工程发展战略研究》,堪称中国版的材料基因组计划咨询报告。&rdquo 中国科学院高能物理研究所董宇辉研究员  中国科学院高能物理研究所董宇辉研究员介绍说:&ldquo 以往材料的研发,由于缺乏足够的参考数据,更多的是采用&ldquo 试错法&rdquo 。不断的试验各种化学配比、各种制备条件,检验制备的材料性能如何,然后考察这些材料在服役过程中的性能。之所以采取这种方式来探索新型材料,主要是因为我们对上述决定材料性能的环节了解的太少,而且没有系统的认识,只好根据经验来摸索,凭借努力和运气来发现合适的新材料,这无疑得花费很高的时间和成本。&rdquo   材料基因组的核心目标是将新材料的研发周期缩短,降低成本,因此需要高通量计算、高通量合成与快速表征以及数据信息库三部分之间的有效结合,其中高通量表征在材料基因组计划的重要部分。同步辐射光源和中子源由于其自身的特点和优势,无疑在材料的高通量表征中发挥举足轻重的作用。中国科学技术大学国家同步辐射实验室副主任高琛教授  中国科学技术大学国家同步辐射实验室副主任高琛教授介绍说:&ldquo 同步辐射光源具有高亮度,特别是高亮度的X射线能够给出精确的原子结构信息 同步辐射具有从红外到硬X射线的宽能谱,使得探测原子、电子、声子多种结构都有可能 同步辐射具有很好的准直性,可以获得纳米、微米、毫米各种尺寸的光斑,因而使得探测埃-纳米-微米,直到毫米级的多尺度成为可能。同步辐射光源的这些特点能为实现材料样品的高通量快速检测提供了条件。&rdquo   据介绍,目前,我国在北京、上海和合肥等地建有同步辐射光源装置。其中上海同步辐射光源装置首批7条光束线站已经对用户开放,其中6条线站可用于材料研究和表征。在未来线站工程规划中,微束白光劳厄衍射等光束线将能够进一步提升高通量材料芯片的表征能力。中科院能量转换材料重点实验室主任陆亚林教授  中科院能量转换材料重点实验室主任陆亚林教授介绍了合肥同步辐射光源装置的建设情况。他说:&ldquo 合肥的同步辐射光源装置始建于1984年,总投资6400万,建有5条光束线和实验站 1998-2004年,投资11800万,用于提高光源亮度和运行可靠性,并增建8条光束线和8个实验站 2012-2014年,再次投资18900万,增加安装波荡器的直线节,降低束流发射度,大幅度提高亮度,新建3台波荡器和10个光束线前端。&rdquo   此外,董宇辉介绍说,中科院还将计划在北京周边建设高能同步辐射光源,材料科学研究是该光源的首要目标之一,特别是高通量、原位实时的实验技术,将为材料基因组的高通量、多尺度分析提供重要技术支撑。中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员  中子不带电,穿透性强,有磁矩。因此,中子散射具有许多独一无二的特点,成为探测研究材料的微观结构与动力学的强有力工具之一,与同步辐射互为补充。中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员介绍说:&ldquo 散裂中子源是中子散射研究和应用的主要平台,具有脉冲中子通量高,中子波段宽,及脉冲时间结构。这些特点为高通量、高分辨率、复合体系的微观结构和动态测量(特别是在固态量子材料、生物软物质材料和工程结构材料等领域)带来新的契机。&rdquo   王芳卫介绍说,我国于2011年10月在广东省东莞市开始建设散裂中子源。中国散裂中子源(CSNS,China Spallation Neutron Source)是发展中国家拥有的第一台散裂中子源,目前关键设备设计均已完成,预计2018年3月完成实验验收并对用户开放。  CSNS一期设计的束流功率为100kW,脉冲中子通量将大于2*105/(cm2/s),进入世界四大散裂中子源行列,将来升级到500kW后中子通量将提高到~1016/(cm2/s)。  CSNS设计拥有3个中子慢化器,能产生4种不同脉冲特性的中子束流,提供20条束道用于中子散射研究。不过由于项目建设经费的限制,一期工程仅建有3台谱仪,严重制约CSNS的应用范围。CSNS科技委员会和461次香山会议的专家都呼吁加紧规划和申请剩余束道的谱仪建设。因此特申请在国家&ldquo 十三五&rdquo 计划期间,增资建设其余17台特色中子散射谱仪,使CSNS高效、全面地服务于我国科学技术前沿研究。
  • 空气采样装置8.8折
    我公司是生产粉尘、气体系列采样器及配套设备的专业厂家,我公司独家生产的:ETKC空气采样装置,是我在&ldquo 全国车间空气监测科研协作组&rdquo 有关专家的指导下研制设计的,它适用于工矿企业,科研教学,劳动安全,环境监测和卫生防疫等部门,对工作场所进行浓度测定。该仪器体积小,重量轻,结构紧凑,操作简易,维护方便,坚固耐用,经广大客户的使用,获得一致好评。可以同时采集空气中的有毒有害气体,和微生物的采样。ETKC空气采样装置、有二部分组成:(1)ETT-2000双路大气采样器是一种对有害气体进行平行样采集的常规仪器。仪器采用最新微电脑芯片控制技术、记时精度高,方便快捷。一、主要技术指标及工作条件 1、流量范围:0.1-1.5L/min、双路大气采样    2、采样负压:&ge 25000Pa3、流量误差:&le +5% 定时误差:&le +1% 4、工作电源:10VDC  工作温度:温度-10℃到45℃ 5、相对湿度<85%  仪器重量:2Kg 6、带可充电电池。(2)ETW-6空气微生物采样器是六级撞击式空气微生物采样器是《国际标准的空气微生物采样器》依据微粒撞击原理,即经典的Stokes方程式而设计制造的。本机可将空气中的微生物直接收集到半固态的营养琼脂表面上,经过培养计数、计算、进而测定出每立方米空气中所含的微生物菌落数。本仪器具有采集效率高,采样时间短,检测范围全的优点。广泛应用于医疗卫生、食品、制药、洁净室、车间、医院、室内环境等空气微生物的采样研究。 测量范围 捕获率:&ge 98% 捕获粒子范围 第一级:>7.0&mu m 孔径 1.18mm 第二级:4.7&mu m &ndash 7.0&mu m 孔径0.91mm 第三级:3.3&mu m&ndash 4.7&mu m 孔径0.71mm 第四级:2.1&mu m&ndash 3.3&mu m 孔径0.53mm 第五级:1.1&mu m - 2.1&mu m 孔径0.34mm 第六级:0.65&mu m&ndash 1.1&mu m 孔径0.25mm 采样流量 28.3L/min可调节精度&le 5% 噪声 &le 60 db 电子定时器 范围1-99分钟精度<1% 工作电源 220V/AC 功率 &le 45W 保修期 1年
  • “核材料及其相关分析技术、装置与仪器”专刊征稿通知
    核材料的自主研发及自主供给是国家安全的重要基石,是关乎关系我国发展全局的重大战略任务,是服务全面提升核工业核心竞争力的关键指标。核材料的开发及利用是涉及多学科、多产业的综合性领域,其涵盖地质勘探、矿产冶金、同位素分离、核燃料制造、乏燃料后处理、放射性废物处理等众多全链条行业。为了服务我国核工业领域中的分析技术、装置与分析仪器的快速发展,《冶金分析》拟于2024年第3期出版“核材料及其相关分析技术、装置与仪器”为主题的专刊(栏);该专刊(栏)主要接收以解决核工业领域中的实际应用问题为出发点的相关研究工作,突出核材料的制备及其相关分析技术、方法与装置,以期为我国核工业领域中分析仪器的自主研发提供后续支撑。《冶金分析》1981年创刊,由中国钢研科技集团有限公司和中国金属学会主办。主要刊载冶金及材料领域中分析技术或方法的最新研究成果,并介绍国内外冶金分析动态等,适合于冶金、矿山、石油、化工、机械、地质、环保、商检等领域或部门的技术人员及高等院校师生参考。《冶金分析》作为冶金及材料领域中权威的分析技术专业期刊,其学术影响力及引证指标在国内同类期刊中一直位居前列。《冶金分析》一直为北京大学《中文核心期刊要目总览》来源期刊,2009年起被ELSEVIER旗下的SCOPUS数据库收录。一、征稿范围 涵盖各类分析技术,围绕其在核材料领域中的应用,尤其注重新装置、新仪器的搭建,并依托新装置、新仪器,面向核工业领域,尤其是国家重大工程及非常规物质/极端条件下材料分析所开展的相关材料制备、分析方法学及仪器应用等的研究内容。二、专刊召集人林庆宇,副研究员,四川省海外高层次留学人才。主要从事激光光谱分析仪器研发、极端环境下物质成分分析等工作。现任中国仪器仪表学会分析仪器分会光谱仪器学术委员会委员、中国光学工程学会中国激光诱导击穿光谱专业委员会常务委员、中国光学学会生物医学光子学专业委员会委员,同时任《冶金分析》期刊青年编委、《Technology in Cancer Research & Treatment》期刊副主编、《Frontiers in Chemistry》期刊专题主编。所参与研发仪器获四川省科学技术进步一等奖、中国仪器仪表学会科学技术一等奖及朱良漪分析仪器创新奖。已发表SCI论文73篇,出版中文学术著作1部,参编英文学术著作1部,授权发明专利12项。杨蕊竹,副研究员,中国工程物理研究院材料研究所。参与并全面负责科技部、军科委及装备发展部多项战略材料类科技项目,长期从事先进光谱学研究,包括激光诱导击穿光谱、激光诱导荧光光谱的设备研发、方法研究及在核材料检测领域的应用。长期关注锕系材料及相关材料表面容性问题,专注于锕系材料、氢同位素元素成分、分子组成的原位光谱测量,所开展之工作与工程实践密切相关,深耕核燃料循环领域的原位检测技术。高智星,研究员,中国原子能科学研究院核物理所。长期从事激光在核科学技术领域中的应用研究,参与并负责科技部、装备发展部多项科技发展项目。研究涉及惯性约束聚变驱动器的光学元件损伤探测及机理研究、核材料的光学表征与探测、激光光谱技术在核安保、核设施安全及环境科学中的应用等激光与核科学技术交叉领域,面向应用需求长期开展激光及应用技术的研发,相关工作发表论文20余篇,授权专利10余项。邓志光,工程师,中国核动力研究设计院设计研究所。主要从事反应堆过程仪表系统设计、仪表研发、信号分析等工作。主持十三五、十四五多项先进测量、传感器状态监测、信息融合等研究工作。相关工作发表论文18篇,受理和授权发明专利21项。曹智,工程师,中核四0四有限公司,天府英才优秀人才。参与国防科工局、后处理专项等科技项目。长期从事燃料元件分析、氢同位素滞留等相关分析工作,并积极着眼于核素相关应用及后处理工艺研究,包括冷光源、电池、后处理工艺中气体核素的纯化、回收等相关工艺及应用。结合单位实际工艺应用中的问题,解决了我国在后处理核燃料循环体系中检测技术以及工艺验证等科研难题。三、征稿要求 (1) 请各文章的通讯联系人将论文于2023年12月1日前通过《冶金分析》投稿网站(http://yjfx.chinamet.cn)注册投稿(请留言注明“核材料及其相关分析技术、装置与仪器专刊投稿”)。(2) “核材料及其相关分析技术、装置与仪器” 专刊论文均需通过三审、三校,择优录用。因为版面原因未入“专刊”的论文会顺序在《冶金分析》正刊其他期刊出。四、编辑部联系方式联系人:王晓辉,张淑芳,胡月电话:010-62182398E-mail:yjfx@analysis.org.cn
  • 强流加速器中子源及中子成像装置研制
    table border="1" cellspacing="0" cellpadding="0"tbodytrtd width="78"p style="line-height: 1.75em "成果名称/p/tdtd width="543" colspan="3" style="word-break: break-all "p style="line-height: 1.75em "strong强流加速器中子源及中子成像装置/strong/p/td/trtrtd width="85"p style="line-height: 1.75em "单位名称/p/tdtd width="543" colspan="3"p style="line-height: 1.75em "北京大学/p/td/trtrtd width="85"p style="line-height: 1.75em "联系人/p/tdtd width="175"p style="line-height: 1.75em "陆元荣/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "yrlu@pku.edu.cn/p/td/trtrtd width="85"p style="line-height: 1.75em "成果成熟度/p/tdtd width="541" colspan="3" style="word-break: break-all "p style="line-height: 1.75em "□正在研发 √ 已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="85"p style="line-height: 1.75em "合作方式/p/tdtd width="541" colspan="3"p style="line-height: 1.75em "□技术转让 √技术入股 □合作开发 □其他/p/td/trtrtd width="648" colspan="4" style="word-break: break-all "p style="line-height: 1.75em "strong成果简介:/strong/pp style="line-height: 1.75em "/pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201604/insimg/a8dfeb59-a7d2-459d-8957-49f9209e48e3.jpg" title="1.jpg" width="400" height="263" border="0" hspace="0" vspace="0" style="width: 400px height: 263px "/span style="line-height: 1.75em " /span/pp style="line-height: 1.75em " 该项目采用电子回旋共振离子源提供待加速的离子束流,利用国际先进的射频四极场加速器将带点离子加速到每核子1MeV的动能,用其轰击铍靶,产生10^12的中子束流,经过慢化后对被测物体进行探测研究。该中子成像装置可用于航空航天火工品检测,航空发动机叶片检测,复合材料无损检测等,成像物体尺寸约200*200平方毫米,成像分辨率达几个微米。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 该中子成像装置可用于航空航天火工品检测,航空发动机叶片检测,复合材料无损检测,核反应堆用核燃料棒的检测。 br/ 该设备应用广泛,系列升级产品可用于硼中子俘获治癌、放射性同位素生产、塑性炸药检测以及毒品检测等,市场效益和社会效益显著。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 多项加速器及其相关技术已经申请专利,具有核心技术产权。/p/td/tr/tbody/tablepbr//p
  • 全国生命分析化学研讨会:仪器装置论坛
    仪器信息网讯 2010年8月20日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。研讨会同期召开了“食品分析、前沿论坛、仪器装置”等多场专题论坛,其中,“仪器装置”专题论坛共吸引了300余位业内人士的参加。会议现场  会议由湖南大学王玉枝教授、天津大学万谦宏教授联合主持,华东师范大学何品刚教授、厦门大学杭纬教授、浙江大学方群教授等不同领域的仪器研制专家为与会者作了精彩的报告。王玉枝教授万谦宏教授  报告人:浙江大学方群教授  题目:微型化和自动化微流控分析仪器的研制  经过近二十年的发展,微流控分析技术已日趋成熟,它凭借分析速度快、试样消耗少、流体操控自动化、部件微型化等突出优点,在分析仪器微型化研究中显示出巨大的潜力,已被众多学者认为是分析仪器微型化最为重要的推进技术。  最近,方群教授所在的研究组研制了一种用于纳升级试样吸光度测定的全集成微型化手持式光度计。光度计所有部件包括发光二极管(LED)光源、光电二极管检测器、液芯波导流通池、微量试样驱动装置、控制电路、液晶显示器和电池均集成于12cm*4.5cm*2.1cm的仪器内。工作中用一根Teflon AF 2400毛细管构建了长光程液芯波导流通池,实现了试样的引入、检测光的耦合、吸光度的长光程检测等功能,显著提高了检测灵敏度和可靠性,简化了仪器结构,克服了同类微系统存在的灵敏度低、结构复杂和可靠性差等问题。采用两只波长为260nm和280nm的紫外LED为光源,实现了双波长的光度检测。该仪器成功应用于微量DNA试样的纯度和含量测定,以350nL的试样消耗获得了约15mm的有效光程。对比商品化的微消耗光度计,手持式光度计以其1/3的试样消耗量获得了其15倍的检测光程,且价格低廉,具有很好应用前景。  此外,该课题组还将该光度计与缺口管阵列结合,成功用于血清中总胆固醇含量的快速自动分析。不同样品和试剂装载在缺口管阵列上,通过光度计上的取样探针顺序引入流通池,在流通池内实现在线混合、反应及顺序检测。每个样品分析只需10s,试样和试剂的引入和分析过程由计算机控制自动完成,无需人工介入。  最后,方群教授给大家介绍了他们研制的一种基于光多次反射毛细管流通池的手持光度计。该光度计由一次性使用光反射式流通池和重复使用的光电检测器构成。反射式流通池由涂覆了反光涂层的毛细管构成,以不到400nL的检测体积获得了近8mm的有效光程。该光度计成本低廉,用一次性毛细管流通池克服了流通池重复使用带来的试样交叉污染问题,用光电检测器实现了高精度的测量,在床边检验领域具有很好的应用前景。  报告人:厦门大学杭纬教授  题目:自制高功率密度激光电离飞行时间质谱仪用于单细胞元素分析  杭纬教授在实验中将激光电离垂直引入飞行时间质谱技术(LI-O-TOFMS)用于单细胞(卵细胞)元素检测。利用高功率密度激光产生20000-50000K高温,将溅射部分的样品彻底原子化和离子化。创新性地将惰性气体充入离子源内,使高价离子产生碰撞复合,有效减少多价离子地干扰 同时辅助气体分子与高能离子发生弹性碰撞,大幅度降低离子动能,从而得到高分辨率谱图。目前每个细胞的检测时间大约位15秒钟,检测限可达10-12g/cell级别。对于ICPMS难以检测的非金属元素如P和S等也能被LI-O-TOFMS定性定量检测。逐个细胞的整体信号变化范围可控制在25%,表明LI-O-TOFMS可以很好的用于单细胞的元素分析。  报告人:中科院合肥智能机械研究所张忠平教授  题目:分子印迹复合纳米结构的化学传感器  张忠平教授表示,化学传感器稳定性高、成本低、可人工设计、可重复使用等技术优势。但也面临着很多挑战:印迹效率低,对目标目融合量小,分子识别动力慢 信号输出难,其本身没有信号输出,与其他功能纳米结构及光电器件融合困难。  张忠平教授从“分子印迹的制备原理及其应用、分子印迹纳米结构的合成原理与方法、分子印迹复合纳米结构对环境污染的检测”等几方面对分子印迹技术进行了详细的介绍。  其研究结果表明,制备的分子印迹传感器具有高的选择性、亲和力和快速结合动力学,可直接用于实际样品分析。  报告人:华东师范大学何品刚教授  题目:基于主客体识别技术的DNA均相杂交电化学传感技术  DNA电化学传感技术发展包括电化学检测技术的实时PCR,高通量DNA电化学芯片,利用DNA探针构型改变的DNA电化学传感器等。与往常规电化学DNA传感技术相似,都预先在电极表面DNA固定探针,使其与溶液相中目标DNA序列杂交。此传统模式耗时费力,难控制探针固定量,并且杂交发生在固-液两相之间,效率低于均相杂交模式。  针对上述技术难题,何品刚课题组发展了一种“基于主客体识别技术的DNA均相杂交及电化学传感模式”。主客体识别技术是指主体分子和客体分子间的超分子非共价键作用,包括主体和客体分子间的结构互补和分子识别关系。基于主客体识别、DNA分子灯塔结构变化、纳米颗粒标记技术,何品刚课题组巧妙设计了一系列的DNA分子探针,实现了在均相水溶液中的DNA杂交过程和电化学检测。  报告人:四川大学吕弋教授  题目:基于V2O3微纳米材料的催化发光气相色谱检测器  吕弋教授在报告中主要介绍了“介质阻挡放电化学发光气象色谱检测器”和“基于材料表面发光的检测器”,并详细介绍了一款便携式原子光谱仪,该仪器由北京北分瑞利与四川大学联合研制,采用了低功率钨丝原子化器与小型化CCD光谱仪相结合的技术,属于国家“十一五”科技支撑计划项目,目前已上市。  此外,南京大学夏兴华教授、华东理工大学龙亿涛教授、中山大学陈缵光教授也分别为大家带来了“微-纳限域空间中酶反应动力学的研究”、“生物纳米通道检测单个ATP核酸适配体及其构型变化”、“毛细管电泳和微流控芯片电磁感应检测器研制及在药物分析中的应用”等非常精彩的报告。
  • 空间站梦天实验舱发射,这些科学装置踏上“梦天之旅”
    10月31日,空间站梦天实验舱在中国文昌航天发射场发射升空。此次梦天启程太空,搭载着三台由中国航天科技集团有限公司五院510所(以下简称510所)研发的重要科学装置:空间高效自由活塞斯特林热电转换装置、X射线透射成像系统和高温炉及批量样品管理系统。这些凝结着科研人员智慧与心血的产品,驶向了太空深处。  探索空间高效电源新技术  空间高效自由活塞斯特林热电转换装置作为梦天实验舱舱内的验证项目之一,安装在航天基础试验机柜内。作为独立系统试验模块,是目前国内最先进的空间能源转换装置。  负责该装置的高级工程师张安介绍,斯特林热电转换装置可将放射性同位素热能转换为电能,属于“动态”空间同位素电源系统中最先进的技术,相较于传统的“静态”同位素温差转换电源技术,具有高效率、高比功率等显著特点。目前,国际上尚未开展斯特林热电转换技术的空间应用。  张安说,此次空间科学试验的目的是进一步验证在空间环境下该项技术的适应性及可靠性,获得该技术在轨飞行应用数据,进而结合在轨飞行试验数据优化工程样机,加快飞行样机的研制,为我国空间先进电源技术的发展提供技术支持,为未来“深空探测”计划提供技术储备。  “在线”实时观察材料实验过程  此次任务,510所科研人员成功研制了X射线透射成像系统(以下简称X射线系统),巧妙地利用X射线透射成像这一目前最先进的观测方法,实现了在空间环境中对材料实验过程进行“在线”实时观察,可获得空间材料样品制备过程中的固/液界面形态、界面输运效应等实时科学数据,对于认知材料物理与化学过程的本征规律,指导和推动地基材料制备工艺和战略性新兴产业发展具有重要意义。  负责该装置的高级工程师孙晋川介绍,X射线系统作为空间站材料实时观察实验主载荷,也是“世界第一”台在载人航天器中使用X射线透射成像原理进行实验的科学装置。他说:“在载人航天器环境中,最核心的焦点是对航天员的保护,因此如何在资源与空间受限的情况下实现X射线的完全屏蔽,同时还能承受随火箭上行时的力学环境的考验,是摆在科研人员面前的首要难题,也是保证梦天舱安全性的重中之重。”  科研人员集智群策,勇趟科研“深水区”,在大量的分析与试验总结下,设计的综合屏蔽结构,既保证了装置在火箭上行时的力学可靠性,也确保了航天员的在轨安全。同时成功研制了空间成像结构,使装置的最高分辨率可达3μm,最大视场达30mm×20mm,最大穿透厚度为6mm,满足绝大多种(类)材料的实验需求,也使X射线系统成功实现了从专用设备到通用设备的转变。  “神话八卦炉”功能多样  在梦天实验舱内,510所研制的“天宫八卦炉”——高温炉及批量样品管理系统(以下简称高温炉)将神秘、奇幻的中国神话转化为现实。作为实验舱高温材料溶固实验主载荷,高温炉系统是具有“多温场联动、多功能制备、全自动压控”等特点的全新综合型空间材料试验设备,其内部有诸多“黑科技”,精密传动单元可为系统提供14种试验工况配置,使我国空间材料设备首次具备温场“区熔”功能;全新的材料制备方法,改变了我国同类设备工况少、功能单一的状况,打破了国外技术垄断;综合热控单元给设备建立了温度梯度,实现了材料制备温度的高稳定性,让航天员们在亲自操作时“手感温度刚刚好”。
  • 日本岛津推出太阳能电池电极检测装置「SCI-8P」
    -快速检测微小电极 充实SCI系列产品线,  支持高可靠性太阳能电池生产 - 电极检测装置「SCI-8P」  近日,日本岛津制作所推出电极检测装置「SCI-8P」,该装置用于晶体硅型太阳能电池生产的电极印刷工艺中。  本产品配备卓越的高分辨率摄像系统,可用于微小电极的检测。并且,1台装置同时实现了电极检测和晶片外观检测,快速检测水平领先该行业。  【开发背景】  随着人们对绿色能源的关注度越来越高以及可再生能源购买制度的启动,太阳能电池的需要持续扩大。另一方面,太阳能电池的价格与质量竞争日趋激烈。为在提高生产效率的同时严格质量管理,用户要求目前在太阳能电池生产过程中主要以人工为主的检测尽快实现自动化。  本公司于今年3月推出了两款太阳能电池检测装置,分别是1台装置可同时检测微裂纹和晶片外观的复合检测装置「SCI-8SM」,行业内最小尺寸的外观检测装置「SCI-8S」,大获日本、中国大陆?台湾等国家与地区的用户的好评。此次推出的电极检测装置「SCI-8P」是SCI系列产品线的新成员,有助于提高产量和发电效率,支持高可靠性的太阳能电池生产。  关于岛津  岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。  目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心 覆盖全国30个省的销售代理商网络 60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。  岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。  更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • ACCSI2023大型科学仪器装置发展论坛通知
    怀柔科学城,全称是北京怀柔综合性国家科学中心,其战略定位是建成与国家战略需要相匹配的世界级原始创新承载区,打造战略性前瞻性基础研究新高地、生态宜居创新示范区。截止目前,怀柔科学城已围绕物质、空间、生命、地球系统和信息与智能五大科学方向,布局了40余个大科学装置、科教设施和交叉研究平台,成为全球大科学装置最密集的区域之一。涉及的仪器装备超过10000台套,为发展高端仪器装备和传感器产业提供了广阔应用场景、创新迭代平台和人才技术支撑。在此背景下,借助2023第十六届中国科学仪器发展年会(ACCSI 2023)契机,在北京市怀柔区人民政府、北京怀柔科学城管委会的指导下,仪器信息网携手北京怀柔科学城建设发展有限公司、北京怀柔仪器和传感器有限公司组织大型科学仪器装置发展论坛,将着重研讨科学设施平台的模块化服务能力、对产业的支撑能力、平台服务能力与产业需求之间的响应关系,以及科学设施建设、升级过程中科学仪器的需求、技术瓶颈的攻关和关键设备的研制等内容。一、时间地点2023年5月19日(星期五)13:30-17:00北京雁栖湖国际会展中心 大宴会厅B二、组织机构指导单位:北京市怀柔区人民政府、北京怀柔科学城管委会主办单位:仪器信息网(instrument.com.cn)承办单位:北京怀柔科学城建设发展有限公司、北京怀柔仪器和传感器有限公司三、会议日程13:30-13:40 (一)领导致辞丁明达 北京怀柔科学城党工委委员,怀柔科学城管委会副主任,怀柔区人民政府副区长(兼)13:40-14:00 (二)推介解读北京怀柔综合性国家科学中心科学设施平台建设进展及开放运行机制探索——杨昊天 北京市怀柔区政协副主席,怀柔科学城管委会设施平台处处长14:00-16:00 (三)主旨演讲14:00-14:301.综合极端条件实验装置建设与科研仪器研制进展——程金光 中国科学院物理研究所副所长,研究员14:30-15:002.公里级大气环境预报溯源系统及碳反演应用——王自发 中国科学院大气物理研究所研究员,地球系统数值模拟装置区域高精度环境模拟系统组负责人15:00-15:303.高能同步辐射光源的应用和发展——董宇辉 中国科学院高能物理研究所副所长,研究员,高能同步辐射光源工程常务副总指挥15:30-16:004.空天极限力学大型科研设施发展与需求——黄河激 中国科学院力学研究所副所长,研究员16:00-17:00 (四)自由交流四、联系方式联系人:高老师手机:15574817041邮箱:gaolj@instrument.com.cn欢迎仪器企业、创新主体、科技服务机构以及科研院所等人员莅临本论坛,现场可报名大科学装置参观活动,近距离感受高能同步辐射光源、多模态跨尺度生物医学成像设施、综合极端条件实验装置等的魅力。 附:ACCSI 2023介绍 为促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设,服务首都科技创新,“2023第十六届中国科学仪器发展年会(ACCSI2023)”将于2023年5月17-19日在北京雁栖湖国际会展中心召开。ACCSI2023以“创新发展 产业互联”为主题,由仪器信息网(instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、北京怀柔仪器和传感器有限公司等单位协办,中国仪器仪表行业协会、中国仪器仪表学会等单位支持。官网链接:https://accsi.instrument.com.cn/ 联系方式:报告及参会报名:010-51654077-8229 13671073756 杜女士赞助及媒体合作:010-51654077-8015 13552834693魏先生微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。
  • 分析仪器与装置前沿论坛在武汉召开
    仪器信息网讯 2015年5月10日上午,中国化学会第十二届全国分析化学年会之分析仪器与装置前沿论坛在洪山礼堂成功举办,共130余人出席了此次论坛。来自四川大学、武汉大学、厦门大学、北京大学、大连化物所、北京理工大学等单位的知名专家学者参加了此次论坛,并作了精彩的报告。会议现场  四川大学段忆翔教授作了题为&ldquo 激光诱导击穿光谱(LIBS)分析仪器的研发与展望&rdquo 的报告。据段忆翔介绍,激光诱导击穿光谱(LIBS)技术具有无需样品前处理、快速、多元素分析、远距离探测等特点,广泛应用于石油勘探、地质勘探、材料分析、冶金和燃烧、环境监测、医学与生物治疗、艺术品成分鉴定、军事及国防等领域。在他的带领下,课题组成功研发了便携式激光诱导击穿光谱仪和激光诱导击穿-拉曼光谱分析仪等系列仪器产品,为分析仪器行业的发展做出了很多努力。四川大学段忆翔教授  武汉大学胡继明教授作了题为&ldquo 激光拉曼光谱:生物医学分析的有力手段-从概念到仪器&rdquo 的报告。据胡继明介绍,从概念向诊断仪器的转变是医学拉曼光谱未来的发展方向,同时拉曼散射光谱在疾病相关的生物样品上的研究已经取得了阶段性的进展。由他带领的课题组目前正在研究拉曼光镊系统及其在生物细胞中的应用,相关研究成果已经发表了学术论文。武汉大学胡继明教授  厦门大学颜晓梅教授在会议上的报告题目为&ldquo 细胞外囊泡的单颗粒水平多参数定量分析系统&rdquo 。据颜晓梅介绍,目前由她带领的课题组正在研制超高灵敏流式检测装置,并在国际上首次实现了发光能力低于单分子荧光的单个纳米颗粒散射光信号的直接检测,另外,该装置在化学、材料、生命等基础科学和生物制药领域具有重要的应用价值。厦门大学颜晓梅教授  北京大学刘虎威教授在会议上的报告题目为&ldquo 微萃取技术与敞开式离子化质谱联用实现快速检测&rdquo 。刘虎威在报告中介绍,微萃取技术与敞开式离子化质谱联用在药物、食品、环境分析中有很好的应用前景,对于目标分析物较少的分析,可以省去色谱分离,简化分析过程等优点。另外,兼有样品富集和信号增强功能的基质材料是他今后重点研究方向。北京大学刘虎威教授  中山大学陈缵光教授的报告题目是&ldquo 微流控芯片系统-斑马鱼胚胎模型对药物复合毒性的研究&rdquo 。中山大学陈缵光教授  北京理工大学徐伟博士的报告题目是&ldquo 膜电喷雾电离-超高灵敏可直接测量体液中生物标志物的质谱离子源&rdquo 。北京理工大学徐伟博士  另外,大连化物所侯可勇教授、关亚风教授、李海洋教授、长春应化所牛利教授、赛默飞世尔科技中国有限公司许群博士等也在会议上做了精彩的报告。  相关新闻:中国化学会第十二届全国分析化学年会在武汉召开撰稿:张葳
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制