当前位置: 仪器信息网 > 行业主题 > >

真空滤油机

仪器信息网真空滤油机专题为您提供2024年最新真空滤油机价格报价、厂家品牌的相关信息, 包括真空滤油机参数、型号等,不管是国产,还是进口品牌的真空滤油机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合真空滤油机相关的耗材配件、试剂标物,还有真空滤油机相关的最新资讯、资料,以及真空滤油机相关的解决方案。

真空滤油机相关的资讯

  • 皖仪电力专用检漏设备项目顺利验收
    皖仪科技承担的科技部科技人员服务企业“电力系统专用检漏设备”项目验收会顺利召开  2011年11月8日,由安徽皖仪科技股份有限公司牵头承担的科技部“科技人员服务企业行动”项目——“电力系统专用检漏设备”项目验收会在安徽皖仪科技股份有限公司召开。国家以及省市科技系统:国家科技部发展计划司、省科技厅计划发展处、省科技厅、市科技局高新处等领导出席了会议。来自中国科学技术大学、合肥工业大学、解放军电子工程学院、安徽省电子产品监督检验所、安徽正一会计师事务所的六位验收组专家以及皖仪科技多位领导参加了会议。  皖仪科技项目部部长向与会领导进行了有关公司以及此次验收项目的简要汇报。科技部发展计划司田处长在项目验收会上对科技部“科技人员服务企业”项目目的进行了阐述和说明。验收专家组的教授对于 “电力系统专用检漏设备”项目给予了高度的评价与认可。其他专家组成员也分别提出了自己的意见和看法。  “电力系统专用检漏设备”属于光机电一体化领域的高性能、智能化的检测仪器,是面向电力系统与电力工业的专用检测设备。电力系统专用检漏设备是以针对电力系统开发的高灵敏全自动氦质谱电力专用检漏仪为主,结合工装设备所组成的电力系统专用检漏设备。目前主要应用在火力发电厂凝汽器真空系统的不停机检漏,还可用于干式变压器、真空树脂浇注设备、真空干燥设备、真空滤油机等生产过程的检漏。通过这一项目的研发和关键性知识产权保护,皖仪可以实现检漏设备市场的细分和保护,从而推动公司本地化优势战略的开展,提高企业核心竞争力。  会议最后,公司领导对国家以及省市科技系统领导的支持和指导,以及对参与本次项目咨询把关和悉心指导、验收的专家表示感谢。并承诺皖仪将更好促进校企合作和产业转化等工作,为分析仪器领域的科技成果转化和科技创新做出更大的贡献。
  • 哈尔滨理工大学采购92台/套教学仪器设备
    据中国政府采购网消息:黑龙江省政府采购中心按照黑龙江省政府采购管理办公室下达的采购计划,依据《政府采购法》及相关法规,对哈尔滨理工大学教学设备采购及服务进行国内公开招标,现欢迎国内合格的供应商参加投标。  一、项目编号: SC[2013]1019  二、项目名称: 哈尔滨理工大学教学设备采购及服务  三、资金来源及构成:预算内 采购预算:400万元  四、招标内容: 项目名称数量采购预算(元)SC[2013]1019B0001合计1541100精密电子天平4 台41200精密电子天平2 台31400带水冷平板硫化机1 台13000电热平板硫化机6 台108000显微变焦镜头1 台39000显微变焦镜头2 台66000电树枝观测摄像机1 台14500试验变压器8 台120000带水冷却电加热开炼机2 台90000电加热开炼机2 台84000转矩流变仪1 台160000电缆切片机1 台28000热老化箱5 台120000真空干燥箱6 台210000双行星动力混合机1 台80000双行星动力混合机1 台50000热延伸试验仪2 台22000电子万能试验机2 台180000高速混合机1 台20000小型实验高速混合机2 台30000高压直流电源1 台15000塑料冲片机2 台4000显微镜光源3 台15000SC[2013]1019B0002合计2458900光纤高精密位移台2 台16000石油产品运动粘度、密度测定仪1 台20000全自动微量水分测定仪1 台35000混合信号示波器1 台135000变倍缩放工业镜头及配件2 套9800皮安电流表3 台42000实验室高剪切分散乳化机3 台15600球磨机及球磨罐1 台15400高阻计2 台6200数字高阻计2 套15000电热鼓风干燥箱2 台6800表面电位计1 台96500微生物快速检测系统1 套185000比表面积及孔隙分析仪1 套350000全自动粒度及ZETA电位分析仪1 套602100小型变压器油滤油机1 台5000全自动内校电子分析天平2 台13000真空干燥箱2 台110000真空滤油机1 台35000库仑法微量水分测定仪1 台38500光学平台2 台140000离子溅射仪1 台140000带外接光路傅里叶光谱仪1 台427000 总计4000000  五、评标方法:最低评标价法  交货时间:进口设备合同签订后三个月内,国产设备合同签订后一个月内 (技术要求一览表有明确规定的,以技术一览表为准)  交货地点:哈尔滨  六、潜在供应商报名要求:  1、拟参加本项目投标的潜在供应商应具备《政府采购法》第二十二条供应商资格条件   2、拟参加本项目投标的潜在供应商须在黑龙江省内政府采购网注册登记并经黑龙江省政府采购管理办公室审核通过   七、投标人资质要求:详见招标文件第二章  八、报名方式及时间:  有意向参加本项目招标活动的潜在供应商请到黑龙江省政府采购网&ldquo 下载中心&rdquo 的&ldquo 招标采购文件&rdquo 查阅招标文件。如确定参加本次招标活动,须到黑龙江省政府采购网凭用户名和密码登录,点击&ldquo 网上报名&rdquo ,选定拟参与项目&ldquo 进入&rdquo ,选择投报采购包点击&ldquo 报名&rdquo ,则报名成功。报名时间:自2013年8月27日至2013年9月4日上午11时。只有在黑龙江省政府采购网报名成功的潜在供应商,方有资格参加本项目的投标活动。  公告发布:技术审核处 吕秀红 联系电话:0451-87220715  九、招标文件获取方式:  报名成功后请登录黑龙江省政府采购网&ldquo 下载中心&rdquo 的&ldquo 招标采购文件&rdquo 下载招标文件。  十、招标文件的公示:  供应商报名起止时间为招标文件公示期,报名成功供应商如对招标文件某些条款不理解、有疑问或存在异议,请于报名截止时间前提出,逾期将不予受理,并视为对招标文件无异议。  (一)询问受理:  1、请登陆黑龙江省政府采购网,凭用户名和密码登录后点击&ldquo 网上答疑&rdquo ,然后点击&ldquo 进入&rdquo 进行网上询问   2、电话询问:史旭升 王尔强 电话 0451-87220791  (二)质疑受理:  请登陆黑龙江省政府采购网,凭用户名和密码登录后点击&ldquo 网上质疑&rdquo ,然后点击&ldquo 进入&rdquo 进行网上质疑,同时将质疑书原件及法人代表授权书原件送达采购中心,质疑书原件及法人代表授权书原件送达采购中心时间为供应商提出质疑时间,未在规定时间内送达质疑书原件及法人代表授权书原件的质疑为无效质疑。  质疑受理人:办公室 尚欣 0451-87220726  十一、投标截止时间:2013年9月16日,上午9时30分。  十二、开标时间:2013年9月16日,上午9时30分。  十三、投标及开标地点:黑龙江省政府采购中心一楼招标大厅  十四、投标保证金金额及缴纳截止时间 包号投标保证金金额(元)投标保证金缴纳截止时间第一包16000一、以银行汇款方式缴纳的投标保证金,请在2013年9月9日17时前到达采购中心保证金账户,采购中心以银行出具的纸质回单日期即银行转讫章日期为实际到账日期,否则投标无效。二、以银行保函或担保保函形式提交投标保证金的供应商,应于2013年9月9日17时前到达采购中心一楼一站式服务台办理登记确认手续,否则投标无效。单位名称:黑龙江省政府采购中心保证金户开户银行:龙江银行哈尔滨开发区支行行 号:313261020080账 号:2003 0121 0100 0000 3汇款用途:SC[2013]1019项目的投标保证金   十五、采购人: 哈尔滨理工大学  地 址:哈尔滨市南岗区学府路52号  联系人:张荣涛 电 话:0451-86390306  负责人:徐 岩 电 话:0451-86391288  十六、集中采购机构:黑龙江省政府采购中心  地 址:哈尔滨市南岗区汉水路379号  邮 政 编 码:150090  货物采购处项目经办人:史旭升 王尔强  电 话:0451-87220791 传 真:0451-87220791  货物采购处项目负责人:王尔艳  电 话:0451-87220756 传 真:0451-87220756  黑龙江省政府采购中心  2013年8月26日  特别提示:经常有供应商因疏忽大意,递交的投标文件没有加盖公章或无法定代表人签字或签字人无法定代表人有效授权而导致其投标被拒绝,在此提醒广大参与政府采购的供应商应认真按招标文件要求编制投标文件,不要因不应该出现的错误而导致废标。
  • 洛科可携式真空抽滤系统 吸睛
    洛科可携式真空抽滤系统 吸睛 全球实验室真空抽滤设备领导大厂洛科仪器,于日前落幕的生物科技大展公开展出Lafil 100可携式多功能真空抽滤系统,产品结合真空过滤、试剂纯化及废液抽取3大功能,完整应用在生命科学及细胞培养领域。体积小、内建电池、可放入无菌操作台操作的特色,吸引生技业者的目光。 洛科仪器表示,Lafil 100可携式多功能真空抽滤系统能用以抽吸培养皿、微孔盘等培养液或离心完后之上层液的装置;也可搭配抛弃式漏斗或可重复使用之过滤漏斗,用以纯化组织培养液或缓冲液;采用人体工学握法,设计贴心的Lock键,可固定抽吸按键,相当省力。 洛科仪器主要研发、制造,营销真空抽滤设备及加热控制等产品,而实验室真空过滤系统包括真空帮浦、过滤设备及生命科学常用耗材,应用于食品检验、水质检测、微生物检验、分生实验及各种物质纯化,目标客户为工厂实验室,包括生技、药厂、半导体厂及学校。原厂产品顺利通过ISO9001-2000、欧盟CE及北美CSA认证,且获得多项专利与荣颁2015第二届仪器精品奖特优,并成功外销至欧洲、美国、印度、东南亚及俄罗斯等50多个国家。 洛科仪器应用先进的技术研发,以合理的价格,真诚的服务,提供世界级优良产品。未来也将持续投入研发生产更多符合客户需求的产品,成为真空抽滤全方位解决方案的领导品牌。source from:工商時報
  • 冷阱— 绿色真空操作的理想伴侣
    冷阱介绍 冷阱(cold trap;condensate trap)是在冷却的表面上以凝结方式捕集气体的阱,置于真空容器和泵之间,用于吸附气体或捕集油蒸汽的装置。 冷阱 冷阱结构示意图 冷阱与真空泵联接示意图 冷阱作为一种冷却装置,可以通过冷凝温度的设置捕获特定气体分子;也可以通过低温,将冷凝点温度高于冷阱温度的气体分子进行冷凝。冷凝可以对气体起到分离的作用。冷阱的类型 根据冷阱的降温方式不同,冷阱一般分为两种类型,内嵌式和分体式。 内嵌式,是冷阱与制冷机集成为一体,制冷机通过冷媒对冷阱进行降温。内嵌式冷阱的温度受制于制冷机器的限制,普通内嵌式冷阱温度一般高于-50℃,超低温内嵌式冷阱可以达到-100℃以上;分体式冷阱,冷阱自身没有冷凝能力,需要依靠外部能量用于其降温如:冷水机,干冰,液氮等。 内嵌式冷阱 分体式冷阱冷阱在真空操作中的重要作用1,提高真空效率 真空室中的油气和水汽,靠冷阱的低温使其冷凝成液,减少对真空度的影响。冷冻真空干燥是常见的干燥方法,以1g冰为例,在0.1Torr时产生可以产生10000L水汽。干燥箱内的水分将产生数量巨大的水汽。这些水汽如果仅靠真空泵来排除,真空泵的工作效率将会降的极低。冷阱的低温可以将水汽在冷阱部位直接凝结,从而极大提高真空泵的工作效率。 这就是低温干燥箱,低温离心浓缩仪都要配备冷阱的原因。2,减少腐蚀性气体对真空泵的影响 抽真空体系中,经常会有腐蚀性试剂的存在。腐蚀性试剂在抽真空过程中会转化为气体分子通过管路流经真空泵排入大气。腐蚀性气体在流经真空泵时,可能会对真空泵造成永久性损伤,如:酸性气体会腐蚀真空泵的金属部件。腐蚀性气体经过真空泵的排气口,如果直接排入大气,也会对空气造成污染。 使用冷阱可以将腐蚀性气体在进入真空泵之前,被有效的冷凝收集,降低腐蚀性气体对真空泵的损伤。WIGGENS 冷阱 WIGGENS有内嵌式和分体式冷阱提供,内嵌式冷阱提供最低-70℃的冷阱温度。分体式冷阱使用更灵活:1,与制冷循环器(冷水机)联用。 可以根据温控的需要,调节制冷循环器的温度,直接控制冷阱温度。此方式使用,有内嵌式冷阱的优势,不需要外加干冰或其他冷媒。并可以根据需要自由调节温度,适合需要特定冷凝点要求的溶剂冷凝需要。2,加入干冰或液氮进行制冷。 支持使用干冰(-78.5℃),液氮(-196℃),作为冷媒进行对冷阱进行制冷。如果是长时间使用冷阱,WIGGENS有专用的液氮液位保持系统,只需要储藏液氮罐中有液氮,就可以长久的维持冷阱中的液氮量,适合长时间连续冷凝操作。 通过合理的使用冷阱,有助于提高真空泵利用效率,延长真空泵使用寿命,增加溶剂回收,减少环境污染等。 节能、环保、绿色真空操作的理想伴侣 — WIGGENS冷阱,有多种型号和规格供您选择。欢迎垂询WIGGENS,我们将为您真空操作,提供最佳冷阱推荐选择。
  • 大连化物所提出二氯甲烷真空紫外光电离中的竞争新机制
    近日,大连化物所质谱与快速检测研究中心(102组群)李海洋研究员团队利用自主研发的光电离飞行时间质谱,提出了二氯甲烷真空紫外光电离中的竞争新机制,对研究大气平流层臭氧消耗机制和有害卤代烃的光降解提供了参考。二氯甲烷(CH2Cl2)是一种用途广泛的有机溶剂,也常用作生产过程中的反应介质,但其沸点低、极易挥发,因此带来的环境危害和健康危害等问题也日益突出。在太阳发射光谱中,存在非常强的真空紫外光,可以使二氯甲烷光解产生对臭氧层破坏性非常强的氯原子,因此二氯甲烷的光化学过程对研究平流层臭氧消耗机制具有重要的意义。本工作中,李海洋团队根据不同气压和不同浓度下二氯甲烷光电离产物的差异,提出了二氯甲烷真空紫外光电离的机制:主要的两种光电离产物是CH2Cl+和CHCl2+,CH2Cl+由两个互相竞争的通道——离子对和光解辅助的光电离产生,离子对通道在高数密度下被有效淬灭;CHCl2+由光解和自由基反应产生的CHCl2•自由基通过光电离产生。本工作建立了定量描述二氯甲烷光电离产物的动力学模型,进一步加深了对二氯甲烷在真空紫外波段复杂光化学行为的理解,揭示了光解离在卤代烃真空紫外光电离过程中的重要性。相关研究以“Ionization of Dichloromethane by a Vacuum Ultraviolet Krypton Lamp: Competition Between Photoinduced Ion-Pair and Photodissociation-Assisted Photoionization”为题,于近日发表在《物理化学快报》(The Journal of Physical Chemistry Letters)上。该工作的第一作者是大连化物所博士研究生于艺。该工作得到了国家自然科学基金、中科院科研仪器设备研制项目、大连化物所创新基金等项目的支持。
  • 斯达沃发布斯达沃便携式颗粒计数器SDW-160新品
    SDW-160便携式油液颗粒计数器介绍 便携式油液颗粒计数器SDW-160(也叫油液污染度测定仪)是依据GB/T 18854-2002(ISO11171-1999)等国家及国际标准研制的专门用于油液中污染度等级检测的仪器。适用于液压油、润滑油、岩页油、变压器油(绝缘油)、汽轮机油(透平油)、齿轮油、发动机油、航空煤油、水基液压油、磷酸酯油等油液进行现场、实验室的污染度检测。也可安装在各种液压传动、滤油机、清洗机、检测试验台等系统上,实现对系统油液清洁度在线检测。可广泛应用于航空航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域。 ■ 采用国际液压标准委员会制定的遮光计数原理■ 内置GJB 420、NAS1638、ISO4406、SAE4059E等多个常用标准■ 采用先进的计量泵进样系统,支持自定义体积 主要应用■ 实验室油液分析■ 现场及在线系统油液分析■ 液压设备和日常维护的验收■ 系统的清洁验证■ 部件的清洁验证■ 液压部件的磨损测试 主要特点■ 国际液压标准委员会指定的光阻(遮光)法测试原理■ 高精度激光传感器,测试范围宽,性能稳定,噪声低,分辨率高■ 高精度计量泵取样方式,进样速度可调,取样体积精度高■ 管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测■ 用于实验室或现场测量,可内置减压装置用于在线高压测量■ 可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气■ 可使用标准取样瓶、取样杯等多种取样容器,或直接接入液压系统,满足不同行业的检测要求■ 内置多重校准曲线,兼容所有国内外常用标准进行校准■ 内置GJB-420A、GJB-420B、NAS1638、ISO4406、SAE4059E和ГOCT17216等多个常用标准,支持自定义标准测试,并可根据客户需求设置所 需标准■ 可设置1000个粒径通道,便于进行颗粒度分析■ 内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能■ 彩色触摸屏操作,中文输入,具有预设、输入、修改、存储功能,操作方便快捷■ 具有RS232接口,可连接电脑或实验室平台进行数据处理,也可使用UBS进行数据存储■ 内置锂电池,无需外接电源即可使用 技术指标■ 光源:半导体激光器■ 粒径范围:0.8-500um■ 检测通道:8通道,任意设置粒径尺寸■ 取样体积:0.2-1000ml■ 取样精度:优于±1%■ 取样速度:5-80mL/min■ 计数准确性:±10%■ 分辨率:≤10%■ 重复性:RSD<2%■ 极限重合误差:10000粒/mL■ 压力范围:高压5-420bar、低压0-6bar■ 黏度范围:≤350cSt■ 电源:AC100-240V,50/60Hz■ 电池容量:5200mAh■ 运行时间:6-8小时■ 外形尺寸:310×305×135mm创新点:便携式油液颗粒计数器是依据GB/T 18854-2002(ISO11171-1999)等国家及国际标准研制的专门用于油液中污染度等级检测的仪器。适用于液压油、润滑油、岩页油、变压器油(绝缘油)、汽轮机油(透平油)、齿轮油、发动机油、航空煤油、水基液压油、磷酸酯油等油液进行现场、实验室的污染度检测。也可安装在各种液压传动、滤油机、清洗机、检测试验台等系统上,实现对系统油液清洁度在线检测。可广泛应用于航空航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域
  • 全球实验室真空过滤设备的领导品牌洛科仪器亮相CHINA LAB
    全球实验室真空过滤设备的领导品牌洛科仪器亮相CHINA LAB-访洛科仪器股份有限公司产品经理洪国展 3月31日在CHINA LAB 2016的展会现场,洛科仪器股份有限公司展出Lafil 100 可携式废液抽吸系统、直接抽水式真空过滤装置WaterVac100、300ml磁性漏斗、500ml磁性漏斗等产品。公司的产品经理洪国展接受本网专访,并着重介绍了此次展会带来的两款明星产品,他指出产品的优势特点将是以后占领市场最好的武器。 《Lafil 100 可携式废液抽吸系统》 真空抽化纯滤装置Lafil 100 可携式废液抽吸系统的特点是体积很小,搭配抽吸的设备,在细胞培养的时候做废液的抽取,也可以更换漏斗,借由搭配这样的过滤设备连接过滤装置之后,可以直接过滤。双功能设计,废液抽吸、真空过滤一机两用,独特的双功能设计,能用以抽吸培养皿、微孔盘等培养液或离心完后之上层液的装置;也可搭配抛弃式漏斗或可重复使用之过滤漏斗,用以纯化组织培养液或缓冲液。 《WaterVac100系列真空纯化过滤装置》 此外洛科独特设计的的组合,水质及微生物检测方面会用到的设备真空纯化过滤装置WaterVac100系列,创造客户使用的新模式,特点是可以直接抽水,适用于更换各式各样的过滤座,搭配各式各样的过滤漏斗。这一种是借由硅胶塞的方式去连接塑胶漏斗,也可以更换成一次性的漏斗。或搭配洛科独特设计的新的MF系列磁式漏斗,借由磁力的方式进行连接,可以直接利用磁铁的方式做结合。洪经理说:&ldquo 这也是我们的专利设计,非常方便,操作非常简单,设置内键,直接按开关之后就可以直接过滤。我认为这在未来销售上是一个非常好的武器。&rdquo 洪经理表示目前面临的市场竞争压力还是很大,但是由于洛科产品的创新以及专利的研发,因此在整体的销售上以及市场占有率方面信心十足。公司的研发团队每年必须有一个新的产品推出,并且也非常重视新产品在专利上的取得,重视利用专利优势来巩固创新上的特点,这能避免其他厂家进行模仿。 关于洛科 洛科仪器专业于研发,制造,行销实验室真空过滤、加热控制等产品。主要用于食品、水质、微生物检验、分生实验及各种物质纯化。除了工厂荣获ISO9001-2000 肯定外,主要产品也通过欧盟CE或北美CSA认证,近年来也陆续获得多项专利,品质优良外销全球五十多国家。
  • 澳维发布真空溶媒回收仪——真空浓缩设备配套产品新品
    产品简介:溶媒回收仪是一款用于有机溶剂蒸汽冷凝收集的创新性产品。主要与实验室平行蒸发/浓缩仪、旋转蒸发仪、真空干燥箱、真空离心浓缩仪、真空抽滤、固相萃取等样品前处理设备联用,将溶媒蒸汽进行冷凝回收,也可以与真空泵联用,净化真空泵排出的废气,减少有机废气对环境的污染,呵护实验人员的健康。产品特点:n 绿色环保内置三级冷凝器,溶媒蒸汽几乎全部被冷凝回收,乙醇回收率优于99%,二氯甲烷回收率优于98%,相比较传统冷却循环水机、冷阱,具有更高的溶媒回收效率,更绿色环保。n 干净整洁溶媒回收仪不需要添加冷却循环液、不需要外接玻璃冷凝器,使用者不再担心玻璃器件易碎问题,也避免了复杂管路的连接,更有利于实验室的干净整洁。n 防腐耐用溶媒回收仪与气体、液体接触的材质由PEEK、PTFE、高硼硅玻璃组成,能够耐受盐酸及强腐蚀性溶剂,防腐耐用。n 简单方便溶媒回收仪设有进气口及排气口,与设备简单连接,开机即可使用。外置3L螺口溶剂回收瓶,方便大体积溶剂蒸发工作。5英寸彩色液晶触摸屏实时显示工作状态,使用者可随时观察设备的冷凝能力。产品典型应用:u 与旋转蒸发仪联用溶媒回收仪与旋转蒸发仪联用,不需要添加冷却循环液,也不需要外接玻璃冷凝器,使用者不再担心玻璃器件易碎问题,也避免了复杂管路的连接,更有利于实验室的干净整洁。溶媒回收仪具有强大的冷凝能力,每次工作可以回收3000ml有机溶剂,使用者可以根据需要进行多台联用,节约实验室空间,提高工作效率。u 与平行浓缩蒸发仪联用溶媒回收仪与平行浓缩蒸发仪联用,不需要添加冷却循环液,也不需要外接玻璃冷凝器,可以满足3000mL大体积溶剂蒸发冷凝回收需求,溶剂回收仪进气接口高度为25cm,低于平行浓缩蒸发仪输出接口,保证连接管路中的冷凝液全部被收集,防止释放真空时液体回流污染样品。u 真空泵尾气净化应用溶媒回收仪与真空泵的排气口连接,可高效冷凝回收真空泵排除的有机溶剂蒸汽,极微量有机溶剂蒸汽被活性碳柱完全吸收,在实验室通风条件较差的情况下,充分保护使用者的安全与健康。创新点:1.采用直接冷凝技术,不需要添加冷却循环液,不需要外接玻璃冷凝器,方便使用;2.内部三级冷凝器,有机溶剂蒸汽冷凝回收效率高,乙醇蒸汽冷凝回收效率优于99%,二氯甲烷蒸汽冷凝回收效率优于98%;3.所有与有机溶剂液体、气体接触的材质,全部采用聚四氟、peek、高硼硅玻璃以及特殊材质,能够耐受氯离子侵蚀;4.一次性可以收集3L的有机溶剂,适合大通量样品真空浓缩;
  • 兰光发布铝箔针孔检测仪 药用铝箔针孔度检查台新品
    铝箔针孔检测仪 药用铝箔针孔度检查台SBG-80T针孔检测台,由D6500高显色性超级光管与精密制造的投光机构组成。各项技术指标充分满足CIE国际照明委员会及CY3-91标准有关色评价与配色比色照明条件的规定。可全天候应用于铝箔针孔度的测试。SBG-80T针孔检测台专业技术:进口CIE D65 光源配置光谱稳定、显色准确符合标准的钢化玻璃,照度规范、光照均匀、可靠安全配置光源寿命自动计时器,方便用户及时了解仪器的运行情况测试原理:在规定的环境及灯箱光源下,利用铝箔针孔的透光性,观察铝箔针孔数量,并测量针孔的尺寸。测试标准:该仪器参照多项国家和国际标准:GB/T 3198、GB/T 22638.2、YBB 00152002-2015测试应用:基础应用:药用铝箔——适用于药品包装用铝箔针孔度测试工业铝箔——适用于工业用铝箔针孔度测试SBG-80T针孔检测台技术指标:观察尺寸:400×250mm色温:6500 K玻璃透射光照度:1000Lux左右使用环境光照度:20Lux-50Lux放大倍数:100倍最小刻度值:0.01mm电源:220VAC 50Hz/ 120VAC 60Hz外形尺寸:800mm(L) × 600mm(W) × 230mm(H)净重:10 kg产品配置:标准配置:主机、显微镜创新点:1、推出的新产品,用于铝箔材料针孔检测2、实验效率高,坚固耐用,外形美观铝箔针孔检测仪 药用铝箔针孔度检查台
  • 新品:儒亚科技推出在线油液清洁度检测仪
    新品:儒亚科技推出在线油液清洁度传感器创新点:1、采用数字图像处理技术对油液中的气泡进行识别、计算和剔除,从而计算出油液中真实的颗粒数量。2、对市面上五百多种润滑油建立模型,可以实时了解润滑油的寿命,及时进行润滑油更换。3、除了对液压油、切屑液、汽轮机油、水乙二醇难燃液压液、绝缘油的污染度等级检测外,还可以对油液中颗粒物进行溯源分析,实时了解大型设备润滑机构的运行状况。4、传感器如茶杯大小,安装便捷,通过无线3G/4G、局域网、CMS/PLC/SCADA传输到中控室,提高油液的使用寿命,符合企业“节能减排”的总方针。产品介绍:在线油液清洁度传感器是儒亚科技(北京)有限公司全新推出的一款监测油液品质的传感器,主要目的是通过抽血——油液分析,即油液中的颗粒数量和颗粒来源,了解大型设备的运行状况,从而减少设备发生故障的频率,提高设备连续、稳定、高效和安全的运转时间。主要应用领域:风力发电机、港口机械的龙门吊、盾构机、自动化机械臂、建材行业的滤油机、大型卡车等润滑机构。 技术参数输出结果: ISO 4406:1999 // SAE 4059 ISO440 6:1987 // NAS 1638校准依据: ISO 11171精 度: ±1 ISO CODE额外功能: 设备温度测量、气泡检测安装位置: 垂直安装电 压: 24VDC数字信号输出: RS485 (ModBUS: RTU)、 CANJ1939 、Ethernet RJ45 (MobBUS: TCP/IP, FTP, Telnet)报警设置: 3级可调节,可设置运行压力: 标准版本100bar,可根据要求定制运行温度: 标准款-10-85℃,可根据要求定制粘度要求: 小于460cSt流速要求: 最大500ml/min,最适为200ml/min尺 寸: 88.5 x 60 x 62 mm重 量: 500克连接端口: 1/8 BSP (x2)材 质: 铝、BK7和氟橡胶数据存储: 可包含1000个测量样品和样品图像防护等级: IP65资质认证: CE, UL, GL
  • 广州竞赢科学仪器有限公司隆重推出新一代真空抽滤仪—Diatom Trap 600硅藻富集仪
    Diatom Trap 600硅藻富集仪,是本公司专为法医硅藻检验研制的新一代真空抽滤设备。一、技术特点1、直排式设计,无需抽滤瓶,滤液直接排入废液桶,解决真空度不稳定问题,简化操作,提高效率。2、采用新型滤膜,提高抽滤速度。3、放弃使用含有害成分-冰乙酸的透明化试剂,代之以对人体无害的新透明化试剂,透明化效果更佳,硅藻光镜检测更轻松。4、液晶触摸屏控制、按键控制两种方式可选,操作直观、方便。5、静音设计,噪音≤ 60dB(A)(负载),振动小。6、6滤头单排式设计,多个样品可同时抽滤或单独抽滤。7、具定时、报警功能,结合使用大容量一次性滤杯组件,实现抽滤时无需人员值守。8、一次性滤杯组件含有保护盖,防止污染。9、滤杯底座设有取膜凹槽,方便膜的放置与夹取。10、设备结构紧凑,占用空间小。二、主要技术参数1、电源:AC220V/50Hz2、功率:100W3、真空度:100kPa4、流量:≥600mL/min5、工作类型:连续工作6、控制方式:液晶触摸屏控制、按键控制两种方式可选,具定时、报警功能7、滤液排放方式:直排式8、滤头:数量6个,单排式设计9、一次性滤杯组件:配过滤速度快的新型滤膜,容量500mL10、噪音:≤60dB(A)(负载)11、重量:11kg12、尺寸:56.0cm(长)×20.5cm(宽)×20.0cm(高)
  • 标准解读 | 《汽车用高强韧类高真空压铸铝合金材料技术条件》
    近日,中国汽车工程学会正式发布团体标准《汽车用高强韧类高真空压铸铝合金材料技术条件》(T/CSAE 198-2021)。该标准由汽车轻量化技术创新战略联盟提出,苏州有色金属研究院有限公司牵头,联合中铝材料应用研究院有限公司、广东鸿图科技股份有限公司、安徽江淮汽车集团股份有限公司、中铝山西新材料有限公司、南通鸿劲金属铝业有限公司、重庆长安汽车股份有限公司、东风汽车集团有限公司等多家整车及材料企业共同研制。根据《中国汽车产业发展报告(2020)》的数据显示,2005年~2017年,我国交通行业的二氧化碳排放量始终保持稳定增长态势,占比从8%增长到10%。随着汽车保有量的增长,道路交通的碳排放增长速度较高。根据公安部统计的最新数据显示,2020年全国汽车保有量达2.81亿辆,已有70座城市的汽车保有量超过百万辆。汽车保有量的增长,导致交通行业碳排放量增长速度要远高于其他行业。相关预测显示,到2025年交通运输行业的碳排放量将在现有的基础上增加50%。2020年10月,由工信部指导编制的《节能与新能源汽车技术路线图2.0》明确指出,我国汽车产业碳排放将于2028年左右提前达峰,至2035年,碳排放总量较峰值下降20%以上。在汽车行业,推动节能减排首要的任务之一是实现汽车的轻量化。目前我国正加快汽车轻量化进程,大力发展新能源汽车尤其是电动汽车,主要是通过车身连接件、电池托盘等结构件的铝化实现轻量化的目标。这些结构件对强度和韧性均提出了较高的要求,采用真空压铸技术和高强韧压铸铝合金制备汽车结构件越来越被主机厂接受。但是,我国目前仅有针对传统非承载压铸件的压铸铝合金材料标准,严重制约了我国汽车轻量化特别是新能源汽车的快速发展。因此,在这种背景下,汽车轻量化技术创新战略联盟提出制定汽车用高强韧类高真空压铸铝合金材料的团体标准,旨在通过本标准规范汽车用铝合金结构零件对压铸铝合金的整体要求,推动汽车轻量化行业的快速发展。本标准规定了汽车用高强韧类高真空压铸铝合金材料的术语和定义、技术要求、试验方法、检验规则、标志、包装、贮存和运输。在术语和定义方面,通过定义一种压铸前快速抽出型腔中的气体,使模具型腔中的真空度不超过50mbar,确保液态金属在高压作用下,以极高的速度充填模具型腔,并在一定压力作用下冷却凝固而得到铸件的成形工艺,引出高强韧类高真空压铸铝合金材料,并将其定义为抗拉强度大于180MPa,屈服强度大于120MPa,同时伸长率大于8%,且适合于高真空压铸成形的铸造铝合金材料。在技术要求方面,主要从外观质量、化学成分、力学性能、含氢量、夹渣量、断口组织、显微组织七个方面对该压铸铝合金材料进行规定,其中化学成分对合金的Si、Fe、Mn、Mg、Sr、Cu、Ti等元素进行了规定,同时对杂质的单项和杂质的总和进行了规定。在力学性能方面包括金属型铸造和高真空压铸条件下单铸试棒的室温拉伸性能、硬度、冲击韧性及疲劳性能,并给出了推荐的的热处理工艺和力学性能。在含氢量方面规定了铸锭针孔度等级和含氢量的最大值,具体包括建议铸锭针孔度等级不低于二级,合金液中含氢量不超0.2ml/100gAl。在夹渣量方面,若客户对夹渣量有要求时,应在订货单或合同中注明具体等级,并规定不应低于二级,同时利用测渣仪进行定量判定,夹渣量等级满足90s内通过的铝合金液超过2200g或者夹渣统计不超过0.15mm2/kg铝液。在试验方法方面,化学成分的试验方法按照GB/T7999-2015的规定执行。力学性能的检测方法中,拉伸性能的试验方法按GB/T 228.1-2010的试验要求的规定执行,硬度的试验方法按GB/T229-2020中的规定执行,冲击韧性的试验方法按GB/T 231.1-2018的规定执行,疲劳性能的试验方法按GB/T3075-2008的规定执行。本标准充分考虑了汽车行业用到的高强韧类铸造铝合金材料,适用于汽车薄壁结构件用高强韧真空压铸铝合金材料标准,也适用于其它高强韧类铸造铝合金的评价内容、评价方法及评价标准,可为主机厂及压铸件供应商在汽车车身结构件方面提供选材及检测要求基准,对于规范其在汽车结构件上的应用有重要的指导意义。
  • 洛科仪器新品 废液抽吸、真空过滤一机两用
    p  strong仪器信息网讯/strong 2015年10月27-30日,中国分析测试协会主办的第十六届北京分析测试学术报告会暨展览会(BCEIA2015)在北京国家会议中心盛大召开。作为历经30年的国内分析测试领域专业化程度和知名度最高的盛会,吸引了业内近四百家厂商参展。/pp  作为BCEIA2015的战略合作媒体,仪器信息网在本次展会现场视频采访了洛科仪器股份有限公司市场部经理洪国展,他介绍了此次洛科仪器重点推出的两款新品:Lafil 100 可携式废液抽吸系统 / 吸引器和Rocker 430无油式真空帮浦/泵。/ppscript type="text/javascript" src="https://p.bokecc.com/player?vid=D192A4B3A2DAFCBE9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1"/scriptp/p/p
  • 理加LI-2100全自动真空抽提系统的海外之旅
    不同水体的氢氧稳定同位素可用于植物水分利用来源、水汽输送、土壤水运移和补给机制、补给源和地下水机制、水体蒸发、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、重建古气候等方面的研究。因而引起了水文学家,生态学家以及气候学家等的广泛关注。但问题是:在进行水稳定同位素测试之前如何将植物木质部和土壤中的水分无分馏的提取出来?LI-2100是LICA自主研发的一款全自动真空冷凝抽提系统,且已通过CE认证。从根本上解决了植物和土壤水分提取的难题,克服了传统液氮冷却的繁琐,不仅可以防止同位素分馏,而且安全高效,不会对植物和土壤造成破坏。可与LGR水同位素分析仪和质谱仪配套使用。许多科学家已经结合LI-2100和LGR的水同位素分析仪进行了诸多研究。从研发生产至今,LI-2100在国内已经销售了近百台,国内的科研工作者利用这台仪器发表了诸多文献,得到了用户的众多好评。随着LI-2100在国内的广泛应用及众多文献的发表,国外的一些科学家也开始关注理加公司研发生产的LI-2100,理加公司也积极在海外推广该产品,由此拉开了LI-2100走出国门、走向海外的序幕。LI-2100在海外的安装案例1. 巴西国家空间研究所(INPE)应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。科学家简介:Laura De Simone Borma (劳拉德西蒙娜博尔玛)1988 年毕业于欧鲁普雷图联邦大学土木工程专业,1991 年获得里约热内卢联邦大学土木工程硕士学位,以及里约热内卢联邦大学土木工程-环境岩土工程博士学位(1998)。自 2009 年起在 INPE(国家空间研究所)担任研究员,从事生态水文学和土壤物理学领域的工作,重点是实地观察陆地和极端天气事件对土壤-植物-大气相互作用以及气候变化、土地利用和覆盖变化的影响。她目前是 INPE 的 PGCST(地球系统科学研究生)和 PGSER(遥感研究生)的教授。协调 CCST/INPE 的生态水文学 (LabEcoh) 和生物地球化学 (LapBio) 实验室。她是 ISMC(国际土壤建模联盟)的成员。她对巴西不同生物群落中土壤-植物-大气相互作用、生态水文学以及水和气候调节的生态系统服务领域的研究感兴趣。LI-2100在海外的安装案例2. 澳大利亚Flinders大学 College of Science and Engineering应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。 LI-2100在国内的部分安装案例1、沈阳气象局2、中国林业科学研究院亚热带林业研究所3、广西植物园4、中国科学院西双版纳热带植物园...发表文献1. Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earth Sciences, 75(23):1491.2. Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.3. Huang XY, Meyers PA. 2018. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2018.12.017. 4. Sun L, Yang L, Chen LD et al. 2018. Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, doi: 10.2166/nh.2018.086. 5. Zhang YG, YU XX, Chen LH. 2018. Comparison of the partitioning of evapotranspiration –numerical modeling with different isotopic models using various kinetic fractionation coefficients. Plant and Soil, 430: 307-328, https://doi.org/10.1007/s11104-018-3737-z. 6. Zhao X, Li FD, Ai ZP et al. 2018. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Science of the Total Environment, 121-131.7. Zhu G, Guo H, Qin, D et al. 2018. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data. Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.12.014. 8. Che CW, Zhang MJ, Argiriou AA et al. 2019. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China, Water, doi:10.3390/w11091742.9. Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuation groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12. 10. Liu JC, Shen LC, Wang ZX et al. 2019. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571: 485-493.11. Liu Y, Zhang XM, Zhao S et al. 2019. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests, doi:10.3390/f10020121. 12. Liu Z, Ma FY, Hu TX et al. 2019. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.13. Luo ZD, Guan HD, Zhang XP et al. 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. Journal of Hydrology, 571, 642-650. 14. Qiu X, Zhang MJ, Wang SJ et al. 2019. The test of the ecohydrological separation hypothesis in a dry zone of the northeastern Tibetan Plateau. Ecohydrology, https://doi.org/10.1002/eco.2077.15. Qiu X, Zhang MJ, Wang SJ et al. 2019. Water stable isotopes in an Alpine setting of the northeastern Tibetan Plateau. Water, doi:10.3390/w11040770.16. Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agriculture, Ecosystems and Environment, 276: 55-63. 17. Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693. 18. Wu X, Zheng XJ, Li Y, Xu GQ. 2019. Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.19. Xu YY, Yi Y, Yang X, Dou YB. 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment. Water, doi:10.3390/w11112287. 20. Dai JJ, Zhang XP, Luo ZD et al. 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125199. 21. Jiang PP, Wang HM, Meinzer FC et al. 2020. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. New Phytologist, doi: 10.1111/nph.16027. 22. Liu L, Bai YX, She WW et al. 2020. A nurse shrub species helps associated herbaceous plants by preventing shade‐induced evaporation in a desert ecosystem. Land Degradation and Development, https://doi.org/10.1002/ldr.3831. 23. Liu Z, Ma FY, Hu TX. 2020. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933. 24. Pan YX, Wang XP, Ma XZ et al. 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, https://doi.org/10.1016/j.catena.2020.104499. 25. Su PY, Zhang MJ, Qu DY et al. 2020. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water, 12, 2791 doi:10.3390/w12102791. 26. Wang J, Fu BJ, Wang LX et al. 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2020.108020. 27. Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, https://doi.org/10.1016/j.geoderma.2020.114321. 28. Xiao X, Zhang F, Li XY et al. 2020. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone Journal, doi: 10.1002/vzj2.20022.29. Yang B, Meng XJ, Singh AK et al. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems and Environment, 298, 106937.30. Yang B, Zhang WJ, Meng XJ et al. 2020. Effects of a funnel-shaped canopy on rainfall redistribution and plant water acquisition in a banana (Musa spp.) plantation. Soil, Tillage Research, https://doi.org/10.1016/j.still.2020.104686.31. Yong LL, Zhu GF, Wan QZ et al. 2020. The soil water evaporation process frommountains based on the stable isotope composition in a headwater basin and northwest China. Water, 12, 2711 doi:10.3390/w12102711. 32. Zhang Y, Zhang MJ, Qu DY et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China. Water, doi:10.3390/w12071923. 33. Zhang YG, Wang DD, Liu ZQ et al. 2020. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2019.105995. 34. Li Y, Ma Y, Song XF et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125811. 35. Yang B, Meng XJ, Zhu XA et al. 2021. Coffee performs better than amomum as a candidate in the rubber agroforestry system: Insights from water relations. Agricultural Water Management, doi.org/10.1016/j.agwat.2020.106593. 36. Qiu X, Zhang MJ, Dong ZW et al. 2021. Contribution of recycled moisture to precipitation in northeastern Tibetan Plateau: A case study based on Bayesian estimation. Atmosphere, 12, 731. https://doi.org/10.3390/ atmos12060731. 37. Zhao Y, Wang L. 2021. Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz xylem water from root water stable isotope measurements. Hydrology and Earth System Sciences, 25, 3975-3989.38. Shi PJ, Huang YN, Yang CY et al. 2021. Quantitative estimation of groundwater recharge in the thick loess deposits using multiple environmental tracers and methods. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126895.39. Zhu GF, Yong LL, Zhang ZX et al. 2021. Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.107173.40. Fang FL, Li YJ, Yuan DP et al. 2021. Distinguishing N2O and N2 ratio and their microbial source in soil fertilized for vegetable production using a stable isotope method. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2021.149694.41. Wang JX, Zhang MJ, Argiriou AA et al. 2021. Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River. Sustainability, 13, 9369.42. Zhu G F, Yong L L, Xi Z et al. 2021. Evaporation, infiltration and storage of soil water in different vegetation zones in Qilian mountains: From a perspective of stable isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-376.43. Qiu GY, Wang B, Li T et al. 2021. Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125940.44. Tang YK, Wang LN, Yu YQ et al. 2021. Differential response of plant water consumption to rainwater uptake for dominant tree species in the semiarid Loess Plateau. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-351.45. Lin W, Ding JJ, Li YJ et al. 2021. Determination of N2O reduction to N2 from manure-amended soil based on isotopocule mapping and acetylene inhibition. Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117913.46. Liu JZ, Wu HW, Zhang HW et al. 2021. Controls of seasonality and altitude on generation of leaf water isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-289.47. Qin WY, Chen G, Wang P et al. 2021. Climatic and biotic influences on isotopic differences among topsoil waters in typical alpine vegetation types. Catena, https://doi.org/10.1016/j.catena.2021.105375.48. Zhang X, Zhang QL, Xu ZH et al. 2021. Mechanism of environmental factors regulating water consumption of Larix gmelinii forests. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-021-03025-7.49. Zhu WR, Li WH, Shi PL et al. 2021. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains, northern China. Sustainability, 13(2), 807 https://doi.org/10.3390/su13020807.50. Liu ZH, Jia GD, Yu XX et al. 2021. Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.106943.51. Zhu GF, Yong LL, Zhang ZX et al. 2021. Effects of plastic mulch on soil water migration in arid oasis farmland: Evidence of stable isotopes. Catena, https://doi.org/10.1016/j.catena.2021.105580.52. Zhao Y, Wang L, Knighton J et al. 2021. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108323.53. Shi Y, Jia WX, Zhu GF et al. 2021. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China. Polish Journal of Environmental Studies, 30, 3, 2325-2339.54. Wu A, Behzad HM, He QF et al. 2021. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126199.55. 周盼盼, 张明军, 王圣杰等. 2016. 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35(11): 2942-2951.56. 李亚飞, 于静洁, 陆凯等. 2017. 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 41(5): 519-528.57. 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析. 热带地理, 38 (6): 857-865.58. 霍伟杰, 蒲俊兵, 李建鸿等. 2019. 断陷盆地高原面典型岩溶洼地旱季土壤水氢氧同位素时空差异特征.中国岩溶,38(3): 307-317.59. 戴军杰, 章新平, 罗紫东等. 2019. 长沙地区樟树林土壤水稳定同位素特征及其对土壤水分运动的指示. 环境科学研究,32(6): 974-983.60. 胡士可和叶茂. 2020. 基于氢氧稳定同位素的柽柳水分来源分析. 广东农业科学, 47(2):54-60.61. 李盼根, 王震洪, 李赫等. 2020. 基于稳定氢氧同位素的黄土高原不同生长年限油用牡丹水分来源研究. 水土保持通报, 40(1): 108-115.62. 史佳美, 余新晓, 贾国栋等. 2020. 不同动力学分馏系数对北京山区侧柏叶片水δ18O的模拟. 应用生态学报, 31(6): 1827-1834.63. 苏鹏燕, 张明军, 王圣杰等. 2020. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31(6): 1835-1843.64. 孜尔蝶巴合提, 贾国栋, 余新晓. 2020. 基于稳定同位素分析不同退化程度小叶杨水分来源. 应用生态学报, 31(6): 1807-181665. 王露霞, 梁杏, 李静. 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710.66. 王锐, 章新平, 戴军杰等. 2020. 亚热带地区不同林分下植物水分利用的季节差异. 生态环境学报, 29(4): 665-675.67. 王锐, 章新平, 戴军杰等. 2020. 亚热带典型植物水分利用来源变化的水稳定同位素分析. 水土保持学报, 34(1): 202-209.68. 王锐, 章新平, 戴军杰等. 2020. 亚热带湿润区樟树吸水的土层来源及研究方法对比. 水土保持学报, 34(5): 267-276.69. 郝帅和李发东. 2021. 艾比湖流域典型荒漠植被水分利用来源研究. 地理学报, 76(7): 1649-1661.70. 李雨芊, 孟玉川, 宋泓苇等. 2021. 典型林区水分氢氧稳定同位素在土壤-植物-大气连续体中的分布特征. 应用生态学报, 32(6): 1928-1934.71. 刘秀强, 陈喜, 刘琴等. 2021. 西北干旱区尾闾湖过渡带陆面蒸发和潜水对土壤水影响的同位素分析. 干旱区资源与环境, 35(6): 52-59.72. 王家鑫, 张明军, 张宇等. 2021. 基于稳定同位素示踪的黄河兰州段河漫滩土壤水特征分析. 干旱区地理, 44(5): 1449-1458.73. 王锐, 章新平, 戴军杰等. 2021. 亚热带针阔混交林土壤-植物-大气连续体(SPAC)中水稳定同位素特征. 生态环境学报, 30(6): 1148-1157.74. 王欣, 贾国栋, 邓文平等. 2021. 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32(6): 1943-1950.75. 武昱鑫, 张永娥, 贾国栋. 2021. 基于多种同位素模型的侧柏林生态系统蒸散组分定量拆分应用生态学报, 32(6): 1971-1979.76. 张泽, 孙贺阳, 李陶珂等. 2021. 拆分典型草原群落蒸散组分方法研究. 中国草地学报, 43(4): 87-95.LI-2100特点1. 沿用传统经典的真空蒸馏冷冻方法,数据可靠2. 无需液氮:压缩机制冷,提高安全性3. 快速高效:一次可同时提取14个样品4. 全自动抽提:全过程无人值守5. 安全便捷:自我断电与自我保护功能6. 质量控制:故障提示与自动报警7. 全球首创:专利技术8. 氢氧稳定同位素前处理 性能指标提取速度>110 个/天可同时提取样品数14 个系统真空度<1000 Pa系统漏率<1 Pa/s抽提率>98%回收率99%-101%真空泵5 L/min, 24 V, 最大压力, 0.3bar制冷无需液氮,压缩机与冷阱结合,最低制冷温度可达 -95℃制热电磁制热,最高制热温度可达 130℃显示与操作TFT LCD (7寸, 800*480 65536). 触摸式人机友好交互界面自动保护温度过高或超出设定温度值,加热系统自动关闭自动报警制冷系统故障提示并报警与真空泄露故障报警尺寸90 cm (H)×74 cm (W)×110 cm (D)重量120 KgLI-2100是国际上第一款全自动植物土壤真空抽提系统,也是国内全自动植物土壤真空抽提系统的领导品牌。LI-2100为客户取得更为准确的数据提供了有利的方法和保障。理加公司专注国产生态仪器的研发和生产,是国内生态领域自主研发比较早、国产化比较好的一家公司。相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。海外市场的拓展不是一条容易走的路,但理加会坚定地走出去。
  • 真空控制在旋蒸分离纯化中的应用
    在使用旋转蒸发仪过程中,分离纯化过程中,所用的温度和真空度是重要的设置参数。物质的饱和蒸气压是温度和真空度控制的参考标准(见附表)。* 什么是饱和蒸气压? 无论是液体还是固体,时时刻刻都存在蒸发(升华)、凝结过程,而气化后的气体分子会对物质表面形成压力。而蒸气压指的就是液体或固体表面存在着的该物质的蒸气,这些蒸气对液体或固体表面产生的压强。  饱和蒸气压就是指在密闭条件中、一定温度和气压下,物质的蒸发(升华)与凝结处于动态平衡状态时,那个时候该物质的蒸气压。 以常见的水为例(纯水),密闭容器中,抽走空气,水会不断蒸发,随着温度的不同,其蒸气形成的饱和蒸气压也会不同。如果温度稳定在100℃,那蒸气就会不断形成,直至蒸气压到101.32kPa,也就是那个时候水的饱和蒸气压。这个时候如果温度不再升高,101.32kPa的蒸气压下,随后蒸气虽然在继续产生,但同时也会有等量的蒸气重新凝结为水,形成平衡,压力不再升高;如果温度为30℃,那么水蒸汽形成的蒸气压就不会超过4.2455kPa;20℃时,饱和蒸气压就是2.3388kPa。* 真空控制与旋蒸分离纯化 旋转蒸发仪在进行分离纯化的过程中,要考虑到目的产物在高温下会出现变性或分子结构损坏的情况。因此需要到较低的温度下进行分离纯化。在较低的温度下形成分离试剂的饱和蒸气压,需要借助真空泵进行抽真空。通过对真空度的控制,可以在目的产物变性的安全温度以下对混合溶剂进行快速分离提纯。* WIGGENS防腐蚀真空控制器 WIGGENS的DVR480 型防腐蚀真空控制器,专用于旋蒸的真空度控制。最低可控制真空度达到0.1mabr ,支持最多5 段编程控制,可以高效自动地实现多种溶剂的回收。接触气体材料均为PTFE 或高性能陶瓷,可耐受酸、碱、以及各种有机溶剂气体。数字式显示,按键控制,具有USB 数字接口,以及模拟输入输出接口。可以连接泵电源控制,在达到稳定真空度后暂时关停泵电源,节能环保;也可工作在泵的常开状态。* 附表:常用有机溶剂饱和蒸气压(40℃)需要的真空度溶剂分子式40℃(104℉)下的饱和蒸汽压 (mbar)摩尔质量 (g/mol)水H2O7418.0四氯化碳CCl4285153.8三氯甲烷CHCl3477119.4甲酸CH2O211446.0二氯甲烷CH2Cl2~atm.84.9甲醇CH4O35232.0四氯乙烯 (PCE)C2Cl453165.8三氯乙烯C2HCl3191131.4五氯乙烷C2HCl514202.3反式-1,2-二氯乙烯C2H2Cl277796.9顺式-1,2-二氯乙烯C2H2Cl248896.91,1,2,2-四氯乙烷C2H2Cl419167.81,1,1-三氯乙烷C2H3Cl3307133.4乙腈C2H3N22941.1乙酸C2H4O24760.01,2-二氯乙烷C2H4Cl221499.0乙醇C2H6O17846.1丙酮C3H6O56358.1二甲基甲酰胺(DMF)C3H7NO1373.1正丙醇C3H8O7060.1异丙醇C3H8O13660.1四氢呋喃 (THF)C4H8O40272.1丁酮C4H8O26572.1(1,4-)二氧己环C4H8O210288.1乙酸乙酯C4H8O225188.1正丁醇C4H10O2574.1异丁醇C4H10O4274.1叔丁醇C4H10O14074.1乙醚C4H10Oatm.74.1二乙胺C4H11N58173.1吡啶C5H5N6079.1正戊烷C5H12atm.72.2正戊醇C5H12O1188.2甲基叔丁基醚C5H12O59788.2异戊醇C5H12O1488.2氯苯C6H5Cl34112.6苯C6H623678.1环己烷C6H1225084.2乙酸丁酯C6H12O235116.2己烷C6H1437386.2二异丙醚C6H14O372102.2甲苯C7H87792.1正庚烷C7H16124100.2二甲苯C8H1027106.2
  • 亟待攻克的核心技术之真空蒸镀机的匮缺
    p  未来可卷曲、如纸一样轻薄的各类终端屏幕主要选材是OLED(有机发光二极管),OLED生产过程最重要的一环就是“蒸”,工艺难度极高。/pp  真空蒸镀机就如同OLED面板制程的“心脏”,被日本Canon Tokki独占高端市场,说其掌握着OLED产业的咽喉也不过分,业界对它的年产量预测通常在几台到十几台之间。有钱也买不到,说的就是它。/pp  可惜,目前我国还没有生产蒸镀机的企业,在这个领域我们没什么发言权。/pp  strong这台设备就如同生产OLED面板的“入场券”/strong/pp  买到Canon Tokki的设备就如同得到了一张生产OLED面板的“入场券”,Canon Tokki在业内的名声很像顶级光刻机企业ASML,神一样的存在。/pp  仅有300多名员工,却基本垄断了全球真空蒸镀机的供应,每台报价过亿美元,仍然一机难求,排队等货因此成为常态。/pp  据说京东方6代柔性OLED生产线能够提前量产的重要前提就是,拿到了Canon Tokki的真空蒸镀机。三星之所以能垄断中小尺寸OLED的生产和供货,也是因为有了Canon Tokki的助攻。/pp  蒸镀设备厂商不止一家,Canon Tokki为什么一机难求?因为它量产稳定与技术成熟的优势无人可比。/pp  买到Canon Tokki的设备就能有良品率吗?不然。/pp  中粤金桥投资合伙人罗浩元对科技日报记者说:“蒸镀设备虽然是OLED生产中的关键环节,但一条生产线要实现批量化、高品质的生产,要对整个生产链进行科学管理及整合,确保每一道工序可控、可靠。但是,没有真空蒸镀设备,以上无从谈起。”/pp  strongCanon Tokki能把蒸镀误差控制在5微米以内/strong/pp  蒸镀是OLED制造工艺的关键,直接影响着OLED屏幕显示,蒸镀机的工作就是把OLED有机发光材料精准、均匀、可控地蒸镀到基板上。/pp  OLED显示面板中大量应用的有机材料极易受到氧气和水的影响,有机材料间也很容易造成污染,因此,面板的蒸镀一般都是在真空环境下且相互独立进行。/pp  通过电流加热,电子束轰击加热和激光加热等方法,使被蒸材料蒸发成原子或分子,它们即以较大的自由程作直线运动,碰撞基片表面而凝结,形成薄膜,这个过程就是真空蒸镀。/pp  “通俗地说,OLED屏幕每个像素都是蒸上去的,除了发光材料,金属电极等也是这样蒸上去的,实际操作非常复杂。/pp  Canon Tokki能把有机发光材料蒸镀到基板上的误差控制在5微米内,这是什么概念?1微米相当于头发直径的1%。”罗浩元说,“没有其他公司的蒸镀机能达到这个精准度。”/pp  潜心于一个领域20余年,让Canon Tokki拥有不少专利,比如,它很早就将机器视觉应用在设备上。生产环节中,对准玻璃基板和用作像素模板的细金属网难度很大,利用摄像头追踪,Canon Tokki可将误差范围缩小到人体红细胞大小。/pp  strong这是一场多维度、立体化的综合性突破/strong/pp  就如中国科学院院士、中国科学院物理研究所欧阳钟灿教授所说,中国平板显示全球第一,但大而不强。我国OLED企业主要聚集在产业链中下游的面板和手机等显示终端产品应用领域,上游核心生产设备完全依靠进口。/pp  当年三星从全球40多家蒸镀机业者选到今天最牛的Canon Tokki,在OLED产业蛰伏期,Tokki遭逢破产危机时,依然全力扶持,这种患难情谊让三星一度独家拿下Canon Tokki的全部产量。/pp  电子创新网创始人、半导体技术专家张国斌对科技日报记者说:“虽然离了Canon Tokki三星也可能玩不转,但三星对产业趋势和技术的判断、把握值得我们反省。”/pp  罗浩元比较认同张国斌的观点:“具体到真空蒸镀机这种卡住产业咽喉的核心装备,能不能追,怎么追,从上到下都很迷茫。我国目前的OLED产业布局和推进方式可以让我们短期内形成产业规模,却无法实现高端设备的自主研发、装备能力。这个问题不解决,别说真空蒸镀机,其他OLED装备的突破也将是空谈。”/pp   中国电子材料行业协会常务副秘书长袁桐认为,材料或设备并不是单一的产品,它牵涉到面板系统性的工艺和技术,如果只凭配套企业一己之力,可能只能实现某一种材料或设备的国产化替代。罗浩元说:“这是一场多维度、立体化的综合性突破。”/pp  OLED的生产难度在精密制造,精密制造的技术壁垒在精密设备。国内OLED大型生产线装备虽仍一片空白,但OLED科研型蒸镀设备已达国际水平,中试型生产装备已成功研发。“虽然距离摆脱‘真空’有点远,但好歹上路了。”罗浩元说。/pp  “真空蒸镀机等核心设备的缺失,反映出我国基础研究、精密加工、自动化控制等多领域的短板。”罗浩元说,“虽然很难,但一代人有一代人的任务,希望我们这一代能生产出真空蒸镀机。”/p
  • 新品发布:FOLI30V真空型傅里叶变换红外光谱仪
    产品简介FOLI30V真空型傅里叶变换红外光谱仪,是荧飒光学全新推出的一款高端研究级红外光谱仪。与传统的红外光谱仪不同,真空红外,顾名思义,就是采取全真空光学设计,所有红外光路及样品均处于真空环境中,测试过程无需担忧大气中CO2和水蒸气的强吸收带来的影响。这种设计,既提高了整体光路的光通量,又有利于检测诸如单分子层薄膜的弱信号。目前,真空型红外已经广泛应用在纳米表面分析、聚合物工业、材料科学、制药、半导体及催化等领域。FOLI30V真空型红外光谱仪,整机采用全铸铝材质,独立式光学腔设计,配置无油减震泵,可对整体光学腔进行快速抽真空,并实时显示真空度。主机配置有密封隔离罩,用户可以单独对样品腔进行真空操作,极大提高用户的测样效率。FOLI30V真空型红外光谱仪,可选配近-中-远全红外波段,标配独特的红外元器件,一次测量即可采集样品的中红外及远红外谱图,覆盖6000-50cm-1光谱范围,获得样品分子全部的振动和转动结构信息,而无需担心远红外波段强烈的水蒸气吸收干扰。此外,FOLI30V可以配置外置水冷汞灯光源及液氦Bolometer检测器,使用户的测量范围扩展到10 cm-1,达到太赫兹的研究波段。同时,用户可以更换近红外光学系统,软件自动切换光路,使光谱范围达到12500 cm-1,在同一光学平台上,真正实现远、中、近红外谱区的研究。除了标配的光路之外,FOLI30V可以配置多个外接光路口,连接各种外置光学腔,比如UHV真空密封腔、低温杜瓦、高温发射红外腔、外置样品腔、外置检测器腔等,极大丰富了研究者的光学平台和研究领域。FOLI30V配置有各类无机化合物、有机金属络合物、聚合物、添加剂、有机化合物等红外光谱数据库,数据库全部显示中文名称。此外,软件提供用户快速自建库功能,允许用户开发新的中文数据库,以便不断更新自我检测能力。产品特点* 全真空的光学设计,真空度≤0.2mbar;* 软件自动切换近、中、远谱区检测器和光源覆盖整个红外谱区12,500-10cm-1;* 一次测量获取中、远谱区的光谱信息:6,000-50cm-1;* 高光谱分辨率: ≤0.25cm-1 * 去除大气中水蒸汽、CO2的强吸收干扰;* 不受实验室环境温度变化的影响;* 光通量更高,更灵敏;* 稳定性更高,可重复性更好;* 可配备纯金刚石晶体的ATR附件,实现真空状态下测量;* 可整体或单独对样品腔进行抽真空,提高测试效率 * 可配置多个外接光路口,连接各种外置光学腔,如UHV真空密封腔、低温杜瓦、高温发射红外腔、外置样品腔、外置检测器腔等 * 可连接长光程气体池,测量高分辨气体光谱。产品参数配置清单应用领域* 自组装超薄膜研究* UHV真空密封超高真空腔* 低温基质隔离* 硅单晶中III、V族杂质的定量(B,P,Al,Sb,As,Ga,In)* 真空环境下对催化剂进行原位漫反射表征* 无机及有机配位化合物的研究* 分子晶体的晶格振动吸收* 气体分子的纯转动光谱的研究欢迎咨询产品咨询热线:021-59130260公司地址:上海市嘉定区沪宜公路1101号南翔智地三期-越界产业园,201802邮箱:info@insaoptics.com网址:www.insaoptics.com
  • 济南兰光参与编制的《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》正式
    济南兰光机电技术有限公司作为主要起草单位,与国家包装产品质量监督检验中心(济南)、山东质量检验协会共同编制的《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》(GB/T 28765-2012)国家推荐性标准近日由国家质量监督检验检疫总局发布,并于2013年5月1日正式实施。 常见有机气体如苯、酯、醇、酮、醛、醚等在渗透过程中会与多数薄膜材料发生反应,出现溶胀现象,导致材料的结构特性发生改变,进而影响其阻隔性,这也是当 前全球尚无有机气体透过率检测的方法标准的缘由之一。在该领域的研究中,一种定量测试方法&mdash &mdash 均衡法应用最广,对此,负责本标准起草的研究团队对该种方法 的仪器化可行性进行为期两年的全面分析及数据验证工作,肯定了该方法在实现检测及量化该测试指标上均可满足要求,同时提出了同样具有科学性和应用性的全新 测试方法&mdash &mdash 真空法。这在一方面有助于对当前实验室已在使用的均衡法测试给予使用指导,另一方面通过两种试验方法可进一步验证测试数据有效性。 当前包装容器的整体检测技术发展很快,由于容器测试与薄膜测试仅在测试腔的结构存在差异,其他测方面并无改动,因此容器有机气体透过率测试技术也被引入此标准中,进而拓宽了本标准的检测对象种类。 《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》涵盖了均衡法和真空法两种试验方法,是国际上首项有机气体透过率测试方法标准,为科学的评价食品、药品、 化妆品包装材料的有机气体透过率(即保香性能)提供了一种可量化的检测手段,同样也标志着济南兰光机电技术有限公司在包装材料有机气体渗透研究领域的学术 水平处于全国领先地位。
  • 普兰德真空泵的一次“绿色革命”——访普兰德(上海)贸易有限公司产品经理张婉思
    仪器信息网讯 2021年4月22日,中国科学仪器行业 “达沃斯论坛”第十五届中国科学仪器发展年会(ACCSI2021)在无锡盛大开幕,吸引了1400位各界代表参会。普兰德(上海)贸易有限公司作为知名科学仪器企业参加本次年会。在同期举办的“2020年度仪器及检测3i奖颁奖盛典”上,普兰德旗下VACUUBRAND品牌最新推出的VACUUPURE 10C实验室螺杆泵荣获 “2020科学仪器行业绿色仪器”称号,受到场内外用户的广泛关注。会议期间,仪器信息网采访了普兰德(上海)贸易有限公司产品经理张婉思,就普兰德实验室真空产品的技术发展及市场推广等方面进行了深入交流。颁奖嘉宾(左):中国电子节能技术协会副理事长王锦兵、获奖代表(右):普兰德(上海)贸易有限公司产品经理张婉思仪器信息网:普兰德近两年来在实验室真空领域主要力推哪些系列的产品?有哪些新产品或新的解决方案推出?张婉思:普兰德上海是德国BRAND集团在中国的子公司,其在实验室真空领域的产品线品牌为VACUUBRAND,主推的产品系列主要有四大类,分别是耐腐蚀化学隔膜泵系列、旋片泵和杂交泵系列、无油螺杆泵系列以及真空表和真空控制器系列。除此之外,我们还提供实验室局域真空网方案、真空吸液系统以及相关的零配件等。VACUUBRAND致力于做实验室真空科技的创新先锋。据我所知,上世纪80年代,VACUUBRAND首家在市场上推出化学耐腐蚀隔膜泵,而到了90年代,VACUUBRAND也是第一家在市场上推出化学真空系统和变频泵产品的企业。自我16年加入普兰德至今,亲自见证了VACUUBRAND最近的两次技术革新,一次是2018年全新升级的SELECT真空控制器系列,新的控制器在用户友好度方面做了全新升级,个性化应用的创建,数据存储、系统集成和远程控制都更加智能化,操作更便捷,更加贴合年轻科研工作者的操作习惯。另一次就是2020年底推出的VACUUPURE 10C无油螺杆泵,这款产品在实验室真空领域可以称得上是独一无二,也就是本次绿色仪器的获奖产品。VACUUPURE 10C 无油螺杆泵仪器信息网:此次获奖的新产品VACUUPURE 10C实验室螺杆泵的主要特色有哪些?主要针对哪些具体应用?其绿色节能之处主要体现在哪里?张婉思:VACUUPURE 10C的设计主旨是“Pure Vacuum nothing else”,它的特色非常鲜明,主要包括以下四点:首先是秉承VACUUBRAND产品的一贯优势,即耐化学腐蚀;其次是压力更低,从常压到10-3mbar的粗真空和中真空范围内,均可连续运行;第三是其独特的磁性驱动方式结合悬臂式螺杆设计塑造了它100%无油和无磨损和运行方式;第四是无磨损运行的原理使其内部没有易损件。VACUUBRAND经典隔膜泵产品是在实验室粗真空领域替代水泵解决客户的痛点问题,而这款新产品则是在实验室中真空领域解决客户使用油泵或其他类型机械泵所遇到的困扰。它的应用领域非常广泛,比如化学应用方向的减压反应过程、减压蒸馏提纯浓缩过程、真空干燥等;物理材料方向的真空镀膜、掺杂沉积过程;质谱电镜等精密分析仪器高真空系统的前级泵;生物方向的冷冻干燥等。VACUUPURE 10C的绿色节能主要体现在这几个方面:首先是100%干式无油,运行过程中不需要消耗任何介质,因此也不会产生或排放废弃介质,直接降低用户在废弃物方面的能耗。其次是它的无摩擦运行,相对于目前实验室中真空领域的油泵技术,它不会因为倒吸或返油等污染用户的实验过程,而相对于罗茨泵、涡轮泵等机械泵,它没有摩擦,不会产生颗粒性污染物影响实验过程和结果,因此可以使用户的实验过程和结果更加洁净,提高实验成功率和产品纯度,相应地节省了失败实验过程中对于试剂、耗材等能源的消耗。另一点则是这款泵独特的设计原理和再生模式,使它对化学蒸汽的耐受性很强,可以长时间无磨损运行,因此可以提供长期稳定高效的工作压力,有效地缩短用户单次实验的时间,提高实验的重复率,大量节省了用户的时间和精力。最后,正如以上所说,这款泵无油,不需要像油泵一样经常换油,且没有任何易损件,可以长时间稳定运行,大大降低了维护频率,且依据VACUUBRAND一贯以来对品质和质量的严格追求,这款产品的使用周期预计会比较久,我们经常看到客户实验室堆砌着很多用坏的油泵,从对损耗设备更换的时间和精力,以及用户实验室空间的占据这点来看,这也是它节能的一个体现。VACUUPURE 10C 无油螺杆泵仪器信息网:请问VACUUPURE 10C螺杆泵发布之后的市场反应如何?有哪些重要的用户反馈?张婉思:市场反馈非常好,这款产品从2020年11月发布至今收到了很多来自用户的试用申请,目前公司的投放样机处于不够用的状态。这款泵能够切实解决客户实际使用中的一些痛点 ,尤其是在耐腐蚀和洁净无油方面的评价特别高。譬如,我们有一位做减压蒸馏实验的用户,由于实验过程中涉及酸性介质,基本上两天就会用坏一台油泵,这款泵解决了客户实验过程中多年来存在的困扰,因此客户对于其耐化学腐蚀这点的评价非常高。另一位用户是做生物疫苗方面的,主要用这款泵搭配中试型冻干机,由于其工作区域属于洁净区,对油泵产生的油污非常介意,因此他在试用这款产品时对干式无油及洁净度方面的评价很高。 最后,张婉思提到,在国家政策(比如碳中和等)的驱动引领下,仪器行业正朝着更加环保节能的方向发展,而用户对于设备的操作便捷性、智能性和环保的要求也越来越高,VACUUBRAND在实验室真空领域也会不断地关注市场变化,希望给用户带来更好的实验室真空解决方案。从左到右分别为:曹阳(普兰德销售经理,负责苏南地区销售),王兴龙(普兰德销售经理,负责南区大区销售),张婉思(普兰德产品经理),许晶晶(普兰德市场经理)
  • 从源头浓缩:真空离心浓缩仪在药品研发中的关键角色
    真空离心浓缩仪除了化学、生物、医药等领域的使用外,在食品行业中是否同样适用?下面本文将详细介绍真空离心浓缩仪在制药及其他行业中的应用及实验室设备的选择。  真空离心浓缩仪在制药中的应用    真空离心浓缩仪主要应用于制药行业的浓缩和干燥过程中。在制药中,常常需要对生物样品进行处理,如DNA、RNA和蛋白质等。这些生物样品往往需要浓缩和干燥,以便进行后续的分析和处理。真空离心浓缩仪就是一种非常有效的浓缩和干燥设备。  真空离心浓缩仪的工作原理是利用高速旋转产生的离心力,将样品中的液体或溶剂从样品中分离出来,从而达到浓缩和干燥的目的。这种设备具有高效率、高速度、低能耗、低成本等优点,因此在制药行业中得到了广泛应用。    除了制药行业,真空离心浓缩仪在其他行业中的应用也非常广泛。例如:    生物技术行业:在生物技术行业中,需要对生物样品进行处理和制备。真空离心浓缩仪可以用于浓缩和干燥生物样品,以便进行后续的处理和制备。    环境科学行业:在环境科学行业中,需要对水样、土壤样品的进行处理和检测。真空离心浓缩仪可以用于浓缩水样、土壤样品中的有机溶剂,以便进行后续的检测和分析。  食品科学行业:在食品科学行业中,需要对食品样品进行处理和分析。真空离心浓缩仪可以用于浓缩食品样品中的水分和其他液体,以便进行后续的分析和研究。    真空离心浓缩仪在制药及其他行业中的应用越来越广泛,其作为一种重要的实验室设备,已经成为现代科学实验中不可或缺的一部分。在选择实验室设备时,必须充分考虑其品质和性能,以保证实验结果的准确性和可靠性。  实验室设备选择    实验室设备是进行科学实验的重要工具,其质量和性能直接影响到实验结果的准确性和可靠性。因此,在选择实验室设备时,必须充分考虑其品质和性能。以下是一些选择实验室设备的要点:  品质保证:选择有品质保证的实验室真空离心浓缩仪,避免后期出现各种问题,影响实验进程和结果;性能比较:不同的实验室设备在性能上有所差异,因此在选择时需要对其性能进行比较。例如,转速、温度、压力等参数都需要考虑进去;使用方便:真空离心浓缩仪应该使用方便,操作简单,易于掌握。这样不仅可以提高实验效率,也可以减少操作失误带来的不必要的麻烦;经济实惠:在选择实验室设备时,需要考虑到其经济实惠性。选择性价比高的实验室设备,既可以减少实验成本,又可以保证实验的质量和效果。
  • 应用|真空离心浓缩仪天然杜仲胶乳制备中的应用
    真空离心浓缩仪是一种用于样品浓缩的实验室仪器,通过高速旋转,使样品中的溶剂快速分离,从而将高浓度的样品提取出来。它在环境科学、医学、生物工程、高分子材料等领域具有广泛的应用。作为三大高分子材料之一,橡胶材料是人们生活中的重要材料,在交通、建筑、航天、军事、化工、农业、机械等领域得到了广泛应用。按照形态不同,橡胶材料可以分为固体生胶、胶乳、液体橡胶和粉末橡胶,其中胶乳是较为常用的橡胶材料,广泛应用于手套、气球、海绵、胶管等制品中。按照来源不同,橡胶可以分为天然橡胶和合成橡胶,其中天然橡胶是重要的战略物资和工业原料。由于地理位置的限制,我国长期面临着天然橡胶自给率低下的问题,因此寻求一种可以替代天橡胶的橡胶材料具有重要的现实意义。1、杜仲胶制备介绍杜仲胶( Eucommia ulmoides gum) 来源于杜仲树,其主要结构为反式聚异戊二烯,与三叶橡胶树产生的天然橡胶互为同分异构体。由于反式结构更加规整,分子链微观有序,易堆集结晶,因此杜仲胶是一种性能优异的新型材料(如形状记忆材料等),同时它具有的橡塑二重性,可以用于改性沥青、增韧塑料,并且在橡胶并用方面也有很好的应用前景。作为一种天然高分子材料,杜仲胶可以部分替代天然橡胶,在一定程度上缓解我国天然橡胶自给率不足的问题。但是由于提取工艺的限制,目前杜仲胶只有固体生胶而没有胶乳制品,制约了杜仲胶产业的进一步发展。采用溶液乳化法制备杜仲胶乳。将杜仲胶溶解在环己烷中,其中杜仲胶的质量分数为6% 。将杜仲胶的环己烷溶液与乳化剂的水溶液混合,在高速剪切搅拌的作用下使其乳化均匀,得到粗胶乳。将粗胶乳中的环己烷脱除后得到稀胶乳,经浓缩后得到杜仲胶乳。2、乳化剂的选择在胶的制备过程中,乳化剂的选择至关重要。根据亲水亲油平衡值(HLB)的大小,乳化剂可以分为油包水型(HLB8)和水包油型(8 HLB18)。本文制备的杜仲胶乳属于水包油型乳液,因此选择HLB值在8 ~ 18范围内的乳化剂。01、单一乳化剂分别采用 Span-20、 SDBS、OP鄄10、 Tween-20、油酸钠、歧化松香酸钾、PVA-1788、Brij-52作为乳化剂,按照油相和水相的体积比(油水体积比)1:3,将油相胶液加入含有乳化剂的水相中,以 8000r/ min搅拌10min,制得含有不同乳化剂的杜仲粗胶乳,观察单一乳化剂的种类和用量对乳化效果的影响,结果如表1所示。由表1可知,选用单一乳化剂制备杜仲胶乳时,乳胶不能乳化,静置时很快发生相分离,且析胶和起沫严重,达不到理想的乳化效果。这是因为杜仲胶为反式聚异戊二烯结构,分子间排列较为紧密,同时杜仲胶的分子量大且分布较宽,单一乳化剂不能将其包覆,导致乳液体系不稳定,容易发生相分离。因此,采用复配乳化剂对杜仲胶进行乳化,从表1中选出乳化效果相对较好的Tween20和Brij52进行复配。02、复配乳化剂采用Tween-20 与 Brij-52 复 配 的 方 式 进 行 乳化,考察两种乳化剂的用量及油水体积比对乳化效果的影响。使用正交试验法设计了 3 因素3水平的试验方案,如表2所示。采用相同的乳化工艺,以8000r/ min搅拌10min 进行乳化,通过旋转蒸发除去溶剂,离心浓缩后,制得含有复合乳化剂的杜仲胶乳,考察各试验因素对乳化效果的影响,结果如表 3所示。由于破乳率可以直观地表现出乳化效果,因此本文以破乳率为主要评价指标对正交试验结果进行极差分析。通过比较极差值 R,可以得出各因素对乳化效果影响的大小顺序为: Tween-20用量B Brij-52用量 A 油水体积比C。根据K值大小,得到正交试验的条件为 A1 B1 C1 ,即Brij-52 用量为1% ,Tween-20 用量为5% ,油水体积比为 1:1.5。在优化的条件下通过重复试验进行验证,制得的杜仲稀胶乳的破乳率几乎为0,经离心浓缩后固含量可达50% 以上, 粒 径 约 为 411 nm, Zeta 电位可达-30mV,浓缩胶乳放置一周无任何变化。3、除溶剂和浓缩方式杜仲胶乳的制备过程中需要除去有机溶剂环己烷。本文比较了常压蒸馏(蒸馏温度80°C)和旋转蒸发(压力 - 0.09 MPa,温度40°C )两种除溶剂方式对杜仲胶乳化效果的影响,结果如表6所示。当采用旋转蒸发方式除溶剂时,得到的乳液体系较稳定,几乎不破乳,乳液粒径约为 321nm,Zeta 电位的绝对值约为58mV 而采用常压蒸馏时,乳液体系的稳定性较差,破乳严重,乳液粒径较大。脱去有机溶剂后,乳液体系中仍有大量的水,胶乳固含量很低,无法满足运输及使用要求,因此需要对其进行浓缩以除去部分水。本文比较了常压蒸发(100°C )、旋转蒸发( - 0.09 MPa,50°C)、离心浓缩(10 000 r/ min,10 min)这 3 种浓缩方式对杜仲胶乳化效果的影响,结果如表 7 和图 2 所示。当采用常压蒸发浓缩时,乳液体系的稳定性几乎被破坏,胶乳粒径约为1045nm,且粒径分布较宽,这主要是因为在高温下乳液粒子运动加剧,粒子间更容 易碰撞、聚集、絮凝,从而破坏了乳液体系的稳定性 当采用旋转蒸发浓缩时,体系较为稳定,乳液粒径约为509nm,但是破乳严重 当采用离心浓缩时,体系的稳定性最好,Zeta电位的绝对值为57mV,胶乳固含量可达54% ,胶乳粒径约为333nm,且粒径分布较窄。4、富睿捷真空离心浓缩推荐富睿捷真空离心浓缩设备可同时处理多个样品,无需担心交叉污染。系统内程序可设定至多60个,主机配备样品在线成像系统,可在运行过程中观察样品浓缩状态,并根据不同的样品对整机的真空度进行调节。设备采用皮拉尼真空计可实时显示腔体内的真空度,并保证真空度的真实性。根据不同的样品可对整机转速进行调节,配备实验室智能互联及远程操控系统及智能云端故障排查系统,手机app可直接操控机器对主机远程进行腔体预热,温度和真空度以及转速可实时在app显示。产品参数冷冻型控温范围:-6°C-100°C常温型控温范围:室温-100°C控温精度:±0.1°C转速范围:400RPM-2500RPM
  • 上海烟草集团有限责任公司122.00万元采购真空泵
    详细信息 包件1 真空泵维保[招标公告] 上海市-杨浦区 状态:公告 更新时间: 2022-11-01 招标文件: 附件1 上海烟草集团有限责任公司上海卷烟厂设备二科动力设备维修保养(8包件)招标公告一、 上海宝华国际招标有限公司受上海烟草集团有限责任公司的委托对上海卷烟厂设备二科动力设备维修保养(8包件)进行公开招标,现邀请合格投标人参与竞标。 序号 项目内容 维保期限 最高投标限价(人民币,含税) 包件1 真空泵维保 自项目开工之日起3年 122万元 包件2 空调风机电机维保 自项目开工之日起3年 30万元 包件3 安全阀维保 自项目开工之日起3年 40万元 包件4 恒温恒湿机组、射流机组等设备维保 自项目开工之日起3年 165万元 包件5 空调风管、送回风口维保 自项目开工之日起1年 190万元 包件6 锅炉设备维保 自项目开工之日起3年 120万元 包件7 锅炉烟气在线监测维保 自项目开工之日起3年 89万元 包件8 冷冻机维保 自项目开工之日起3年 90万元 注:本项目共分为8个包件,符合条件的投标单位可自行选择参加投标的包件。具体服务内容及所应达到的具体要求详见招标文件服务要求。二、 本次招标的合格投标人应同时满足下列资格要求: 1. 投标人是在中华人民共和国境内(不包括香港、澳门及台湾地区,简称“中国境内”)注册的独立法人; 2. 具有良好的商业信誉和健全的财务会计制度; 3. 具有履行合同所必需的专业技术能力和完成本项目的能力; 4. 具有依法缴纳税收和社会保障资金的良好记录; 5. 参加本次招标活动前3年内(从2019年1月1日起至今,成立时间不足3年的,从成立之日起至今),在经营活动中没有因违法经营受到责令停产停业、吊销许可证或者执照、列入严重违法失信企业名单、骗取中标和经济刑事案件; 6. 投标人及其法定代表人、主要负责人或实际控制人参加招标活动前3年内(从2019年1月1日起至今,成立时间不足3年的,从成立日期起至今),不得有行贿行为记录; 7. 未被列入中国烟草总公司及上海烟草集团有限责任公司存在行贿行为供应商名单禁入期限内的供应商; 8. 在劳动保护、节能减排与生态环境保护方面符合国家规定要求; 9. 法定代表人不能参加采购活动时,可委托他人参加,但需提供授权委托书; 10. 投标人未被列入国家企业信用信息公示系统“经营异常”或“严重违法失信”企业名单; 11. 单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段或者未划分标段的同一招标项目投标; 12. 法律、行政法规规定的其他条件; 13. 本项目不得转包和分包; 14. 本项目不接受联合体投标; 15. 投标人须注意的其他事项: (1) 各投标单位在国家企业信用信息公示系统中披露的单位负责人相同,或企业间存在控股、管理关系,或主要人员及股东成员相同的,不得同时参加同一包件的投标报名; (2) 不同投标单位间的投标文件编制人、投标事宜办理人、项目管理成员不相同; (3) 投标单位的经营情况在招投标过程中发生变更的,变更内容仍应满足招标文件要求,须以书面形式及时告知招标人或招标代理机构,如未及时告知造成不良后果的,相关损失由投标人自行承担。三、 购买招标文件时需提交的应包括但不限于以下各项资料: 符合上述条件的投标申请人在购买招标文件时需提交下列资料: 1. 企业(单位)法人营业执照、组织机构代码证、税务登记证(或三证合一); 2. 法定代表人身份证明及身份证或法定代表人授权委托书及被委托人身份证; 3. 本单位“国家企业信用信息公示系统”查询结果(查询日期不得早于招标文件起售日); 4. 资格要求里提到的相关证明文件(包括本单位“中国裁判文书网”、“国家企业信用信息公示系统”(查询日期不得早于招标文件起售日); 注:以上资料一律采用A4规格纸张,所有证件复印件均需加盖单位公章,招标代理机构留存。投标申请人除将上述资料提交招标代理机构,还必须将其完整地编制在投标文件中。招标代理机构收到投标申请人的资料,并不意味着其投标在评标时不会被否决,最终将由评标委员会对投标文件中的上述资料进行审核。四、 有意向的供应商可从招标代理机构处得到进一步的信息和查阅招标文件。五、 有意向的供应商可于2022年11月01日~2022年11月08日每天(双休日及法定节假日除外)上午9:00-11:00,下午13:00-17:00(北京时间)登录宝华智慧招标共享平台购买招标文件。招标文件每套售价为人民币500元,售后不退。未从上海宝华国际招标有限公司处购买招标文件的潜在投标人将不得参加投标。 六、 所有投标文件应于2022年11月22日11时00分(北京时间)之前递交到上海市宝山区克山路550弄8号楼410开标室。七、 定于2022年11月22日11时00分(北京时间),在上海市宝山区克山路550弄8号楼410开标室公开开标。届时请投标人授权代表出席开标仪式。 由于疫情原因,本项目采用腾讯会议远程视频方式进行开标。(1)投标人应通过邮寄或快递方式将密封的投标文件于投标截止时间前送达至开标地点(上海市宝山区克山路550弄8号楼410室),疫情期间请务必留足邮寄时间,并由投标人承担其中的任何风险。招标代理机构收件联系人:张敏。(2)投标人应安排授权代表准时参加视频会议,并对投标过程中的相关事宜进行确认。(3)腾讯会议开始时间:2022年11月22日11时00分(请提前5分钟进入),会议号由招标代理提前24小时发给投标人。 招标人:上海烟草集团有限责任公司 地址:上海杨浦区长阳路717号 邮编:200082 电话:021-61660536 联系人:李德舜 招标代理机构:上海宝华国际招标有限公司 地址:上海市宝山区克山路550弄8号楼607 邮编:201999 电话:021-66891096 联系人:张敏 附件: 包件1真空泵维保-招标公告.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:真空泵 开标时间:2022-11-22 11:00 预算金额:122.00万元 采购单位:上海烟草集团有限责任公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海宝华国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 包件1 真空泵维保[招标公告] 上海市-杨浦区 状态:公告 更新时间: 2022-11-01 招标文件: 附件1 上海烟草集团有限责任公司上海卷烟厂设备二科动力设备维修保养(8包件)招标公告一、 上海宝华国际招标有限公司受上海烟草集团有限责任公司的委托对上海卷烟厂设备二科动力设备维修保养(8包件)进行公开招标,现邀请合格投标人参与竞标。 序号 项目内容 维保期限 最高投标限价(人民币,含税) 包件1 真空泵维保 自项目开工之日起3年 122万元 包件2 空调风机电机维保 自项目开工之日起3年 30万元 包件3 安全阀维保 自项目开工之日起3年 40万元 包件4 恒温恒湿机组、射流机组等设备维保 自项目开工之日起3年 165万元 包件5 空调风管、送回风口维保 自项目开工之日起1年 190万元 包件6 锅炉设备维保 自项目开工之日起3年 120万元 包件7 锅炉烟气在线监测维保 自项目开工之日起3年 89万元 包件8 冷冻机维保 自项目开工之日起3年 90万元 注:本项目共分为8个包件,符合条件的投标单位可自行选择参加投标的包件。具体服务内容及所应达到的具体要求详见招标文件服务要求。二、 本次招标的合格投标人应同时满足下列资格要求: 1. 投标人是在中华人民共和国境内(不包括香港、澳门及台湾地区,简称“中国境内”)注册的独立法人; 2. 具有良好的商业信誉和健全的财务会计制度; 3. 具有履行合同所必需的专业技术能力和完成本项目的能力; 4. 具有依法缴纳税收和社会保障资金的良好记录; 5. 参加本次招标活动前3年内(从2019年1月1日起至今,成立时间不足3年的,从成立之日起至今),在经营活动中没有因违法经营受到责令停产停业、吊销许可证或者执照、列入严重违法失信企业名单、骗取中标和经济刑事案件; 6. 投标人及其法定代表人、主要负责人或实际控制人参加招标活动前3年内(从2019年1月1日起至今,成立时间不足3年的,从成立日期起至今),不得有行贿行为记录; 7. 未被列入中国烟草总公司及上海烟草集团有限责任公司存在行贿行为供应商名单禁入期限内的供应商; 8. 在劳动保护、节能减排与生态环境保护方面符合国家规定要求; 9. 法定代表人不能参加采购活动时,可委托他人参加,但需提供授权委托书; 10. 投标人未被列入国家企业信用信息公示系统“经营异常”或“严重违法失信”企业名单; 11. 单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段或者未划分标段的同一招标项目投标; 12. 法律、行政法规规定的其他条件; 13. 本项目不得转包和分包; 14. 本项目不接受联合体投标; 15. 投标人须注意的其他事项: (1) 各投标单位在国家企业信用信息公示系统中披露的单位负责人相同,或企业间存在控股、管理关系,或主要人员及股东成员相同的,不得同时参加同一包件的投标报名; (2) 不同投标单位间的投标文件编制人、投标事宜办理人、项目管理成员不相同; (3) 投标单位的经营情况在招投标过程中发生变更的,变更内容仍应满足招标文件要求,须以书面形式及时告知招标人或招标代理机构,如未及时告知造成不良后果的,相关损失由投标人自行承担。三、 购买招标文件时需提交的应包括但不限于以下各项资料: 符合上述条件的投标申请人在购买招标文件时需提交下列资料: 1. 企业(单位)法人营业执照、组织机构代码证、税务登记证(或三证合一); 2. 法定代表人身份证明及身份证或法定代表人授权委托书及被委托人身份证; 3. 本单位“国家企业信用信息公示系统”查询结果(查询日期不得早于招标文件起售日); 4. 资格要求里提到的相关证明文件(包括本单位“中国裁判文书网”、“国家企业信用信息公示系统”(查询日期不得早于招标文件起售日); 注:以上资料一律采用A4规格纸张,所有证件复印件均需加盖单位公章,招标代理机构留存。投标申请人除将上述资料提交招标代理机构,还必须将其完整地编制在投标文件中。招标代理机构收到投标申请人的资料,并不意味着其投标在评标时不会被否决,最终将由评标委员会对投标文件中的上述资料进行审核。四、 有意向的供应商可从招标代理机构处得到进一步的信息和查阅招标文件。五、 有意向的供应商可于2022年11月01日~2022年11月08日每天(双休日及法定节假日除外)上午9:00-11:00,下午13:00-17:00(北京时间)登录宝华智慧招标共享平台购买招标文件。招标文件每套售价为人民币500元,售后不退。未从上海宝华国际招标有限公司处购买招标文件的潜在投标人将不得参加投标。 六、 所有投标文件应于2022年11月22日11时00分(北京时间)之前递交到上海市宝山区克山路550弄8号楼410开标室。七、 定于2022年11月22日11时00分(北京时间),在上海市宝山区克山路550弄8号楼410开标室公开开标。届时请投标人授权代表出席开标仪式。 由于疫情原因,本项目采用腾讯会议远程视频方式进行开标。(1)投标人应通过邮寄或快递方式将密封的投标文件于投标截止时间前送达至开标地点(上海市宝山区克山路550弄8号楼410室),疫情期间请务必留足邮寄时间,并由投标人承担其中的任何风险。招标代理机构收件联系人:张敏。(2)投标人应安排授权代表准时参加视频会议,并对投标过程中的相关事宜进行确认。(3)腾讯会议开始时间:2022年11月22日11时00分(请提前5分钟进入),会议号由招标代理提前24小时发给投标人。 招标人:上海烟草集团有限责任公司 地址:上海杨浦区长阳路717号 邮编:200082 电话:021-61660536 联系人:李德舜 招标代理机构:上海宝华国际招标有限公司 地址:上海市宝山区克山路550弄8号楼607 邮编:201999 电话:021-66891096 联系人:张敏 附件: 包件1真空泵维保-招标公告.pdf
  • 德祥:美国welch干式隔膜泵–实验室真空设备的*搭配
    促销型号 2034C-02促销内容:为了感谢新老用户对welch的大力支持welch真空泵特进行年底低价大促销 促销期限:即日起至2011年12月31日促销价格 12500 RMB产品描述: Welch干式隔膜真空泵所有与气体接触部位的表面均带有抗腐蚀聚四氟乙烯(PTFE)设计,使用此泵可以耐腐蚀性溶剂、碱性及酸性蒸汽。低噪音,抗化学腐蚀。当对酸性、碱性或有机材料进行过滤时,Welch的PTFE干式隔膜真空泵是理想的无油解决方案,仅需要很少的维护,可有效降低维护成本,提高效率。主要特点:1.AVM清洁系统除去残留溶剂,保护隔膜,保证使用寿命 2.抗腐蚀聚四氟乙烯(PTFE)结构,可处理各种腐蚀性蒸汽和气体 3.自带真空度调节器可调真空度,防止爆沸及起沫 4.可用于处理高沸点溶剂DMF 5.方便携带,节省实验室空间 6.干式-----完全无油操作 7.安静噪音低更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822联系我们(直接用户)联系我们(经销商)邮箱:info@tegent.com.cn
  • 真空精馏法在锂电池电解液回收中的应用
    为什么要进行锂电池电解液回收处理?众所周知,锂离子电池是由正极(锂钴氧化物、锂镍氧化物等)、负极(一般为炭素材料)、电解液、隔膜(聚乙烯、聚丙烯等)、粘结剂(聚偏氟乙烯、聚乙烯醇、聚四氟乙烯)等组成。目前有关废旧锂离子电池处理工艺的研究大多集中在贵重金属方面,例如镍、钴、锰、锂等金属材质因其自身的经济价值被先行深入研究。而电解液成分复杂,尤其是LiPF6 的存在,使得电解液接触高温环境就易发生分解,产生有毒有害物质,因此电解液处置不当会带来严重的安全和环境问题。同时,电解液本身的高附加值也决定需合理回收电解液。电解液组成及性质是什么?在各种商用锂离子电池系统中,液态电解液占主流地位。液态电解液一般由锂盐、有机溶剂、添加剂三部分组成。电解质盐,主要为六氟磷酸锂(LiPF6),其暴露在空气中易反应生成 HF、 LiF、PF5 等对人体有害的物质;有机溶剂主要有碳酸酯类、醚类和羧酸酯类;添加剂作为电解液中非必要成分,主要有碳酸亚乙烯酯、乙酸乙酯等,含量较少。表1:常见电解液的溶剂、溶质及添加剂种类[1]真空精馏方法在电解液回收处理的优势真空精馏法是在高真空环境下利用电解质和溶剂的沸点不同,经过多次冷凝和汽化后将电解质分离出来。在高真空下,精馏主要是为了防止电解液挥发损失。案例分享中海油天津化工研究设计院,周立山等[2]在惰性气体的氛围下拆解电池得到电解液,然后经过精馏装置减压真空精馏,将电解液分为有机溶剂和六氟磷酸锂初级产品,再对这两部分分别进行纯化,使之成为高纯度的产品,其中纯化后的六氟磷酸锂回收率可达 82.7%。天津卡特化工技术有限公司,毛国柱等[3]则另辟蹊径,通过真空精馏的方法,先将有机液体从电解液中分离出来,剩余的电解液通过添加比其多7 倍的硫酸氢钾,在高温下持续煅烧 5 h,然后与饱和 KF 溶液反应得到可以作为产品的 LiF。例如,下图1所示,为乙醇和水的连续分离过程,上升汽流和下降的液流在塔内直接接触,易挥发组分将更多的由液相转移到汽相,而难挥发组分将更多的由汽相转移到液相。这样,塔内上升的汽流中乙醇的浓度将越来越高,而下降的液流中水的浓度会越来越高,只要塔足够高,就能够使塔顶引出的蒸汽中只有乙醇,加热釜引出的溶液只有水。图1:乙醇-水溶液连续精馏流程1-精馏塔;2-冷凝器;3-再沸器同样,利用真空精馏法来回收锂电池电解液,主要有以下优势:● 得到的产物可以达到比较高的纯度,能够用于电池再生产,节约生产成本;● 该过程环保清洁,不易造成二次污染;● 和碱液吸收法、热裂解法、超声萃取法等其他工艺相比较,不会破坏主要成分,锂盐和有机溶剂的回收率相对较高。由以上得知,锂电池电解液成分复杂,混合了锂盐和多种有机试剂等,高温易蒸发,且多为热敏性物质。需通过真空精馏的方式,使用较高的理论塔板数的精馏塔才能将这些成分依次分离,从而达到分类回收的目的,实现资源重复利用的可能性。那么,德国Pilodist同心管精馏柱技术可以给锂电池电解液回收带来什么便利呢?德国Pilodist同心管精馏柱技术同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术具有如下的技术优势:&bull 压力降小&bull 滞留量小&bull 适用于热敏性物质&bull 高分离效率&bull 极少量蒸馏(低至1mL)&bull 极少工作流量而且,Pilodist精馏线产品主要有精密分馏装置PD104/PD105、微型精馏系统HRS500C和溶剂回收装置PD107等,都可以配备同心管精馏柱,特别适合热敏性物质在真空条件下的柔性蒸馏分离提纯。Pilodist HRS 500C实验室微型精馏系统其中,HRS500理论塔板数高达 60 块理论塔板。Pilodist PD 104精密分馏系统Pilodist PD 105精密分馏系统PD104和PD105的理论塔板数高达90块理论塔板数。Pilodist PD 107溶剂回收系统PD107溶剂回收系统,60块理论塔板数。可针对客户不同处理量、不同实验需求等选择不同的仪器配置方案。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。参考文献:[1] 陆剑伟,潘曜灵,郑灵霞,等. 锂离子电池电解液的清洁回收利用及废气治理方法[J].浙江化工. 1006-4184(2021)10-0040-06.[2] 周立山,刘红光,叶学海,等. 一种回收废旧锂离子电池电解液的方法: 201110427431.2[P]. 2012-06-13.[3] 毛国柱,侯长胜,霍爱群,等. 一种回收处理废旧锂电池电解液及电解液废水的处理方 法 : 201310562566.9 [P].PILODIST德国PILODIST是德祥集团资深合作伙伴之一。德国PILODIST公司源自于蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 紧跟政策|得利特与废油回收客户关于如何处理废油做了深入讨论
    我公司于近日接待了两位南方客人,这两位是来自于上海废油回收公司的总裁及助理。这次这几位客人来我公司主要是参观油品检测仪器的生产厂家。在参观完我们公司的生产车间和办公楼以后,给我们公司很高的评价,很希望能与我公司进行深一步的合作。通过我们面对面的交流,我公司发现上海市场是比较成熟的市场,油品分析仪器目前在该地区应用的比较广泛,竞争也比较激烈。只有扎实的产品质里和良好的售后服务,才能在在上海市场取得—席之地。南方客人还为我们介绍了关于废油处理的具体步骤,让我们的经理及在场技术都受益匪浅。在友好的气氛中,会谈取得了很好的结果,我们双方都对将来的市场前景充满展望。在此小编很愿意与大家分享这个关于废油回收处理的方法。废油回收用油单位要建立废油回收机制,分门别类地进行废油回收。对一般使用单位,不建议自行回收再加工,直接交给废油回收再加工单位好了。 废机油的再生处理一般用的机油是矿物性机油,它是石油的重质馏分经减压蒸馏而得到的一类产品。所谓废润滑油,一是指机油在使用中混入了水分、灰尘、其他杂油和机件磨损产生的金属粉末等杂质;二是指机油逐渐变质,生成了有机酸、胶质和沥青状物质。废机油的再生,就是用沉降、蒸馏、酸洗、碱洗、过滤等方法除去机油里的杂质。 具体操作: 1、降题将废油静置,使杂质下降而分离。沉降时间由油质和油温决定。油温越高,粘度越小,杂质越容易下降,沉降时间越短。2、蒸馏把经过沉降处理除去沉淀物后的废机油放入蒸馏烧瓶内。装好蒸馏装置,加热进行常压蒸馏。在180℃馏出的是汽油,180~360℃的馏分是柴油,留下的是机油。如果已知废机油内没有汽油、柴油等杂质,可以省掉这一步操作。 3、酸洗把沉降、蒸馏后的机油放入一只大烧杯里,加热到35℃,在搅拌下慢慢加入占机油体积约6~8%的浓硫酸(在30分钟内加完)。这时,浓硫酸跟废机油中的胶质、沥青状杂质等发生磺化反应。为了除去这些磺化后的杂质,再加入占机油体积1%的10%烧碱溶液,起凝聚剂的作用,加速杂质的分层。加碱后搅拌5分钟,静置一段时间,就出现明显分层,上层油呈黄绿色,没有黑色颗粒等杂质。4、碱洗这一步是为了除去废机油中的有机酸和中和酸洗时残留下的硫酸。把酸洗过的机油加入另一只烧杯中,加热到90℃,在搅拌下慢慢加入占机油质量5%的碳酸钠粉末,20分钟后检验机油的酸碱性。取两支试管,各加入1mL蒸馏水,其中一支加2滴酚酞试剂,另一支加2滴甲基橙试剂。然后在两支试管中分别加油样1mL,振荡3分钟,如果两支试管中的水溶液层颜色不变,说明油是中性的,这时机油应该变得清亮。 5、过滤工业上用滤油机过滤。家用机油可用4~6层绸布反复过滤2~4次,即得合格机油。 如果知道废机油中的各种杂质成份,可根据实际情况调节上述操作步骤。例如,机油内只含有金属屑等固体杂质,用沉降法分离即可。如果机油内仅仅混入汽油、柴油等物质,只要通过蒸馏,就能得到再生的机油。如果仅仅是机油被氧化而变质,只要用酸洗、碱洗法除去有机酸等杂质即可。 在这个过程中,我们也了解到这个运作过程里,就可以运用到我们的A2000自动馏程测定仪等仪器。具体参数如下:A2000自动馏程测定仪采用集机械、光学、电子及计算机技术于一体,测温传感器检测系统,可自动完成蒸镏全过程实验。应用于汽油、柴油、煤油、燃料油、重油和其它矿物油类在常压下的蒸馏特性。A2000可由计算机监控(无线/有线通讯方式,由用户选配)。A2000结构合理,性能稳定,操作简单。仪器特点智能加热管理系统,确保蒸馏速率符合实验方法要求。 记录点用户自行设定:①用户可设定记录对应温度的回收体积②用户可设定记录对应回收体积的温度③自动记录国标规定的记录点五种实验结束方式:①终点结束:检测到终馏点时结束实验②干点结束:检测到干点时结束实验③温度结束:根据用户设定的温度值结束实验,并打印输出。④体积结束:根据用户设定的体积值结束实验,并打印输出。⑤键盘结束:按退出键结束实验,并打印输出2. 配备内部时钟,无需输入实验日期,有效使用年限95年。技术参数测温范围:室温~400℃ 分辨率:0.1℃水浴恒温范围:0~60℃ 内部循环回收量筒周界温度:5~50℃蒸馏速率:4~5ml/min体积检测范围:0~100ml 分辨率:0.1ml测温元件:PT100显  示:大屏幕真彩色汉字显示加热方式:红外线辅射加热打  印:40列汉字点阵打印消耗功率:小于2.5kw制冷方式:压缩机制冷环境温度:15~35℃操作方式:程序启动,操作简单
  • 产品推荐丨中科科仪RV系列双级直联旋片式真空泵
    双级直联旋片式真空泵(旋片泵)是真空应用领域中常用的真空获得设备之一,广泛用于需要获得高、低真空环境的场合,旋片泵可单独使用,也可作为扩散泵、罗茨泵、分子泵等高真空获得泵的前级泵配套使用。中科科仪RV系列旋片泵具有极限真空度高、震动噪音小、外型美观大方等优点,内置快关型防返油止逆阀系统、压力油循环系统、油泵增压系统、前级保压系统等多种独特结构及关键核心技术,产品整体性能优异、质量稳定可靠。全系列旋片泵产品共计7种型号,抽速涵盖2 L/S到24 L/S,能够满足真空行业的绝大多数应用场景。经过多年产品技术研究,可根据客户工况进行产品的特殊化定制。下面就跟着小编一起了解一下RV系列旋片泵的产品特点、技术亮点、行业应用以及主要技术参数吧。1、产品特点极限真空度高、抽气速率稳定。泵体温度低,温升小。震动噪音小。维修保养简便。 2、技术亮点快关型防返油系统,降低泵停机后泵油对真空系统的污染。保压性能优异且稳定,保护前级分子泵免受高大气压力瞬间冲击。低泵体泄漏率,带负载能力强、抽气效率快。独特的油润滑系统及压力油调节系统,泵体温升小、运行噪音小。3、行业应用RV系列双级旋片泵广泛应用于材料制备、表面工程、能源科技、分析仪器、生物医药、电子工业等领域,可根据实际工况环境提供产品定制化方案。 4、主要技术参数如您有任何疑问和需求,可通过以下方式联系我们,我们会在第一时间给您满意答复。北京销售公司:18611455301西安销售公司:18611455311深圳销售公司:18611455320苏州科仪:18611455317关于中科科仪中科科仪始建于1958年,是中国电子光学和真空技术领域领军企业,曾研制出我国第一台扫描电子显微镜、第一台涡轮分子泵和第一台商用氦质谱检漏仪。近年来,成功研制出国内首台场发射枪扫描电子显微镜、首台磁悬浮分子泵,均达到国际一流水平。2008年被评为国家级高新技术企业,2014年被评为国家级企业技术中心,2021年获评国家级“专精特新”小巨人企业称号,并获重点支持。中科科仪产品广泛应用于科学研究、航空航天、半导体、汽车工业、新能源、新材料、节能环保等前沿科学研究和高端装备制造领域。
  • 荧飒光学重磅发布:FOLI30V真空型傅里叶变换红外光谱仪
    FOLI30V真空型傅里叶变换红外光谱仪产品简介FOLI30V真空型傅里叶变换红外光谱仪,是荧飒光学全新推出的一款高端研究级红外光谱仪。与传统的红外光谱仪不同,真空红外,顾名思义,就是采取全真空光学设计,所有红外光路及样品均处于真空环境中,测试过程无需担忧大气中CO2和水蒸气的强吸收带来的影响。这种设计,既提高了整体光路的光通量,又有利于检测诸如单分子层薄膜的弱信号。目前,真空型红外已经广泛应用在纳米表面分析、聚合物工业、材料科学、制药、半导体及催化等领域。FOLI30V真空型红外光谱仪,整机采用全铸铝材质,独立式光学腔设计,配置无油减震泵,可对整体光学腔进行快速抽真空,并实时显示真空度。主机配置有密封隔离罩,用户可以单独对样品腔进行真空操作,极大提高用户的测样效率。FOLI30V真空型红外光谱仪,可选配近-中-远全红外波段,标配独特的红外元器件,一次测量即可采集样品的中红外及远红外谱图,覆盖6000-50cm-1光谱范围,获得样品分子全部的振动和转动结构信息,而无需担心远红外波段强烈的水蒸气吸收干扰。此外,FOLI30V可以配置外置水冷汞灯光源及液氦Bolometer检测器,使用户的测量范围扩展到10 cm-1,达到太赫兹的研究波段。同时,用户可以更换近红外光学系统,软件自动切换光路,使光谱范围达到12500cm-1,在同一光学平台上,真正实现远、中、近红外谱区的研究。除了标配的光路之外,FOLI30V可以配置多个外接光路口,连接各种外置光学腔,比如UHV真空密封腔、低温杜瓦、高温发射红外腔、外置样品腔、外置检测器腔等,极大丰富了研究者的光学平台和研究领域。FOLI30V配置有各类无机化合物、有机金属络合物、聚合物、添加剂、有机化合物等红外光谱数据库,数据库全部显示中文名称。此外,软件提供用户快速自建库功能,允许用户开发新的中文数据库,以便不断更新自我检测能力。产品特点* 全真空的光学设计,真空度≤0.2mbar;* 软件自动切换近、中、远谱区检测器和光源覆盖整个红外谱区12,500-10cm-1;* 一次测量获取中、远谱区的光谱信息:6,000-50cm-1;* 高光谱分辨率: ≤0.25cm-1 * 去除大气中水蒸汽、CO2的强吸收干扰;* 不受实验室环境温度变化的影响;* 光通量更高,更灵敏;* 稳定性更高,可重复性更好;* 可配备纯金刚石晶体的ATR附件,实现真空状态下测量;* 可整体或单独对样品腔进行抽真空,提高测试效率 * 可配置多个外接光路口,连接各种外置光学腔,如UHV真空密封腔、低温杜瓦、高温发射红外腔、外置样品腔、外置检测器腔等 * 可连接长光程气体池,测量高分辨气体光谱。产品参数配置清单应用领域* 自组装超薄膜研究* UHV真空密封超高真空腔* 低温基质隔离* 硅单晶中III、V族杂质的定量(B,P,Al,Sb,As,Ga,In)* 真空环境下对催化剂进行原位漫反射表征* 无机及有机配位化合物的研究* 分子晶体的晶格振动吸收* 气体分子的纯转动光谱的研究
  • 「解析」真空离心浓缩中,为何说不是压力越低蒸发速率越快?
    对于浓缩来说,在实验中有太多的场景需要用到干燥或者浓缩,但市面上常见的依然是传统的旋转蒸发仪和氮吹等。所以对于还未使用过真空离心浓缩仪的客户来说,我们依然是要不厌其烦的介绍它应用及原理:真空离心浓缩仪是一种用于浓缩溶液或悬浮液的技术,它结合了离心力和真空原理。该过程在低真空下对浓缩的样品施加离心力,以控制暴沸;利用真空泵降低腔体压力,从而使溶剂快速并安全蒸发。对比传统的浓缩方式旋蒸和氮吹来说,它有着多种优点:高通量、防暴沸、低温下浓缩等,在生命科学、食品、环境检测、分子生物学等有着广泛用途。——Genevac产品团队真空离心浓缩问题探讨今天和大家探讨的问题是,在真空离心浓缩中,为什么说并不是真空度越低蒸发速率越快?我们都知道,溶液的沸点,它随着压力的降低而降低。当腔体内加热温度大于溶液沸点时,蒸发即开始。以DMF溶剂为例,当在8mbar的条件下时沸点为25℃(如上图紫色线条所示),那么只要加热温度高于25℃,压力能降低到8mbar以下,冷凝器可以冷凝25℃的有机溶剂,那么整个系统就能处理DMF这种溶剂。如果在把压力降到足够低呢,这样产生的温度差越大,是不是蒸发速率越快?在蒸发方面我们可以去这样理解,但要考虑“最佳蒸发方法”:除了要保证所蒸发样品的安全性之外,还能达到最快的蒸发速度。对于蒸发速度主要有两个起决定性因素的条件:● 蒸发时的压力;● 冷凝器的冷凝能力。蒸发时的压力和冷凝器的冷凝能力在达到平衡时才能保证蒸发速度,否则最好的真空度和差的冷凝能力也不能保证蒸发的效果。举例说明例如:蒸发200ml的甲醇(Methanol)溶剂(如上图1mbar压力条件下甲醇的沸点/冷凝点为-50℃),200ml甲醇为4.9mol,根据1mol物质在标准状态下的体积为22.4L,那么200ml甲醇在标准状态下的体积为109.7升,根据PV=nRT公式,我们可以得到在1mbar的压力条件下,甲醇蒸气的体积为111154L,甲醇蒸气的温度为-50℃。常压下200ml甲醇=1mbar压力条件下111154L -50℃的甲醇蒸气此时需要一个冷凝器的温度在满负荷工作的条件下也能低于-50℃,才能将-50℃的甲醇蒸气冷凝变为液体的甲醇。否则,即使使用抽速为83L/min的泵,也需要约22个小时,才能将这200ml甲醇蒸干。结论由于很多蒸发系统的冷凝器都不能达到这么低的温度,因此,在蒸发甲醇的时候,选择非常低的压力条件1mbar,并不是最佳的蒸发条件。如果选择蒸发压力为8mbar,此时甲醇的沸点/冷凝点为-20℃,-20℃是一个比较容易达到的条件,所以很快就能将甲醇蒸气冷凝为液体,大大加快了蒸发速度。所以说并不是压力越低,蒸发速度越快,蒸发速度与冷凝器的能力有非常大的关系。有什么办法同时兼顾蒸发条件和效率?Genevac溶剂蒸发产品英国Genevac EZ-2、Rocket、HT系统内置了不同沸点范围下的溶剂的不同的蒸发压力条件,保证每一种溶剂都在最佳的蒸发条件下进行蒸发,而不需要用户对这些条件进行摸索。欢迎来询
  • 赫西发布 新一代真空离心浓缩系统ZLS-4新品
    方法原理 样品蒸发、干燥、浓缩和纯化的方法,常用的有:●在高温和接近常压条件下的蒸馏和旋转蒸发方法,但仅能处理单一样品;●在低温和高真空条件下冷冻干燥方法,虽然升华能够保持样品活性,但比较耗时;●在低温下快速蒸发,氮吹仪方法,但仅能处理少量样品, 使用费用高,操作麻烦;●在室温真空条件下蒸发,真空离心浓缩方法,样品溶剂蒸发速度较快;蒸发是一种吸热的过程,在样品中水份蒸发时会带走产品自 身热量,从而使产品自身温度降低,以保持样品性质和活性。但 为使蒸发速率加快,设备需要提供蒸发所需要吸收的热量,一般 通过腔体加热或红外加热,特别适合浓缩纯化热敏感的生物样品 或临床药品。真空离心浓缩仪提供中等转速(1500~2000r/min),相应的离心力可以防止样品分散和暴沸,可以用冷阱收集溶剂再利用。 经济高效的真空离心浓缩仪 ●样品不产生泡沫,最少的样品损失●同时进行多种样品干燥●样品全部浓缩在离心管底部●适用于1毫升到3000毫升样品的干燥●通过控制工艺参数进行可重复性干燥,如控制转子腔温度(提供蒸发能量)和真空度(自动设置最优压力)●安全简单的溶剂回收应用范围●DNA/RNA(溶剂主要是水,乙醇,甲醇)● 寡聚合物或肽● PCR产物● 高效液相色谱(HPLC)产物● 有机底物的合成和分离● 底物的保存和处理● 化学合成物● 高通量筛选(HTS)● 毒理学鉴定,法医鉴定● 食品和环境样品的分析● 通用的实验室蒸发 真空离心浓缩系统 ZLS-4真空离心浓缩系统具有可以把样品中的水和有机溶剂快速安全蒸 发的功能。处理后的样品可方便的用于各种定性和定量分析化学、生 物化学、生物分析、免疫筛查、食品安全、残留分析等。适用于免疫球蛋白的浓缩、药物代谢物的浓缩、SPE固相萃 取 、 液 相 色 谱 的 前 后 处 理 、ADMET/毒 理 学 、 高 分 子 化 学 、 DNA/RNA纯化浓缩、寡聚合成、法医学/药物滥用测试、通用实验室浓缩。主要特点●分体式设计,自由组合搭配,灵活方便。●聚甲基丙烯酸甲脂透明盖板,方便监控浓缩过程。●智能化的微处理器控制以及简单直接的操作界面。●可实现真空样品加热(选购),具备超温预警功能。●采用均匀加热方式,加热快,控温精度高,可加热腔体至60℃。●浓缩时间:1min-99h59min,搭配低温冷阱,浓缩效率大幅提升。●离心腔采用合金铝材质,阳极电泳表面处理工艺则可抵御大多数化学试剂和溶剂的腐蚀。●可选配试管品种多(1.5mL、10mL、20mL、50mL、250mL,充分满足实验需求。●采用英锐恩公司单片机及英飞凌公司驱动模块,配合自主研发控制板及大力矩直流无刷电机,运行稳定噪音低,提供舒适的实验室环境。●TFT-LCD真彩显示屏,触屏按键及实体按键双操作模式,设有离心力显示专用键,同时显示设定参数和运行参数 ;免维护非接触式驱动旋转系统。●低温浓缩避免样品丢失变性、活性下降、氧化。高通量可同时处理几十个样品,无交叉污染。样品无泡沫产生,无损失。安全简单的冷阱溶剂回收方式。技术参数产品型号ZLS-4转子容量(五选一) 2×96孔62×1.5mL12×10mL6×50mL6×250mL6×2×50mL适配器(选配)6×5×20mL适配器(选配)最大功率1.5KW最大电流5A环境温度0℃~40℃噪音<50dB(A)温控范围室温 ~+60℃或不加温 真空接口φ12mm真空泵(三选一)隔膜泵、国产油泵、进口油泵 冷肼(二选一)CT40/CT50 电源AC220V/50Hz创新点:可以配超低温冷阱,极限温度可以到-40度或者-50度,这个是之前的型号所不能达到的。 新一代真空离心浓缩系统ZLS-4
  • 洛科仪器发布【洛科】Chemker 611 耐腐蚀真空泵新品
    【洛科】Chemker 611 耐腐蚀真空泵 仪器提供1年免费零件服务耐腐蚀真空泵 、真空泵 : 产品特色◆ 高耐腐蚀Chemker 系列真空泵在与气体接触的部分使用 PTFE 材料,可耐大部分的腐蚀性气体,同时电器开关、外壳也做防蚀处理,适合抽吸各种有机、酸碱等腐蚀性气体。◆ 高真空启动Chemker 600系列真空泵具高真空启动功能,适合搭配操作过程需停止丶重启帮浦的实验室仪器设备使用。◆ 无污染、免保养Chemker 系列真空泵利用隔膜作动原理,不需使用油来润滑,因此不需定期添油保养也无油雾污染的问题。◆ 安静、低震动Chemker 系列真空泵采直驱式动力传输,加上隔膜低冲程、低噪音的特性,使得此系列产品噪音都能保持在52dB以下,安静、低震在同等级产品中名列前茅。◆ 过热保护装置 Chemker 系列真空泵每个机种在马达内部均装有温度保护开关,当机体内部温度过高时会自动停机等温度冷却后再自行启动。耐腐蚀真空泵 、真空泵 : 国际认证◆ 欧盟 CE 安全认证 耐腐蚀真空泵 、真空泵 : 产品应用◆ 溶剂纯化◆ 真空烘箱◆ 旋转浓缩◆ 实验室真空过滤耐腐蚀真空泵 、真空泵 : 订购信息◆ 169611-11(22)Chemker 611 耐腐蚀真空泵 AC110V,60Hz (AC220V, 50Hz)基本规格 (110V/60Hz) : ◆ 功率:220W◆ 耗电流: 2A◆ Max. 真空度: 7 mbar◆ Max. 流量: 34 L/min◆ 转速: 1750 RPM◆ 马 力: 1/3 HP◆ 噪音值: 60 dB◆ 适用软管内径:ID10◆ 净 重: 13.3 kg ◆ 尺 寸: 35 x 20.3 x 23.5 cm◆ 玻璃缓冲瓶: Yes◆ 真空调压阀: Yes基本规格 (220V/50Hz) : ◆ 功率:200W◆ 耗电流: 1.2A◆ Max. 真空度: 7 mbar◆ Max. 流量: 30 L/min◆ 转速: 1450 RPM◆ 马 力: 1/3 HP◆ 噪音值: 60 dB◆ 适用软管内径:ID10◆ 净 重: 13.3 kg ◆ 尺 寸: 35 x 20.3 x 23.5 cm◆ 玻璃缓冲瓶: Yes◆ 真空调压阀: Yes产品特色 :◆ 无油设计,不需加油及保养◆ 帮浦与气体接触的部分皆用PTFE材料◆ 机器装有过热保护装置◆ 欧盟 CE 安全认证创新点:◆ 高真空启动Chemker 611泵具高真空启动功能,适合搭配操作过程需停止丶重启帮浦的实验室仪器设备使用【洛科】Chemker 611 耐腐蚀真空泵
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制