当前位置: 仪器信息网 > 行业主题 > >

电流转换器

仪器信息网电流转换器专题为您提供2024年最新电流转换器价格报价、厂家品牌的相关信息, 包括电流转换器参数、型号等,不管是国产,还是进口品牌的电流转换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电流转换器相关的耗材配件、试剂标物,还有电流转换器相关的最新资讯、资料,以及电流转换器相关的解决方案。

电流转换器相关的资讯

  • 德国研制出世界最小光电信号转换器
    光纤网络是现代信息传递的基础,光电信号转换器是其核心,德国卡尔斯鲁尔研究中心的科研人员研制出一种世界最小的光电信号转换器。其内部结构为平行排列的两个微小黄金电极,长度约29微米,两电极之间的间隙约为0.1微米,整个结构直径不到人头发的1/3,两电极之间引入变化的电压信号,其频率与传输的数据信号相关,在电极中间充填有特殊的塑料材料,其对光线的折射率随所施加的电压发生改变。在两电极的间隙中导入连续光束后,会激发出表面电磁波(表面等离子体),这种表面电磁波受到施加与电极间隙中充填的塑料材料中的电压信号的调制,而经过调制的表面电磁波又可影响穿过间隙的光束的相位,实现信息通过施加于两电极的电压信号调制光束而转换成光信号在光介质中的传输。经过实验验证,这种光电转换器可实现的数据转换速率达到40G比特/秒,可工作在目前宽带光纤网常用的红外光波长范围内(波长1480-1600纳米),工作温度可达85摄氏度,是目前世界上最小型化的高速光电信号(相位)转换器,可用目前成熟的微电子技术手段进行规模化生产,并集成在微电子芯片中,可实现信息的高速率低能耗传输。
  • 虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换
    虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换总述:Media Converter可在车载以太网连接 (100BASE-T1或1000BASE-T1或10GBASE-T1)和任何具有带RJ-45连接器的标准以太网网络接口卡 (NIC) 的设备之间建立物理层转换。在转换过程中,设备不存储或修改任何数据包,并具有高可靠性。 一个镀锌钢板的便携外壳,加上方便配置DIP开关,使用户可以毫不费力地与转换器交互。它的设计使它便于携带,易于安装在测试架上。金属外壳使其具有坚固的IP20保护性能。是理想的智能、易于管理的解决方案,协助高效处理车载以太网的工作。它使用车规级连接器,满足在下一代车辆系统中测试与验证最先进的通信技术解决方案日益增长的需求。Media Converter产品亮点1. 100BASE-T1 &bull 全双工100BASE-T1 (1 x非屏蔽双绞线-UTP) 快速转换为100BASE-TX&bull 应用BCM 100BASE-T1 PHY&bull 2 x DIP开关,便于配置 (Master/Slave HalfOut/FullOut) &bull 2 x状态指示灯 (包括Linkup和Data数据指示灯)2. 1000BASE-T1 &bull 应用Marvell 88Q2112 A2 PHY, 兼容100BASE-T1&bull 1 x RJ-45端口,用于100BASE-TX/1000BASE-TX&bull 1 x 100/1000BASE-T1端口,不同接口:MATEnet、HMTD (若ECU端带有四孔HMTD接口或需要其他接口,可以修改线束来匹配)&bull 4 x DIP开关,便于配置 (Master/Slave 100/1000 Mbit/s 传统/IEEE模式 帧生成)&bull 状态指示灯&bull MQS连接器&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”3. 2.5/5/10GBASE-T1&bull 允许通过2.5/5/10GBASE-T1多千兆的车载以太网端口轻松地连接到ECU&bull 兼容车载以太网的PHY 88Q4364 2.5G/5G/10GBASE-T1 IEEE 802.3ch&bull 1 x H-MTD端口,用于10GBASE-T1&bull 1 x 标准 SFP+模块 (10GBASE-T,光学,直接连接电缆)&bull 4 x 状态指示灯&bull 4 x DIP开关,便于配置 (Master/Slave 10GBASE-T1/other 2.5GBASE-T1/5GBASE-T1)&bull I/O信号,易于与自动化系统接口&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”Media Converter应用领域1. 具体用途有:激光雷达、相机等传感器数据采集;自动化在环HiL测试;下线测试EOL;DV和PV试验等。2. 针对性案例:车载以太网接口的传感器,通过转换器与PC上位机连接,进行数据传输。
  • 扩展即时处理功能:安捷伦添加均衡器至PCIe数字转换器
    仪器信息网讯 安捷伦科技近日宣布,PCIe数字转换器家族的成员将会拥有一项新的均衡器即时处理功能。新的均衡信号减少了随机的噪声效应,提升了信噪比、分辨率与动态范围。仅需单一触发器的一次采集,快速采样率就能达到3.2GS/s,而整个过程无需使用等效时间采样技术。由于均衡器的一次记录均衡了多达520,000个触发器,而该功能的自我触发模式有效的最小化了应用的同步模式噪音,安捷伦PCIe数字转换器的通用性得到了显著提升。      均衡器功能与新近推出的峰值检测和数字转换器即时处理功能一道,为安捷伦的用户提供完整而又颇为灵活的工具组合,使得用户的应用需求尽可能达到最佳分析效果。随数字转换器附赠的软件驱动可以让应用在多种信号处理功能间轻松转换。8位U5309A和12位U5303A的PCIe高速数字转换器现已配备均衡器功能。   &ldquo 由于我们频繁发布附加的即时处理功能,用户可以从不断增长的测量吞吐量中获益,&rdquo 安捷伦高速数字转换器运营经理DidierLavanchy说。&ldquo 通过使用U5340A FPGA开发套件,用户可以快速处理他们的开发需求。&rdquo
  • 催化转换器的回收:用于铂族金属分析的4个快速手持式荧光光谱仪技巧
    催化转换器是一种有助于汽车产生更清洁排放物的装置。催化转换器通过使用催化剂(一种加速化学反应的基质)将排气系统中的有害气体转化为污染较少的气体。这种设备还可以通过另一种方式 — 回收利用,起到保护环境的作用。催化转换器的回收除了能减少废物外,在经济性上也有所帮助,因为催化转换器中含有稀有金属。催化转换器内的催化剂成分通常是铂(Pt)、钯(Pd)和铑(Rh)的组合,这些都是稀有且昂贵的铂族金属(PGM)。通过对催化转换器废料进行适当的分类和处理,可将这些金属回收并重新用于制造新的催化转换器或其他设备。使用手持式荧光光谱仪识别催化转换器废料中的铂族金属回收工厂需要一种快速、准确的方法,在回收过程的多个步骤中识别这些令人们趋之若鹜的金属。手持式荧光光谱仪是一种有用的工具,可以在现场对催化转换器废料进行元素分析,以进行快速分拣和定价。虽然像Vanta系列这样的手持式XRF光谱仪可以快速提供答案,但遵循最佳做法以确保分析仪充分发挥其固有性能也比较重要。在回收厂,一名技术人员正在使用手持式XRF分析仪检测催化转换器废料要优化您的Vanta手持式XRF光谱仪,以便在催化转换器回收的过程中更快地检测并测量铂、钯和铑等元素,请采用以下快速技巧:检查您的仪器窗口首先,检查您的手持式XRF光谱仪上是否安装了正确的窗口。例如,我们根据Vanta型号和X射线管类型提供了不同的仪器窗口。另一个需要考虑的重要因素是窗口的状况。窗口是否完好无损? 您要检查窗口是否有任何刺破或撕裂的迹象。如果看到有孔洞,就该更换窗口了。要使分析仪正常工作,保持窗口清洁至关重要。在检测之前,请确保用酒精或湿巾清洁窗口。正确制备用于检测的样品为了使XRF分析获得具有代表性的准确结果,我们建议您通过研磨、筛滤、匀质处理方法,对催化剂废料进行适当的制备。将分析仪与便携式Vanta工作站结合在一起使用,在完全联锁的系统中测量铂族元素。按等级对废料进行分类在匀质处理催化剂废料之前,回收商应使用Vanta分析仪对废料进行分类和分离,将相同类型的材料放在一起。催化剂废料分为三个或四个等级,例如:氧传感器三路转换器双向转换器柴油微粒过滤器(DPF)核查检测时间在检测汽车催化转换器废料中的铂族元素时,确保使用正确的检测时间至关重要。以下是一些建议使用的检测时间:快速扫查,以探测铂、钯、铑:光束1 — 最长15秒。这是进行基本分类和确定是否存在铂族元素及钽(Ta)和硒(Se)添加物的不错选择。标准检测,以探测铂、钯、铑:光束1 — 最长30秒,光束2 — 最长15秒。这种检测方式非常适合于完全制备送至精炼厂的样品。全面扫查,以探测到所有元素:光束1 — 最长45秒,光束2 — 最长15秒。可用于优化精炼厂内的回收过程。建议Vanta手持式XRF光谱仪在测量铂、钯和铑元素时使用的检测时间随着全球对铂族金属需求的快速增长(分析师预测全球铂族金属市场将以4.38%的复合年增长率增长),催化转换器回收商需要高效工作,才能满足这种需求。
  • 输韩LED灯转换器检测标准落定
    韩国上月发布公告称,将修改电子产品安全标准及运用要领,其中列明LED照明器具要求。这一改动将使东莞、中山为主的中国LED企业出口受到影响。   日前,省内外10名专家和10家LED龙头企业有关负责人聚集市科技博物馆,参加了“G/TBT/N/KOR/234、235号通报评议会”。评议会由中国WTO/TBT国家通报资讯中心主办,省质监局WTO/TBT通报咨询研究中心和市质量技术监督标准与编码所承办。   10月1日,韩国发出了关于电子安全标准的G/TBT/N/KOR/234、235号通报,这两项通报拟随着国际电工委员会(IEC)对照明电气电磁兼容性要求的改变而修订其国内相关标准,同时将LED照明器具单列出来,明确其具体要求。而据专家介绍,以往的相关标准并没有将LED等单独列出来做严格的规定。   广东省是我国LED产品的主要省份,其中东莞和中山等地均具有相当规模的LED产业集群。据不完全统计,东莞企业的年出口额达到10亿元,约占全国总量的20%。勤上光电、百分百科技等龙头LED企业,均相继在韩国设立销售处。   按照WTO框架下《技术性贸易壁垒协定》(TBT协定)中透明度原则,各成员可通过通报咨询机构对拟议中的技术性措施提意见,时间限定为60天。   因此,专家和各企业代表通过评议会就韩国拟修改的技术标准提出了意见和建议。不少成员认为,标准虽然对新增LED灯用转换器设置了技术要求,但是没有相应的检测方式,这可能是一大漏洞。主办方表示,将汇总这些意见后向韩国方面提交,以最大化方便LED出口企业。   韩国拟修改具体内容   1、k00015(照明器械类似器械的电磁干扰测试方法及测试限值)   2、K61547(普通照明器械——电磁兼容抗扰度要求事项)
  • 扫描探针显微镜宽动态范围电流测量系统的研制
    成果名称 扫描探针显微镜宽动态范围电流测量系统的研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 &radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产 成果简介: 扫描探针显微镜(SPM)是研究材料表面结构和特性的重要分析设备,具有高精度和高空间分辨的优点,可以在多种模式下工作。其中,扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。SPM中用于探测针尖与样品间电流的关键部件是电流-电压转换器(I-V Converter),其作用是把探测到的微弱电流信号转换为电压信号以便后续处理。目前商用SPM设备中采用的是虚地型固定增益线性电流-电压转换器,典型灵敏度为108 V/A,其主要缺点是电流测量的动态范围较小,只能达到3~4个数量级,这使得目前SPM的电流测量能力被限定在10pA~100nA之间,阻碍了SPM在微纳电子学领域的应用。 2012年,信息学院申自勇副教授申请的&ldquo 扫描探针显微镜宽动态范围电流测量系统的研制&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持,在项目资金的支持下,申自勇课题组开展了富有成效的工作,包括:(1)宽动态电流测量系统总体设计;(2)测量系统与SPM控制系统的接口设计;(3)测量系统加工制作和联机调试;(4)测量系统性能指标的测试评估与优化。此外,课题组还克服了皮安级微弱电流的高精度低噪声测量、反馈回路中用于非线性转换的双极结型晶体管的温度补偿等技术难题,所研制的测量系统取得了良好的效果。目前,该项目已经顺利结题,其成果装置已经在该课题组相关仪器上正常使用,并在向校内外相关用户推广。 应用前景: 扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。
  • 爱松特发布ISOTECH爱松特 电桥转换开关新品
    1、准确度:全量程优于0.07 ppm,比率测量准确度优于0.017ppm(比率:0~0.25&0.95~1.05)。2、支持的探头:铂电阻温度计、热敏电阻、热电偶。3、通道数:3通道(可任意设置显示通道类型,可扩展到90个通道)。4、分辨率:满量程0.001ppm,0.001mk。5、内部标准电阻:25Ω,100Ω,400Ω。6、内部电阻稳定度:TCR<0.05ppm/℃ Annual Stability<2ppm/year。 7、电流精度:0.1~1mA ±0.4% of Value,±0.7μA,resolution 280nA。8、电阻范围:0~100KΩ。9、保温电流功能:有。10、测量时间:电阻测量时间操作系统:内置Window CE操作系统,无需外配计算机。15、内部开关方式:新型的半导体开关16、探头连接端子:Cable Pod”连接器,允许4mm插头,扁形接头和裸线17、端子接触材料:镀金的碲-铜。18、低噪音技术:新型的σ-δ模数转换器和低噪音的前置放大器。19、运行环境:15-30℃/50-85, 10-90%RH(所有指标要求) , 0-50℃/32-12, 0-99%RH (运行的)20、电源:88-264V(RMS),47-63Hz (通用的),20W,1.5A (RMS)创新点:★准确度:全量程优于0.07ppm,比率测量准确度优于0.017ppm(0~0.25&0.95~1.05) ★支持的探头:铂电阻温度计、热敏电阻、热电偶 ★通道数:3通道(可任意设置显示通道类型,最多可扩展到90个通道) ★大屏触摸屏操作 ★内置Windows CE操作系统,无需外置电脑 ★具有USB插孔,可连接键盘和鼠标,所记录的数据以Excel表格的形式导出 ★具有保温电流功能,可消除因功率带来的不确定度 ISOTECH爱松特 电桥转换开关
  • 国家纳米中心等在分子自旋光伏器件研究中取得重要进展
    p   近日,中国科学院国家纳米科学中心研究员孙向南和西班牙巴斯克纳米科学中心教授Hueso等合作,在分子自旋电子学研究方面取得重要进展,提出并报道了全新的分子自旋光伏器件。相关研究成果于8月18日在《科学》(Science)杂志在线发表,并已申请国家发明专利(申请号:201611011759.5)。 /p p   分子半导体材料由于具有丰富的光电性质,被广泛应用于分子电子器件的研究中,如光伏电池、发光二极管和场效应晶体管等。此外,由于分子材料较弱的自旋轨道耦合作用,其自旋弛豫时间可以达到毫秒级,使之成为极具吸引力的自旋输运材料。将分子半导体材料丰富的光电性质与优异的自旋输运性质有效结合,是探索构建全新功能性分子自旋电子器件,并实现分子自旋电子学研究领域突破的新途径。 /p p   分子自旋光伏器件(MSP)是基于自旋阀器件结构和富勒烯(C sub 60 /sub )分子材料构建的一种新型器件。该器件可在外部光、磁复合场作用下实现电子自旋和电荷输出信号的相互耦合,进而实现全新的器件功能,包括:磁场调控太阳能电池开路电压,室温下利用特定操控模式实现可控完全自旋极化电流输出、磁控交流电信号输出、磁控电池开关等。 /p p   MSP器件在自旋阀工作模式下,一个铁磁电极(Co)用于向C sub 60 /sub 半导体层中注入自旋极化载流子,另外一个铁磁电极(NiFe)用于自旋检出,自旋极化的载流子通过C sub 60 /sub 薄膜实现输运。在恒定偏压下,该器件输出电流随两个铁磁电极的相对磁化方向变化(即自旋阀效应),受该效应影响的输出电流百分比称为磁电流(MC)。另外,MSP器件在7.5Mw/cm2白光照射下可观察到微弱的光伏效应。在短路的条件下,C sub 60 /sub 层中的光生载流子受内建电场的驱动扩散到两个铁磁电极产生输出电流,这些载流子因为通过磁性电极输出后在极短的时间内完全自旋弛豫,因此并不会产生自旋阀效应。该器件在开路时,外加电压将驱动电子从Co电极输运到NiFe电极实现电荷复合,因为C sub 60 /sub 优异的自旋输运性质,此时复合电流将会受自旋阀效应的影响。如上所述,MSP器件在光、磁复合场作用下,输出电流与复合电流相异的自旋相关性是实现全新自旋器件功能性的关键。 /p p   该研究提出的分子自旋光伏器件作为一种新型器件,在高灵敏度光、磁复合场传感器、单器件磁控电流转换器等方面具有潜在的应用价值,并且相较于传统的分子自旋阀,该器件获得相同磁电流响应信号的运行功率降低至1%以下。同时,该器件还可以应用于分子半导体材料自旋输运和自旋光电子学等研究领域的探索中。 /p p   孙向南为文章第一作者,Hueso为通讯作者,国家纳米科学中心为第一完成单位。该工作得到了中科院“率先行动”百人计划、国家自然科学基金委面上项目和科技部重点研发计划的资助。 /p p style=" text-align: center " img title=" W020170818634585794445.png" src=" http://img1.17img.cn/17img/images/201708/insimg/5d19d7fb-2aaa-4c75-80fe-e46866ef0a9f.jpg" / /p p style=" text-align: center " strong 分子自旋光伏器件示意图 /strong /p p br/ /p
  • 分子自旋光伏器件研究取得重要进展
    p   近日,中国科学院国家纳米科学中心研究员孙向南和西班牙巴斯克纳米科学中心教授Hueso等合作,在分子自旋电子学研究方面取得重要进展,提出并报道了全新的分子自旋光伏器件。相关研究成果于8月18日在《科学》(Science)杂志在线发表,并已申请国家发明专利(申请号:201611011759.5)。 br/ /p p   分子半导体材料由于具有丰富的光电性质,被广泛应用于分子电子器件的研究中,如光伏电池、发光二极管和场效应晶体管等。此外,由于分子材料较弱的自旋轨道耦合作用,其自旋弛豫时间可以达到毫秒级,使之成为极具吸引力的自旋输运材料。将分子半导体材料丰富的光电性质与优异的自旋输运性质有效结合,是探索构建全新功能性分子自旋电子器件,并实现分子自旋电子学研究领域突破的新途径。 /p p   分子自旋光伏器件(MSP)是基于自旋阀器件结构和富勒烯(C60)分子材料构建的一种新型器件。该器件可在外部光、磁复合场作用下实现电子自旋和电荷输出信号的相互耦合,进而实现全新的器件功能,包括:磁场调控太阳能电池开路电压,室温下利用特定操控模式实现可控完全自旋极化电流输出、磁控交流电信号输出、磁控电池开关等。 /p p   MSP器件在自旋阀工作模式下,一个铁磁电极(Co)用于向C60半导体层中注入自旋极化载流子,另外一个铁磁电极(NiFe)用于自旋检出,自旋极化的载流子通过C60薄膜实现输运。在恒定偏压下,该器件输出电流随两个铁磁电极的相对磁化方向变化(即自旋阀效应),受该效应影响的输出电流百分比称为磁电流(MC)。另外,MSP器件在7.5Mw/cm2白光照射下可观察到微弱的光伏效应。在短路的条件下,C60层中的光生载流子受内建电场的驱动扩散到两个铁磁电极产生输出电流,这些载流子因为通过磁性电极输出后在极短的时间内完全自旋弛豫,因此并不会产生自旋阀效应。该器件在开路时,外加电压将驱动电子从Co电极输运到NiFe电极实现电荷复合,因为C60优异的自旋输运性质,此时复合电流将会受自旋阀效应的影响。如上所述,MSP器件在光、磁复合场作用下,输出电流与复合电流相异的自旋相关性是实现全新自旋器件功能性的关键。 /p p   该研究提出的分子自旋光伏器件作为一种新型器件,在高灵敏度光、磁复合场传感器、单器件磁控电流转换器等方面具有潜在的应用价值,并且相较于传统的分子自旋阀,该器件获得相同磁电流响应信号的运行功率降低至1%以下。同时,该器件还可以应用于分子半导体材料自旋输运和自旋光电子学等研究领域的探索中。 /p p   孙向南为文章第一作者,Hueso为通讯作者,国家纳米科学中心为第一完成单位。该工作得到了中科院“率先行动”百人计划、国家自然科学基金委面上项目和科技部重点研发计划的资助。(来源:中国科学院国家纳米科学中心) /p p    a href=" http://science.sciencemag.org/content/357/6352/677" target=" _self" title=" " 论文链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/1aa584a7-5115-423c-9fd4-a5ada8709ab2.jpg" title=" 1.png" width=" 532" height=" 253" style=" width: 532px height: 253px " / /p p style=" text-align: center " 分子自旋光伏器件示意图 /p p br/ /p
  • 国网河北电力新投用检定装置 可兼容检定多品类低压电流互感器
    近日,国网河北省电力有限公司营销服务中心投用宽量程低压电流互感器人工检定装置,完成了90只互感器设备的检定工作,标志着国网河北电力营销服务中心具备宽量程低压电流互感器检定能力。   分布式光伏发电客户在夏、冬两季容易受自身负荷波动影响,出现一次电流超过常规低压互感器量程的情况。宽量程低压电流互感器能够保证一次电流在额定电流的0.1%~200%时的准确计量,提高分布式光伏发电客户上网电量计量的精准性。   2022年以来,国网河北电力营销服务中心从优化标准设备配置、提高电流源输出能力方面开展宽量程低压电流互感器检定技术研究。该中心创新融合标准直流互感器、半波发生装置和大容量电流源的测量功能,解决高线性和小微差检定技术难点,形成多品类低压电流互感器检定装置兼容性设计方案,实现传统低压电流互感器、抗直流偏磁低压电流互感器与宽量程低压电流互感器兼容检定,满足宽量程低压电流互感器检定需求。   国网河北电力营销服务中心还贯通了宽量程低压电流互感器人工检定装置与省级计量生产调度平台系统数据接口贯通,实现任务数据、结论数据系统间自动交互。目前,该中心完成了8种变比的宽量程低压电流互感器的检定测试,检定装置运行平稳,各项指标满足规程要求。   低压电流互感器是一种可以把高交流电流转化为容易控制的低电流的设备,具有性能优良,精度稳定的特点。低压双绕组电流互感器,用于多回路低压智能配电中电流测量,可远传,或遥测装置配套使用,是低压智能配电低成本方案理想的智能化配电元件。   低压双绕组电流互感器作为低压配电系统监控电流的采集元件,具有两个绕组,其一(1S1、1S2)用于电流表指示,额定二次电流为AC5A或AC1A,其二(2S1、2S2)用于远传遥测,可与远端监控现场信号、工业设备的测控装置ARTU-M32遥测单元配套使用,额定二次电流为AC0-20mA;亦可用于电动机保护回路中使用,但由于电流保护回路过载电流为5-8倍,所以确保低压双绕组电流互感器的线性至8倍,且电流在8倍时,能保证双绕组电流互感器的误差在0.2-0.5%。
  • 从光到电的转换!新型光电探测器能模仿光合作用
    美国密歇根大学研究人员在《光学》期刊发表论文称,他们使用被称为极化子的独特准粒子开发了一种新型高效光电探测器,其灵感来自植物用来将阳光转化为能量的光合复合物。该设备将光能的远程传输与电流的远程转换相结合,有可能大大提高太阳能电池的发电效率。在许多植物中发现的光合复合物由一个大的光吸收区域组成,该区域将分子激发态能量传递到反应中心,在那里能量转化为电荷。极化子将分子激发态与光子结合在一起,赋予它类光和类物质的特性,从而实现远距离能量传输和转换。这种新型光电探测器是首次展示基于极化子的实用光电设备之一。  为了创建基于极化子的光电探测器,研究人员必须设计允许极化子在有机半导体薄膜中长距离传播的结构。此外,他们必须将一个简单的有机检测器集成到传播区域中,以产生有效的极化子到电荷的转换。  研究人员使用特殊的傅里叶平面显微镜来观察极化子传播,以分析他们的新设备。结果表明,新的光电探测器在将光转换为电流方面比硅光电二极管更有效。它还可从大约0.01平方毫米的区域收集光,并在0.1毫米的“超长”距离内实现光到电流的转换——这个距离比光合复合物的能量传递距离大3个数量级。  到目前为止,观察的大多数极化子为封闭腔中的静止准粒子,顶部和底部都有高反射镜。这项新研究揭示了极化子如何在单个镜子的开放结构中传播,新设备还允许首次测量入射光子转换为极化子的效率。
  • 2019年国家土壤样品制备与流转中心工作有序开展
    p   为充分发挥国家土壤样品制备与流转中心(以下简称“制备中心”)作用,推进国家网土壤环境监测工作,中国环境监测总站(以下简称“总站”)组织6个制备中心开展2019年国家网土壤环境监测相关样品流转、制备与质量控制等工作。 /p p   制备中心由国家土壤专业实验室建设项目支持建设,总站负责组织实施,目前已在全国6个区域(华北、东北、华东、华南、西南和西北)建成6个制备中心,分别依托北京市环境保护监测中心、辽宁省生态环境监测中心、江苏省环境监测中心、广东省环境监测中心、四川省生态环境监测总站和陕西省环境监测中心站建设完成并投入使用。为确保制备中心统一、规范、有序运行,总站制定印发了统一的管理制度、技术规程、工作流程和仪器操作规程,确保制备中心工作制度化、规范化。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/518650b3-bffd-4adc-948e-0f693ecbfb21.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 姜晓旭博士(右一)现场指导华北中心人员开展质量控制样品发放工作 /span /p p   自2018年起,制备中心已逐步开始承担国家土壤环境监测相关任务。2019年,各制备中心大力支持国家网土壤环境监测工作,按照总站《2019年国家网土壤环境监测技术要求》(总站土字﹝2019﹞84号)《2019年国家网土壤环境监测国家比对测试工作实施方案》(总站土字﹝2019﹞205号)要求,分别制定工作实施方案,将各项工作任务进行细化分解,责任到人,现场平行样品流转与制备、实验室平行样品流转与发放、标准物质样品发放、比对样品测试等工作按计划执行。 /p p   目前,6个中心分别开展了对应区域土壤质控样品的流转、拆分与发放工作,严格按照总站制定的工作方案和计划及时开展实验室平行样、标准物质样品等各类土壤质控样品的流转、拆分与发放。截至7月上旬已完成500余个样品的发放,年度总任务量已完成超过50% 华东、华南和西南中心承担的200余个现场平行样和比对样品的制备与测试工作按计划同步开展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/4d08e649-0b0a-4986-a472-bc826897f5a2.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 华南中心按照统一要求规范建设接样前台和形象墙 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/42a9d26c-a18f-43ce-8add-6fe8f4f6eec5.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 东北中心制度上墙,保证工作过程规范化、制度化 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ec80233d-b6cd-423a-9824-aefeb95016a2.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 西北中心运行全方位视频监控,保证全过程可控可追溯 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/dd6e868d-5385-47fc-9333-84bd8f7adbb9.jpg" title=" 图5.jpg" alt=" 图5.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 华东中心规范进行样品混匀与分装,保证样品的均匀性和代表性 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/01f73f32-9830-435a-9089-942fa9638736.jpg" title=" 图6.jpg" alt=" 图6.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 西南中心样品制备工作人员严格按照技术规范要求制备土壤样品 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/3d524ec5-4c81-46c2-9be9-c94f95ee7411.jpg" title=" 图7.jpg" alt=" 图7.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 华北中心为第二届北京市生态环境监测专业技术人员大比武活动提供场地保障 /span /p p   制备中心的有序运行,不仅强力支撑着国家网的例行土壤环境监测工作,同时在全国土壤污染状况详查、地方土壤环境监测等环境监测专项工作中发挥重要作用。下一步,总站和6家制备中心将继续按生态环境部及工作计划要求开展各项工作,运行制度化、规范化管理体系,持续提升国家土壤环境监测能力。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/f9eeaebb-bc61-4e42-9605-5c4a04847ad5.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span /p
  • 基因编辑技术,最后一块拼图补齐:线粒体中实现A到G碱基转换
    生物技术重大发现的历史时间表。图片来源:韩国基础科学研究所  科技创新世界潮韩国基础科学研究所(IBS)基因组工程中心研究人员开发了一种新的基因编辑平台,称为类转录激活因子效应相关脱氨酶(TALED)。TALED是能够在线粒体中进行A到G碱基转换的碱基编辑器。这一发现是长达数十年治愈人类遗传疾病之旅的结晶,而TALED,也被认为是基因编辑技术中最后缺失的一块拼图。研究成果发表在最新一期《细胞》杂志上。“基因剪刀”的魔力与缺憾从1968年第一个限制性内切酶的发现、1985年聚合酶链式反应的发明到2013年CRISPR介导的基因组编辑的示范,生物技术的每一个新突破发现都进一步提高了操纵DNA的能力。特别是,新近开发的CRISPR—Cas系统(“基因剪刀”)允许对活细胞进行全面的基因组编辑。这为通过编辑人类基因组中的突变来治疗以前无法治愈的遗传疾病开辟了新的可能性。虽然基因编辑在细胞的核基因组中取得了很大的成功,然而,科学家们在编辑拥有自己基因组的线粒体方面并不成功。线粒体,即所谓的“细胞的动力室”,是细胞中的微小细胞器,充当能量产生工厂。由于它是能量代谢的重要细胞器,如果基因发生突变,则会导致与能量代谢相关的严重遗传疾病。韩国IBS基因组工程中心主任金镇秀解释说:“由于线粒体DNA缺陷,出现了一些非常严重的遗传性疾病。例如,导致双眼突然失明的Leber遗传性视神经病变是由线粒体DNA中的简单单点突变引起的。”另一种线粒体基因相关疾病包括伴有乳酸性酸中毒和卒中样发作的线粒体脑肌病,它会缓慢破坏患者的大脑。一些研究甚至表明,线粒体DNA异常也可能是阿尔茨海默病和肌肉萎缩症等退行性疾病的原因。线粒体DNA可以编辑了线粒体基因组遗传自母系。线粒体DNA中有90个已知的致病点突变,总共影响至少5000人中的1人。由于向线粒体递送方法的限制,许多现有基因组编辑工具无法使用。例如,CRISPR—Cas平台不适用于编辑线粒体中的这些突变,因为引导RNA无法进入细胞器本身。另一个问题是缺乏这些线粒体疾病的动物模型。这是因为目前不可能设计出创建动物模型所需的线粒体突变。”金镇秀补充道,“缺乏动物模型使得开发和测试这些疾病的治疗方法变得非常困难。”因此,编辑线粒体DNA的可靠技术是基因组工程的前沿领域之一,为了征服所有已知的遗传疾病,必须探索这一前沿领域,世界上最优秀的科学家多年来一直在努力使其成为现实。2020年,由美国哈佛大学博德研究所和麻省理工学院刘如谦领导的研究团队创建了一种新的碱基编辑器,名为DddA衍生的胞嘧啶碱基编辑器,可从线粒体中的DNA进行C到T转换。这是通过创造一种称为碱基编辑的新基因编辑技术来实现的,该技术将单个核苷酸碱基转化为另一个碱基而不会破坏DNA。但是,这种技术也有其局限性。它不仅仅限于C到T转换,而且主要限于TC基序,使其成为有效的TC-TT转换器。这意味着它只能纠正90个已确认的致病性线粒体点突变中的9个,也就是10%。长期以来,线粒体DNA的A到G转换被认为是不可能的。研究第一作者赵兴义说:“我们开始思考克服这些限制的方法。因此,我们创建了一个名为TALED的新型基因编辑平台,可实现A到G的转换。我们的新碱基编辑器极大地扩展了线粒体基因组编辑的范围。这不仅可为建立疾病模型作出巨大贡献,还可为开发治疗方法作出巨大贡献。值得注意的是,其在人类mtDNA中能够进行A到G的转化可纠正90种已知致病性突变中的39种,约为43%。”研究人员通过融合三种不同的成分创造了TALED。第一个组分是转录激活子样效应子,它能够靶向DNA序列。第二个组分是TadA8e,一种用于促进A到G转化的腺嘌呤脱氨酶。第三个组分DddAtox,是一种使DNA更容易被TadA8e获取的胞嘧啶脱氨酶。TALED的一个有趣的方面是TadA8e在具有双链DNA的线粒体中执行A到G编辑的能力。这是一种神秘的现象,因为TadA8e是一种已知仅对单链DNA具有特异性的蛋白质。金镇秀说:“以前没有人想过使用TadA8e在线粒体中进行碱基编辑,因为它应该只对单链DNA具有特异性。正是这种跳出框框的思维方法真正帮助我们发明了TALED。”诺贝尔奖级别的成果研究人员推测,DddA tox允许通过瞬时解开双链来访问双链DNA。这个转瞬即逝的临时时间窗口允许TadA8e作为一种超快作用的酶,快速进行必要的编辑。除了调整TALED的组件外,研究人员还开发了一种能够同时进行A到G和C到T碱基编辑以及仅进行A到G碱基编辑的技术。研究团队通过创建包含所需mtDNA编辑的单个细胞衍生克隆来展示这项新技术。他们发现TALED既不具有细胞毒性,也不会导致mtDNA不稳定。此外,核DNA中没有不良的脱靶编辑,mtDNA中的脱靶效应也很少。研究人员现在的目标是通过提高编辑效率和特异性来进一步改善TALED,最终为纠正胚胎、胎儿、新生儿或成年患者中的致病mtDNA突变铺平道路。研究团队还专注于开发适用于叶绿体DNA中A到G碱基编辑的TALED,叶绿体DNA编码植物光合作用中的必需基因。基础科学研究所科学传播者苏威廉称赞道:“我相信这一发现的意义可与2014年获得诺贝尔奖的蓝色LED的发明相媲美。就像蓝色LED是让我们拥有高能效白光LED光源的最后一块拼图一样,预计TALED将迎来基因组工程的新时代。”
  • 【热电资讯】热电转换效率测量系统PEM-2成功落户深圳市清洁能源研究院
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。 近日,我司在深圳市清洁能源研究院成功交付使用了热电转换效率测量系统PEM-2。该设备可测量热电材料产生的电量及热电转换效率η(通过产生的电量和热流来获得)。为尽快满足用户的科研需求,Quantum Design中国公司调集技术力量,在满足防疫要求的前提下与用户紧密合作,顺利完成了设备的安装工作,所有技术指标均符合要求,设备正式交付使用。热电材料能够实现热能与电能的直接转换,具有重要的实用价值,热电转换效率是衡量热电材料这种转换能力的一个重要指标,对热电材料的产业化具有重要的指导意义,热电转换效率测量系统PEM-2是能有效测量该指标的仪器。PEM-2主机外观Quantum Design中国公司工程师为客户介绍设备热电转换效率测量系统PEM-2通过高精度的红外线金面反射炉可快速完成性能评估和耐力测试,可以实现热穿透测量,加热过程中,通过气缸加载可以保持接触表面的热阻稳定。在测试过程中,仅通过设置软件即可自动完成温度稳定性的判断、自动调节热电发电模块的负载以及自动控制温度测量,操作十分便捷。PEM-2支持3种样品尺寸,分别为20 mm×20 mm、30 mm×30 mm、40 mm×40 mm,用户可以根据自己的研究需要选择样品单元的大小。40 mm×40 mm样品单元PEM-2自推出以来,广受热电领域科研工作者的关注,目前国内装机量已近10台。近期,南方科技大学物理系讲席教授何佳清团队在n型Bi2Te3材料中复合过量的Te单质,通过烧结使Te单质熔化流出,在基体中引入位错。此外,还复合掺杂了Sb元素,使材料中同时存在多种缺陷,从而达到了降低热导率的目的,显著提高ZT优值。使用此材料制备的热电转换器件,实现了3.7 W的大输出功率及6.6%的转换效率,相关成果以“Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials”为题在Energy & Environmental Science发表[1]。该工作中热电转换器件的大输出功率(Pmax)及转换效率(η)均使用PEM-2测得。热电转换效率测量系统PEM-2为日本Advance Riko, Inc.生产。日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新款先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1]. Bin Zhu, Xixi Liu, Qi Wang, Yang Qiu, Zhong Shu, Zuteng Guo, Yao Tong, Juan Cui, Meng Gu and Jiaqing He, Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials, Energy & Environmental Science 2020, 13, 2106-2114 关注Quantum Design China微信公众号,在对话框中输入“热电”了解更多信息。
  • 【敲黑板】如何降低CCD中的暗电流,提升仪器检出限
    自从电荷耦合器件(ccd,charge-coupled device)在大名鼎鼎的贝尔实验室发明仪器,其技术突飞猛进,在航空航天、医疗和工业等方面得到了广泛应用。特别在新型的aes光谱仪中,ccd就像眼睛一样,感知样品激发的等离子体发出的光。在微光应用方面,科学级ccd已经能打到探测到几个光子的水平,如果ccd能够准确的将光子信号转换为电荷信号,那新型的ccd光谱仪的检测极限将大大提高,但是实际情况中,这些微弱的光子信号产生的电荷信息,被ccd产生的暗电流淹没。暗电流(dark current), 也称无照电流,指在没有光照射的状态下,在光导电元件、光电管等的受光元件中流动的电流。它包括晶体材料表面缺陷形成的泄漏电流和载流子热扩散形成的本征暗电流。现代科学研究主要两个方向去解决,一个是提升材料性能,一个是降低ccd的工作温度。暗电流的大小与温度的关系极为密切,温度每降低10℃,暗电流约减小一半。越小的暗电流,同等条件下,光谱的检测下限越好。 赛默飞世尔科技是检测领域的世界领导者。它为全球客户提供的优质分析仪器、实验室设备、试剂耗材及创新的实验室综合解决方案。赛默飞世尔在直读火花光谱仪行业拥有超过80年的经验,最近在高端台式直读火花光谱仪3460/4460之后,赛默飞世尔科技又推出一款全新的全谱直读火花光谱仪arl easyspark 1160。全新的arl easyspark 1160 使用定制镀膜ccd,提升透光率,总像素高达26000,而传统ccd只有2000~4000像素。除此之外,它还采用独特的半导体制冷,ccd的工作温度为9.6℃,而传统ccd工作温度30~40℃,极大的降低仪器的暗电流,提升仪器的检测下限。关于朗铎科技朗铎科技,全球科学服务领域的领导者-赛默飞世尔科技(thermo fisher scientific)中国区域战略合作伙伴。作为工业检测分析系统解决方案服务商,我们致力于为中国客户提供全球高品质的分析仪器、专业的应用技术支持、优质的售后服务等系统解决方案 朗铎科技是赛默飞世尔尼通(niton)手持式光谱仪在合金/地矿行业的中国区总经销商,也是赛默飞世尔arl全谱直读光谱仪中国区总经销商。目前朗铎科技主要产品包括手持式合金光谱仪、手持式矿石光谱仪、直读光谱仪、工业内窥镜等系列产品。
  • 《Science》!热电转换效率测量系统PEM助力客户文章登上顶级期刊
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。 热电材料性能指标的关键在于能源转换效率,其由材料的无量纲热电性能优值(ZT值)决定。由ZT值的定义式(ZT = (Sσ/κ)T)可知,在给定温度T下,高性能热电材料应具有大的塞贝克系数S、高的电导率σ和低的热导率κ。然而,这些热电参数相互之间具有强烈的耦合关系,使得热电材料的性能优化具挑战性,调控这些强烈耦合的复杂热电参数是提高材料ZT值和热电转换效率的关键。随着热电材料领域的研究越来越受重视,不断涌现出了诸多提升ZT值的有效策略:优化载流子浓度以提高电导率;调整电子能带结构、晶体结构、相结构等优化电传输性能;通过引入点缺陷、位错、晶界、纳米沉淀物等进行多尺度分层架构设计以降低热导率;探索和开发具有本征低热导率特性的新材料体系;通过高通量及基于基因计算等预测潜在热电材料等。近日,北京航空航天大学材料科学与工程学院赵立东教授团队与南方科技大学、清华大学及武汉理工大学的科研团队合作,通过掺杂Pb,显著提高了p型SnSe晶体室温附近的电传输性能。该工作以《Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments》为题目发表在《Science》上。 以往研究中,多选用窄带隙或半金属材料作为热电制冷材料,赵立东教授课题组则主要开发宽带隙热电材料,利用各向异性调和电输运与热输运的矛盾。该研究通过在动量空间和能量空间同时作用的多价带协同传输策略,实现了p型SnSe晶体热电性能的显著提升;并制备了基于SnSe晶体材料的热电器件,测试其温差发电性能(大发电量及功率),还实现了大温差的电子制冷。这一研究表明SnSe基晶体材料在温差发电和电子制冷方面有巨大潜力,使用p型SnSe晶体制备的器件,其制冷性能达到了使用传统BiTe基材料商用器件的70%(210K温差下),但SnSe基热电材料具有成本低、重量轻且储量更加丰富等优势,具备十分巨大的应用价值。图1. 使用PEM-2测得的温差发电器件性能:电压(A)和输出功率(B)以上工作中,材料的电导率、塞贝克系数使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3测得,热电转换器件(TEG)的发电量、输出功率及热电转换效率使用日本Advance Riko公司生产的热电转换效率测量系统PEM-2测得。图2. 使用PEM-2测得的温差发电器件的转换效率 日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。参考文献:[1] Qin Bingchao et al., Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 30 Jul 2021: Vol. 373, Issue 6554, pp. 556-561[2] 《Science》刊发北航赵立东教授课题组在电子制冷材料研究上的新进展,北京航空航天大学新闻网[3] 南科大何佳清团队在Science发表SnSe热电材料和器件重要成果,南方科技大学新闻网 关注Quantum Design China微信公众号,在对话框中输入“热电”了解更多信息。
  • 光波诱导下光电流极性反转现象
    近日,中国科学技术大学龙世兵、孙海定研究团队联合武汉大学刘胜教授团队,以及合肥微尺度国家实验室胡伟研究员、香港城市大学He Jr-Hau教授和澳大利亚国立大学傅岚教授,将分子束外延生长的III族氮化物纳米线与无定型硫化钼材料结合,构筑了新型GaN/MoSx核壳纳米线结构,应用于光电化学光探测领域。通过将氮化镓半导体内光电转化过程与该结构在电解质溶液中的电化学反应过程相交叉,成功在纳米线中观察到光波长控制下的光电流极性翻转现象,实现了不同波长可分辨探测功能。该成果以“Observation of Polarity-Switchable Photoconductivity in III-nitride/MoSx Core-Shell Nanowires”为题发表在Light: Science & Applications,并被选为第 11 期封面文章。III族氮化物纳米线具有良好的导热性,载流子有效质量小、载流子迁移率高、吸收系数高、化学稳定性和热稳定性良好等各种优异特性,被广泛应用于晶体管、激光器、发光二极管、光电探测器和太阳能电池等领域,是现代半导体器件领域的重要组成部分。特别地,由于其独特的一维几何形状和大的比表面积,III族氮化物纳米线表现出许多对应体相材料不存在的独特特性。相比于薄膜结构,纳米线生长不受制于晶格匹配生长规则的约束,完美解决了异质外延生长及集成所面临的困境。同时,在III族氮化物纳米线外延过程中,材料内的应力易得到释放,位错则终止在III族氮化物纳米线的侧壁,有效减少了外延材料中的堆垛层错和穿透位错密度。此外,相较于薄膜结构,纳米线中的低缺陷密度可大幅提高纳米线中施主、受主杂质的掺杂效率,具有高效载流子导电特性。并且,得益于其高晶体质量和大的比表面积,纳米线阵列拥有较高的光提取/吸收效率和较强的光子局域化效应。此外,纳米线结构可以通过有效的应变弛豫来缓和有源区内的极化场,显著降低材料内位错密度和压电极化场,增强了电子和空穴之间的波函数重叠。同时,基于分子束外延自发生长的III族氮化物纳米线表面为氮极性,赋予了其较高的化学稳定性。尽管III族氮化物纳米线有诸多优势,然而,仅依靠其固有的物理和材料特性构筑器件,限制了该类材料功能的进一步拓展。通过将纳米线中的经典半导体物理过程与化学反应过程相结合,有望突破传统III族氮化物纳米线的功能限制,拓展新的应用场景。针对上述问题,中科大孙海定课题组利用分子束外延(MBE)技术所制备的高晶体质量氮化镓(GaN)纳米线,开展了系列研究工作。在构建高性能光电化学光探测器的基础上[Nano Lett., 2021, 21 (1): 120-129 Adv. Funct. Mater., 2021, 31 (29): 2103007 Adv. Funct. Mater., 2022, 2201604 Adv. Opt. Mater., 2021, 9 (4): 2000893 Adv. Opt. Mater., 2022, 2102839 ACS Appl. Nano Mater., 2021, 4 (12): 13938–13946], 通过将光电化学光探测器中载流子的产生、分离及传输过程与电子和空穴在半导体表面/电解液界面处的氧化/还原反应过程相结合,实现了载流子输运过程的有效调制,在该器件中观察到独特的双向光电流现象[Nature Electronics, 2021, 4 (9): 645-652 Adv. Funct. Mater., 2022, 2202524 Adv. Funct. Mater., 2022, 32 (5): 2104515]。上述工作中,实现双向光电流的必要条件之一是利用纳米线表面贵金属修饰策略,改善纳米线表面的载流子分离效率及化学吸附能。如何利用纳米线独特的一维几何形状和大的比表面积特性,将其与其他低成本、易合成的功能材料相结合,是实现对贵金属材料的替代,降低器件制备成本并进一步提升器件多功能特性的关键。与此同时,为了更好分析双向光电流现象的内部机制,需要探索新的表面修饰手段,以保证复合纳米线结构的均一性,稳定性。作为过渡金属硫属化物材料的一员,近年来,无定形硫化钼(a-MoSx)在实现高效能量收集和转换方面受到了广泛关注。由于其独特的由二硫配体桥接的一维(1D)a-MoSx链结构,丰富的表面活性位点可以与周围环境紧密接触,表现出出色的反应活性,可实现高效的电荷转移和传输。更重要的是,在温和的室温条件下,简单的电沉积方法(循环伏安法)即可以轻松合成a-MoSx材料。通过电沉积法,a-MoSx可以直接包裹于纳米线表面上,实现a-MoSx和纳米线之间的高效耦合,有效改善纳米线表面的载流子分离效率及化学吸附能。在此,我们以实现对不同波长的光分辨探测为目标,提出了一种基于在Si衬底上外延生长的p-AlGaN/n-GaN纳米线构建的光电化学光探测器(图1)。图1 基于纳米线的PEC PD的器件结构和工作原理示意图在光电化学光探测器的工作过程中,光电流响应信号的大小由有效参与氧化还原反应的光生载流子的数量决定,光电流的极性(正或负)则由在半导体/电解质界面发生的化学反应的种类决定。换句话说,通过入射光的波长控制在光电化学光电探测器中占主导地位的化学反应种类(氧化反应或还原反应),可以实现光电流极性的翻转。图1展示了光电化学光电探测器中的基本光电极结构和简化的工作原理。由于设计的顶部p-AlGaN层的带隙较大,它对低能光子(例如365 nm光照)是透明的,对光电探测过程没有贡献,只有n-GaN部分吸收光子并且参与氧化反应,光电探测器呈现正光电流。而在254 nm照射下,顶部p-AlGaN和底部n-GaN部分均能吸收高能光子并于半导体/电解质界面发生氧化反应和还原反应。然而,由于纯p-AlGaN/n-GaN纳米线表面的氢吸附能(ΔGH)不适合实现高效的还原反应(换句话说,还原过程很慢),氧化反应过程仍然在净光电流极性中占主导地位。纯p-AlGaN/n-GaN纳米线,在254 nm照明下产生小的光电流。这表明改变纳米线表面的ΔGH是实现双向光电流的关键。为了在不同波长的光照下实现双向光电流响应,我们选择用a-MoSx修饰III族氮化物纳米线以提高还原反应速率。图2在p-AlGaN/n-GaN纳米线的表面可以观察到一层明显壳层,表明III族氮化物核壳结构纳米线的成功制备。图2无定型MoSx修饰的p-AlGaN/n-GaN纳米线的结构表征。(a)SEM.(b)低倍率TEM.(c)高分辨率TEM图像(d)低倍率STEM图像(标尺 = 100 nm),(e)高角环形暗场(HAADF)STEM图像和(f)环形明场(ABF)STEM图像。(g)STEM-EDS 图像和(h)对应位置的线扫描结果为深入理解表面修饰对光探测性能带来的影响,我们通过X射线光电子能谱(XPS)进一步研究了a-MoSx@p-AlGaN/n-GaN纳米线的化学成分和元素间键合情况(图3a,b)。这些结果与之前对[Mo3S13]2-簇的XPS研究一致,证实了a-MoSx被成功修饰在p-AlGaN/n-GaN纳米线上。图3 (a)(b) p-AlGaN/n-GaN纳米线上电沉积a-MoSx壳层的XPS谱。(c)a-MoSx修饰前后的光响应对比。(d)a-MoSx@p-AlGaN/n-GaN纳米线的光谱响应为了进一步评估纳米线的光响应行为,我们构建了光电化学光探测器。由图3c可知,纯p-AlGaN/n-GaN及无定型MoSx修饰后的纳米线均显示出稳定且可重复的开/关光电流循环。纯p-AlGaN/n-GaN纳米线在254 nm或365 nm光照下则均表现为正的光电流响应,这与图1所示的纯p-AlGaN/n-GaN纳米线的工作原理一致。因其对不同光子能量的入射光子有不同的光响应特性,a-MoSx@p-AlGaN/n-GaN纳米线能够通过表现出不同极性的光电流来区分不同的光波段。如图3d所示,光电流信号在255 nm光照下为负,然后当波长超过265 nm时切换为正,证实了其波段可分辨性能。此外,对可见光照射的光响应可以忽略不计,表明器件具有出色的可见光盲特性。同时,我们还深入探讨了该器件的性能可调性,并利用第一性原理计算揭示了a-MoSx修饰实现双向光电流性能的内在机制。
  • 电导率方法转换的桥接试验:从使用台式仪和探头转换为使用自动化的Sievers M9 TOC分析仪
    究目的本研究的目的是证明使用配置了电导率选项的Sievers® M9总有机碳(TOC)分析仪和使用台式仪表和探头来测量《中国药典》2020版通则与USP 规格样品水第1阶段电导率这两种方法同样有效,并帮助用户从使用台式仪表和探头转换为使用配置电导率选项的Sievers M9 TOC分析仪。制药用水的电导率是指样品水在已知电势差上传导因离子运动而形成电流的能力值。电导率的计算方法是用电流强度除以电场强度。可以用离线的台式仪表和探头或者在线的电导率传感器来测量电导率1。随着温度和pH值变化,水分子自然离解成离子,从而使样品水具有可计算的电导率。外来离子也会影响样品水的电导率,并对样品水的化学纯度以及样品水在制药应用中的适用性产生较大影响。因此,国际通用的药典都有关于测量制药用水电导率的专论,给出了水的纯度和适用性的接受标准。USP 还对测量电导率的仪器规定了具体要求,并规定了具有不同接受标准的三个测量阶段,以帮助用户进行在线或离线测量。第1阶段测量的接受标准最严格,但此阶段最容易实施。第2和第3阶段测量则要求实验室人员进行离线的、耗时的实验台操作。对于制药商而言,最想进行的测量是离线或在线的第1阶段测量。根据USP ,如果要进行离线测量,测量就必须在合适的容器中进行。离线测量电导率所使用的合适容器的制造材料,不可以在与样品接触时浸出离子。传统的硼硅酸盐玻璃瓶会在样品水中浸出钠离子和其它离子,因此不适用于测量制药用水。Sievers电导率和TOC双用途瓶(DUCT,Dual Use Conductivity and TOC)的瓶体、瓶盖、垫片的测试表明,即使用DUCT瓶保存样品长达5天,也不会对样品的TOC和电导率产生明显的贡献。2,3目前许多制药商在测量制药用水的电导率时使用台式仪表和探头离线进行第1或第2阶段测量。这种测量方法有几个无法避免的缺点,比如数据不安全、样品的安全性不足、样品暴露于空气中、资源的使用效率低等。测量制药用水电导率的先进方法应当是进行自动化的第1阶段电导率测量,而存放和传输数据的电子安全数据库应完全符合21 CFR Part 11法规和最新的数据完整性法规。配置了电导率选项的Sievers M9 TOC分析仪就为用户提供了这种理想的第1阶段电导率测量方法。以下路线图显示如何从使用台式仪表和探头来离线测量第1阶段电导率,转换为使用配置了电导率选项的Sievers M9 TOC分析仪来自动测量第1阶段电导率。料配置了电导率选项的Sievers M9便携式TOC分析仪(SN#0043)配置了InLab 741 ISM电导率探头的梅特勒-托利多SevenCompact 仪(Mettler Toledo SevenCompact Meter)一盒Sievers DUCT电导率和TOC双用途样品瓶(HMI 77500-01)两套Sievers 100 μS/cm KCl电导率校准标样(STD 74470-01)(如果适用)一瓶500毫升Ricca 100 μS/cm KCl标样,25°C(CAT#5887-16)10毫升和1000微升移液器和吸头析步骤01通过DataPro2(请见下图)中的“样品电导率校准(Sample Conductivity Calibration)”系统任务,或者用M9的触摸屏,用100 μS/cm标样组(STD 74470-01)来校准M9分析仪,确保校准正确。02用100 μS/cm标样组(STD 74470-01)来校准梅特勒-托利多SevenCompact仪和InLab 741 ISM电导率探头,确保校准正确。请务必选用正确的电导率校准值。对于梅特勒-托利多SevenCompact仪,请选择以下校准标样路径:菜 单(Menu)/校准(Calibration),设置(Settings)/校准标样(Calibration Standard)/定制标样(Customized Standard)。输入100 μS/cm KCl标样,25°C。03为了最大程度上减少样品在传送过程中或转移到二级容器过程中被空气中的二氧化碳所污染,所有标样都应直接制备在DUCT样品瓶中² 。请采用正确的样品制备技术,用100μS/cm KCl储备溶液分别制备30毫升DUCT瓶装的100、75、50、25、12.5、10、5、2.5、1.25、1 μS/cm浓度的标样² 。最佳做法是按从高浓度到低浓度的顺序来制备标样,这样就可以在制备和分析各种敏感的低浓度标样之间花费最短的时间。所需要的稀释体积,请参考表1。04低浓度电导率标样非常敏感,因此必须先运行最低电导率标样,最后运行最高电导率标样,方法条件如图1所示。M9分析仪报告原始电导率、温度、温度补偿电导率。USP 指出,对未知水样的所有阶段1的电导率测试是非温度补偿的。在进行校准、确认、比较研究时,应使用已知化合物的纯标样。例如,上述校准标样在25°C时为100 μS/cm KCl。为了正确地将测量值与此标准值进行比较,必须将电导率测量值补偿回参考温度25°C时的标准值。同样,由于是在两个电导率测量平台上测量这些纯净的已知标样,因此必须进行温度补偿以确保进行正确的比较。05采用正确的取样技术,用100 μS/cm KCl储备溶液分别制备DUCT瓶装的100、75、50、25、12.5、10、5、2.5、1.25、1.00 μS/cm浓度的标样,用于台式仪表和探头测量。低浓度标样非常敏感,因此必须最先在仪表和探头上运行最低电导率标样,最后运行最高电导率标样,方法条件如图1所示。确保将探头完全浸入DUCT瓶中。样品水在转移时可能会洒出来,因此建议将样品瓶放在二次容器(即防洒容器)中,以便在操作过程中用二次容器接住洒出来的水。06对于梅特勒-托利多SevenCompact仪表,确保选择25°C作为参考温度,并对测量值进行温度补偿。在仪表和M9上选择准确的补偿曲线和参考温度,这一点非常重要。KCl在低浓度时有非线性温度校正曲线,因此建议在仪表上选择非线性补偿曲线。测量时请将探头放入样品中,然后按“读取(Read)”键。待测量稳定后,表会提示“保存(Save)”或“退出(Exit)”。所有样品的测量数据都会记录在仪表上,然后导出用于分析。结果和讨论图2是配置了InLab 741 ISM电导率探头的梅特勒-托利多仪测量的电导率数据,包括实测响应和预期响应的数据对比。响应值连成直线,可以看到R² 值和斜率,便于进行方法比较。图2中的数据显示,配置了InLab 741 ISM电导率探头的梅特勒-托利多仪的电导率线性非常适用于测量制药用水的第1阶段电导率。图3是Sievers M9 TOC分析仪测量的电导率数据,包括实测响应和预期响应的数据对比。响应值也连成直线,可以看到R² 值和斜率,便于进行方法比较。图3中的数据显示,Sievers M9 TOC分析仪的电导率线性也适用于测量制药用水的第1阶段电导率。表2是配置了InLab 741 ISM电导率探头的梅特勒-托利多仪和配置了电导率选项的Sievers M9 TOC分析仪的线性方法对比数据。这两种不同设备的实测响应数据显示,Sievers M9的R² 和斜率响应均略优于配置了InLab 741 ISM电导率探头的梅特勒-托利多仪的R² 和斜率响应。本研究中的数据不仅确认了这两种设备方法都可以有效地测量电导率,更进一步证明了配置电导率选项的Sievers M9 TOC分析仪更具优势。用这两种设备方法的结果差异,部分归因于样品与周围空气能否有效隔离。当使用Sievers M9 TOC分析仪时,电导率和TOC标样都装在DUCT样品瓶里进行分析,从而有效地隔离了空气。而当使用梅特勒-托利多仪和探头时,需在测量过程中打开样品瓶的盖子以便插入探头。打开瓶盖后,空气中的二氧化碳就会污染样品。在测量电导率时,Sievers M9分析仪比传统的台式仪表和探头有更好的线性、斜率响应、样品处理。除此之外,Sievers M9分析仪还有其它优势。台式仪表和探头测量的数据通常以txt或csv格式存放在仪表上。这都不是安全的数据格式,容易被审计机构审查。而Sievers M9分析仪采用安全的数据文件格式,数据不会受到机构审查。此外,在使用台式仪表和探头时,通常需要用USB设备来从仪表向电脑传送数据,而使用USB来传送数据时,容易被审计机构审查数据完整性。M9分析仪的数据可以通过以太网自动导出到LIMS系统、SCADA系统、或其它数据管理平台。最后,台式仪表和探头需要专门的操作人员来制备和运行样品,费时费力。由于对温度、搅拌、测量稳定性的要求,每份样品的第2阶段电导率测量时间需长达30分钟。而将自动进样器和配置了电导率选项的Sievers M9 TOC分析仪一起使用时,就可以实现自动化的样品分析和数据采集。考虑到Sievers M9 TOC分析仪的上述诸多优点,及其卓越的分析结果,那么制药商放弃使用传统的台式仪表和探头,转而使用配置了电导率选项的Sievers M9 TOC分析仪来自动测量电导率,就成为非常明智的选择。两种设备方法的优缺点比较,请见表3。结论改变现行的分析方法通常是复杂的过程,而从传统的台式分析转换为自动分析可能更加复杂。本研究旨在说明如何从使用台式仪表和探头转换为使用配置了电导率选项的Sievers M9 TOC分析仪来测量电导率。本研究证明了台式设备和自动设备在测量USP 第1阶段电导率时具有同等分析性能,从而证明了从台式分析转换为自动分析的可行性。本研究还显示,用户可以相对容易地完成这一转换。最后如表3所示,当使用Sievers M9分析仪代替台式仪表和探头来测量电导率时,可以有诸多优点,例如数据可靠性、样品完整性、自动化运行等,这就使得从台式分析到自动分析的转换对寻求精益工艺流程的制药商极具吸引力。参考文献Sievers Lean Lab: Simultaneous Stage 1 Conductivity and TOC Lab Testing of Pharmaceutical Water (300 40030).DUCT Vial Performance and Stability (300 00297).Reserve Sample Bottles for Conductivity and TOC (300 00299).Low Level Linearity Conductivity Study on the Sievers M9 TOC Analyzer (300 00339).◆ ◆ ◆联系我们,了解更多!
  • 嘉盛科技亮相“中国化学会第二届电化学能量转换研讨会”,展示德国高端设备
    7月19-21日,嘉盛科技携德国Balticfuelcells公司的燃料电池夹具QCF 25/100及Delico公司的电流密度分布测试系统于7月19-21日在长春展出,受到广泛关注。嘉盛科技作为高端实验室设备的领先供应商,此次展览展示的设备在电解水和燃料电池领域具有广泛应用。QCF 25/100夹具能够高效地测试和分析燃料电池的性能,为研究人员提供准确的数据支持。而Delico公司的电流密度分布测试系统则为电池性能评估提供了精确的电流分布图,帮助科研人员深入理解电化学反应过程。此次研讨会围绕“电催化助力‘双碳’进程”主题展开,汇聚了来自全国的专家、学者和行业代表,讨论电化学能量转换的最新研究成果和发展趋势。嘉盛科技的展品不仅展示了公司在电化学领域的技术实力,也为与会者提供了交流和合作的机会。在当前全球能源转型的背景下,电化学能量转换技术在实现“双碳”目标中扮演着关键角色。嘉盛科技的展品涵盖锂电池、钠电池、氢电转换系统及相关电极和电催化材料等领域,致力于推动中国电化学技术的创新与发展。我们期待通过此次研讨会,与各界专家共同探讨电化学领域的前沿技术,携手推动绿色低碳发展的未来。更多咨询,请与我们联系。
  • 2012年上半年发布仪器新品:电化学仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。   电化学分析是利用物质的电化学性质测定物质成分的分析方法。它是仪器分析法的一个重要组成部分,以电导、电位、电流和电量等化学参数与被测物质含量之间的关系作为计量的基础。根据所测量电化学参数的不同,常见的电化学分析仪器有:pH计、电位滴定仪、电化学工作站、卡尔费修水分仪、电导率仪、库仑仪、极谱仪等。   电化学仪器是实现电化学分析与电化学测量的基本工具,量大面广。电化学信号可直接使用,无须精密的机械和光学系统,方便经济,是企事业单位及科研机构实验室常用的一类分析仪器。目前电化学仪器不仅作为实验室基础研究的科学仪器,也拓展到现场分析技术和仪器仪表等领域,在线分析、便携化、多功能化等亦是其未来的发展方向。   2012年的上半年,电化学领域新产品新技术不断推出。仪器信息网新品栏目和相关资讯中发布了8款电化学仪器新品及相关设备。   pH 计 日本堀场 HORIBA F-70 LAQUA PH计 上市时间:2012年3月 (汕头市科技设备供应公司代理)   HORIBA F-70 LAQUA系列PH计是一款操作简单而有趣的新形仪表,采用宽屏静电容量式触摸屏,触感操作;智能导航可以及时指引进而解决校准及测量故障等问题;此外,该款仪器的玻璃管电极易清洗。   卡氏水分测定仪 上海禾工科学仪器有限公司 全自动卡尔费休水分测定仪AKF-1 上市时间:2012年3月   AKF系列全自动卡尔费休水份测定仪在传统产品上进行了大量的创新,增加了仪器稳定性,降低了仪器故障,消除了运行噪声,同时改良了操作界面,加入自动打空白,自动清洗装置,自动保持检测状态等技术,仪器操作的简便、自动、安全、高效。 上海禾工科学仪器有限公司高 精度智能卡尔费休水分测定仪AKF-2010(升级型) 上市时间:2012年4月   AKF-2010卡尔费休水分测定仪采用Windos操作系统,5.6寸高精度触摸屏;操作简单直观,可以外接键盘鼠标,并且可以连接到网络,直接用网络传输数据,可以实现对仪器的远程控制和远程数据传输处理及监管;该款仪器还具有极大的扩展性,可方便升级为电化学自动滴定系统;其全封闭滴定池,使用户无需直接接触有毒试剂即可完成整个分析过程以及仪器的日常维护等工作。   自动电位滴定仪 日本京都电子公司 AT-700自动电位滴定仪 上市时间:2012年4月 (上海今昊科学仪器有限公司代理)   AT-700自动电位滴定仪采用了新的液路设计,更换试剂、日常维护更加简单;并且可以扩展为双管滴定,最多可连接10组滴定单元;可配套专用多样品转换器使用,经济实用;该电位滴定仪使用通用的USB接口连接各种外部设备,U盘存储,键盘输入,条码扫描;精确的液滴控制保证了实验的精度;多种规格的测试电极和多种外设极大扩展了电位滴定仪的应用范围;仪器设计紧凑,体积为原来型号仪器的一半。   电化学工作站、恒电位仪 美国青藤 DY2116B微型恒电位仪/恒电流仪 上市时间:2012年4月 (雷迪美特中国有限公司代理)   DY2116B是美国Digi-Ivy, Inc.公司生产的一款袖珍式恒电位仪/恒电流仪。该仪器采用最新的半导体芯片科技,通过独特的电路设计大大缩小了仪器的体积,应用更为便捷;噪声低,稳定性高,精心设计的硬、软件的有机结合,在不用Faraday屏蔽罩的情况下也很容易获得pA的电流测量分辨;信号发生和采集通过16-bit DAC和16-bit ADC来完成,最小电流分辨可达0.76pA;操作简单,功能多样化,易于使用,控制界面一目了然。 美国Gamry电化学公司 Interface1000电化学工作站   Interface 1000具有9个电流范围,3个增益范围,很灵活地适用于从腐蚀到电池,从传感器到超级电容的应用领域;高性能:电池充放电、极化实验,Interface 1000可以达到1A电流,槽压可以达到20V;和Gamry其他系统一样,Interface 1000采用浮地技术设计,使用与接地的工作电极系统;Interface 1000 可以达到 20 uV 噪声效果;不需要添加任何模块,Interface 1000 可以测量到1 MHz的交流阻抗;多台Interface 1000可以方便的组合为多通道的电化学工作站,并且比传统的多通道使用起来灵活。   电化学仪器部件、外设 美国pine光谱电化学装置 上市时间:2012年2月 (理化(香港)有限公司代理)   Pine公司的光谱电化学装置可以实现电化学方面的检测,并同时能实现光谱的检测。整套装置中,关键在于蜂窝状的电极和薄层石英电解池的配合使用,实现了电化学与光谱的同时检测;蜂窝状电极由三电极系统集成,以铂、金等贵金属作为工作电极,蜂窝状的制作工艺使光线穿透电解池,让研究者能够了解实时光谱及电化学数据。 美国pine光电化学石英电解池 上市时间:2012年2月 (理化(香港)有限公司代理)   PINE公司的光电化学石英电解池顶端有一较大的端口,可插入光电阳极(通常是硅晶片)。电解池周围的端口可插入对电极(通常为铂环)和参比电极;并且专门设计有气体喷射和净化的配件。可见光及紫外光可以通过电解池的任一两侧玻璃。在需要光学窗口的情况下,一侧或两侧的玻璃可以更换为可移动的光学窗口;除了在光电化学研究中应用,石英电解池也广泛应用在溶剂体系研究中(如强碱)。   了解更多电化学仪器,请访问仪器信息网电化学仪器专场   了解更多新品,请访问仪器信息网新品栏目
  • 睿光科技发布NirVivo系列 近红外二区活体荧光成像系统新品
    非凡的成像性能评价小动物活体荧光成像系统的关键要素——所选用相机的性能水平。NirVivo系列采用深度制冷科学相机产品,CCD制冷温度(-90℃)和InGaAs制冷温度(-80℃),基于这样的硬件配置,系统具备了高灵敏度的生物发光及荧光成像性能,同时能够满足微区成像和血管动态成像。全面而先进的荧光成像解决方案高透光率滤光片为了实现高品质的荧光成像系统,NirVivo配置了丰富且优质的荧光滤光片,光谱覆盖包括从VIS至NIR I区,NIR IIa区至NIR IIb区的全部区域,并且所有滤光片均采用硬涂层技术,在保证高透光率(95%以上)的同时具备长寿命耐损伤品质。系统内部构造及组成成像暗箱● 高避光性成像箱体● 高度整合的荧光成像组件● 用于维持动物正常体温的加热载物台● 用于控制载物台升级、滤光片轮切换的电动马达● 内置的气体麻醉接口● 电磁门锁● 可滑动脚轮CCD相机● 高量子效率背照式、科学一级CCD探测器● 像素尺寸13.5um,分辨率2048x2048● 高动态范围16 bit数字转换器● 帕尔贴型制冷,制冷温度-90℃,保证极低的暗电流● 曝光时间可达60分钟InGaAs相机 ● 高量子效率InGaAs探测器 ● 像素尺寸15um,分辨率640x512 ● 高动态范围16 bit数字转换器 ● 帕尔贴型制冷,制冷温度-80℃,保证极低的暗电流● 曝光时间可达5分钟半导体激光器 ● 808nm, 980nm和1064nm可选 ● 激光输出功率15W(可定制其它功率) ● 支持高重频调制工作参考型号系统型号NirVivo-LiteNirVivo-ProNirVivo-MIX成像光谱范围900-1700nm900-1700nm400-1700nm芯片类型InGaAs, TE1制冷InGaAs, TE4制冷CCD和InGaAs,TE4制冷芯片工作温度15℃-80℃-90℃ CCD芯片-80℃ InGaAs芯片芯片尺寸9.6mm x 7.7mm9.6mm x 7.7mm27.7mm x 27.7mm像素数量640 x 512640 x 5122048 x 2048640 x 512量子效率70% @1000-1600nm70% @1000-1600nm85%@500-700nm70% @1000-1600nm像素尺寸15um x 15um15um x 15um13.5um x 13.5um CCD15um x 15um InGaAs镜头1x, 2.5x, 5x, (8-50)x1x, 2.5x, 5x, (8-50)x1x, 2.5x, 5x, (8-50)x读出噪声(RMS)30e- 30e-2.3e- CCD芯片30e- InGaAs芯片暗电流60Ke-/p/s@15℃100e-/p/s@-80℃0.0001e-/p/s@-90℃100e-/p/s@-80℃激发滤光片数量449发射滤光片数量449加热恒温载物台有有有气体麻醉接口有有有计算机及软件有有有成像暗箱内部尺寸45 x 50 x 65cm载物台温度 20 - 40℃电源要求100-240 VAC, 50-60 Hz工作温度 0 - 50℃创新点:采用-80℃深度制冷的红外探测器,独特的光路设计,可以选择三种不同的激光波长进行测量,双相机设计,兼容了从可见光,近红外一区到近红外二区的全谱段小动物荧光成像应用的需求,属于业内领先的设计及系统。NirVivo系列 近红外二区活体荧光成像系统
  • 第三代半导体材料GaN的挑战和未来
    氮化镓 (GaN) 是一种宽带隙半导体,其在多种电力电子中的应用正在不断增长。这是由于这种材料的特殊性能,在功率密度、耐高温和在高开关频率下工作方面优于硅 (Si)。长期以来,在电力电子领域占主导地位的硅几乎已达到其物理极限,从而将电子研究转向能够提供更大功率密度和更好能源效率的材料。GaN 的带隙 (3.4 eV) 大约是硅 (1.1 eV) 的 3 倍,提供更高的临界电场,同时降低介电常数,从而降低 R DS( on)在给定的阻断电压下。与硅相比(在更大程度上,与碳化硅 [SiC])相比,GaN 的热导率更低(约为 1.3 W/cmK,而在 300K 时为 1.5 W/cmK),需要仔细设计布局和适当的开发出能够有效散热的封装技术。通过用 GaN 晶体管代替硅基器件,工程师可以设计出更小、更轻、能量损失更少且成本更低的电子系统。 受汽车、电信、云系统、电压转换器、电动汽车等应用领域对日益高效的解决方案的需求的推动,基于 GaN 的功率器件的市场占有率正在急剧增长。在本文中,我们将介绍 GaN 的一些应用,这些应用不仅代表了技术挑战,而且最重要的是,代表了扩大市场的新兴机遇。01 电机驱动由于其出色的特性,GaN 已被提议作为电机控制领域中传统硅基 MOSFET 和 IGBT 的有效替代品。GaN 技术的开关频率高达硅的 1,000 倍,加上较低的导通和开关损耗,可提供高效、轻巧且占用空间小的解决方案。高开关频率(GaN 功率晶体管的开关速度可以达到 100 V/ns)允许工程师使用较低值(因此尺寸更小)的电感器和电容器。低 R DS( on)减少产生的热量,提高能源效率并实现更紧凑的尺寸。与 Si 基器件相比,GaN 基器件需要具有更高工作电压、能够处理高 dV/dt 瞬态和低等效串联电阻的电容器。 GaN 提供的另一个优势是其高击穿电压(50-100 V,与其他半导体可获得的典型 5 至 15-V 值相比),它允许功率器件在更高的输入功率和电压下运行而无需损坏的。更高的开关频率允许 GaN 器件实现更大的带宽,因此可以实现更严格的电机控制算法。此外,通过使用变频驱动 (VFD) 电机控制,可以实现传统 Si MOSFET 和 IGBT 无法获得的效率水平。此外,VFD 实现了极其精确的速度控制,因为电机速度可以上升和下降,从而将负载保持在所需的速度。图1 显示了 TI TIDA-00909 参考设计,该设计基于具有三个半桥 GaN 电源模块的三相逆变器。GaN 晶体管的开关速度比 Si 晶体管快得多,从而降低了寄生电感和损耗,提高了开关性能(小于 2ns 的上升和下降时间),并允许设计人员缩小或消除散热器的尺寸。GaN 功率级具有非常低的开关损耗,允许更高的 PWM 开关频率,在 100kHz PWM 时峰值效率高达 98.5%。 02 5GGaN 还在 RF 领域提供了具体且非常有趣的前景,能够非常有效地放大高频信号(甚至几千兆赫的数量级)。因此,可以创建能够覆盖相当远距离的高频放大器和发射器,用于雷达、预警系统、卫星通信和基站等应用。作为下一代移动技术,5G 在更大容量和效率、更低延迟和无处不在的连接方面具有显着优势。使用不同的频段,包括 sub-6-GHz 频段和毫米波 (mmWave)(24-GHz 以上)频段,需要 GaN 等能够提供高带宽、高功率密度和卓越效率的材料价值观。由于其物理特性和晶体结构,GaN 可以在相同的施加电压下支持比可比较的横向扩散 MOSFET 器件更高的开关频率,从而实现更小的占位面积。新兴的 5G 技术,例如大规模多输入多输出 (MIMO) 和毫米波,需要专用的射频前端芯片组。GaN-on-SiC,它将 GaN 的高功率密度与 SiC 的高导热性和降低的射频损耗相结合,被证明是高功率 5G 和射频应用的最合适的解决方案。目前市场上有几种适用于 5G 应用的 GaN 器件,例如用于 5G 大规模 MIMO 应用的低噪声放大器和多通道开关。03 无线电力传输GaN 最具创新性的应用之一是无线充电技术,其中 GaN 的高效率通过将更多的能量传输到接收设备来降低功率损耗。这些系统通常包括一个射频接收器和一个功率放大器,工作频率为 6.78 或 13.56 MHz,并基于 GaN 器件。与传统的硅基器件相比,GaN 晶体管获得了尺寸非常紧凑的解决方案,这是无线充电应用的关键因素。一个示例应用是在无人机中,其中可用空间有限,并且可以在无人机从短距离悬停在充电器上的情况下进行充电。最有效的集成无线功率传输解决方案使用 GaN 晶体管将系统尺寸减小多达 2 到 3 倍,从而降低充电系统成本。650-V GaNe-HEMT 晶体管为高效无线充电提供了理想的解决方案,功率范围从大约 10 W 到超过 2 kW。图 2 显示了一种基于 GaN 器件的小型工具或移动设备无线充电解决方案。 04 数据中心GaN 与硅的结合也为数据中心领域提供了重要机会,其中高性能和降低成本至关重要。在云服务器 24/7 全天候运行的数据中心中,电压转换器被广泛使用,典型值为 48 V、12 V 甚至更低的电压,用于为多处理器系统内核供电。随着全球发电量的快速增长,电力转换效率已成为寻求实现净零排放的公司的关键因素,包括运营数据中心和云计算服务的公司。数据中心在更小的空间内需要越来越多的功率,这是 GaN 技术可以广泛满足的要求,实现转换器和电源的更高效率、尺寸减小和更好的热管理,从而降低供应商的成本。在数据中心中非常常见的是 AC/DC 转换器,其中 PFC 前端级将总线电压调节为 DC 值,然后是 DC/DC 级,用于降低总线电压并提供电流隔离和调节的 DC 输出(48 V、12 V 等)。PFC 级使电源的输入电流与电源电压保持同步,从而最大限度地提高有功功率。基于 GaN 的图腾柱 PFC(见从而最大化实际功率。基于 GaN 的图腾柱 PFC(见 从而最大化实际功率。基于 GaN 的图腾柱 PFC(见 图 3 ) 在效率和功率密度方面被证明是一个成功的拓扑。 05 氮化镓挑战从历史上看,实现 GaN 技术不断增长的扩散需要克服的主要挑战是可靠性和价格。与可靠性有关的第一个问题已基本解决,商业设备能够通过在高于 200°C 的结温下运行来保证超过 100 万小时的平均故障时间。尽管早期的 GaN 器件比硅等竞争技术要贵得多,但价格差距已从最初的 2 到 4 英寸晶圆到 6 英寸晶圆以及最近的 8 英寸(200 毫米)晶圆上的 GaN 生产显着缩小晶圆。最近的发展和持续的工艺改进将继续降低 GaN 器件的制造成本,使其价格更具竞争力。
  • 国家仪器设备大更新,东华分析重磅推出:以旧换新及设备升级活动!
    2024设备大更新相关解读 政策导向: (1)为鼓励科学研究和技术开发,促进科技进步,对内资研发机构和外资研发中心采购国产设备全额退还增值*政策执行至2027年12月31日。 (2)2023年2月23日,召开中央财经委员会第四次会议,强调推动新一轮大规模设备更新和消费品以旧换新,有效降低社会物流成本。 (3)2024年3月6日,国家发展改革委主任郑栅洁表示我国设备更新需求初步估算是年规模5万亿元以上的巨大市场。2024年设备更新和消费品以旧换新行动方案的推出是在综合考虑经济发展需求、市场预期和国家战略等因素的基础上制定的,旨在通过政府的引导和支持,激发市场活力,推动产业升级,实现经济的高质量发展。如老客户需要增购或以旧换新现有机型,我司愿意提供更优惠的价格服务政策;详情请垂询当地负责的销售人员。电化学工作站DH7000系列电化学工作站兼具恒电位仪,恒电流仪,零电阻安培计,交流阻抗分析仪的功能,硬件由高品质集成电路组成,仪器内置快速信号发生器和高速、高精度、高分辨、低噪声 AD 转换器,满足瞬态采集要求。配套软件有灵活的自定义组合各种实验方法功能以及扩展性,提供标准的底层动态库接口,以DLL动态库的形式,支持 Labview、C#,或第三方数据软件接口协议。可与客户端上位机软件联用,如燃料电池测试台,电解槽测试台、电池分选机厂家等做集成。DH7000系列产品可扩展:&blacksquare 可与外置电流功放联用,输出电流可至±50A &blacksquare 可与外置电压功放联用,槽压可至±48V&blacksquare 可与外部设备联用,如旋转环盘电极等&blacksquare 通道数可无限扩展 DH7000C/DH7000D最小量程为1nA,电流测量最小分辨率可达8fA,既满足常规体系的电化学测试,也满足超微电极、微弱信号、高阻涂层体系测量要求;其最大量程1A,阻抗频率范围从10μHz~1MHz,是教学应用、储能材料研究以及材料腐蚀与防护的有利工具。DH7001B既能测毫欧量级内阻,适用于锂离子电池等低阻抗样品的测试,又能配合屏蔽箱测阻抗量级高达GΩ以上的样品,适用于金属的腐蚀与防护研究。DH7001D是国内高频交流阻抗的突破者,高频达10 MHz。既能对多类型固态电解质材料进行准确 EIS 测量,又能进行常规电化学测试,是固态电池研发的绝佳选择。DH7002A电流范围-4A ~+4A ,与电流放大器连用,能给大电流用户提供更合适的选择,已在单片燃料电池测试领域得到广泛应用。DH7003B是DH7003的升级版本,仪器内置两套恒电位/恒电流仪/交流阻抗,双通道技术参数完全相同,均能进行恒电压/恒电流/交流阻抗测试,均具备接地/浮地功能,可分别进行独立的电化学实验,也可组合形成双恒电位仪。既可与旋转圆/环盘电极联用进行 ORR,又可进行金属氢扩散测试计算氢原子在金属中扩散系数和氢通量。具备旋转电极转速控制模块。DH7003D双恒电位仪,两个通道既可独立进行电化学实验,也可组成双恒与旋转环盘电极联用进行ORR、OER、HER 等测试。具备旋转电极转速控制模块。DH7005A是一款高端的电化学工作站,性能强大,功能全面。槽压高达±48V,电流测量量程10pA~4A, 交流阻抗频率最高达10MHz,支持大部分电化学应用,尤其新能源、腐蚀与涂层评价、微电极分析、传感器性能测试、生物电化学等。DH7006电化学工作站各通道间相互独立,互不干扰,既可实现多个通道同时独立测量,也可实现多个通道的同步实验或相同实验。DH7006B升级版多通道电化学工作站,更高的槽压,更稳定的测试,更多的实验方法。DH7009是一款主机增加了4个相互独立的辅助测量通道(Auxiliary Electrometer)的电化学工作站,辅助通道可与主通道同时测量被测体系的电压包括直流电压和交流电压以及与主通道的交流电流计算得到被测体系的交流阻抗。DH7009电化学工作站也可连接我司的电流放大器与辅助通道联用实现同时测量多片电芯的交流阻抗,如容量较大锂电池或膜电极面积较大的氢燃料电池短堆。拓展器交流阻抗测试系统DH7007交流阻抗测试系统可以进行电池储能模组静态/动态下交流阻抗测试。静态阻抗测试:锂电池或锂电储能模组等电池阻抗测试,作为评估整个电堆的性能依据,或拣选出性能相近的电池梯次利用。动态阻抗测试:燃料电池堆大电流放电状态下或电解槽大电流通电电解状态下准确地测量每个电芯或电解槽小室的交流阻抗,评估催化剂性能、材料性能,研究内部电化学反应,以及作为评估整个电堆的性能依据。DH7008便携式阻抗分析,WiFi 通讯,数据和报警信号自动传输到用户的移动终端,可同时监测锂电池堆内各片电池的电压和交流阻抗、电池对地绝缘阻抗以及电池模组内温度。成功案例DH7000系列电化学工作站使用简单,操作方便。相比较于国外同类产品,有极高的性价比,在同类产品中极具竞争力,是国产高端科学仪器产业化征途上的成功实践。现已有数百个应用的成功案例:清华大学、复旦大学、武汉大学、厦门大学、东北大学、南开大学、中南大学、中山大学、四川大学、上海交通大学、西安交通大学、大连理工大学、北京化工大学、中国海洋大学、华南理工大学、西北工业大学、中国科学院微生物研究所、中国科学院大连化学物理研究所、中国科学院苏州纳米所、中国工程物理研究院、中船重工集团公司712研究所、中船重工集团公司718研究所、中船重工集团公司725研究所等,以及国家电网,比亚迪等头部企业。
  • 为仪器仪表企业提供高性能芯片,晶华微开启科创板IPO
    近日,杭州晶华微电子股份有限公司开启了科创板IPO。该公司主要从事高性能模拟及数模混合集成电路的研发与销售,主要产品包括医疗健康 SoC 芯片、工业控制及仪表芯片、智能感知 SoC 芯片等。据了解,晶华微主营业务为高性能模拟及数模混合集成电路的研发与销售,主要产品包括医疗健康SoC芯片、工业控制及仪表芯片、智能感知 SoC 芯片等,其广泛应用于医疗健康、压力测量、工业控制、仪器仪表、智能家居等众多领域。目前,晶华微已成为浙江省科技厅、浙江省财政厅、国家税务总局浙江省税务局联合认定的高新技术企业。经过多年的自主研发及技术积累,其在创新产品的研发上形成了显著优势。凭借着高精度ADC+高性能MCU的单芯片SoC解决方案,始终在红外测温及智能健康衡器领域占有较高的市场地位;在工控领域,该公司研发推出的工控 HART 调制解调器芯片及 4~20mA 电流 DAC 芯片,为工业现场传感器信号数据处理和通讯传输提供了高抗干扰解决方案,确保了工控通讯系统的可靠性,改变了国内相关行业依赖进口芯片的局面。近年来,凭借 技术和产品的优异表现,该公司获得“中国模拟半导体飞跃成就奖之优秀企业奖”、“中国 IC 设计公司成就奖”、“十大最具潜力企业奖”、“年度最佳放大器/数据转换器”、“SENSOR CHINA 特别贡献奖”、“优秀支援抗疫产品”、“浙江省半导体行业创新力企业”等多项荣誉称号。招股书透露,晶华微在行业内积累了丰富的客户资源,与乐心医疗、香山衡器、优利德等多家行业内知名企业建立了紧密的合作关系,公司芯片产品已进入美的、小米、海尔 、倍尔康、川仪股份、华盛昌、德国Braun、台湾Microlife等国内外知名终端品牌厂商的供应体系,深受客户广泛认可。晶华微本次拟向社会公众公开发行不超过 1,664 万股人民币普通股(A 股)。本次募集资金投资项目总投资金额为 75,000.00 万元,公开发行股票所募集的资金扣除发行费用后,将投资于以下项目:
  • 【聚焦315】去年工商检出1738组不合格商品 都有哪些“上榜”
    p   3· 15到来之际,山东省工商局通报了2016年全省流通领域商品质量抽检情况,大到建材,小到超市小商品,都是消费者投诉举报比较集中的商品。 /p p   据了解,2016年山东省流通领域共抽检商品8279组,规模创了历史新高,抽检商品数量同比激增414.9% 抽检商品种类涉及家用电子电器、服装鞋帽、交通工具、建筑装修材料、日常用品、消防安全产品、学生儿童用品、工业电器和金属制品等8大类20余种类,远超2015年5大类10余种类。 /p p style=" TEXT-ALIGN: center" img title=" 抽检.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/fd92bd9c-2cc5-4ae9-bd4c-571c86d85e22.jpg" / /p p   从抽检结果看,应该说流通领域商品质量在稳步提高。2016年抽检的8279组商品中,发现不合格商品1738组,总体合格率为79%,合格率同比增加8.2个百分点 检查经营者2975户,抽检商品全部合格的有1828户,占比61.4% 在山东省工商局本级组织的商品质量抽检中,抽检商品1579组,检验发现不合格商品266组,总体合格率为83%,检查经营者341户,抽检全部合格185户,占比54.3%。 /p p   从大类商品来看,日常用品合格率最高,为89.81%,其次是家用电子电器,合格率为84.58%。从中类商品看,合格率最高的是毛皮制品,合格率达100%,其次是学生用品、消防产品,合格率分别为97.52%、95.24%。 /p p style=" TEXT-ALIGN: center" img title=" 玩具.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/28bf286b-4872-469d-996f-14e01f6910cf.jpg" / /p p   虽然山东省全省流通领域商品质量总体较高,但风险依然存在,燃气器具的质量最差,合格率只有32.53%,建筑材料和工业电器则排名倒数第二、第三,合格率分别为47.97%、54.84%。下一步,山东省工商系统将加大对工业电器、金属制品和消防安全产品等合格率较低商品质量的监管力度。 /p p   具体来说,家用电子电器中,电冰箱、电源转换器、多功能电暖炉、可移式电动工具、加热器等合格率较低。电冰箱主要不合格项目为耗电量、能源效率等级 电源转换器、多功能电暖炉、可移式电动工具、加热器主要不合格项目是对触及带电部件的防护、泄漏电流和电气强度、输入功率和电流、接地措施等。 /p p   建筑装修材料中,内墙涂料、聚乙烯管材和聚丙烯管材等商品合格率较高,人造板材、铝合金型材等商品合格率较低,主要不合格项目是静曲强度、吸水厚度膨胀率、甲醛释放量等。 /p p   金属制品重点抽检了不锈钢板、不锈钢棒、不锈钢刀等商品,不锈钢板、不锈钢管合格率较高,不锈钢器皿,不锈钢刀,不锈钢棒合格率非常低,主要不合格项目是铬、碳含量。 /p
  • 二维半金属—二维超导体之间超流拖拽效应揭示
    15日,记者从中国科学技术大学获悉,该校曾长淦教授、李林副研究员研究团队与北京量子信息科学研究院解宏毅副研究员等合作,通过构筑石墨烯与氧化物界面超导体系的复合结构,揭示了二维半金属和二维超导体之间由于量子涨落诱导的巨幅超流拖拽效应。相关成果日前在线发表于《自然物理》。对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的耦合会在另一层(被动层)中诱导产生一个开路电压或闭路电流,即产生层间拖拽效应。基于二维电子气之间的拖拽效应,可以探索准粒子的层间长程相互作用,发现如激子超流体等新颖层间关联量子态。由于较强的介电屏蔽效应,拖拽电流耦合比远远小于1。而将其中一层或两层替换成超导材料,将有望产生耦合比显著增强的超流拖拽效应。研究团队构筑了石墨烯与氧化物异质界面组成的二维半金属—超导体电双层结构,并对其层间拖拽行为进行了系统研究。他们发现,在氧化物界面超导转变区间,石墨烯层中施加驱动电流可以在氧化物界面诱导出巨幅拖拽电流,且强度可以通过栅压/外磁场等进行有效调控。特别是在界面超导最优掺杂附近,拖拽电流耦合比达到0.3,即所产生的拖拽电流大小与驱动电流相当。与此前传统普通金属/超导金属体系相比,耦合比提高了两个量级以上。这一结果揭示了宏观量子涨落对于层间准粒子相互作用的显著调制。在应用层面,基于该复合结构将有望制备新型电流或电压高效转换器件,包括超导二极管等量子器件,将推动具有丰富量子物相的更广泛二维电子体系的拖拽效应研究,并发现更多基于层间长程耦合的新颖量子多体效应。
  • 复盘 | 市政污水流量监测技术
    电磁流量计是应用电磁感应原理,根据导电流体通过外加磁场时感生的电动势来测量流量的一种仪器。电磁流量计由传感器、转换器和显示器组成,可以一体式安装,也可以分体式安装。电磁流量计最大的应用特点是导电流体、满管输送、在污水、自来水等各行各业具有广泛的应用。本期课程赛莱默应用专家杨金屯将主要介绍电磁流量计的分析原理以及电磁流量计的特点和应用场景。以赛莱默电磁流量计为例讲述其在市政污水监测的技术及应用。赛莱默分析仪器mjk电磁流量计产地丹麦,其污水处理行业是全球最主要的污水处理行业之一,特别突出之处不仅在于排放之前的净水能力,而且其经济性也是十分突出的。多年来,其产品通过不断开发和升级,可以满足污水行业对较高的效率和质量的需求。mjk有着40多年的行业经验,成为污水行业仪器仪表和控制器的顶尖供应商之一。当今地球承受着环境污染带来的巨大压力,饮用水可能是世界上最重要的资源。丹麦,是全球少数国家之一,可以通过自来水管道,享用新鲜、洁净、没有化学品添加的饮用水。我们重视我们的饮用水,并且对水从水源到饮用者的整个过程实施严格的控制。mjk可以对地表水测量其质量等级,也可以在水箱,水井及管道进行测量。此外,对水分配系统内的饮用水的品质,也可以用mjk产品进行分析和控制。
  • 有奖投票 | 快来Pick2019你的最爱!
    # 小梅掐指一算 阅读本文仅需5分钟 # 岁月流转 时光飞逝转眼间我们迎来了2020年感谢大家一如既往对小梅的支持呀~ 一年一度的评选活动又来了!!!接下来为大家献上梅特勒-托利多这一年【最有趣、有料、有深度的十篇文章】并且!我们邀请你一起投票推选~我最喜爱的MT微信文章 点击文末“阅读原文”或扫描二维码填写问卷即可参与本次有奖活动哦~ 福利发不停一等奖1名kindle 青春版 二等奖30名小米手环或小米移动电源(随机) 三等奖40名蓝牙音箱或不倒翁水杯或万能充电转换器(随机) 幸运奖60名梅特勒-托利多2020年台历 接下来,让我们一起回忆2019年梅特勒-托利多十大精选文章吧~(点击标题即可穿越到这篇文章内容) 01pH电极的使用和维护技巧 大家在测量pH电极时一定会遇到许多问题,例如电极校准斜率低,电极使用时间不长又需要更换了,有没有办法可以延长电极使用寿命呢?小梅来教你! 02新品来袭 | XPR/XSR超越分析天平开启新英雄时代!所有的经典都会渐渐留在属于自己的时代。正如梅特勒-托利多的分析天平在不同年代都扮演着属于那个年代的Super Hero,陪伴着一代代的“Lab Man”一起成长。 03GWP一站式无忧称量,免费报告等着您不论您将电子秤或天平应用于何处,称重都是企业价值链的关键环节。如何管理整个称量机制,实现“无忧称量”?梅特勒-托利多GWP解决方案来帮您。 04行业盛会 | 回顾第四届中国国际化工过程安全研讨会第四届中国国际化工过程安全研讨会完美落幕。梅特勒-托利多带来了应用于化工行业的“本安”称重解决方案,研发、工艺放大和质量实验室解决方案,以及专业的产品和销售服务团队。 05一动不动站立在南极的第8375天,你想来看看我吗?麦克默多站,是建于南极麦克默多海滨罗斯岛南端的火山岩的一个研究中心。1996 年,麦克默多站需要一台汽车衡称量南极洲货物,梅特勒-托利多接受了这一挑战,安装了一台配备POWERCELL® 称重传感器的钢制台面汽车衡。 06来看梅特勒-托利多如何助力“一带一路”!作为“一带一路”伟大倡议的拥护者,梅特勒-托利多用实际行动积极参与到中国的“一带一路”战略中去。我们和EPC总承包公司合作,共同参与了白俄罗斯的全循环高科技农工综合体项目。 07[精英召集]梅特勒-托利多pH这么牛,是因为有这位老师!来自全球五湖四海的MT pH人有一位共同的老师,就是pH电极的发明者——Werner Ingold博士。在Ingold博士的陪伴下,梅特勒-托利多见证了70年pH测量技术的发展,以其精准的测量,稳定的性能,使用寿命长而广受好评。 08梅特勒-托利多安全解决方案,让安全生产不再只是口号!梅特勒-托利多提供的“化工安全解决方案”,贯穿您工艺的整个价值链。并且,在提供安全解决方案的同时还特别推出 “设备安全检查”活动,为化工企业提供一次免费的上门“设备安全检查”服务。 09台风过后,你的地磅还好吗?“汽车衡”硬刚台风“利奇马”,其中的秘诀是什么?那就是梅特勒-托利多的POWERCELL PDX汽车衡——即使被水淹没,台风过后依然可以正常使用。 10梅特勒-托利多服务工程师“十二时辰”来看看梅特勒-托利多服务工程师的炎夏“十二个时辰”的故事吧。让我们来体会他们是怎么在酷暑中工作一天,感受他们的十二时辰,感受他们的辛勤付出。 扫描下方二维码填写问卷,即可从以上十篇文章中选出你心目中的最佳文章,并有资格参与本次有奖活动。 活动规则:1.本次活动将随机抽出参与者送出奖品,梅特勒-托利多员工投票数量计入统计,但不参与抽奖;2.本次活动截止至2020年1月30日,过期视为无效反馈;3.本活动最终解释权归梅特勒-托利多国际中国(上海)有限公司
  • 核工业北京地质研究院发布核质谱仪关键零部件项目“揭榜挂帅”项目指南
    2023年6月,根据国家原子能机构和中核集团有关工作安排,由核工业北京地质研究院(以下简称“核地研院”)牵头组织采用“揭榜挂帅”方式,公开发布核质谱仪关键零部件科研攻关指南。现将有关事项通知如下:项目选题本批共发布7项“揭榜挂帅”项目,项目清单如下表所示,具体要求详见附件1。序号关键器件名称1高精密度数模转换器、高精密度模数转换器及基准电压参考源2高精密度高阻3fA级运算放大器4高精密度高阻电流放大器及低噪声高信噪比电容放大器组件5高精密度模拟量闭环控制霍尔探头及高精密度大功率高压场效应管磁流源组件6二次电子倍增器7抗辐射低纹波噪声高稳定度高压电源组织方式按照“揭榜挂帅”制方式组织实施,由核地研院针对相关科研攻关任务,凝练标的,公开发榜公布,征集揭榜方。核地研院将根据相关项目批复要求,组织专家对揭榜方的实施方案进行评审,择优予以经费支持。申报要求本批“揭榜挂帅”项目面向全国高校、科研院所、企事业单位等,对揭榜方不设行业门槛限制,揭榜单位应为国内法人单位,并须遵循下列条件。1.所有揭榜单位和参与人应遵守科研诚信管理要求,需承诺所提交材料真实性,揭榜单位应当对申请人的申请资格负责,并对申请材料的真实性和完整性进行审核,不得提交有涉密内容的申请材料。2.所有揭榜单位和参与人应遵守中国知识产权法律、法规、规章、具有约束力的规范性文件及在中国适用的与知识产权有关的国际公约,所申报项目的知识产权明晰无争议,归属或技术来源正当合法,不存在知识产权失信违法行为。揭榜方式1.揭榜截止日期为2023年7月7日17:00。2.请有意向的填报《核质谱仪关键零部件“揭榜挂帅”项目揭榜意向表》和《核质谱仪关键零部件“揭榜挂帅“研究项目实施方案》,并签字确认。将签字确认的文件扫描件于截止日期前发送至联系人邮箱guodongfa@briug.cn。其他说明本批“揭榜挂帅”项目,将由核地研院邀请国内核质谱领域知名专家共同组成专家组,开展受理、评审、立项、验收等项目管理事项。评审答辩事宜,另行通知。咨询服务联 系 人:汤老师联系电话:13601230474附件1:2023年度核质谱领域“揭榜挂帅”科研项目指南附件2:核质谱仪关键零部件“揭榜挂帅”项目揭榜意向表附件3:核质谱仪关键零部件“揭榜挂帅”项目实施方案模板核工业北京地质研究院2023年6月28日附件1:核质谱仪关键零部件项目“揭榜挂帅”项目指南附件2:核质谱仪关键零部件“揭榜挂帅”项目揭榜意向表附件3:核质谱仪关键零部件“揭榜挂帅“研究项目实施方案模板 扫描下方二维码查看附件1、2、3
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制