当前位置: 仪器信息网 > 行业主题 > >

拉达加速仪

仪器信息网拉达加速仪专题为您提供2024年最新拉达加速仪价格报价、厂家品牌的相关信息, 包括拉达加速仪参数、型号等,不管是国产,还是进口品牌的拉达加速仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拉达加速仪相关的耗材配件、试剂标物,还有拉达加速仪相关的最新资讯、资料,以及拉达加速仪相关的解决方案。

拉达加速仪相关的论坛

  • 2015年计量流言大揭秘之——75%的智能电表被蓄意加速

    2015年计量流言大揭秘之——75%的智能电表被蓄意加速   谣言止于智者,流言止于知者。2015年年终,我们总结并揭秘一些近年来流传于坊间的有关计量的流言。其中有的流言,十多年间反复冲击人们的眼球、强化着人们的记忆,大有不上头条不收兵之势。计量流言披着“科学”的外衣,让人难辨真假,人们对其往往抱着“宁可信其有,不可信其无”的心态,以讹传讹。然而真相有且只有一个——

  • 吃辣要搭配一些清淡少油少盐的蔬菜

    吃辣时,可以适当搭配一些清淡少油少盐的蔬菜,比如清炒苦瓜、蒜蓉西兰花、大拌菜等,具有清热去火的作用。吃辣后吃些酸味水果,其中含有的鞣酸、膳食纤维等,能刺激消化液分泌、加速肠胃蠕动。

  • 绝热加速量热仪(ARC)的一些资料文献

    现在在做锂离子电池的热效应研究,除了应用通常的TG,DSC以外,锂离子电池里现在常用ARC来做热分析,特别用来研究动力学方面。我自己也不是很懂,查了一些资料,发上来大家共享一下。简要介绍:绝热加速量热仪(ARC)绝热加速量热仪实验指导 一,装置构造 绝热加速量热仪(Accelerating Rate Calorimeter,简称ARC)是一个按标准形式设计制造的系统,它由两大部分组成:(1)含有加热器和温度传感器的炉体(绝热炉) (2)实现绝热功能的控制系统.ARC的控制系统又包括:a)实时控制器 b)动力管理组件 c)量热支持组件.二,工作原理 ARC测试的过程中,炉子的顶部2个加热器,中间4个加热器及底部2个加热器能及时补充样品与其周围环境的温差所带来的热损失,从而维持样品球的绝热测试环境.在ARC绝热测试的过程中,先将样品装入样品室内,在计算机上设置好实验起始温度,终止温度,斜率敏感度,加热幅度和等待时间等运行参数,启动量热仪开始工作,在"加热—等待—搜寻"模式运行的"加热"阶段,量热仪的温度按设定的加热幅度升高 在"等待"阶段,控制器通过比较样品室温度与绝热炉各个区域的温度,保持绝热炉内的温度处于均匀平衡状态(在该阶段控制器不采集样品测试系统的温升速率数据),当绝热炉内的平衡状态建立后,测试系统进入搜寻阶段 在"搜寻"阶段,将试样的温升速率与设定的斜率敏感度(一般为0.02 ℃/min)相比较,如果前者小于后者,则自动进入下一个"加热—等待—搜寻"循环 如果前者大于后者,则量热仪自动转为"放热"方式,在放热阶段,ARC控制器根据绝热炉各个区域温度与样品测试系统的温度差异调整绝热炉各个区域加热器的功率,从而维持绝热炉温度与样品测试系统温度的一致,保证绝热条件的实现.在整个过程中,计算机会自动记录时间,温度,温升速率,压力及压力速率等参数,保存为.DAT文件,结束实验后,系统会自动提示保存放热数据文件,文件为.EXO文件. [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24043]加速量热仪在锂离子电池热安全性研究领域的应用[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24045]绝热加速量热仪实验指导[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24046]绝热加速量热仪在化工生产热危险性评价中的应用[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24044]加速量热仪在锂离子电池热安全性研究领域的应用[/url]

  • 【原创】加速器的分类

    【原创】加速器的分类

    加速器的种类繁多,不同类型的加速器有着不同的结构和性能特点,也有着不同的适用范围。除了依加速粒子的能量来划分加速器外,常常还依加速粒子的种类或加速电场和粒子轨道的形态来区分加速器。[center][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112111445_01_1623423_3.jpg[/img][/center] 电子是最常见的一种带电粒子,它易于以大量自由电子的形式获得,也易于加速,它的静止能量为,0.511MeV,是常见加速粒子中最低的(表1)。电子在加速时容易达到相对论速度,在相同的加速能量下,电子加速器的尺寸、规模和造价在同类加速器中往往是最低的。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211728_01_1623423_3.jpg[/img] 轻离子型加速器加速质子、氘和α粒子以及H-、D-等负离子。氢离子的静止能量为938MeV,是轻离子中最小的,而它的荷质比(电荷数与质量数之比)为1,比氘和α高,是各种粒子中最高的。 原子序数Z2的各原子的(正或负)离子称为重离子。一般重离子的荷质比小,飞行速度低,难于达到相对论的速度。现有的加速器可加速元素周期表上的各种重元素的离子,包括铀离子,但重离子的加速效率低,加速设备的规模一般都比较大,造价昂贵。 加速电场和粒子的轨道形态是反映加速原理,决定加速器结构的关键因素。这四类加速器分别适用于加速不同能量范围、不同粒子,它们在性能上各有特色,相互竞争,相互补充,不断发展完善,而许多大的粒子加速器设备则往往由多种不同类型的加速器互相串接组合而成。 直流高压型加速器是利用直流高压电场加速带电粒子,包括单级和串列静电加速器;后者按电源电路的结构又可分为串激倍压加速器、并激高频倍压加速器、Marx脉冲倍压加速器等。这类加速器的主要特点是可以加速任意一种带电粒子且能量易于平滑调节;然而这类加速器的加速电压直接接受介质击穿的限制,一般不超过30~50MeV的加速能量,因此,加速器的能量不高。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211100_01_1623423_3.jpg[/img] 电磁感应型加速器用交变电磁场所产生的涡流电场加速带电粒子,包括电子感应加速器和直线感应加速器。前者的能量范围在15~50MeV,具有流强低(一般不超过0.5μA)、不宜加速离子的缺点。后者在脉冲状态下工作,既可加速电子也可加速离子,脉冲流强可达数十千安培。 直线共振型加速器利用射频波导或谐振腔中的高频电场加速沿直线形轨道运动的电子和各种粒子,这类加速器的主要优点是粒子束的流强高,并且它的能量可以逐节增高,不受限制。加速器的工作频率随加速粒子的静止质量的增加而降低,加速电子的典型频率为3GHz,质子为200MHz,而重粒子则在70MHz以下。为了使加速器的长度比较合理,通常要求加速电场的振幅达1~10MMeV/m以上,结果导致加速器的高频功耗高达兆瓦级。近几年研发的超导直线加速器可使运行成本降低2/3~4/5,其加速电子的最高能量达50GeV,质子达800MeV。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112111025_01_1623423_3.jpg[/img] 回旋共振型加速器应用高频电场加速沿园弧轨道作回旋运动的电子、质子或其它粒子。1930年劳伦斯提出回旋加速器的理论后,经多次反复的研究后于1931年和他的研究生利文斯顿(M. S. Livingston)成功的研制出了世界上第一台回旋加速器,这台加速器的磁极直径为10cm,加速电压为2kV,可使氘离子加速到80keV。几年后,劳伦斯的回旋加速器所达到的能量已超过天然放射性和当时其它加速器的能量。此后,人们按劳伦斯理论建造的经典回旋加速器可产生44MeV的α粒子或22MeV的质子。然而,由于相对论效应所引起的矛盾和限制,经典回旋加速器的能量难以超过20MeV。后来,研究人员根据1938年托马斯(L. H. Thomas)提出的建议,到60年代后建造了新型的等时性扇形聚焦回旋加速器(Sector Focusing Isochronous Cyclotron),70年代后,建造了大批能加速相对论性粒子的回旋加速器,尤其是在质子同步加速器基础上发展起来的贮存环和对撞机,在质心系统的有效作用能可达到2~40TeV。电子同步回旋加速器由于同步辐射的限制,其能量不高于8GeV。

  • 桌面加速器不是梦

    2012年11月07日 来源: 中国科技网 作者: 毛黎 今日视点 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121106/021352217578281_change_chd2b25_b.jpg 激光等离子加速器(LAPs)因其加速空腔的长度可用厘米而不是公里(千米)来计量而被称为“桌面加速器”。近年来,由于技术的迅速发展,科学家有望开发出新型实用的激光等离子加速器。与当今传统的加速器相比,激光等离子加速器不仅造价十分低廉,而且对土地和环境的影响要小得多。 “体形”差异甚大 激光等离子加速器的研究已有多年,并取得了可喜的进展。2004年,美国能源部劳伦斯伯克利国家实验室激光和光学加速器系统综合研究项目的科学家,首次向人们展示了具有窄发散能量的激光等离子加速器电子束;2006年,他们首次将电子能量提高到10亿电子伏特。 常规的带电粒子(如电子)加速器有多段真空金属腔连接而成,外加给空腔的振荡电磁场让带电粒子被束缚在空腔内逐级加速,导致带电粒子被加速的主要因素是磁场加速梯度,它用每米多少伏特来表示。通常,输出的带电粒子能量越高,加速器的长度就会越长,因而加速器的长度可达数公里。 激光等离子加速器则不同。激光和光学加速器系统综合研究项目的科学家研发的能够产生10亿电子伏特电子束的激光等离子加速器能够放在手掌上,其长度只有3.3厘米。当强激光器将脉冲聚焦到加速器内的自由电子和正离子时,其辐射压导致电子和离子分离,产生出高强度的加速梯度。部分电子尾随在激光脉冲后面,有些几乎在同时达到了近光速的速度。在短距离内,激光等离子加速器能够维持每米数千亿伏特的加速梯度,常规加速器无法与此相比。 特性测量困难 然而,激光等离子加速器独特的电子加速方法和产生飞秒量级的电子脉冲给测量技术带来了难题,人们一时无法测量激光等离子加速器产生的高能电子束的质量。 现在,测量难题正在被逐步解开,这归功于劳伦斯伯克利国家实验室加速器和聚变研究分部科学家维姆·李曼斯领导的研究团队。李曼斯是激光和光学加速器系统综合研究项目的负责人,他所带领的研究团队拥有理论学家、计算机模拟专家和优秀的实验人员,他们不断改进激光等离子加速器的性能。在研究队伍中,不少学生为研究作出了重要的贡献,并获得了博士学位。例如,法国某综合工科院校的研究生吉拉姆·普拉图,他曾在项目中研究与激光等离子加速器产生的X射线相关的辐射,并将其作为自己博士论文的一部分,目前他在加州大学做博士后研究。 发射度很关键 激光等离子加速器产生的短电子束需要新的测量技术来了解其特性,而最具挑战的性能参数为发射度(emittance)。与普拉图共同在激光和光学加速器系统综合研究项目工作的研究人员卡梅隆·格德斯说,发射度是指电子束聚焦的好坏,小发射度意味着电子的速度方向不是随机四散而去,它们几乎沿着磁力线方向运动。 实验初期,发射度并不是研究所关心的重心。李曼斯表示,开始时,由于要获得与电子束相关的X射线脉冲波的图像,研究小组同德国重离子研究中心建立了合作。该中心的科学家带着高级商业相机来到劳伦斯伯克利实验室,帮助研究人员获得了所需的图像。他们为自己所看到的结果所鼓舞,因而希望了解利用这些图像还能做哪些工作。 实验室工程分部研究人员马尔科·巴塔格利亚随即提供了更先进的相机,它采用坚固和灵敏的劳伦斯伯克利实验室的电荷耦合器件,获得了更佳的图像。李曼斯认为,他们虽不是激光等离子加速器X射线成像的第一人,但是由于新相机成像质量的缘故,他们首次有能力仔细了解激光等离子加速器产生的X射线的光谱。 格德斯解释说,电子束的发射度能够通过光束大小和发散角来测量。传统方法是将丝线扫描仪正对着加速器产生的电子束测量发射度。不过,该方法能破坏低发射度的电子束。此外,在激光等离子加速器中,强激光能够毁坏测量设备。 X射线给答案 研究小组为解决电子束发射度测量的难题,采取了用磁场对激光等离子加速器的电子束进行偏转的方法来测量电子束的能量,同时利用加速器产生的X射线的信息来推算电子束的发射度。为此,他们借助了X射线摄谱仪。 格德斯表示,在等离子中,激光尾场对电子束进行加速。借助X射线成像,他们寻找到在等离子内测量电子束质量的方法。X射线是电子感应加速辐射的结果,产生电子感应加速辐射的原因为电子束内尾随激光脉冲的加速“气泡”。当电子束聚集在“气泡”内时,它们前后摇摆,这种电子感应加速振荡发射出了向前的X射线,其特征是密集、明亮同时超短。 激光束、电子束和X射线均沿相同的方向前行。为无干扰测量X射线,研究人员首先让电子束发生偏转,然而采用箔镜让激光发生反射,而只让X射线脉冲通过箔镜进入能够测量每个X射线辐射量子和计算出其能量的电荷耦合器相机中。虽然相机离加速器5米的距离,但是其捕捉到的密集的电子感应加速辐射脉冲的频谱含带有用来测量电子束半径所必需的信息。 格德斯说,通过将测量到的X射线频谱与理论推测的进行比较,他们确定实验中的电子束半径为0.1微米,此结果比过去任何实验所获得的都要小,同时也帮助他们估算出了电子束横截面的发射度,其为每千分之一弧度0.1厘米。 格德斯补充说,激光等离子加速器电子束的横向发射度可与先进的自由电子激光器和伽马射线源常规加速器的相媲美。他们完成的多次模拟显示,发射度取决于电子束缚在波动中的特殊途径,这为今后进一步降低发射度奠定了基础。 科学家认为,未来的激光电离子加速器既能作为基础物理研究用的紧凑式高能对撞机,又能作为小型光源。它们能够用于探测从人工光合作用到“绿色分析”的化学反应;了解显微镜无法观察的对认识生命和健康十分重要的独特生物结构;分析包括低温超导、拓扑绝缘体、自旋电子元件和石墨纳米结构在内的有望给电子产业带来革命性变化的新材料。毫无疑问,激光等离子加速器所产生的光谱范围从微波到伽马射线的高密度光束,能够为科学发展开拓新的领域。(记者 毛黎) 《科技日报》(2012-11-07 二版)

  • DSC与绝热加速量热仪的混合使用

    大家都知道,当下很多厂家,都买来同步热分析仪和绝热加速量热仪来搭配使用,来测定一些材料热的性质,以便能更全面的深入了解,我这里也有这两台仪器,由于刚接手,还不是太懂,有没有高手能指点些方法,以及能够从这两台仪器测出的数据然后怎么分析这种材料的热性质?最好传些文献来看看

  • 加速电压对扫描电镜成像影响

    加速电压对扫描电镜成像影响

    [color=#ff0000][b]此为分享引用,所有权归原微信公众号,原文链接:[url]https://mp.weixin.qq.com/s/lDVTic2etkUd7drsNrdJNw[/url][/b][/color][font=&]扫描电镜是材料学研究中的常用仪器设备,通过入射电子轰击样品,激发和收集二次电子获得样品表面形貌像,以及通过特征X射线进行样品成分分析。在仪器测试使用时,加速电压(HV/ETH)为常用参数中调节最为普遍的一个。那么加速电压是如何影响成像的效果呢?本短文将以我校常见样品的实际图片结合简短的原理来与大家共同分享和探讨一下在扫描电镜成像中应如何调整加速电压。[/font][size=17px]入射电子影响的范围[/size][font=&]加速电压越高,入射电子的能量能越高,在样品中可穿透和散射的范围越大,伴随着产生的信号范围也越大。如下图模拟,入射电子在1kV加速电压时,在硅中散射范围主要在20nm区域内;在5kV时,散射的主要范围扩大到300nm区域,因此5kV时二次电子可产生的范围从入射点扩大到数百纳米。[/font][align=center][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171507293110_4689_1613111_3.jpg!w690x223.jpg[/img][/align][size=17px]样品表面细节的分辨[/size][align=left]如上模拟所示,由于加速电压增加,入射电子散射的范围增加,使得产生的二次电子区域扩大,样品表面细节分辨率降低。如下图对比,在1kV条件下颗粒表面附着的碳纳米管比5kV条件下更加显著可见。[/align][align=center][font=&] [/font][img=,690,222]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171508305861_6609_1613111_3.jpg!w690x222.jpg[/img][/align][align=center][/align][font=&]如下图在1kV下可见颗粒表面为更小的颗粒组成,而在5kV时仅能看到大颗粒的宏观轮廓。因此对追求纳米级的表面细节分辨建议选择低电压比较合适。[/font][align=center][img=,690,250]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171513118873_2060_1613111_3.jpg!w690x250.jpg[/img][/align][size=17px]辐射损伤[/size]有些样品易受辐射损伤,如有机高分子,金属有机框架,生物组织等。辐射损伤的机理比较复杂原因也多,本短文不再深入探讨。在扫描电镜成像时,有没有简单的办法判断当前加速电压有没有造成辐射损伤?在实践发现,采用较低的加速电压,例如5kV及以下的电压,拍一张图后,原地再拍一张即可,对比前后两张图有没有裂纹、收缩等。如下图,原地再拍一张后的样品前后图明显出现了收缩,说明在此加速电压下样品受到了损伤,应当降低入射电子能量。[align=center][font=&][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171514256752_1419_1613111_3.jpg!w690x233.jpg[/img] [/font][/align][font=&]加速电压越高,所携带能量越高,热损伤和轰击损伤都会增加。因此对于易受辐射损伤的样品建议使用较低电压。如下图所示在1kV下,PMMA球体表面圆润饱满,在2kV球体出现了收缩的凹陷;在1kV下,MOF表面平滑,在2kV条件表面出现收缩。[/font][align=center][font=&] [img=,690,514]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171515150790_4421_1613111_3.jpg!w690x514.jpg[/img][/font][/align][size=17px]非导电样品的荷电[/size][font=&]为避免非导电样品出现荷电影响成像效果,对于此类样品一般会在表面溅射一层几纳米厚的导电薄膜,如C,Au,Pt等,但对于有的样品效果也有限。出现荷电的直接体现为成像时明暗度明显失调或者出现条纹,根本原因在于电子输入和逸出的数量不平衡。不同的样品有不同的平衡电压,但对于大部分绝缘样品平衡电压[i]E[sub]2[/sub][/i]在1-3kV内,因此可以通过在此低电压范围内适当尝试。此外,采用低电压同时也减少了电子输入,对减弱和改善区域范围内的荷电有较好的效果。如下图所示,在1kV时图像明暗度较均匀,在5kV时存在明显异常亮的荷电影响区域。[/font][align=center][img=,690,234]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171515420931_1042_1613111_3.jpg!w690x234.jpg[/img][/align][size=17px]成像的信噪比[/size][font=&]加速电压越高,入射电子所携带的能量越高,因此轰击到样品产生的二次电子越多,信号越强,信噪比得到提高,成像的直观感觉图像更清楚了。如下图在5kV时,相对1kV图像的成像视觉效果更为清楚。对于微米级的较大颗粒,在不追求表面细节时,提高加速电压有利于提高信噪比,获得成像效果更为清楚的图片。[/font][font=&] [/font][align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516056033_5181_1613111_3.jpg!w690x255.jpg[/img][/align][font=&] [/font][size=17px]混嵌的样品[/size]如果所要观察的目标物包裹或者嵌入在其他物质里面,一般建议高加速电压以提高测试深度。此仅针对高原子序数目标物质有效,且一般范围在1-2um深度以内。如下图,1kV仅能看见高分子样品表面有颗粒起伏,在15kV下明显可见包裹的Fe氧化物颗粒。但如果两物质原子序数接近或者目标物原子序数较低则很难实现成像区分,如在有机高聚物里添加纳米薄层石墨烯。[align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516295430_4956_1613111_3.jpg!w690x259.jpg[/img][/align][align=center][/align][font=&] 以上加速电压选择简单整理为下表:[/font][align=center][img=,690,319]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516468545_8504_1613111_3.jpg!w690x319.jpg[/img][/align][font=&]本短文抛开了复杂的机理讨论,以简洁的方式分享了我校常测样品对加速电压高低选择的一般原则。[/font][font=&]由于样品的不同及分析目标不同,在测试中需要根据实际情况配合其他参数进行调整,感兴趣的读者可以参阅以下文中引用的参考资料。[/font]参考文献[font=Optima-Regular, PingFangTC-light]1. 李超.电子束辐照致荷电效应的Monte Carlo模拟研究.中国科学技术大学博士学位论文,2020[/font][font=Optima-Regular, PingFangTC-light][size=14px]2. 周莹,王虎,吴伟,刘紫微, 林初城,华佳捷.加速电压的选择对 FESEM 图像的影响.实验室研究与探索,2012,31(10):227-230.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]3. 吴东晓,张大同,郭莉萍.扫描电镜低电压条件下的应用,2003,电子显微学报,22(6):[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]655-656.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]4. 曹水良,梁志红,尹平河.不同加速电压对不导电样品扫描电镜图像的影响.暨南大学学报( 自然科学与医学版),2014,35(4):357-360.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]5. 华佳捷,刘紫微,林初城,吴伟,曾毅.场发射扫描电镜中荷电现象研究.电子显微学报,2014,33(3):226-232.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]6[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]. 程彬杰,刘学东,唐天同,王莉萍.电子束中Boersch效应的实验研究.真空科学与技术,1998,18(5):364-368.[/size][/font]

  • 加速器质谱仪

    由科技部、中科院、教育部联合共建的西安加速器质谱中心8月3日在西安宣布正式命名。科技部、教育部等部门的领导,西安交通大学副校长卢天健,中科院院士、西安分院院长安芷生为该中心揭牌。 加速器质谱仪(AMS)就是把加速器技术(一种把带电粒子加速到高能量的装置)结合质谱仪技术(一种分析和测量不同质量的原子或分子的仪器)而构成的一种超高灵敏度质谱分析设备。它分析的灵敏度可达10-12~10-16,也就是可以从千万亿个被测量的原子中把一个所要探测的原子分辨出来。因而,AMS也是精确探测微量的长寿命放射性同位素的最前沿的大型仪器设备。目前,由中科院地球环境所与西安交通大学组成的筹建组,已按原定目标完成了AMS基建工程建设、3MVAMS设备选型与引进、配套设施建设、主体设备的安装调试等工作。

  • 【原创】回旋加速器的工作原理

    【原创】回旋加速器的工作原理

    在回旋加速器中心部位的离子源(Ion Source)经高压电弧放电而使气体电离发射出粒子束流,该粒子束流在称为Dees的半圆形电极盒(简称D型盒)中运动。D型盒与高频振荡电源相联为加速粒子提供交变的电场。在磁场和电场的作用下被加速的粒子在近似于螺旋的轨道中运动飞行。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105351_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105415_01_1623423_3.jpg[/img] 在回旋加速器中心区域,粒子被拉出后经电场的加速而获得较低的初速度v1,同时,磁场也对这些粒子产生作用,两种场作用的结果是粒子在Dee间隙(gap)内按螺旋轨道飞行。经过非常短的时间后,粒子经gap进入另一个Dee电极盒,此后,粒子在该Dee电极盒一边飞行到等电势的另一边。每越过一个gap后,其轨道半径将比前一次的轨道半径大。粒子运动的瞬时轨道半径将随时间t的增加而增大,粒子运动速度的平方与粒子旋转的圈数成比例。被加速粒子运动的螺旋轨道半径r与运行时间t的平方根成正比。带电粒子经多次加速后,圆周轨道半径达到最大并获得最大的能量,在该点处粒子将被束流提取装置提取引出。 若粒子的质量为m,所带电荷为q,所具有的运动速度为v,运动方向垂直于磁感应强度为B的磁力线,粒子受到垂直于v和B的劳仑兹(Lorentz)力的作用,使粒子沿着曲率半径为r的轨道作圆周运动。不同能量的离子在等时性磁场中沿各自的平衡轨道运行时,其回旋的周期与高频电场的周期相等。已知,一个带电量为q的粒子在磁场B中的回旋频率为[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105649_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105726_01_1623423_3.jpg[/img] 粒子的能量、磁场强度和粒子轨道半径是加速器的三个主要参数 相同q/m的不同粒子,如氘核和氦核,用相同射频(RF)和磁场强度,可以加速到相同的速度,而氘核的动能是氦核动能的一半。在回旋加速器中,为了加速质子达到与氘核相同的速度,往往在设计中使磁场强度B减低一半。加速所需的高频频率F和磁场强度B取决于粒子的质量和带电电荷q。通常根据所需的核反应能量及粒子的质量来设计加速电场频率和磁场强度。但随着粒子旋转速度的提高和能量的增加,相对论作用使得粒子质量将不再是一个常数,即m≠m0,当粒子的速度增加时,它的相对质量(Relativistic mass)也增加。因此,在匀强磁场中其旋转周期也不是一个常数,并且粒子会逐渐进入减速状态。因此,为了使粒子获得较高的能量,或增加磁场强度或改变F,这在一个普通的回旋加速器中是不可能达到的,而且质子在这样的回旋加速器中是不可能被加速到20MeV以上。所以传统的回旋加速器只能加速粒子到一定的能量。为此出现了等时性回旋加速器或调频加速器。 在回旋加速器中,带电粒子经多次加速后,圆周轨道直径达到最大而接近Dees的边缘并具有最大的能量,在该点粒子被束流提取装置提取出。一个粒子从回旋加速器中心飞行到提取装置的总时间约为5ms。在PETtrace回旋加速器中,质子达到16.5MeV的能量约飞行200圈,氘核达到8.5MeV的能量约飞行80圈。

  • 【原创】回旋加速器的发展史

    【原创】回旋加速器的发展史

    早期的加速器只能使带电粒子在高压电场中加速一次,因而粒子所能达到的能量受到高压技术的限制。为此,象R. Widerö e等一些加速器的先驱者在20年代,就探索利用同一电压多次加速带电粒子,并成功地演示了用同一高频电压使钠和钾离子加速二次的直线装置,并指出重复利用这种方式,原则上可加速离子达到任意高的能量。但由于受到高频技术的限制,这样的装置太大,也太昂贵,也不适用于加速轻离子如质子、氘核等进行原子核研究,结果未能得到发展应用。 1930年,Earnest O. Lawrence提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。1931年,他和他的学生利文斯顿(M. S. Livingston)一起,研制了世界上第一台回旋加速器,这台加速器的磁极直径只有10cm,加速电压为2kV,可加速氘离子达到80keV的能量(图1),向人们证实了他们所提出的回旋加速器原理。随后,经M. Stanley Livingston资助,建造了一台25cm直径的较大回旋加速器,其被加速粒子的能量可达到1MeV。回旋加速器的光辉成就不仅在于它创造了当时人工加速带电粒子的能量记录,更重要的是它所展示的回旋共振加速方式奠定了人们研发各种高能粒子加速器的基础。[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625814_1623423_3.jpg[/img] 30年代以来,回旋加速器的发展经历了二个重要的阶段。前20年,人们按照劳伦斯的原理建造了一批所谓经典回旋加速器,其中最大的可生产44MeV的α粒子或22MeV的质子。但由于相对论效应所引起的矛盾和限制,经典回旋加速器的能量难以超过每核子20多MeV的能量范围。后来,人们基于1938年托马斯(L. H. Thomas)提出的建议,发展了新型的回旋加速器。因此,在1945年研制的同步回旋加速器通过改变加速电压的频率,解决了相对论的影响。利用该加速器可使被加速粒子的能量达到700MeV。使用可变的频率,回旋加速器不需要长时间使用高电压,几个周期后也同样可获得最大的能量。在同步回旋加速器中最典型的加速电压是10kV,并且,可通过改变加速室的大小(如半径、磁场),限制粒子的最大能量。 60年代后,在世界范围掀起了研发等时性回旋加速器的高潮。等时性回旋加速器(Isochronous cyclotron)是由3个扇极组合(compact-pole 3 sector)的回旋加速器,能量可变,以第一和第三偕波模式对正离子进行加速。在第一偕波中,质子被加速到6 MeV~ 30 MeV, 氘核在12.5 MeV~25 MeV, α粒子在25 MeV~50 MeV, He3 +2离子在18 MeV ~62 MeV 。磁场的变化通过9对圆形的调节线圈来完成,磁场的梯度与半径的比率为(4.5 – 3.5)×10-3 T/cm。磁场方位角通过六对偕波线圈进行校正。RF系统由180°的两个Dee组成,其操作电压达到80kV,RF振荡器是一种典型的6级振荡器,其频率范围在8.5 - 19 MHz 。通常典型的离子源呈放射状,并且可以通过控制系统进行遥控,在中心区域有一个可以活动的狭缝进行相位调节和中心定位。使用非均匀电场的静电偏转仪(electrostatic deflector)和磁场屏蔽通道进行束流提取,在偏转仪上的最大电势可达到70 kV 。对30 MeV强度为15 mA质子在径向和轴向的发射度(Emittance)为16p mm.mrad 。能量扩散为0.6%,亮度高,在靶内的束流可达到几百mA。用不同的探针进行束流强度的测量,这些探针有普通TV的可视性探针;薄层扫描探针和非截断式(non-interceptive)束流诊断装置。系统对束流的敏感性为1mA,飞行时间精确到0.2 ns 。束流可以传送到六个靶位,可完成100%的传送。该回旋加速器最早在1972年由INP建造,它可使质子加速达到1 MeV,束流强度为几百mA,主要用于回旋加速器系统(离子源、磁场等)的研究。 70年代以来,为了适应重离子物理研究的需要,成功地研制出了能加速周期表上全部元素的全离子、可变能量的等时性回旋加速器,使每台加速器的使用效益大大提高。此外,近年来还发展了超导磁体的等时性回旋加速器。超导技术的应用对减小加速器的尺寸、扩展能量范围和降低运行费用等方面为加速器的发展开辟新的领域。目前的同步加速器可以产生笔尖型(pencil-thin )的细小束流,其离子的能量可以达到天然辐射能的100,000倍。通过设计边缘磁场来改变每级加速管的离子轨道半径。最大的质子同步加速器是Main Ring(500GeV)和Tevatron(1TeV)在Fermi National Accelerator Laboratory Chicago;较高级质子同步加速器的是在Geneva的European Laboratory for Particle Physics (CERN)安装应用的SPS(Super Proton Synchrotron), 450 GeV。(图2,3所示的超导加速器)[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211241_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211258_01_1623423_3.jpg[/img]

  • ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    [color=#990000][size=16px]摘要:现有的[/size][size=16px]ARC[/size][size=16px]加速量热仪普遍存在单热电偶温差测量误差大造成绝热效果不好,以及样品球较大壁厚造成热惰性因子较大,都使得[/size][size=16px]ARC[/size][size=16px]测量精度不高。为此本文提出了技术改进解决方案,一是采用多只热电偶组成的温差热电堆进行温差测量,二是采用样品球外的压力自动补偿减小样品球壁厚,三是用高导热金属制作样品球提高球体温度均匀性,四是采用具有远程设定点和串级控制高级功能的超高精度[/size][size=16px]PID[/size][size=16px]控制器,解决方案可大幅度提高[/size][size=16px]ARC[/size][size=16px]精度。[/size][/color][align=center][size=16px][color=#990000][b]==============================[/b][/color][/size][/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b][size=16px] 加速量热仪(Accelerating Rate Calorimeter)简称ARC,是一种用于危险品评估的热分析仪器,可以提供绝热条件下化学反应的时间-温度-压力数据。加速量热仪(ARC)基于绝热原理,能精确测得样品热分解初始温度、绝热分解过程中温度和压力随时间的变化曲线,尤其是能给出DTA和DSC等无法给出的物质在热分解初期的压力缓慢变化过程。典型的加速量热仪的结构如图1所示。为了保证加速量热计的测量精度,ARC装置需要实现以下两个重要条件:[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热计典型结构,500,267]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121740385310_8045_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 ARC加速量热仪典型结构[/b][/color][/size][/align][size=16px] (1)被测样品始终处于绝热环境。绝热环境的实施需采用等温绝热方式,即样品球周围的护热加热器温度始终与样品球温度保持一致,两者的温差越小,样品散失或吸收的热量则越小,量热仪测量精度越高。[/size][size=16px] (2)空心结构样品球(样品池或样品容器)的壁厚越薄越好,以最大限度减少热惰性因子,减少球体吸热和放热影响。[/size][size=16px] 在目前的各种商品化ARC加速量热仪中,并不能很好的实现上述两个边界条件,主要存在以下几方面的问题:[/size][size=16px] (1)样品温度和护热温度仅采用了两只热电偶温度传感器,而热电偶的测温精度和一致性本身就较差,仅靠两只热电偶测温和控温,很难保证达到很好的等温效果,往往会造成漏热严重的现象,导致测量精度较差。热电偶在使用一段时间后,这种现象会更加突出。[/size][size=16px] (2)因为化学反应过程中会产生高温高压,使得现有ARC的样品球壁厚必须较厚以具有较大的耐压强度,避免样品球或量热池产生形变或破裂,但这势必增大了热惰性因子。这种壁厚较厚和较大热惰性因子,是造成ARC加速量热仪测量误差较大的另一个主要原因。[/size][size=16px] (3)由于首先要保证壁厚和耐压强度,量热池所用材质往往是高强度金属,但这些金属材质相应的热导率往往较低,较低的热导率则会影响量热池侧壁温度的快速均匀。这种低导热材质所带来的样品球温度非均匀性问题,又会造成周边护热温度控制的误差,所带来的连锁效果会进一步降低测量精度。[/size][size=16px] 为了解决目前ARC加速量热仪存在的上述问题,本文提出了以下解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案主要包括两方面的技术改进,一是采用多只热电偶构成温差热电堆来提高温差检测的灵敏度和更好的保证绝热环境,二是在样品球外增加气体压力自动补偿。改进后的ARC加速量热仪的结构及控制装置如图2所示。[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热仪温度和压力控制装置结构示意图,550,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121741195817_6742_3221506_3.jpg!w690x356.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 ARC加速量热仪温度和压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在如图2所示的高温高压控制装置中,采用了4对热电偶组成的热电堆来检测样品球与护热加热器之间的温差,这样可以使温差测量灵敏度提高4倍,即可使原来采用单只热电偶的量热计测量精度得到大幅提高。在实际应用中,热电堆中的热电偶数量并不限制于4只,可以根据ARC结构和体积采用更多的热电偶,由此可进一步提高温差测量灵敏度,但在选择热电偶时,需要采用尽可能细的热电偶丝,以减少热量通过热电偶丝进行传递。[/size][size=16px] 对于补偿压力的控制,如图2所示,在ARC中增加了一路高压气路。压力控制回路由压力传感器、压力调节器和PID控制器构成,通过压力调节器将来自高压气源(如氮气)的压力进行自动减压控制,使得高温高压腔体内的压力始终跟踪样品球内的压力变化,从而尽可能降低样品球内外的压力差。压力调节器是一个内置压力传感器、PID控制器和两只高速进出气阀门的压力控制装置,可直接接收外部压力设定信号进行快速和准确的压力控制,非常适用于像ARC量热仪高温高压腔这样的密闭腔室的气体压力控制。压力调节器的压力控制范围为0~5MPa(表压),如需要更高压力调节,则需增加一个高压背压阀,但压力调节还是通过压力调节器。[/size][size=16px] 在图2所示的高温高压控制装置中,温差传感器的灵敏度、压力传感器测量精度以及压力调节器控制精度都决定了ARC加速量热计边界条件是否精确,但这些部件对ARC的最终测量精度贡献还需PID控制器来决定。PID控制器作为ARC绝热量热仪的核心仪表,需要满足以下要求才能真正保证最终精度:[/size][size=16px] (1)在量热仪绝热实现方面,采用温差热电堆,可灵敏检测出样品球与护热加热器之间的微小温差变化,但温差灵敏度最终是要通过PID控制器的检测精度得以保证,由此要求PID控制器应有尽可能高的采集精度。同样,绝热控制的最终效果是温差越小越好,这也对PID控制器的控制输出提出了很高的要求,即要求控制精度越高越好。本解决方案中选择了VPC2021系列的超高精度PID控制器,这是目前国际上最高精度的工业用小尺寸PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,可完全满足微小温差热电势信号高精度检测和高精度温度控制的要求。[/size][size=16px] (2)在量热仪高压补偿控制方面,需要对高温高压腔室内的气体压力进行跟踪控制以尽可能的减小样品球内外的压力差。在压力控制回路中,压力传感器用来检测样品球内部的压力变化,同时此传感器的输出压力值又作为高温高压腔室压力控制的设定值,PID控制器根据此设定值来动态控制高温高压腔室压力,这就要求PID控制器具有远程设定点功能,并具有与压力调节器组成串级控制回路的功能,而本解决方案配置的VPC2021系列PID控制器则具备这种高级控制功能。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案采用了温差热电堆和压力补偿两种技术手段对现有ARC加速量热仪进行改进,改进后的ARC加速量热仪具有以下特点:[/size][size=16px] (1)温差热电堆可明显提高温差检测灵敏度,可更好的实现绝热效果。[/size][size=16px] (2)压力补偿可使得样品球的壁厚更薄,并降低了样品球材质的强度要求,样品球就可以采用高导热金属,在降低样品球热惰性因子的同时,更能提高样品球整体的温度均匀性,可显著提高量热仪测量精度。[/size][size=16px] (3)采用了具有远程设定点和串级控制这些高级功能的超高精度PID控制器,可充分发挥上述技术改进措施的优势,真正使ARC加速量热仪测量精度的提高得到了保障。[/size][size=16px] (4)所采用的技术手段,可推广应用到其它形式的热反应量热仪中。[/size][align=center][color=#990000][b][/b][/color][/align][align=center][b]~~~~~~~~~~~~~~~[/b][/align][size=16px][/size]

  • 请大家说说常用SEM的加速电压

    如题,我的LEO1450一般用20KV,偶尔加到25KV,打低原子序数能谱降到过15KV。另外,在更变加速电压过程中要做哪些相应调整?

  • 请教一个关于重力加速度换算G值的问题

    公司的拉力机,是0.5级的,量程(500N),单位是N,检定证书出的单位也是N 1.拉力机的重力加速度换算公式G值取的是9.806,他们厂家自己约定的G值. 2.计量院过来检定的时候是用砝码检定,他们换算的G值是9.7883,按广州的G值(公司地处东莞,网上没查到G值),计量员说没关系的,影响不大,也没把这个情况记录 请问这样对检定结果影响大吗?

  • 测橡胶加速剂时出现很大很大一个大鼓包!

    测橡胶加速剂时出现很大很大一个大鼓包!

    http://ng1.17img.cn/bbsfiles/images/2016/01/201601190908_582347_1707713_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601190908_582348_1707713_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601190908_582349_1707713_3.jpg 图1,橡胶加速剂的标准图谱,共有6种加速剂。 图2,所有的胶料都会在35.8附近出未知峰。图3, 某种胶料测试时重负出现的鬼峰。问题是:1.所有胶料中都会出现的35min附近的峰是什么物质?如何定性?2.某胶料中重复出现的鬼峰是什么原因导致的呢?测试方法:HPLC,RP-18-5um,1.5ml/min,DAD-276nmA:20%ACN+80%水+0.005M乙酸B:100ACN+0.005M乙酸A,B两相梯度洗脱。

  • 【求助】关于加速溶剂萃取仪

    小弟对加速溶剂萃取仪不了解,相问具体应用在哪些方面?请大家说说您用过的哪些牌子的加速溶剂萃取仪比较好呢?请说明厂家和型号就这么多分了……大家推荐推荐吧,先谢谢了!

  • 加速电压与电子束能量的关系

    大家好,最近在研究扫描电镜原理方面的知识,有一点不太理解,还请大家帮忙解答!!!Q:通常情况下,选择高的加速电压,电子束能量高,探针电流大,但现在的电压和电流在用户界面上都是可以独立调节的,即选择高电压的同时,也可以选择小的电流,那这个时候的电流是不随电压变化的,那么问题来了,这个时候的电流是靠什么调节的???是光阑吗还是其他什么?问题引申:通常讲的电子束能量高低,指的是束斑尺寸还是电子束的速度,还是指波长短?或者,三者兼而有之???亦或是其他?

  • 【分享】数字式MEMS加速度传感器在倾角测量的应用

    数字式MEMS加速度传感器在倾角测量的应用  物体在运动中的倾角是描述物体运动状态、特征的重要参数,在交通、航天、军事领域中都有着重要的意义,对目标的定位、追踪起到非常重要的作用。所以开发价格适中、精度高,测量范围大的角度测量模块具有很强的实用价值。  本文根据对实际运动的分析,研究建立了相应的数学模型,利用数字式MEMS加速度传感器并配合适当的硬件电路和软件算法实现了一种性价比高,高精度,测量范围大的角度测量模块并通过实际运行,取得良好的效果。  1 对象研究和建模  本文研究的对象是物体运动时,其整体平台的倾斜角,例如普通车辆机车,军用车辆机车和海上装备等,在运动过程中由于路面、坡度等影响会使整个平台架产生一定的倾角,而这些参数对于精确导航、列车行程控制等系统都具有重要的意义。  根据经典力学可以知道,当对象与基准平面有一个角度的夹角时,其运动方向的加速度与重力加速度的比值和没有夹角时其加速度与重力加速度的夹角α 是不同的。根据力的分解,重力加速度就会有分量作用在Ax方向,且Ax=gsinα,于是倾斜角α=sin-1(Ax/g)。见图1-(a)所示。但是,当对象在基准面方向上做变加速的运动时,其Ax同样是一个变化值,这样将由于无法区别对象的静态加速度和动态加速度而做出正确的判断。也可以考虑采用图 1-(b)中所示方法测量,将Ax设定为始终与运动面垂直的方向,这样Ax=gcosα,则倾斜角α= cos-1(Ax/g)。这个方法在普通的道路坡度只能在Ax方向产生一个很小的加速度变化,而这对于该传感器的精度是很难达到的。  故考虑采用如图1- (c)所示方法进行测量,利用双轴的加速度传感器,其两个夹角之间相差90°,两个角分别为45°和135°角,当车辆静止在平面上时,加速度传感器的两个轴向测得加速度:Ax=Ay=0.707g。  当车辆在平面上加速时,加速度倾角传感器的两个轴向就会测得两个大小相等,极性相反的加速度变化,而(Ax+ Ay)保持不变,例如:车辆向前加速时,Ax增大而Ay减小。  当车辆倾斜时,倾斜角α=cos-1。但是在实际情况中,由于测量、安装等原因,几乎不可能做到加速度传感器与车辆的径向正好成45°,所以需要在系统初始化时,首先测量出加速度传感器与车辆的径向的夹角β,可根据公式β=arctan(Ay/Ax)计算得到。  由此可得最后的倾斜角为:α=cos-1。根据这个数学模型,可以很好的测得角度的变化。所以在实际使用就利用软、硬件根据该模型进行设计从而实现了微小角度的测量。   2 系统设计  根据上面的对象研究和建模分析,并结合实际需求开始进行系统设计。在设计的过程中,根据算法设计选取了相应的硬件,按照硬件的选取经过分析,最后确定所需硬件电路,然后编制了相应的软件完成整个设计。  2.1硬件设计  设计中使用的是ADXL213芯片,其采用先进的MEMS 技术,在同一硅片中刻蚀了一个多晶硅表面微机械传感器,并集成了一套精密的信号处理电路。信号处理电路能将表面微机械传感器产生的模拟信号转换为占空比调制(DCM) 数字信号输出。

  • 【资料】伊拉克前总统萨达姆死刑已执行

    伊拉克电视台报道,伊拉克前总统萨达姆已经于当地时间快到凌晨6点(北京时间上午11点)被执行绞刑。目前伊拉克街头比较平静,还没有实施宵禁措施。萨达姆的遗体将在24小时之内安葬,但具体地点还没有确定。早在执行绞刑前,美国方面声称已做好各种“羁押”措施,保证不会让萨达姆在死前或死后遭到羞辱。

  • 求购一台二手的加速溶剂萃取仪

    求购一台二手的加速溶剂萃取仪,有没有闲置的或者不用的[b]【仪器名称】:[color=#ff0000]加速溶剂萃取仪[/color]【新旧程度】:不限【价格范围】:【质保期限】:【交易地点】:【联 系 人】:【联系方式】:【信息有效性】:[/b]

  • 【实战宝典】赛默飞ASE350加速溶剂萃取仪漏液故障排查?

    [font=宋体][color=black][back=white]链接:[/back][/color][/font][color=black][back=white]https://bbs.instrument.com.cn/topic/7243908[/back][/color][font=宋体][color=black][back=white]问题描述:[/back][/color][/font][font=宋体][color=black][back=white]加速溶剂萃取仪漏液故障排除?[/back][/color][/font][font=宋体][color=black][back=white]解答:[/back][/color][/font][font=宋体][color=black][back=white]赛默飞[/back][/color][/font][color=black][back=white]ASE350[/back][/color][font=宋体][color=black][back=white]加速溶剂萃取仪发生漏液的情况一般有如下几种:[/back][/color][/font][color=black][back=white]a[/back][/color])[font=宋体][color=black][back=white]萃取池漏液。出现该问题后,检查[/back][/color][/font][font=宋体][back=white]萃取池[color=black]两端池帽、密封表面和池体螺纹处的杂质。若发现螺纹处有杂质,则先清理掉杂质,用手拧紧萃取池,重新萃取或直接换一个萃取池萃取;若发现萃取池帽上的[/color][/back][/font][color=black][back=white]O[/back][/color][font=宋体][color=black][back=white]型圈颜色改变或中间的小孔孔径小于[/back][/color][/font][color=black][back=white]0.5 mm[/back][/color][font=宋体][color=black][back=white],则需更换新[/back][/color][/font][color=black][back=white]O[/back][/color][font=宋体][color=black][back=white]型圈,更换时要小心,不能将萃取池帽的内壁刮伤,否则会导致漏液;若发现萃取池帽上的的[/back][/color][/font][color=black][back=white]PEEK[/back][/color][font=宋体][color=black][back=white]密封垫损坏,则需更换新密封垫。[/back][/color][/font][color=black][back=white]b[/back][/color])[font=宋体][color=black][back=white]溶剂流路漏液。出现该问题后,需打开维修区舱门,肉眼查找流路泄漏处。容易发生泄漏的部件有:泵单向阀、泵接头、泵头和泵缸之间的密封件、溶剂管线接头、传感器接头、泄压阀接头以及溶剂瓶到静态阀门之间的管路。排查到漏液部分后可将其接头拧紧或更换以消除故障。如果泵头泄漏,则需更换柱塞杆密封圈。如果接液盘内有液体,说明静态阀[/back][/color][/font][color=black][back=white]O[/back][/color][font=宋体][color=black][back=white]型圈发生泄露,则需将其螺帽拧紧或重新安装,同时还需将接液盘清洗干净并干燥。[/back][/color][/font][color=black][back=white]c[/back][/color])[font=宋体][color=black][back=white]漏液至收集瓶或废液瓶。如果在静态萃取过程中有液体流入收集瓶,说明静态阀活塞密封垫被污染或损坏,需要重新安装静态阀。如果在静态萃取过程中有溶液流入废液瓶,说明压力释放阀被污染或损坏,需要更换压力释放阀。[/back][/color][/font][font=宋体][color=black][back=white]如果上述操作无法解决该问题,请与赛默飞客服联系。[/back][/color][/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 新型号国产加速水洗色牢度测试仪操作规程

    [align=center][/align][font=宋体] 新型号国产加速水洗色牢度测试仪操作规程[/font][font=宋体]一、[b]仪器[/b][/font]1.推上空开开关,[font=宋体]接通电源,加水到水洗机的指定水位线,把[font=宋体]加速水洗色牢度[/font]的四根固定棒拧下。[font=宋体](要注意水位,看加水是否到指定的水位线,因为水分会蒸发,或者其他原因会‘损失’;当水位过高或者过低时水位指示器灯就会亮,发出[/font][font=宋体]报警同时加热器会自动停止加热,这时要及时关闭电源,立即加水到指定水位)。[/font][/font]1.1 设置[font=宋体]试测试时所需要的温度,开始加热.[/font]1.2 设置[font=宋体]试验用的时间,比如30min.[/font]2.[font=宋体]根据试验方法规定,决定是否需要钢珠,需要的话就往钢罐里加入一定数量的钢珠,加入配好的测试液;[/font]3.[font=宋体]将试样样品放入钢罐,用橡胶垫圈密封钢罐,并扣紧盖子;[/font]4.[font=宋体]将钢罐固定在旋转轴上;[/font]5.盖上[font=宋体][font=宋体]加速水洗色牢度[/font]的盖子,并按开始按钮启动仪器;[/font]6.[font=宋体]试验结束后必须及时取出钢罐[/font].[font=宋体]二[b]、注意事项[/b][/font]1.[font=宋体]做日常维护前,确保切断仪器电源;[/font]2.检查水位,水质,发现异常[font=宋体]应更换[font=宋体]加速水洗色牢度机[/font]内的水,并清洗内壁,防止受腐蚀;[/font]3.[font=宋体]由于仪器频繁使用电机轴承易被损坏,应经常给联接轴承加润滑油;[/font]4.要经常[font=宋体]检查钢罐及[/font][font=宋体]橡胶垫圈[/font][font=宋体]腐蚀及磨损情况,如发现损坏或被腐蚀必须丢弃。[/font]5.[font=宋体]在[font=宋体]加速水洗色牢度[/font]机的底部后方有两个锌阳极,要定期更换,防止它自身的腐蚀来腐蚀其它金属零件。[/font][font=宋体][/font]

  • 【原创】回旋加速器射频系统-3

    [center](三) RF功率源[/center] 回旋加速器的RF功率源或称RF功率发生器(RF power generator RFPG)的主要功能是通过RF谐振腔(RF Cavity)在Dees中建立加速电压(Dee电压)。RFPG由振荡器(oscillators),放大器(amplifiers),控制电路(control circuitry)及电源配给器(power supplies)组成。RFPG通常有二种类型,即自激式高频振荡器和它激式高频振荡器。早期采用的是自激式高频振荡器,它以D电极和共振线系统作为高频功率振荡管的“槽路”,振荡的频率完全由共振线系统的频率决定。该类功率源的优点是需要的部件较少,价格便宜,操作维护简便,并且可以在高功率状态下调整加速的工作频率。自1937年后,多采用它激式高频振荡器的RF功率源,它先由晶体主振荡器产生低功率的高频振荡,然后经多级放大,最终由高功率放大器向共振线系统输出大功率的高频加速电压。它激式的优点是:①晶体振荡器的工作性能稳定,电源的频率稳定度高;②不易产生寄生振荡;③电源系统与加速结构独立,可单独建造和调运。

  • 【讨论】请教一个能谱分析时加速电压电压设置的问题

    请教一个能谱分析时加速电压电压设置的问题对于X射线能谱分析,一般来讲,选择的加速电压应当至少是要分析样品中最高元素峰能量 KV 的 2 倍。例如,对于铁元素它的最高能量峰为 6.39 keV,那么使用的最小加速电压应当为 14 或 15 KV。在加速电压15 KV下,可能已经超过某些轻元素最高能量峰的很多倍,这样会不会造成轻元素的测量不准确,为什么?

  • 【讨论】加速溶剂萃取仪

    请问有人用加速溶剂萃取仪做农残吗?这种萃取好用吗?确实能节省溶剂,提高效率吗?多个萃取池能不能同时进行萃取?萃取池会不会导致残留?一次性滤膜单价是多少?用于做农残测试有没有什么局限性?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制