当前位置: 仪器信息网 > 行业主题 > >

电离子谱仪

仪器信息网电离子谱仪专题为您提供2024年最新电离子谱仪价格报价、厂家品牌的相关信息, 包括电离子谱仪参数、型号等,不管是国产,还是进口品牌的电离子谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电离子谱仪相关的耗材配件、试剂标物,还有电离子谱仪相关的最新资讯、资料,以及电离子谱仪相关的解决方案。

电离子谱仪相关的论坛

  • 静电离子色谱分离方法

    近年来离子色谱研究的一个重要趋势是研究各种分离效率高, 选择性好, 分析速度快, 可同时分析阴离子和阳离子的色谱柱. 研究的重点是将涂覆有生物表面活性剂的物质作离子色谱固定相, 并已在光学异构体和无机离子分离分析方面展示出独特的优越性和发展潜力. 1994年, Hu Wezhi等人首先采用在一分子内含有正负电荷的两性离子分子的表面活性剂作色谱固定相, 开创了静电离子色谱法. 本文利用自制的静电离子色谱柱, 选用不同种类流动相, 对含有不同阴离子的钠盐进行分离, 并初步探讨在磁场中静电离子色谱的保留行为. 1 实验部分  1.1 仪器和试剂  LC-4A高效液相色谱仪; RID-2AS示差析光检测器, C-R2A数据处理机. 静电离子色谱柱(自制), 流动相分别为水, 10 mmol/L Na2HPO4-NaH2PO4缓冲液(pH=6.8), 2.4 mmol/L NaHCO3和3 mmol/L Na2CO3; 1 mmol/L十二烷基磺酸钠. 所用试剂均为优级纯或分析纯; 溶液用二次蒸馏水按常规配制.   1.2 色谱柱制备和分离方法  把含有胆汁酸盐水溶液通过动态涂层法涂覆在ODS表面. 选用国产ODS分离柱(4.6 mm×250 mm), 将30 mmol/L的CHAPS溶液(经0.4 μm滤膜过滤)以 0.7 mL/min流速流经ODS柱80 min, 收集流出液重复上述操作2次, 然后用水冲洗40 min, 即得到在ODS柱表面涂覆一层含有正/负电荷胶束的静电离子色谱柱.  静电离子色谱法是利用在ODS载体上涂覆在同一分子内同时含有正/负两种电荷的胆汁酸诱导体胶束作固定相, 纯水或电解质溶液作流动相, 被测样品中的阴离子和阳离子通过纯粹的静电吸引、 离子配对后形成正、 负离子的缔合物(离子对), 由于被测离子的电荷和半径、 离子种类和离子浓度的不同, 因此形成的各种离子对受涂覆在固定相上的表面活性剂所带的正/负电荷静电吸引和排斥作用力不同而相互分离. 分离后的离子对进入检测器进行定量检测. 实验表明, 用本法制备的静电离子色谱柱, 连续使用3个月未发现分离效率下降. 2 结果与讨论 2.1 流动相和色谱图  分别以纯水、磷酸盐缓冲溶液为流动相得到色谱分离图  纯水为流动相时, Na2SO4和NaBr, KNO3和NaNO3, Na2S2O3和NaF+NaNO3各离子对得到分离, 但NaF与NaNO3不能分离开. 而磷酸盐为缓冲溶液时(图2), 不但Na2SO4和NaBr得到分离, 而且Na2S2O3, NaF, NaNO3也可相互分离. 由图2可见, 与纯水流动相相比, 流动相中磷酸盐的存在使各离子对保留时间和色谱峰形状发生变化, 虽然各离子对保留时间显著增加, 但出峰顺序未发生变化. 实验表明, 各离子对的保留时间与阴阳离子的半径、 电荷、 流动相种类和离子强度有关, 在流动相中加入不同种类的电解质溶液将有利于某些离子对的分离.   分别以碳酸盐、十二烷基磺酸钠为流动相得到的静电离子色谱分离图如图3所示. 由图3可见NaBr和Na2SO4可以完全分离, 与纯水为流动相相比, NaBr和Na2SO4的分离效率提高, 但保留时间增加. 特别是以十二烷基磺酸钠(表面活性剂)为流动相时, 使NaBr的保留时间延长(见图3(b)), 这说明表面活性剂的存在将对离子对的分离效率产生重要影响. 可以认为, 在流动相中加入电解质溶液, 除样品离子与固定相相互作用外, 流动相中电解质也参与了与固定相之间的静电吸引和排斥作用, 由于各离子对和电解质与固定相相互竞争的静电作用, 提高了各离子对的分离度.   2.2 流动相流速影响 当流动相流速不同时, 各离子对的保留时间发生改变. 纯水为流动相时, NaBr和Na2SO4离子对的保留时间与纯水流速的关系. 实验表明, 当采用不同种类流动相时, 随着流动相流速的增加, 保留时间都有不同程度的缩短. 但要根据被分离的离子对的分离效率和分析速度来选择流动相流速, 本实验选择流动相流速为0.6 mL/min. 2.3 外加磁场对静电离子色谱分离的影响  将静电离子色谱置于静态磁场(Nb磁铁, 160 mm×30 mm)中, 考察各离子对的分离效率和保留时间. 实验表明, 在外加磁场作用下, 纯水为流动相时, NaNO3和Na2S2O3离子对的保留时间稍向后位移(见图5), 但二者的峰形状未发生变化. 这可能是在离子对形成和洗脱过程中, 由于外加磁场的作用, 使形成的离子对与涂覆在载体上胆汁酸盐胶束所带的正负电荷静电吸引和排斥作用力发生变化, 打破了原来的平衡状态, 使离子对的保留时间发生位移.

  • 质谱 带电离子的产生、传输和检测

    [font=微软雅黑, sans-serif]带电离子的产生、传输和检测[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪工作时,仪器内部真空环境中带电离子的产生、传输和检测需要经过离子源、质量分析器和检测器等部件。[color=red]本文主要介绍单四极杆质谱仪的电子轰击电离源/电子电离源(EI)部分。[/color][/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f0/1d/ff01dcd00e8e45a3bc8250abe70575b7.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]离子源-电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源的主要作用是将分析样品中的待测组分电离成带电离子,并将带电离子集中成密集的离子束,引入质量分析器。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-单四极杆质谱联用仪常见的离子源主要有电子轰击电离源(EI)、化学电离源(CI)等。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif]通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)是最常见和最简单的电离方式之一,可靠性和灵敏度高,碎片离子信息丰富,质谱图具有良好的再现性,能够提供详细的结构信息和可供对照的标准NIST质谱数据库。目前EI 源是分析鉴定中草药、香精、香料、杀虫剂和石油成品等挥发性和半挥发性复杂样品的主要手段。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)的结构包括电离腔、透镜组和模拟电路板三大部分。电离腔包括磁铁、灯丝、推斥极等;透镜组则包括离子出口板、离子出口板间隔、聚焦透镜和引入透镜等;模拟电路板[size=12px](点击链接,了解详细内容:[url=https://ibook.antpedia.com/x/666377.html][color=#7030a0]单四极杆质谱仪工作流程及框架概述[/color][/url])[/size]则用以实现电子轰击电离源(EI)灯丝电流控制,离子源加热控制,推斥电极、静电透镜、电子能量电压控制等。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c6/fc/6c6fc7a87049a3eaa393fdac683e4dfc.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的产生[/font][font=微软雅黑, sans-serif]2.1.1.1 [/font][font=微软雅黑, sans-serif]离子的产生位置-电离腔[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电离腔[/font][font=微软雅黑, sans-serif]位于灯丝1与灯丝2之间,(上图)推斥极右侧,(上图)离子出口板左侧;磁铁位于灯丝1和灯丝2 的正上方;色谱柱于上图中色谱柱入口将分析样品中的待测组分引入离子源;另外,位于色谱柱入口正对面的真空腔门上开有小孔,外部装有开关阀及调谐用的全氟三丁胺,称为标液和标液阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源中的两个磁体之间会形成磁场,运动电荷在磁场中受到洛伦兹力的作用;洛伦兹力不改变运动电荷的速率和动能,只改变电荷的运动方向使之偏转;灯丝经过加热产生热电子,并在加速电压的作用下进入磁场,在磁场作用下螺旋形向前运动,增加与样品分子相互作用的几率。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1.2 [/font][font=微软雅黑, sans-serif]电离腔中离子产生的原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][color=#7030a0]说明:该小节参考《质谱分析技术原理与应用》,台湾质谱学会[/color][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)又称为电子电离源(EI),其基本原理是灯丝经过加热产生热电子,并在加速电压的作用下具有一定的能量和波长。当电子的波长符合分子电子能级跃迁所需的波长时,电子能量会被分子吸收,使分子内能提高,将外层电子提升至高能级,进而至离子化态并产生自由基阳离子。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在离子源中可以通过参数设置控制电子产生的数量和电子的能量。有机化合物的电离能大多数为(10-20)eV,但通常将灯丝产生的电子动能设置为70eV[size=12px](电子伏特(electron volt),符号为eV,是能量的单位。代表一个电子(所带电量为1.6×10-19C的负电荷)经过1伏特的电位差加速后所获得的动能)[/size]。电子动能为70eV时波长约为1.4?,该波长与分子键长度接近,更容易与化学键相互作用。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV位于最佳离子化效率能量区(50-100eV)的中间,可以避免由于在区间起始或者结束位置时电子能量微小波动导致的离子化效率明显变化;同时,也避免了当电子能量过低无法被分析物有效吸收或者过高直接穿透分子引起的离子化效率降低等情况。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV时可以提供较高的谱图重现性,同时具有丰富的碎片离子,可以提供分子离子的结构信息,用来鉴定或者解析分子。目前美国国家标准与技术研究院(NIST)收集了数十万分子电子电离产生的质谱图并建立了谱图库,可以通过与该标准谱图库进行对比的方法检定化合物的身份。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.1.2 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的传输和聚焦[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在电离腔中产生的离子碎片运动方向较为发散,为了将离子引出电离区,并将轴向发散的离子进一步加速、聚焦成离子束以减少在传输中的损失,并最终以较小的束宽和散角送入质量分析器中,一般使用透镜组对离子进行空间聚焦。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪电子轰击电离源(EI)中的透镜组(静电透镜/单透镜)是离子导向装置的一种,作为离子光学系统的一部分,承担着将离子传输至质量分析器的重要作用。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif]工作过程中,由电子轰击电离源(EI)的裂解机理产生的离子多为正离子,因此首先在推斥极上施加正电压,将离子推向离子出口板;一般而言,离子出口板和离子出口板间隔接地,推斥极和离子出口板之间会形成电压差,电压差亦会推动正离子向前运动;聚焦透镜和引入透镜为负电压,且聚焦透镜的电压值会更低[size=12px](说明:负的更厉害)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在三个圆筒形电极[size=12px](离子出口板和离子出口板间隔、聚焦透镜和引入透镜)[/size]的作用下,中间电极附近形成一鞍形电场——即中间电极电压低于两边电极电压,构成起始减速型单透镜结构,散射的正离子在起始减速型结构的单透镜中先加速后减速,先聚焦后发散再聚焦。该透镜组(静电透镜/单透镜)的特点是对传输离子无质量歧视,可以保持离子的动能,通过调节电压即可实现离子聚焦和改善离子传输效率。[/font]

  • 为什么ICPMS的炬管产生带电离子而ICPOES中产生特定波长光子?

    刚刚看到ICPMS的培训材料,它里面是这么比较ICPMS和ICPOES的炬管功能的区别的:“在ICP-OES中,炬管通常是垂直放置的,等离子体激发基态原子的电子至较高能级,当较高能级的电子“落回”基态时,就会发射出某一待测元素的特定波长的光子。在ICP-MS中,等离子体炬管都是水平放置的,用于产生带正电荷的离子,而不是光子。实际上,ICP-MS分析中要尽可能阻止光子到达检测器,因为光子会增加信号的噪音。正是大量离子的生成和检测使ICP-MS具备了独特的ppt量级的检测能力,检出限大约优于ICP-OES技术3~4个数量级。”但我还是没搞明白,为什么炬管从竖着放变成横着放就能从产生光子变成产生带电离子了呢?希望有大虾答疑解惑~~~

  • 电离子迁移谱(ESI-IMS)

    不知道大家对离子迁移谱了解不? 如果我要做食品加工中的添加剂检测,请问离子迁移谱有什么方法标准和参数吗?

  • 【原创大赛】选择热电离子色谱,变色龙软件如何选择功能?

    [font=宋体]《[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]实战宝典)问答实例[/font][font=宋体][/font][font=宋体]选择热电[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],变色龙软件如何选择功能?[/font] [font=宋体]变色龙软件功能强大,一般购买仪器时,厂家仅仅提供基本的功能,并不会把所有的功能提供给你。如果用户有很多台热电[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],或者想把其它厂家的色谱模块组合到[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],或者控制其他厂家的仪器,则需要增加一些功能,但价格也会增加。[/font][font=宋体]一是,能控制几台色谱仪,软件最大可控制[/font]16[font=宋体]台,但在实际中是用不到了,实际操作中最多是四台,否则界面切换也非常麻烦。一般情况下,单系统是[/font]1[font=宋体]个[/font]timebase[font=宋体],双系统是[/font]2[font=宋体]个,如果第二次购买,可以用[/font]2[font=宋体]个[/font]timebase[font=宋体]。[/font][font=宋体]二是,[/font]class[font=宋体]级别,默认是能控制所有的热电基本色谱仪,以及一些第三方模块[/font]class1[font=宋体],[/font]class 2 [font=宋体]可以额外控制[/font]agilent[font=宋体]和[/font]wters[font=宋体]的仪器,[/font]class 3 [font=宋体]可以控制列表中所有的仪器。如果要接其他厂家的仪器,则要提示class级别。[/font][font=宋体]三是,虚拟柱,分等度和梯度模块,此模块对于常规检测并没有多大的用处,但对于研究级别的人员,用处非常大,其提供了一些色谱柱的,对很多化合物的保留特性,可以在实际中判断,大致的出峰位置,有条件可选购。[/font][font=宋体]四是,[/font]PDA[font=宋体],光谱软件,用于[/font]DAD[font=宋体]检测,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中用处不大,[/font]6.8[font=宋体]版本中,有这功能在电化学检测器中,可以看看改变电位对检测结果的影响。[/font]7.*[font=宋体]版本中,这功能消失了。[/font] [font=宋体]其他的接质谱、馏分收集、[/font]2100[font=宋体]等功能,如没有就没必要选项。用户如果有兴趣可以用工程师的限期版,看看全功能的变色龙软件。[/font][font=宋体] 接其他厂家的色谱仪,是否可控制,不同的版本数量不一,新的版本控制的仪器类型更多。但在实际操作中,控制非热电的色谱仪,软件设置,并不是一件很容易的事,需要看看说明书才能操作。[/font][font=宋体] [/font][font=宋体][/font]

  • 氦离子气相色谱仪

    原理及特点:1、基本原理以高纯氦为载气,在检测室内高压作用下产生一定强度电晕放电,放电产生的高能粒子电离色谱柱中流出物而形成可检测的电流信号。无组分流出时为载气电离产生的基流信号,被测组分流出时电流增大,电流增大的程度与组分浓度成正比,从而实现定量检测。2、仪器特点a.环境友好:没有放射源,老的HID检测器放射源因受半衰期的影响,能量随时间逐渐下降,使仪器不能保持长时间稳定,且易造成严重的环境污染。b.灵敏度高:对大多数化合物检测限在10ppb量级,与放射源氦离子化检测器(HID)灵敏度相近。c.通用型:原则上可以检测除氖气以外所有物质,根据实际需要,选用不同色谱柱可以测定多种高纯气中多种杂质气体成分,还可以配接毛细管柱,扩大分离效能,检测更多种成分。d.安全性好:与火焰离子化检测器(FID)相比,只需要一种气体,它没有明火,不需要氢气,安全性高。e.多模式工作:一个检测器可以实现放光离子化、电子捕获等工作模式,相当于多个检测器,既有通用型又有选择型。 简介:现代工业的发展离不开检测手段的进步,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一直是工业界、科学研究领域中主要的分析方法之一,它已经广泛应用于化学化工、生物医药、材料科学、环境工程等各个领域。检测器是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的核心部件,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展是以[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法为中心展开的。据报道现有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器约50种之多。随着高技术工业的发展,对分析任务的要求也越来越高,对于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]来说就是要求其具有更高的灵敏度、精度和稳定性。例如半导体工业的发展要求有极高纯度的气体,就需要有高灵敏度的色谱仪来检测气体中的痕量杂质;环境监测方面要求样品不用预先浓缩可以直接测定痕量有毒有害的农药组分等。脉冲氦放电离子化检测器是以氦气高压放电后产生的高能粒子作为离子化源,此离子化源与被测组分或参杂气作用使其产生电离而实现检测。脉冲放电离子化源可以替代传统氦离子化检测器和电子俘获检测器中有害的放射源,而且可作为激光发射光谱的能源的制成元素选择检测器。这类检测器的出现可以认为是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的离子化检测器和发射光谱检测器的离子化源或光激发源的重大革新。它具有通用、灵敏度高、不需要放射源、非破坏性、没有明火等特点。1996年由VICI公司首次推出了商品化仪器,其优点正大逐渐被业界人士所认可,该技术获得了美国R&D 100 Award。国外现在配备这种检测器的色谱仪已经开始取代老的放射源式氦离子化色谱仪,VICI公司2003年的一份报告提到该公司已全球有2000多个用户.由于这种色谱仪集通用、高灵敏度、线性范围宽的三大特点于一身,它几乎可以适用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]应用的所有领域。特别是既需要热导的通用性,又需要氢气火焰的高灵敏度时,脉冲氦放电离子化检测器是不二的选择。例如该产品可用于高纯气体杂质分析、烟气分析、残留农药检测、大气中的甲醛和氟里昂检测等半导体工业、环保、农业领域;它还是科研机构首选的色谱仪,因为一台这样的色谱可以代替配有多种检测器或多台单检器色谱,既节省费用又节省实验室空间。氢火焰检测器是最近30年来除热导池外用量最大的检测器。这种色谱可以广范用于石化、炼没行业。但是由于氢火焰色谱需要氢气、空气、氮气或氦气三种气体,而且工作环境中有氢气和明火存在,这就造成了潜在的危险,尤其是在石化、炼油行业。而氦放电离子化检测器不需要氢气作载气,也没有明火,而且所以它是氢火焰检测器的理想替代品。目前此类色谱仪完全进口。每台售价格3-4万美元,我所研制的GC9890H氦离子[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]填补了我国的仪器的一项空白。随着我国经济发展,工业、科研、环保等方面的要求也会不断提高,传统色谱的换代也是势在必行。

  • 皖仪科技申请质谱离子源进样装置及进样方法专利

    据国家知识产权局公告,安徽皖仪科技股份有限公司申请一项名为“质谱离子源进样装置及进样方法“,公开号CN117650038A,申请日期为2023年11月。[align=center][img=专利图.png]https://img1.17img.cn/17img/images/202403/uepic/07d50b7f-736b-4a98-8f41-0c7cb8a5f914.jpg[/img][/align]专利摘要显示,本发明公开了质谱离子源进样装置及进样方法,进样装置包括样品打印头、样品床、雾化器以及真空接口。样品的进样方法为,样品从样品打印头喷射到载样纸中;载样纸通过加热器加热,使样品的溶剂挥发,样品在载样纸中形成样品斑,同时,滚筒驱动载样纸绕着滚筒旋转,使样品斑朝向真空接口的方向移动;雾化器喷射的带电溶剂喷雾射向载样纸,使样品斑中的化合物在带电溶剂喷雾中溶解,并被后续的带电溶剂喷雾溅射弹起,形成带电样品?溶剂液滴;液滴通过库伦爆炸形成带电离子;带电离子在真空接口位置被电场吸引,并进入真空接口内完成进样。[b]该进样装置及进样方法,使样品不需要经过复杂的前处理可以直接上样,降低了工作量。[/b][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 脉冲氦离子气相色谱仪

    脉冲氦离子气相色谱仪

    原理及特点:1、基本原理以高纯氦为载气,在检测室内高压作用下产生一定强度电晕放电,放电产生的高能粒子电离色谱柱中流出物而形成可检测的电流信号。无组分流出时为载气电离产生的基流信号,被测组分流出时电流增大,电流增大的程度与组分浓度成正比,从而实现定量检测。2、仪器特点a.环境友好:没有放射源,老的HID检测器放射源因受半衰期的影响,能量随时间逐渐下降,使仪器不能保持长时间稳定,且易造成严重的环境污染。b.灵敏度高:对大多数化合物检测限在10ppb量级,与放射源氦离子化检测器(HID)灵敏度相近。c.通用型:原则上可以检测除氖气以外所有物质,根据实际需要,选用不同色谱柱可以测定多种高纯气中多种杂质气体成分,还可以配接毛细管柱,扩大分离效能,检测更多种成分。d.安全性好:与火焰离子化检测器(FID)相比,只需要一种气体,它没有明火,不需要氢气,安全性高。e.多模式工作:一个检测器可以实现放光离子化、电子捕获等工作模式,相当于多个检测器,既有通用型又有选择型。 简介:现代工业的发展离不开检测手段的进步,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一直是工业界、科学研究领域中主要的分析方法之一,它已经广泛应用于化学化工、生物医药、材料科学、环境工程等各个领域。检测器是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的核心部件,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展是以[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法为中心展开的。据报道现有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器约50种之多。随着高技术工业的发展,对分析任务的要求也越来越高,对于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]来说就是要求其具有更高的灵敏度、精度和稳定性。例如半导体工业的发展要求有极高纯度的气体,就需要有高灵敏度的色谱仪来检测气体中的痕量杂质;环境监测方面要求样品不用预先浓缩可以直接测定痕量有毒有害的农药组分等。脉冲氦放电离子化检测器是以氦气高压放电后产生的高能粒子作为离子化源,此离子化源与被测组分或参杂气作用使其产生电离而实现检测。脉冲放电离子化源可以替代传统氦离子化检测器和电子俘获检测器中有害的放射源,而且可作为激光发射光谱的能源的制成元素选择检测器。这类检测器的出现可以认为是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的离子化检测器和发射光谱检测器的离子化源或光激发源的重大革新。它具有通用、灵敏度高、不需要放射源、非破坏性、没有明火等特点。1996年由VICI公司首次推出了商品化仪器,其优点正大逐渐被业界人士所认可,该技术获得了美国R&D 100 Award。国外现在配备这种检测器的色谱仪已经开始取代老的放射源式氦离子化色谱仪,VICI公司2003年的一份报告提到该公司已全球有2000多个用户.由于这种色谱仪集通用、高灵敏度、线性范围宽的三大特点于一身,它几乎可以适用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]应用的所有领域。特别是既需要热导的通用性,又需要氢气火焰的高灵敏度时,脉冲氦放电离子化检测器是不二的选择。例如该产品可用于高纯气体杂质分析、烟气分析、残留农药检测、大气中的甲醛和氟里昂检测等半导体工业、环保、农业领域;它还是科研机构首选的色谱仪,因为一台这样的色谱可以代替配有多种检测器或多台单检器色谱,既节省费用又节省实验室空间。氢火焰检测器是最近30年来除热导池外用量最大的检测器。这种色谱可以广范用于石化、炼没行业。但是由于氢火焰色谱需要氢气、空气、氮气或氦气三种气体,而且工作环境中有氢气和明火存在,这就造成了潜在的危险,尤其是在石化、炼油行业。而氦放电离子化检测器不需要氢气作载气,也没有明火,而且所以它是氢火焰检测器的理想替代品。目前此类色谱仪完全进口。每台售价格3-4万美元,我所研制的GC9890H氦离子[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]填补了我国的仪器的一项空白。随着我国经济发展,工业、科研、环保等方面的要求也会不断提高,传统色谱的换代也是势在必行。 [img]http://ng1.17img.cn/bbsfiles/images/2006/03/200603070955_14578_1305730_3.jpg[/img]

  • 7种质谱电离方式和离子源

    [color=#ff0000][b]1. 电轰击电离(EI)[/b][/color]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为 10eV 左右,50~100eV 时,大多数分子电离界面最大。70eV 能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定。电子轰击电离是应用最普遍、发展最成熟的电离方法。EI 的优点在于易于实现,质谱图再现好,而且含有较多的碎片离子信息,有利于未知物结构的推测。其缺点为当样品分子稳定不高时,分子离子峰的强度低,甚至没有分子离子峰。当样品不能汽化或遇热分解时,则更没有分子离子峰。电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。[color=#ff0000][b]2. 化学电离(CI)[/b][/color]原理是在离子室中通入反应气(压力上升到约 1Torr),用 200~400eV 的电子轰击使反应气分子电离,然后样品分子在高压下与反应气离子发生离子-分子反应生成样品离子。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合 EI/CI 离子源。试剂气一般采用甲烷气 ,也有 N2,CO,Ar 或混合气等。试剂气的分压不同会使反应离子的强度发生变化 ,一般源压为 0.5~1.0 Torr。反应气通常是甲烷、胺、异丁烷等气体。[color=#ff0000][b]3. 大气压化学电离(APCI)[/b][/color]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为63Ni 辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达 9L/S。需要采取减少源壁吸附和溶剂分子干扰。大气压电离是由 ESI 衍生出来的方法。样品溶液仍由具有雾化气套管的毛细管端流出,被氮气流雾化,通过加热管时被汽化 。在加热管端进行电晕放电使溶剂分子被电离形成反应离子,这些反应离子与样品第 179 页分子发生离子-分子反应生成样品的准分子离子。与经典 CI 不同的,是 APCI无须加热样品使之汽化,因而应用范围更广。由于要求样品分子汽化,因而 APCI主要用于弱极的小分子化合物的分析。[color=#ff0000][b]4. 二次离子质谱(FAB/LSIMS)[/b][/color]分析化学论坛在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成 MH 离子,其中有些反应会形成干扰。[color=#ff0000][b]5. 等离子解析质谱(PDMS)[/b][/color]分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流采用放射同位素(如 Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于 FAB/LSIMS,可分析多肽和蛋白质。[color=#ff0000][b]6. 激光解吸/电离(MALDI)[/b][/color]波长为 1250~775 的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为 10000/1。根据分析目的不同使用不同的基质和波长。[color=#ff0000][b]7. 电喷雾电离(ESI)[/b][/color]电喷雾电离采用强静电场(3~5KV),形成高度荷电雾状小液滴,经过反复、的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。ESI 电离是很软的电离方法,通常没有碎片离子峰,只有整体分子的峰。有利于生物大分子的测定。

  • 使用电子轰击电离源(EI)的单四极杆质谱仪工作流程及框架

    [font=微软雅黑, sans-serif]采用一组四极杆[size=12px](作为质量分析器)[/size]对带电离子进行分离的质谱仪称为单四极杆质谱仪。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]质谱仪的相关部件需要在高真空环境下进行工作[/font][font=微软雅黑, sans-serif],机械泵和分子泵为仪器工作提供高真空环境,真空规对真空度进行监测。在保证质谱仪相关部件高真空工作环境前提下,经[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分离后的待测样品组分从色谱柱流出,通过传输线流入离子源[size=12px](电子轰击电离源(EI),Electron Ionization)[/size];电子轰击电离源(EI)通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size];四极杆质量分析器在射频电源的作用下,直流电压(DC)和射频电压(RF)进行叠加,满足条件的特定质/荷比(mass-to-charge ratio)的离子稳定振荡通过四极杆到达检测器[size=12px](打拿极和电子倍增器等)[/size];检测器中的打拿极与四极杆成90°且在-10000V下工作,通过四极杆的光子、中性粒子等干扰信号被降低,正离子束撞击打拿极后产生电子进入电子倍增器并产生与接收到的离子数目成正比的信号,电子流经多级放大后输入到放大电路。放大电路产生的信号经处理后在工作站中显示。使用电子轰击电离源(EI)的单四级杆质谱仪整体结构与框架如下[size=12px](以北京普析通用仪器有限公司M7质谱仪为例)[/size]:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/ee/a5cee7570e3fc5969a944c5fabaef3a7.png[/img][/align]

  • 【分享】基础知识--电离辐射

    电离辐射(ionizing radiation)指能够直接地使物质电离或者通过某些次级辐射使物质电离而产生带电粒子或不带电粒子的辐射。在电离辐射防护领域中,电离辐射也简称为辐射。电离辐射可分为电磁辐射和粒子辐射两大类 粒子辐射(particulate radiation) 是一些组成物质的基本粒子,或者由这些基本粒子构成的原子核,这些粒子具有运动能量和静止质量,通过消耗自己的动能把能量传递给其它物质。主要的粒子有α粒子、β粒子(或电子)、质子、中子、负π介子和重带电离子等。 从防护的意义上经常见到的几种主要粒子射线有:α射线、β射线、中子电磁辐射是一种波动的能量。x射线和γ射线都是一种电磁波,当它们的足够能量以适当的形式转移给物质时,则可从该物质的原子或分子内击出电子,从而发生电力过程。它们是由具有能量为E的光子组成,其静止能量很小。它们与物质作用时,一般有两个过程,即产生高能的次级带电粒子(一般是电子),然后发生激发和电离。中子在动能大于零时,可以通过各种过程产生高能次级带电粒子,所以中子也是电离辐射。而紫外光、可见光等都是电磁辐射,但是它们在物质中的贯穿能力很弱,同时它们的能量相对较低,不能发生电离过程。因此,对剂量学来说,一般不把它们看成是电离辐射。在上述的电磁辐射中,它们具有相同的波速,但频率和波长彼此不同,波长越短、频率越大者,其能量越高,穿过物质的能力越大。

  • 实验室分析仪器--质谱仪热电离离子源原理

    热电离离子源是分析固体样品的常用离子源之一。其基本工作原理是:把样品涂覆在高熔点的金属带表面装入离子源,在真空状态下通过调节流过金属带的电流强度使样品加热蒸发,部分中性粒子在蒸发过程中电离形成离子。热电离效率依赖于所用金属带的功函数、金属带的表面温度和分析物质的第一电离电位。通常金属带的功函数越大、表面温度越高、分析物质的第一电离电位越低,热电离源的电离效率就越高。因此具有相对较低电离电位的碱金属、碱土金属和稀土元素均适合使用热电离源进行质谱分析。而一些高电离电位元素,如Cu、Ni、Zn、Mo、Cd、Sb、Pb等过渡元素,在改进涂样技术和使用电离增强剂后,也能得到较好的质谱分析结果。[img=6cb803845e78c0c20db3311688659a1.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178311471374.jpg[/img]图7 表面电离源的示意图图7是表面电离源的示意,结构为单带热电离源。当金属带加热到适当的温度,涂在带上的样品就会蒸发电离。单带源适合于碱金属等低电离电位的元素分析。对于电离电位较高的样品为了得到足够高的电离效率,需要给金属带加更高的工作温度。金属带在升温过程中,样品有可能会在达到合适的电离温度之前,因大量蒸发而耗尽。为了解决这一问题,在其基础上又形成了双带和多带热电离源。即在源中设置两种功能的金属带,一种用于涂样,称样品带;另一种用于电离,叫电离带。这两种带的温度可分别加以控制。当电离带调至合适的温度后,样品带的温度只需达到维持蒸发产生足够的束流。这样既能节制蒸发,又能获得较高的电离效率。还有一种舟形的单带,把铼或钨带设计成舟形,舟内放入样品。由于舟内蒸发的样品在逸出前会与炽热的金属表面进行多次碰撞,增加生成离子的机会,因此,舟形单带的电离效率可接近于多带电离源

  • 【我们不一YOUNG】什么是质荷比(m/z)?什么是基峰?什么是分子离子?什么是碎片离子

    [align=center][font=DengXian]什么是质荷比[/font](m/z)[font=DengXian]?什么是基峰?什么是分子离子?什么是碎片离子?[/font][/align][font=DengXian]质荷比,是指带电离子的质量与所带电荷之比值,以[/font]m/z[font=DengXian]表示。[/font][font=DengXian]基峰[/font](Basepeak)[font=DengXian]:在质谱图中,指定质荷比范围内强度最大的离子峰叫作基峰。基峰的相对丰度为[/font]100[font=DengXian]%[/font][font=DengXian]分子离子[/font]: [font=DengXian]分子被电离后失去一个电子生成的离子[/font], [font=DengXian]它既是个正离子,也是一个游离基,其质荷比等于分子量。分子离子峰是除同位素峰外,质量数最大的质谱峰,位于质谱图的高质荷比端。分子离子质量对应于中性分子的质量,因此可用其确定相对分子质量。[/font][font=DengXian]碎片离子[/font]: [font=DengXian]分子离子经过一级或多级裂解所生成的产物离子。[/font]

  • 【质谱比较】气质与液质的离子源区别

    离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。在很多情况下进样和离子化同时进行。本期主题:气质与液质的离子源区别讨论内容:1、气质与液质常用的离子源2、气质与液质的离子源在离子形成上主要区别在哪?筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • 物质离子化

    实验做得多了发现的问题也就多了!!!液质离子源的机理是先将物质离子化,然后进入毛细管。。。。我很难理解什么样的物质容易离子化,什么样的物质完全不能离子化。(不能产生带电离子就不能用质谱测,是这个意思吗)比如异戊醇,异丁醇,苯乙醛等可以产生离子吗?还有点疑问就是有机相增大对液相来说是保留时间减少,那么有机相增多对质谱来说有什么影响?(有机相越多对越容易离子化?)有机相比水更容易蒸发,所以有机相减少要求干燥气的温度和流量都要大。这只是我的一点点认识。还想问问大家还发现有机相增大对质谱有什么影响吗?

  • 【讨论】放电离子化仪器出现以下故障的原因

    【讨论】放电离子化仪器出现以下故障的原因

    有一个用户的情况: 1、592DID,系统30,专门做氢的系统,配有氢分离器,仪器主要用于做N2、Ar、H2;预柱和柱1都是13X分子筛柱,柱2是DB柱; 2、近期2~3个月,仪器基线不稳、漂移严重;用维诺克泡沫法检漏仪测试无泄露; 以做氩为例,柱温一般72度,检测器温度51度,放电电流7.24mA,直流电压524,电极电压衰减为-11次,一般都用13X柱,DB他们总用不好; 3、现在色谱谱图上反映出CH4峰面积减小,测Ar、CH4、CO2的保留时间缩短,但前面的H2、Ar保留时间不变。——是否可以怀疑背景气里含有较大浓度的CH4? [img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809091051_108012_1614420_3.jpg[/img]基线噪声[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809091059_108023_1614420_3.jpg[/img][em0814]

  • 实验室分析仪器--质谱仪原子轰击型离子源及原理

    与离子轰击电离相似,原子轰击电离也是利用轰击溅射使样品电离的,所不同的是用于轰击的粒子不是带电离子,而是高速的中性原子,因此原子轰击电离源又称为快原子轰击源(fast atom bombardment source, FAB)。原子轰击源是20世纪80年代发展起来的一种新技术。由于电离在室温下进行和不要求样品气化,这种技术特别适合于分析高极性、大分子量、难挥发和热稳定性差的样品。具有操作方便、灵敏度高、能在较长时间里获得稳定的离子流、便于进行高分辨测试等优点。因此得到迅速发展,成为生物化学研究领域中的一个重要工具。原子轰击既能得到较强的分子离子或准分子离子,同时也会产生较多的碎片离子;在结构分析中虽然能提供较为丰富的信息。但也有其不足,主要是:[b]①甘油或其他基质(matrix)在低于400的质量数范围内会产生许多干扰峰,使样品峰识别难度增加;②对于非极性化合物,灵敏度明显下降;③易造成离子源污染。[/b]原子轰击源中使用的轰击原子主要是Ar原子。在放电源中,氩气被电离为Ar,经过一个加速场,Ar具有5~10keV的能量,快速的Ar进入一个充有0.01~0.1Pa氩气的碰撞室,与“静止”的Ar原子碰撞,发生电荷交换。即:Ar(快速)+Ar(静止)→Ar(快速)+Ar[sup]+[/sup](静止)生成的快速Ar原子保持了原来Ar[sup]+[/sup]的方向和大部分能量,从碰撞室射出,轰击样品产生二次离子。在射出碰撞室的快原子中还来杂有Ar[sup]+[/sup],在碰撞室和靶之间设置的偏转极可以将Ar[sup]+[/sup]偏转掉,仅使Ar原子轰击样品。图5是原子轰击源的结构示意。此外,氙气(Xe)、氦气(He)等其他情性气体的原子也可用作轰击原子使用。[img=76a94ac1e2c48555b7631bc4a90a183.jpg]https://i5.antpedia.com/attachments/att/image/20220126/1643178247705258.jpg[/img]图5 原子轰击源的结构示意图

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制