当前位置: 仪器信息网 > 行业主题 > >

快速导热仪

仪器信息网快速导热仪专题为您提供2024年最新快速导热仪价格报价、厂家品牌的相关信息, 包括快速导热仪参数、型号等,不管是国产,还是进口品牌的快速导热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速导热仪相关的耗材配件、试剂标物,还有快速导热仪相关的最新资讯、资料,以及快速导热仪相关的解决方案。

快速导热仪相关的论坛

  • 室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    目前国内外常用的稳态法导热仪,普遍都是非真空密封形式,也就是被测样品完成处于实验室的温湿度环境条件下。在稳态法导热仪使用过程中,往往会出现导热仪的冷板温度低于室温的情况。 我们曾经遇到过多次这种情况并专门进行过验证试验,即采用真空型稳态法导热仪,仅关闭真空腔而不抽真空,在上海这种常年湿度较大的地区,如果冷板温度低于室温,稳态法的较长测试时间会导致导热仪冷板上冷凝很多水珠,甚至会出现大面积积水,如图1和图2所示,从而对被测样品、测试结果和仪器产生严重影响,如图3所示。[align=center][color=#990000][img=,690,307]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025172089_727_3384_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#cc0000]图1 样品和冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,376]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025327354_6419_3384_3.jpg!w690x376.jpg[/img][/color][/align][align=center][color=#cc0000]图2 模拟试验中的冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025446891_7590_3384_3.jpg!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图3 受潮后的被测样品[/color][/align] 对于这类问题,常用以下三种方式解决: (1)设法降低室内湿度,如开空调; (2)将导热仪整体放置在一个密闭罩内,将导热仪与外界湿气尽量隔离,如图4所示。[align=center][color=#cc0000][img=,483,300]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026004471_4897_3384_3.jpg!w483x300.jpg[/img][/color][/align][align=center][color=#cc0000]图4 日本某实验室带气密罩的热流计法导热仪[/color][/align] (3)真空型(或气密型)稳态法导热仪,如图5所示。[align=center][color=#cc0000][img=,500,388]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026530374_1132_3384_3.jpg!w500x388.jpg[/img][/color][/align][align=center][color=#cc0000]图5 上海依阳真空型高温热流计法导热系数测试系统[/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align]

  • 防护热板法导热仪升级改造——计量单元电功率和护热温度的超高精度PID控制

    防护热板法导热仪升级改造——计量单元电功率和护热温度的超高精度PID控制

    [color=#990000]摘要:本文针对客户提出改进保护热板法导热仪测量精度和测试规范性的要求,给出了防护热板法导热仪升级改造技术方案。升级改造方案主要包括三方面的内容,一是采用超高精度双通道PID控制器分别用于控制计量单元和护热单元温度,二是计量单元和护热单元温度控制采用无超调PID控制,三是采用多只热电偶构成的高灵敏度温差热电堆。通过此升级改造,可大幅度提高保护热板法导热仪的测量精度和测试规范性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]一、背景介绍[/b][/color][/size]在低导热隔热材料的导热系数测试中,最常用的测试方法是稳态保护热板法。目前在市场上依据保护热板法的导热仪非常普遍,但国产导热仪普遍存在测量精度差和导热仪制作不规范的问题。最近有客户提出对已购置的国产防护热板法导热仪进行技术升级,以提高测量精度和规范化操作水平,具体技术要求如下:(1)样品热面温度要求以10的整数倍温度进行精确控制,配合相应的样品冷面温度控制,使得样品厚度方向上的温差可准确恒定控制在10、20和30℃的其中一个数值上。由此保证样品导热系数测试边界条件的一致性。(2)护热单元(侧向护热单元和底部护热单元)对计量单元的温度跟踪,要求采用标准测试方法GB/T 10294中规定的温差热电堆,温差热电堆至少由五对以上的热电偶组成,由此保证将计量单元的漏热降低到最低限度。本文将针对上述客户要求,提出防护热板法导热仪升级改造技术方案。[b][size=18px][color=#990000]二、升级改造方案[/color][/size][/b]升级改造方案主要包括以下三方面的内容。[size=18px][color=#990000]2.1 超高精度双通道PID控制器[/color][/size]为了实现既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了的升级方案是采用超高精度的双通道PID控制器代替目前所用的普通PID控制器(调节器)。这种新型PID控制器具有以下特点:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)独立的超高精度双通道控制功能,可分别用于计量单元和护热单元的温度控制。[size=18px][color=#990000]2.2 无超调PID 控制方法[/color][/size]在防护热板法导热仪中,所测材料一般为低导热系数的隔热材料,在计量单元的温度控制中一旦产生温度振荡或超调,如图1所示,则需要很长时间才能恢复到设定温度点。因此,在升级改造方案中,计量单元和护热单元的温度控制都采用了无超调的PID控制方法,由此可减少不必要的控温时间。[align=center][img=01.无超调PID控制示意图,600,475]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272247501334_6415_3221506_3.png!w690x547.jpg[/img][/align][align=center]图1 无超调PID控制示意图[/align][size=18px][color=#990000]2.3 高灵敏度温差热电堆[/color][/size]按照标准测试方法GB/T 10294中的规定,如图2所示,在计量单元和护热单元之间的狭缝两侧布置直径小于0.1mm的热电偶组成的温差热电堆。[align=center][img=02.温差热电偶布局示意图,690,383]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272248262325_3650_3221506_3.png!w690x383.jpg[/img][/align][align=center]图2 温差热电偶布局示意图[/align]为了提高护热单元温度对计量单元的温度一致性,温差热电堆至少要由五对热电偶组成以高分辨率的检测护热单元与计量单元之间的温差。热电堆的温差输出信号作为超高精度PID控制器第二通道的采集信号。由此,通过高灵敏温差热电堆和PID控制器的超高精度电压信号检测能力和温度控制能力,可大幅度减小计量单元的漏热,从而提高导热系数测量准确性。[size=18px][color=#990000][b]三、总结[/b][/color][/size]通过上述升级改造技术方案,可完全实现用户提出的技术改进要求,在保证计量单元温度和样品冷热面温差为任意设定值的前提下,可大幅减少护热温度不一致所引起的热损失,有效提高导热系数测量精度。同时所采用的无超调PID控制方法可有效缩短测试时间。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 单样品和双样品形式防护热板法导热仪的区别及其应用注意事项

    [color=#990000]  摘要:针对防护热板法单样品和双样品这两张测量模式的导热仪,从热损防护角度定性的详细介绍了这两种测量模式的区别、工程实现难度和适用范围。同时还介绍了判断防护热板法导热仪在护热方面是否标准规范以及测试能力的几个条件。[/color][color=#990000]  关键词:防护热板法,导热仪,单样品,双样品,温差探测[/color][color=#990000][/color][b][color=#990000]1. 概述[/color][/b]  根据被测样品的数量形式,稳态防护热板法导热仪一般分为单样品和双样品测量模式,如图1-1所示。[align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2018/11/201811192208526790_9940_3384_3.png!w690x255.jpg[/img][/align][color=#990000][/color][align=center]图1-1防护热板法导热仪样品结构形式。(a)双样品模式;(b)单样品模式[/align]  由上图可知,在双样品模式下,两块完全相同的平板样品位于计量板和护热板的两侧。稳态时,计量板产生的热量分为两部分分别流经两个样品进入不同的冷板。在理想情况下,流经每个样品的热量为总热量的一半Q/2,样品的热面温度Th大于样品冷面温度Tc,两个样品的冷面温度相等Tc1=Tc2=Tc,计量板侧向热损Qg=0。  在单样品模式下,则只需要一块样品,将双样品模式下的另一块样品用隔热材料代替。稳态时,计量板产生的热量全部流经样品进入冷板。在理想情况下,流经样品的热量为总热量Q,样品的热面温度Th大于样品冷面温度Tc,底部护热板温度与样品热面温度相同Th1=Th,计量板侧向热损Qg=0。  从上述双样品和单样品两种测量模式可以看出,两种模式的整体结构和边界保证条件基本相同,主要区别是单样品模式在减少了一块样品的同时,增加了底部护热功能。因此在单样品模式中,由于只使用一块样品,这就对样品的一致性(材质、密度、湿度、尺寸、表面粗糙度和表面平整度等)可以放低要求,导热仪整体结构和实际样品测量操作都变得相对简单,这使得在实际测试中这种单样品模式应用十分广泛。  尽管单样品模式看似比双样品模式简单,但在实际仪器制造和测试应用中,两者有着巨大区别。本文将根据上海依阳实业有限公司在双样品和单样品模式防护热板法导热仪制造及其测试应用中的经验,详细介绍两种模式防护热板法的区别、工程实现的难度和适用范围。[b][color=#990000]2. 区别[/color][/b]  防护热板法普遍应用于低导热隔热材料和制品,但防护热板法的导热系数测试下限并不是可以无限制的低。  单样品与双样品模式防护热板法一样,在测试超低导热系数(或大热阻)样品时会遇到相同的难题,而单样品模式则更严峻。量化的数值分析将在另外一篇文章中进行详细介绍,本文仅从宏观角度进行分析。  单样品导热仪所面临的更严峻问题主要体现在以下几个方面:  (1)防护热板法导热系数测试的基本原理基于一维稳态传热,边界条件是绝热,其技术核心是热防护,即对中心计量板进行全方位的护热,使计量板上产生的热量尽可能全部垂直穿过样品,形成一维稳态热流测试条件。从图1-1所示的样品测试结构图可以看出,对于双样品结构,护热重点在于侧向热防护,而对于单样品结构,则除了侧向护热外,重点则是计量板的底部热防护,这是因为薄板式计量板的底部面积要大于其侧面面积,计量板底部容易产生更大热损。因此,在高精度防护热板法导热仪中,一方面是采用双样品测量模式,最大限度减少热损通道;另一方面是采用圆形计量板形式,除了考虑加热均匀性易实现外,圆形结构也是为了最大限度减少侧面热损面积。  (2)由于单样品模式中增加的底部护热功能使得热防护面积增大,如果采用相同能力的温差探测器进行热防护控制,单样品模式下的热损控制精度就要比双样品模式下的热损精度差好几倍。这也就是说,单样品模式要达到双样品模式同样的热损控制精度,就需要大幅度提升温差探测器的灵敏度。  (3)如果要达到双样品模式中的相同温度梯度,对于单样品模式则仅需要一半的加热功率。同时,由于护热作用,只需很小的热量就可以使计量板达到设定温度下的稳定状态,对于超低导热系数的大热阻样品所需的热量就更小。无论是单样品模式还是双样品模式,防护热板法装置的热损属于固定的系统误差,计量板产生的热量越小则对应热损占总热量的比例就越大,相应的测量误差就越大,这种情形在多层隔热材料、真空绝热板和真空玻璃这些超级隔热材料导热系数测量中表现的非常明显。由此可见,对于超低导热系数或大热阻样品的测试,无论是单样品还是双样品防护热板法,都面临着需要解决超高灵敏度的温差测量难题。对于单样品防护热板法这种技术难度更大,需要将温差探测器灵敏度提升的更高。[b][color=#990000]3. 计量板侧面积与横截面积之比[/color][/b]  为了更直观的认识防护热板法中侧向热损的发生位置和面积大小,本文将进行简单的公式计算以将热损情况和严重程度进行全面展示。  对于防护热板法装置,热损都发生在计量板与样品不接触的表面上,在计量板这些表面处以热量会以导热、辐射和对流的传热形式形成热损。由此,这些热损处的表面积越大,所产生的热损就会越多。  对于双样品防护热板法导热仪,热损发生面为计量板的侧表面。对于单样品防护热板法导热仪,热损除了发生在计量板的侧表面之外,还会发生在计量板的底部表面上。这里具体计算出计量板侧表面积和底部面积的大小区别,以便有一个更直观的认识。  对于圆形计量板,底部面积与侧表面积之比为:[align=center][img=,340,63]https://ng1.17img.cn/bbsfiles/images/2018/11/201811192210042720_7230_3384_3.png!w690x128.jpg[/img]   [/align]  式中:r表示圆形计量板半径;l表示圆形计量板厚度。  对于正方形计量板,底部面积与侧表面积之比为:[align=center][img=,340,63]https://ng1.17img.cn/bbsfiles/images/2018/11/201811192210380363_3665_3384_3.png!w690x128.jpg[/img][/align]  式中:D表示正方形计量板的边长;l表示正方形计量板厚度。  一般而言,计量板无论是半径还是边长,都大于样品厚度,为保证形成一维稳态热流测试条件,通常它们的比例关系至少为8~10倍(实际往往远大于这个比例),那么对应的面积比例范围就是2~5倍。对于圆形计量板,面积比例范围为4~5倍,而对于正方形计量板,面积比例范围则为2~2.5倍,由此可见圆形计量板的面积比例更大。[b][color=#990000][/color][color=#990000]4. 结论[/color][/b]  综上所述,看似单样品模式是对双样品模式的一种简化,但由于单样品模式中增加了底部护热功能,这使得单样品相对于双样品模式,单样品模式要达到双样品模式相同的测量精度则会面临更高的技术要求,工程实现和保证测量精度的难度更大。因此单样品模式并不是高精度测量的首选模式,普通的单样品模式防护热板法导热仪只适用于以下几种情况:  (1)导热系数较大的隔热材料,如大于0.03W/mK,或热阻小于1m^2K/W。  (2)一些双样品制样困难、对称的一维稳态温场建立比较困难的情况,但导热系数和热阻范围要满足上述要求。  在有些实际应用中,因为众多因素的限制,只能应用单样品模式的防护热板法装置进行导热和热阻的测试,这种情形主要表现在隔热复合材料、真空隔热材料的隔热性能测试表征中。在目前的防护热板法应用中,针对这些超级隔热材料和制品,实际上存在着很大的问题,普遍现象就是导热系数测量的重复性和再现性很差,主要原因就是在测试这些超级隔热材料时热损问题会被明显的凸显出来。针对这些问题及其解决方法和关键技术,我们将专文进行量化描述。[b][color=#990000][/color][color=#990000]附录:判断防护热板法导热仪在护热方面是否规范的几个条件[/color][/b]  护热技术是防护热板法导热仪的关键技术之一,而温差探测技术则是护热技术的核心,随着测量精度和测试温度范围的提升,会给温差探测技术提出更高的要求,相应的制造难度更大,故障率愈高。  目前很多防护热板法导热仪,为了降低制造难度和仪器的故障率,普遍都规避了标准测试方法中规定的使用温差探测技术(如热电堆温差探测装置),而改为采用铂电阻等精度较高的温度传感器直接进行温度测量和控制来进行护热。但由于温度传感器的灵敏度远不如由许多只热电偶构成的热电堆温差探测器,从而造成测量误差很大。这种误差在普通隔热材料导热系数(0.03W/mK以上)的测试中并不明显,但在超低导热系数隔热材料的导热系数(0.03W/mK以下)的测试中,误差明显增大的现象则会十分突出。  因此,可以根据以下几个条件来判断防护热板法导热仪在护热方面是否规范,同时这也是判断测量能力的一种简单方法。  (1)是否采用了温差探测器。双样品模式下,计量板的侧向护热是否采用了温差探测器,一般都是采用多只热电偶组成的热电堆温差探测器。热电偶数量越多,温差探测器越灵敏,护热效果越好。  (2)单样品模式中底部护热温差探测器采用了多少只热电偶。单样品模式下,除了要求具有与双样品模式下相同的侧向护热温差探测器之外,还要求底部护热温差探测器装置的灵敏度要更高,所用的热电偶数量更多,往往会是成倍的增加。  (3)温差探测器多数采用的是热电偶组成的热电堆,探测器越灵敏,需要的热电偶数量就越多,越多的热电偶使得流经热电偶丝进行传热的漏热量增大。  (4)热电偶制成的热电堆式温差探测技术不可能无限制提高灵敏度,这主要是因为在工程实现上难度很大,除非采用高灵敏度温差探测的新技术和新手段。

  • 【求购】有谁对导热系数仪了解的?

    有谁对导热系数仪了解的? 单位有意购买一台快速导热仪和一台平板导热仪?市场体格大约多少?有谁了解国内外都有那些品牌?用的住,准确度好?指导一下,谢谢。[em09511]

  • 采用ASTM D5470热阻测定仪或导热仪测量热接触材料的热阻和导热系数测量中那些因素对测量精度会产生影响?具体测试中都遇到那些问题?抛砖引玉,欢迎大家参加讨论

    采用ASTM D5470热阻测定仪或导热仪测量热接触材料的热阻和导热系数测量中那些因素对测量精度会产生影响?具体测试中都遇到那些问题?抛砖引玉,欢迎大家参加讨论

    下图是ASTM D5470测试方法中的测试模型,采用ASTM D5470热阻测定仪或导热仪使用中测量精度的影响因素主要有以下几个方面:http://ng1.17img.cn/bbsfiles/images/2015/03/201503182256_538771_3384_3.png 1. 针对不同的热阻范围需要采用不同热流测量范围的热流计,这就需要采用不同材质来制作热流计,如分别采用不锈钢和铜等材料制成不同测量范围热流计。一般热流计金属棒上插入了多只温度传感器以及外围的隔热材料组件,在不同热流计测试过程中,这就使得操作人员不可能去更换对应的热流计,如此就必须配置和购买至少两套热阻测定仪或导热仪来覆盖尽可能宽泛的热阻和热导率测量范围。很多测试机构为了节省经费一般只购买一套设备来进行全量程的测试,这就使得在某一区间的热阻和导热系数测量存在巨大误差。 2. ASTM D5470方法中,是通过测量热流计金属棒轴向上的温度分布来计算获得流经试样的热流,而温度分布是通过间隔布置在金属棒上的多只温度传感器进行测量来获得。由于金属材料的导热系数很大,这就使得两两温度传感器之间的温度差很小,为了保证准确测量出热流计棒上相应位置处的温度,必须采用更高测量精度的铂电阻温度传感器,采用测量精度不高的热电偶往往会带来较大误差。 3. 上下两个热流计的尺寸完成一致,并要求压紧试样过程中上下两个热流计要完全对准,而且要求两个热流计的端面平行度和端面光洁度非常高,以免造成被测试样的厚度不均匀和热流计端面粗糙所带来的接触热阻,这就对热流计的上下移动机构和对准机构的精度要求非常高,这部分内容占了整个ASTM D5470热阻测定仪或导热仪的大部分费用。考核ASTM D5470热阻测定仪或导热仪测量精度的一种方法是空载测试,即不加载任何被测试样,只使得上下两个热流计金属棒直接对准接触,由此测量出此时的接触热阻,此接触热阻就是仪器的最小热阻分辨率,这个空载热阻测量值越小,说明导热仪的测量分辨率越高,测量试样时越是容易达到更高的测量准确度。 4. 热阻测量准确度除了与温度测量准确度有关外,还与试样上的加载压力测量准确度有关,因此压力传感器要具有一定的准确度才行。同时,金属棒热流计和被测试样在受热时会受热膨胀,在膨胀过程中势必会引起压力的改变,因此热阻或导热系数测量要在温度和压力都稳定的情况下测量,否则也会带来误差。 5. 引起热阻或导热系数测量误差的另外一个重要因素是热流计和试样的散热影响,尽管很多测试设备都在金属热流计和试样外部都采取了一定的隔热措施,如采用隔热材料进行包裹,但还是会有部分热量会从热流计和试样上流失。最有效的办法是采用等温绝热措施,即在热流计棒和试样外部增加绝热屏,绝热屏上的温度分布与热流计金属棒和试样上的温度分布相同,通过等温绝热来消除热损失的影响。但这势必会大幅度的增加测试设备的造价。 6. 由于试样导热系数等于试样厚度除以试样热阻,因此采用ASTM D5470方法测量导热系数时要求精确测量被测试样的厚度,但恰恰这是最困难的事情。对于刚性材料来说,被测试样可以比较厚并且不宜变形,可以在进行实验前进行测量。但对于柔性材料,如导热酯、导热硅胶、硅胶导热片等,试样的厚度在压力加载后会发生改变,这就需要配置在线厚度测量装置。另外,在柔性试样加载后,试样厚度往往会降低到几十至几百微米,这对在线厚度测量来说几乎不可能实现准确测量,因此,厚度测量的准确度是采用ASTM D5470方法时带来误差的最大因素。我们可以经常看到国外厂家导热材料的性能指标中只提供热阻数据而没有提供导热系数数据,就是因为厚度测量几乎无法实现。就算有厂家能提供出导热系数数据,哪这个数据也会存在巨大的误差。

  • 热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    [color=#990000]摘要:本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的基本内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]在稳态法防护热板法导热系数测试过程中,要求在稳定状态下对加载在计量加热器上的电功率进行准确测量。在标准测试方法GB/T 10294中的具体规定是“测量施加于计量部分的平均电功率,准确度不低于0.2%,强烈建议使用直流电。推荐自动稳压的输入功率,输入功率的随机波动、变化引起的热板表面温度波动或变化应小于热板和冷板间温差的0.3%。由此可见,防护热板法导热仪计量单元上直流电功率的加载、控制和测量是保证导热系数测量准确性的关键因素之一。除了平均电功率准确度不低于0.2%之外,对于一般冷热板之间20℃温差的导热系数测试,热板表面温度波动或变化还应小于20℃×0.3%=0.06℃。为了满足稳态法防护热板法上述要求,多年来普遍采用的技术手段是采用直流恒流电源,即在计量加热器上施加高精度恒定的直流电流。尽管加载恒定直流电流可以达到标准方法的规定,但同时存在并带来一系列其他问题:(1)热板温度无法实现10的整数倍温度精确控制。(2)热板温度达到稳定时间长。(3)现有工业用PID控制仪表无法达到电功率准确度要求。(4)采用高精度数字电压表和源表,并结合计算机软件进行电功率的PID控制,虽然完全可以解决上述问题,但整体造价十分昂贵。本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的核心内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[size=18px][color=#990000]二、计量单元电加热功率和温度精密控制问题分析[/color][/size]在现有的防护热板法计量单元电加热功率和温度精密控制中,存在着以下几方面的矛盾。下文将对这些矛盾进行分析,并由此便于提出相应的解决方案。[size=16px][color=#990000]2.1 热板加热功率精度与整10℃倍数设定温度控制的矛盾[/color][/size]在许多防护热板法导热仪中,为了满足测试方法对施加在计量单元上的加热电功率准确度要求,往往会按照标准方法推荐而采用高精度直流电源。尽管采用直流电源可保证加热电功率的准确度,但在实际测试过程中则还需凭借测试数据积累和经验总结,才能确定出不同热板温度所对应的一系列不同的加载电流值。这种加热电流直接加载方式尽管能保证电功率的准确度,但最大的问题是无法将热板温度准确控制在任意所需的设定温度上,如无法准确控制整10℃倍数的设定温度,实际热板温度往往偏离设定温度而呈现为非整数形式。另外,在测试不同导热系数样品时,采用相同加热电流往往会表现出不同的热板温度。直接加载直流电流方式,还存在一个严重问题是升温速度较慢,计量单元达到稳定温度需要漫长时间。特别是对于较大样品尺寸的防护热板法导热仪,相应的计量单元体积和热容都较大,往往需要更长的温度稳定时间。相比于低导热样品的较小热容,计量单元温度稳定所需时间占用了更多的整体达到稳态的时间。由于上述问题的存在,这种直接加载直流电的加热方式很少在商业化导热仪上使用,一般用在早期热导仪和实验室自行搭建的导热系数测试设备上。[size=16px][color=#990000]2.2 现有工业用PID控温仪无法满足准确度要求问题[/color][/size]为了解决上述直接加载直流电流加热方式存在的问题,并同时提高导热仪的自动化水平,目前大多数商业化防护热板法导热仪都采用了PID控温仪技术。采用PID控温技术是将温度传感器、调功器、直流恒流源和PID控制器组成闭环控制回路,通过PID算法将计量单元自动控制在任意设定温度点上。采用PID控制技术,尽量在理论上可以完美的解决早期直接加载直流电流方式存在的问题,但带来的问题则是无法达到测试方法规定的加热电功率准确度要求,也就是使用工业PID控温仪势必要在测量精度上做出牺牲。出现不得不牺牲电功率控制精度的主要原因是目前的工业用PID控温仪存在以下几方面的问题:(1)采集精度不够:PID控制器的模数转换(A/D)精度大多都是8位或12位,极个别能达到16位,这明显不能满足高精度测量要求。(2)控制精度不够:PID控制器的数模转换(D/A)精度大多都是8位或12位,同样不能满足高精度控制要求。(3)浮点运算精度不够:PID控制器内微处理器运算一般都采用单精度浮点运算。对于较低位数的数模转换输出控制,单精度浮点运算已经足够,对应的最小输出百分比为0.1%。但对于防护热板法计量单元电加热功率的高精度控制,0.1%的最小输出百分比显然已经无法满足要求。[size=16px][color=#990000]2.3 能满足准确度要求的专用PID控制设备但造价昂贵问题[/color][/size]为解决上述PID控制中存在的问题,目前比较成熟的技术是采用高精度的专用仪器和仪表,并结合计算机组成超高精度的PID控制系统来实现护热板法计量单元电加热功率的控制,并在任意温度设定上实现超高精度的长时间恒定控制。这种超高精度的PID温度控制系统采用了分体式结构搭建而成,分别采用独立的五位半/六位半的数字电压表和数控直流电源来实现高精度的数据采集和控制输出功能,PID运算处理则采用计算机或微处理器实现双精度浮点运算,并将最小输出功率百分比提高到0.01%甚至更低。通过这种分体式结构的PID温度控制系统,同时完美的解决了上述防护热板法导热仪中计量单元电加热功率和温度的高精度控制问题,同时也可以大幅度缩短测试时间。尽管这种分体结构的PID温度控制系统满足了精密测量的各种技术要求,但同时带来的主要问题是造价太高,同时还需进行编程和复杂的调试,因此这种PID温控系统和控制技术在国内外多用于计量机构和对测量精度有较高要求的研究部门,并不适用于对价格比较敏感的商业化防护热板法导热仪,更不适合工业应用中的普通导热仪使用。[size=18px][color=#990000]三、工业用超高精度PID控制器解决方案[/color][/size]上述保护热板法导热仪计量单元的电加热功率和温度精密控制问题的分析以及相应的技术改进,也是多年来保护热板法导热系数测试技术进步的一个典型过程。从上述分析可以看出,这个测试设备的技术迭代过程显然还未真正达到更理想化的水平。为了既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了新的解决方案,即在现有的工业用PID控制器(调节器)技术基础上进行升级,充分发挥工业用PID调节器的运行操作简便、集成化程度高、体积尺寸小安装方便和价格上的优势。核心升级技术的具体内容如下:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)保持传统工业PID调节器的标准尺寸,如96×96、96×48和48×96规格,而屏幕显示采用真彩色IPS TFT全视角液晶显示,数字全5位显示。(5)全新的PID调节器具有单通道VPC 2021-1和VPC 2021-2两种规格系列,可满足不同变量(如真空、压力、温度和电压等)的高精度调节和控制。升级前后的PID调节器如图1和图2所示。[align=center][color=#990000][img=01.升级前的双通道PID调节器,690,321]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611027835_9284_3221506_3.jpg!w690x321.jpg[/img][/color][/align][align=center][color=#990000]图1 升级前的双通道PID调节器[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=升级后的单通道PID调节器,500,388]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611255867_7954_3221506_3.jpg!w690x536.jpg[/img][/color][/align][align=center][color=#990000]图2 升级后的单通道PID调节器[/color][/align]综上所述,解决方案通过对模数转换、数模转换、浮点运算精度和最小输出百分比的全面升级,可完美的实现防护热板法计量单元的电加热功率和温度的超高精度控制。同时,这种全新的超高精度工业用PID调节器也可能用于其他参数的精密控制,并具有很好的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 样品尺寸对激光导热分析仪器(LFA)测试结果的影响

    [b]样品尺寸对LFA测试结果的影响[/b]德国耐驰热分析 [color=#888888]2018-04-08[/color]作者 高星,曾智强德国耐驰仪器公司提供多种不同尺寸和形状的LFA样品支架,用于固体样品的导热测试。最大样品厚度取决于待测样品的热扩散和导热的高低,通常不超过6mm。但是,对测试结果起决定性作用的不是厚度,而是样品的直径-厚度比,本文通过一些测试说明了此值的大小对LFA结果的影响,供使用者参考。[img]https://mmbiz.qpic.cn/mmbiz_jpg/uF3ibwlhEJbdT61tJEedCajiaEyiaIdMD6xGE4dMCC2ibwGVbgAveqwCNK02sNePEoKKkEZWBFLKmY218uwKsgicRnA/640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy=1[/img]此处测试4种不同尺寸Pyroceram 9606样品:[table][tr][td=1,1,42][align=center]尺寸[/align][/td][td=1,1,79][align=center]8mmx8mm[/align][/td][td=1,1,57][align=center]φ8mm[/align][/td][td=1,1,79][align=center]6mmx6mm[/align][/td][td=1,1,57][align=center]φ6mm[/align][/td][/tr][tr][td=1,1,42][align=center]厚度[/align][/td][td=1,1,79][align=center]2mm[/align][/td][td=1,1,57][align=center]2mm[/align][/td][td=1,1,79][align=center]1mm[/align][/td][td=1,1,57][align=center]1mm[/align][/td][/tr][/table]LFA467 Zoomoptics的值设置为70%。图中显示的是从RT...500oC范围内实测热扩散值与理论值的比较,灰色短划线与理论值偏差为3%。可以看到,所有测试结果都在±3%偏差范围内,说明LFA467具有极高的测试精度。但是,还可以看到,直径/厚度比率大的样品(6mmx1mm)结果(蓝色)更接近理论值曲线(黑色),而直径/厚度比率小的样品(8mmx2mm)结果(绿色)更接近灰色曲线(偏差3%),说明测试精度主要受直径-厚度比的影响,与绝对的样品尺寸关系不大。试验证实,LFA测试建议样品的直径:厚度大于5:1,只要满足这个比值,样品尺寸的影响就非常小了。

  • 防护热板法导热仪间隙温度不平衡传感器的指标设计

    防护热板法导热仪间隙温度不平衡传感器的指标设计

    [color=#cc0000]  摘要:本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,同时考虑单样品和双样品两种测量模式,设计计算了防护热板法装置对温度不平衡传感器的灵敏度要求,并最终给出设计指标和相应的技术改进。[/color][color=#cc0000]  关键词:防护热板法,温度不平衡,传感器,灵敏度[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000] 1. 概述[/color][/b]  针对不同被测材料类型,防护热板法导热仪一般分为单样品和双样品两种测量模式,如图1-1所示。[align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232126417209_8902_3384_3.png!w690x255.jpg[/img][/align][color=#cc0000][/color][align=center]图1-1 防护热板法导热仪样品结构形式。(a)双样品模式;(b)单样品模式[/align][align=center][/align]  防护热板法的测量原理就是采用护热手段保证计量板发出的热量全部通过被测样品而达到一维稳定状态,因此护热手段是保证防护热板法导热系数测量准确的核心。防护热板法中的护热基本上采用的都是等温绝热原理,即各种护热板的温度要与计量板温度一致,从而减少计量板上的热量以各种传热方式进行散失。  温度不平衡传感器是检测计量板与各个护热板之间温度差的探测装置,传感器探测到的温差传递给控制器,控制器控制护热板温度变化使得温度不平衡传感器的输出值最小,从而构成闭环控制回路形成有效的护热控制。温度不平衡传感器的输出值越小,说明护热板与计量板之间的温差越小,护热效果就越好。  由此可见,温度不平衡传感器的灵敏度是防护热板法装置护热效果好坏的重要评判依据。由于诸如安装和可靠性等诸多因素的影响,植入在计量板和护热板之间的温度不平衡传感器不可能无限制提升灵敏度,灵敏度需要根据防护热板法导热系数测量范围和测量精度要求、所用控制器和数据采集器的分辨率以及测试温度范围等因素进行优化和设计,以选择合适的温度不平衡传感器灵敏度。  本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,来设计计算防护热板法测试中温度不平衡传感器的灵敏度要求,并同时考虑单样品和双样品测量模式下防护热板法装置对温度不平衡传感器的要求,最终给出设计指标和相应的技术改进。[b][color=#cc0000]2. 建模[/color][/b]  针对图1-1所示的防护热板法导热系数测试结构,首先进行了建模。无论是单样品还是双样品模式,防护热板法装置都是圆形或正方形的轴对称结构,所以建模只考虑了正方形结构。另外为了便于更直观的进行分析和说明问题,本文只描述了上海依阳实业有限公司的部分建模分析内容,即仅介绍了基于导热传热的建模分析,在实际建模分析中还需要针对对流和辐射传热进行建模,分析模型如图2-1所示。  在图2-1所示的护热分析模型中,同时兼顾了单样品和双样品测量模式。当隔热材料更换成样品,底部护热板温度控制在冷板温度时,则是双样品测量模式。  在图2-1所示的护热分析模型中,只考虑了侧向护热和底部护热所引起的漏热问题,而温差探测器的指标设计也只要依据这两方面的考虑,并未考虑狭缝处样品内的传热漏热影响。在双样品测量模式中,只考虑侧向护热时狭缝中温度不平衡传感器技术指标。而在单样品测量模式中,还需另外考虑底部护热板与计量板之间的温度不平衡传感器技术指标。[align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132159957_5150_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132165728_1784_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132168894_1769_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132173004_918_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132177185_3520_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132182949_3584_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132187076_4077_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132191686_5352_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132196851_8619_3384_3.png!w690x975.jpg[/img][/align]  (5)在无法提高仪表测量和控制分辨率时,可以设法增大热电堆中的热电偶数量,如将8对热电偶增多到16对热电偶构成8对的温差热电堆,温度不平衡精度可以提高到0.5℃,但这种改进效果十分有限,同时也带来其他严重问题。目前上海依阳实业有限公司已经开发出新型的温度不平衡传感器,可以将现有传感器的灵敏度提升到40~50的水平,比现有热电偶式热电堆的灵敏度搞出2个量级,由此可以用五位半控制器很轻易的实现0.01℃和更高水平的温度不平衡精确控制。  (6)另外一个提高和保证测量精度的途径,就是降低侧向护热的热交换面积,采用薄加热器形式。这种思路经美国橡树岭国家实验室针对多层辐射隔热材料和真空绝热板进行的测试验证了可行性,由此相继建立了A-S-T-M C1044和A-S-T-M C1114标准等。但由于薄加热器很难制作应用到高温,薄加热器形式的防护热板法设备主要应用于温度不高的导热系数测试。  (7)需要特别指出的是,目前国内绝大多数大热阻和超低导热系数的测试,很多都是采用稳态热流计法这种相对法,而热流计法导热仪中的热流计在超低导热系数测试中的低热流测量时误差巨大,而且还无法对热流计进行校准以及采用超低导热系数的标准材料进行校准,而真正的热流计校准则是采用防护热板法设备,由防护热板法提供精确的可控热量。[b][color=#cc0000]5. 参考文献[/color][/b]  (1) Zarr R R, Flynn D R, Hettenhouser J W, et al. Fabrication of a guarded-hot-plate apparatus for use over an extended temperature range and in a controlled gas atmosphere. Thermal Conductivity, 2006, 28: 235.  (2) Zarr R R. Assessment of uncertainties for the NIST 1016 mm guarded-hot-plate apparatus: extended analysis for low-density fibrous-glass thermal insulation. Journal of research of the national institute of standards and technology, 2010, 115(1): 23.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 水流量平板法高温导热系数测定仪升级改造解决方案

    水流量平板法高温导热系数测定仪升级改造解决方案

    [img=水量热计法高温平板导热仪升级改造解决方案,690,446]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021605330949_5078_3221506_3.png!w690x446.jpg[/img][color=#990000]摘要:水流量平板法是目前常用的耐火材料导热系数测试方法,相应的导热仪具有测试温度高、大温差测量、结构合理简单、造价便宜和操作方便等突出优点,国内外用户众多,但存在的致命问题是测量低导热系数的隔热材料时误差巨大。针对水流量平板法导热仪,本文提出了一种改造升级方案,即采用一种高精度量热计技术代替现有的水量热计,彻底解决测量误差大的难题,在保留原有水流量平板法导热仪众多优势的前提下,实现导热系数测量精度大幅提高和测试时间大幅缩短,以满足各种高温隔热材料的低导热系数快速准确测量需求。[/color][color=#990000][/color][b]一、问题的提出[/b]对于导热系数小于0.03W/mK的隔热材料,其高温范围(1000℃以上)的导热系数准确测量一致都是没有很好解决的技术难题。但为了获得隔热材料的高温导热系数,并且出于测试设备的经济性考虑,很多国内外机构都选择了商业化的水流量平板法导热仪进行测试。水流量平板法导热仪是一种依据标准测试方法的导热系数测试设备,相关标准如下:(1)美国ASTM C201“耐火材料导热性的标准测试方法”。(2)英国BS 1902-505“耐火材料导热系数标准测试方法(平板/水量热计法)”。(3)冶金行业标准YB/T 4130-2005“耐火材料导热系数试验方法(水流量平板法)”。上述三个标准测试方法的基本原理完全一样,所采用的技术都是通过水量热计来测量流经样品厚度方向上的热流量。由于水量热计比较适用于较大的热流量测量,对于较小的热流量测量则存在巨大误差,因此这种测试方法比较适用于导热系数较高(大于0.1W/mK)的耐火材料。由于水流量平板法导热仪可以进行温度达1500℃以上的高温导热系数测试,因此很多客户采用这种导热仪进行高温隔热材料的测试评价,由于测量误差巨大使得导热系数测试结果往往非常小,严重误导了材料的研发、生产和性能评价。目前国内主流的商品化水量热计法导热系数测定仪有如图1所示的几种规格,测试温度可以从1200℃到1600℃。[align=center][img=01.国内常见的水流量平板法高温导热仪,690,274]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021606396191_613_3221506_3.png!w690x274.jpg[/img][/align][align=center]图1 国内常见的几种水流量平板法高温导热仪[/align]尽管水流量平板法在高温导热系数测试中存在巨大误差,但随着量热分析技术的进步,可以对水流量平板法进行升级改造,可以通过提高量热计测量精度实现高精度的高温导热系数测量。选择水流量平板法导热仪进行技术改造,主要是因为水流量平板法导热仪具有以下便利特征:(1)水流量平板法导热仪的整体测试结构非常合理,高温加热加载在样品的顶面,水量热计位于被测样品的底面,从而在样品厚度方向上形成大温差,这非常符合隔热材料的实际使用工况,可以获得被测样品材料的等效导热系数。(2)样品顶面加热装置是一个独立的机构,可通过改变发热体材料实现不同的加热温度,由此可实现从1000℃至1500℃,甚至最高可达2000℃以上的高温,非常便于隔热材料高温导热系数的测量。(3)被测样品的装卸非常方便,并且可对不同尺寸的样品导热系数进行测试。(4)最重要的是水量热计位于测量装置的底部,更换水量热计比较方便,可以很容易的更换高精度量热计而不影响测量装置的整体结构。(5)水流量平板法导热仪的价格普遍很低,且国内用户众多。基于上述特点,针对水流量平板法导热仪,本文将提出一种改造升级方案,即采用一种高精度量热计技术代替现有的水量热计,彻底解决测量误差大的难题,在保留原有水流量平板法导热仪众多优势的前提下,实现导热系数测量精度大幅提高和测试时间大幅缩短,以满足各种高温隔热材料的低导热系数快速准确测量需求。[b]二、现有量热计热流测试技术分析[/b]在稳态法导热系数测试方法中,关键技术之一就是对流经样品的热流进行准确测量。热流测量的典型技术是量热计法,即基于量热计的比热容特性,通过测量量热计吸收或放出热量后的温度变化来确定所吸收或放出的热量多少。量热计在导热系数测试中有如下典型应用:(1)防护热板法:如图2(a)所示,防护热板法实际上是一种典型的绝热量热计法,热板作为样品热面温度的实施热源,其最终稳定温度就是完全吸收电加热功率后热板所升高的温度。因此,通过测量热板完全吸收的加热功率(即加载的电功率)就可以获得流经样品的热流。[align=center][img=02.量热计用于导热系数测试的两种测试方法示意图,690,243]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021607339875_6761_3221506_3.png!w690x243.jpg[/img][/align][align=center]图2 量热计用于导热系数测试的两种测试方法示意图:(a)防护热板法;(b)水流量平板法[/align](2)水流量平板法:如图2(b)所示,与防护热板法类似,也用的是量热计法,只是量热计位于被测平板样品的冷面来测量流经样品的热流。量热介质则是流动的液体,通过测量量热介质的温升,可根据量热介质的比热容计算得到量热介质吸收的热量大小。从上述量热计在导热系数测量中的两个典型应用,可以做出以下分析:(1)防护热板法中采用的量热计技术,可以获得很高的导热系数测量精度。但由于需要使用护热技术使得量热计输出的热量只流经样品,即量热计周边处于一个高温动态等温绝热环境,而量热计自身还需处于高温状态,这使得量热计在高温下很难实现绝热防护和保证量热计尺寸的稳定性,因此防护热板法只能实现1000℃以下的导热系数准确测量。(2)水流量平板法是将量热计布置在被测样品的冷面,这样做的好处是样品冷面温度较低(特别是测试低导热系数隔热材料样品时),这样可以很容易实现较高样品热面温度。但带来的问题是如果样品冷面温度超过100℃,会使得水量热计中的流体产生沸腾蒸发而影响测量精度,如果通过增加水流速度避免流体沸腾蒸发,则会使得进出口之间的温差减小,也同样会带来另外的测量误差。同时水量热计四周较差的绝热防护措施而产生较大热损,会带来严重的测量误差。这些就是致使水流量平板法测量误差较大的主要原因,这些因素在高导热系数测量时还不明显,但在测量低导热系数时,测量误差所占比重则会很大,导热系数测量结果会明显偏低,甚至会有数量级水平的误差。(3)从上述两种量热计在导热系数测试的典型应用可以看出,两种量热计法测试都是在稳态状态下进行,每次导热系数测试都需要在样品冷热面温度和热流达到稳定状态。特别是对于高温范围的隔热材料测试,需要漫长时间进行多个温度点下的测量才能获得一条导热系数随温度变化曲线。从上述分析可以看出,尽管水流量平板法存在测量误差巨大的严重缺陷,但在高温导热系数测量中则有巨大的潜力。只要克服水量热计存在的问题,就可解决低导热系数高温测量难题,因此问题的关键就是如何采用新型的量热计技术来代替目前的水量热计。[b][color=#990000]三、高精度金属块量热计解决方案[/color][/b]我们从最基本的物体吸收热量与温升的关系出发,即材料的比热容定义:单位质量物体升高一度所吸收的热量,可以设计出以下导热系数动态测试方法:(1)如图3所示,将图2(b)所示的水流量平板法导热仪中的水流量计更换为一平板金属块作为量热计,量热计上方的其他结构保持不变。[align=center][img=03.金属块量热法高温导热系数动态测试设备结构示意图,500,313]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021609596535_7755_3221506_3.png!w690x433.jpg[/img][/align][align=center]图3 金属块量热法高温导热仪结构示意图[/align](2)此金属块量热计采用高导热金属材料制成,用于吸收透过被测样品的热流量。采用高导热金属材料作为量热计是为了保证量热计温度能快速均匀,以满足测试模型中要求量热计始终处于等温的边界条件,同时具有耐高温能力,以能够进行高温下的导热系数测试。(3)由于金属块量热计的快速均温能力,那么通过量热计的温度变化就可以计算得到样品冷面的热流变化。(4)为了使金属块量热计所吸收的完全是透过被测样品的热量,最大限度减小量热计的热损失,借鉴了保护热板法的技术方案,即在金属块量热计四周增加了主动护热装置来实现绝热。(5)还继续采用原有水流量平板法导热仪的加热装置和温度测量装置,但加热装置的温度以线性方式进行变化,由此使得被测样品的冷热面以相同的升降温速率进行变化。通过上述测量得到的冷面热流变化,以及结合测量得到的冷热面温度和温度变化速率,可以得到整个温度变化过程中的导热系数变化曲线。综上所述,只需对水流量平板法导热仪中的水量热计进行更换,即可实现绝热材料高温导热系数的准确测量,同时采用了线性升温加热方式,大幅缩短了测试时间。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 关于LFA447

    耐池的激光导热仪LFA447测试中,如何减小信号线的波动性?

  • 稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    [size=14px][color=#ff0000]摘要:针对气凝胶和超级绝热材料(VIP)等超低导热系数材料的测试,常用的稳态法热导仪往往会在测量精度和灵敏度方面表现出不足。为考核稳态法导热仪的超低导热系数测试能力,本文提出了一种简便可行的考核方法,通过对一系列不同厚度的样品进行导热系数测试,最终根据导热系数随厚度的变化来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]在隔热材料的研发和生产过程中,隔热材料的导热系数测试结果经常会受到质疑,特别是隔热材料导热系数小于空气(0.026W/mK)的气凝胶和超级绝热材料(VIP),这些超低导热系数的测试结果往往存在较大误差。隔热材料低导热系数的测试普遍采用稳态法(防护热板法和热流计法),对应于低导热系数测试不准确现象,相应的稳态法导热仪往往会存在以下问题:(1)稳态法导热仪的测量精度和灵敏度不够,无法准确测量低导热和超低导热系数,无法准确测量超低导热系数以及导热系数的微小变化,无法满足材料研发和生产中工艺和配方调整和评价需要。(2)由于缺乏导热系数在0.02W/mK左右(或更低)的标准参考材料,对于已有的稳态法导热仪,如何判断仪器的低导热系数测试能力,由此来大致判断测量结果的准确性。为解决上述问题,本文将提出一种简便可行的考核方法,通过对一系列不同厚度的隔热材料样品进行导热系数测试,根据导热系数随厚度的变化情况来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/size][size=18px][color=#ff0000]二、评估方法和考核试验[/color][/size][size=16px]考核试验的依据是稳态法的导热系数测试结果不应随样品的厚度发生而改变,如果发生改变,则说明导热系数测试产生误差。由此可用来判断导热仪的误差范围和测试极限。气凝胶软毡考作为考核试验样品,单层软毡厚度略大于10mm,通过多层叠加来实现不同厚度。测试采用了热流计法导热仪,样品为300mm边长的正方形,样品厚度分别为10、20、30、40和50mm,样品的平均温度为30℃,冷热面温差为20℃,结果如图1所示。[/size][align=center][size=14px][img=气凝胶超低热导率测试,600,380]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251654466502_5355_3384_3.png!w690x437.jpg[/img][/size][/align][size=14px][/size][align=center]图1 不同厚度气凝胶软毡导热系数测试结果[/align][size=16px]从图1测试结果可以看出,在厚度20~40mm范围内,测试结果不会随厚度变化而改变,导热系数平均值为0.02045W/mK。随着厚度降低到10mm,导热系数测试结果有变小的趋势,此时说明样品太薄使得厚度测量和厚度均匀性给样品内部热流场均匀性所带来的误差影响变大。从图1测试结果还可以看出,当厚度增大到50mm时,导热系数测试结果有变大的趋势,这种现象说明随着样品厚度的增大,样品热阻也随之增大,稳态时流经样品厚度方向上的热流量变小,热流传感器对小热流的测量出现误差变大的现象。同时样品厚度增大使得样品内部热流场均匀性所带来的误差影响变大。在图1所示的测试结果中,尽管对薄样品和厚样品的测试结果偏离了平均值,但偏差还是没有超出导热仪的±5%的误差范围,这证明了此热流计法导热仪完全具备准确测试0.02W/mK导热系数的能力。[/size][size=18px][color=#ff0000]三、导热系数测试下限分析[/color][/size][size=16px]根据上述考核试验测试得到相同材料不同厚度下的导热系数,可以依据傅里叶稳态传热定律推算出流经样品的热流密度,如表1所示。如果假设热流计法导热仪中热流计的灵敏度为10uV/(W/m2),那么就可以得到相应的热流计电压输出值。这里选择10uV/(W/m2)作为热流计的灵敏度,是因为目前普遍的热流计灵敏度都在这个数值以下。另外,选择此灵敏度主要仅是为了更方便的描述如何进行导热系数测试下限判定,其他灵敏度也能说明问题。[/size][align=center]表1 根据不同厚度样品的热导率测试结果推算出的热流密度和热流计电压输出值[/align][align=center][size=14px][img=气凝胶超低热导率测试,690,202]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251655508891_6096_3384_3.png!w690x202.jpg[/img][/size][/align][size=16px]按照傅里叶传热定律,如果假设样品的导热系数保持不变并与样品厚度无关,那么随着样品厚度增加,样品热阻会线性增大,流经样品的热流密度会线性减小,对应的热流计输出信号(电压值)也会线性减小。从表1的推算结果也显示了这种变化过程,但不同的是由于热流计电压输出测试仪表的测量精度有限,在大厚度、高热组和小热流密度时,电压信号测量会带有明显误差。由此可见,在低导热系数测试中,主要测量误差来源是热流计的灵敏度。根据表1,如果假设103uV是电压测量仪表的准确测量下限,对应10uV/(W/m2)灵敏度的热流计,热流计准确测量热流密度的下限为10W/m2,可准确测量的最大热阻为1.95m2K/W。由此,可以根据这个可测热阻值1.95m2K/W,推算出20mm最佳厚度样品的可准确测量的最低导热系数为0.02/1.95=0.0102W/mK。如果设定可接受的误差范围为±5%,那么10uV/(W/m2)灵敏度的热流计法导热仪,其测试下限为0.0102×0.95=0.0097W/mK,约为。由此可见,上述的热流计法导热仪的导热系数测试下限基本为0.01W/mK,且误差在5%的误差范围内。那么对于真空绝热材料(VIP),这类材料的导热系数一般在3~8W/mK之间,那么用此灵敏度的导热仪测试将会带来巨大误差。由此可见,为了保证测量超低导热系数的绝热材料,必须进一步提高热流计的灵敏度。由此也可以得出同样的结论,采用稳态保护热板法导热仪测量超低导热系数,关键之一是必须进一步降低护热板的漏热。[/size][size=18px][color=#ff0000]四、总结[/color][/size][size=16px]对于稳态法热导率测试,通过对一些列不同厚度但材质相同的样品进行测试,可以大致判断出稳态法热导率测试仪器的测试能力,特别是判断导热仪是否具备超低导热系数测试的能力,并用此方法对稳态法导热仪进行考核。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size]

  • 【原创大赛】导热系数测定仪选购经验

    【原创大赛】导热系数测定仪选购经验

    我们是典型的生产型企业,生产并销售建筑保温材料,选购了南京大展机电技术研究所的DZDR- P平板法导热仪。 http://ng1.17img.cn/bbsfiles/images/2013/12/201312012120_480213_2835146_3.jpg 南京大展机电技术研究所的DZDR- P平板法导热仪,主要构成如下:气动总成:气缸(控制测试板使之上下运动,完成测试样品的装夹过程)。以气缸为动力的运动装置不会因为产生额外热量而影响仪器的测量精度。控制主机:32位ARM架构的微处理器为核心,24位A/D模数转换芯片。彩色液晶显示器,参数设定比较简便,一目了然,人机界面清新友善。 测试主机:采用单试件方式,测试时只需要一块试样。使用特别定制的新型耐高温绝热材料和多层复合结构。分段多点独立控制加热器和微型铂电阻传感器,以小区域精密温度控制来保证整个测试面的温度均衡。集成数据采集、线性补偿、智能算法的后台软件。用创新思维处理产品设计中的每一个细节,使导热仪成为新设计理念的集大成。 很多同行在选购仪器时都很迷茫,下面简单介绍一下我们在选购导热仪时注意的几点:1)主要技术指标: 改变试样厚度,测量条件不变,其导热系数测量值应基本一致。 在相同的平均温度(冷板和热板温度的平均值),如25℃,改变冷热板温差,如从冷板10℃、热板40℃变为冷板20℃、热板30℃,测出的导热系数值应基本一致。 环境温度在允许范围内波动,测试结果的重复性如何。 仪器的自动化程度及设计理念的先进性。[a

  • 【讨论】有做导热检测的吗

    课题准备进行材料导热性方面的检测,现寻找 有导热仪而且对外服务的单位,有知道的请回复一下,大概说一下设备情况谢谢

  • 耐驰——样品尺寸对LFA测试结果的影响

    耐驰——样品尺寸对LFA测试结果的影响

    耐驰提供多种不同尺寸和形状的LFA样品支架,用于固体样品的导热测试。最大样品厚度取决于待测样品的热扩散和导热的高低,通常不超过6mm。但是,对测试结果起决定性作用的不是厚度,而是样品的直径-厚度比,本文通过一些测试说明了此值的大小对LFA结果的影响,供使用者参考。此处测试4种不同尺寸Pyroceram 9606样品:[table=100%,rgb(255,255,255)][tr][td=1,1,14%]尺寸[/td][td=1,1,21%]8mmx8mm[/td][td=1,1,21%]φ8mm[/td][td=1,1,21%]6mmx6mm[/td][td=1,1,21%]φ6mm[/td][/tr][tr][td=1,1,14%]厚度[/td][td=1,1,21%]2mm[/td][td=1,1,21%]2mm[/td][td=1,1,21%]1mm[/td][td=1,1,21%]1mm[/td][/tr][/table]LFA467 Zoomoptics的值设置为70%。[img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131421196114_8345_163_3.jpg!w590x329.jpg[/img]图中显示的是从RT...500º C范围内实测热扩散值与理论值的比较,灰色短划线与理论值偏差为3%。可以看到,所有测试结果都在±3%偏差范围内,说明LFA467具有极高的测试精度。但是,还可以看到,直径/厚度比率大的样品(6mmx1mm)结果(蓝色)更接近理论值曲线(黑色),而直径/厚度比率小的样品(8mmx2mm)结果(绿色)更接近灰色曲线(偏差3%),说明测试精度主要受直径-厚度比的影响,与绝对的样品尺寸关系不大。试验证实,LFA测试建议样品的直径:厚度大于5:1,只要满足这个比值,样品尺寸的影响就非常小了。

  • 碳纤维隔热保温材料:真空和惰性气体环境下高温导热系数测试技术

    碳纤维隔热保温材料:真空和惰性气体环境下高温导热系数测试技术

    [color=#990000]摘要:针对碳纤维隔热保温材料这种在高温真空和惰性气体环境下的唯一一类耐高温隔热保温材料,本文介绍了碳纤维隔热保温材料高温导热系数测试中的特点,以及国内外针对碳纤维隔热保温材料导热系数测试技术的发展现状,并详细介绍了国外碳纤维保温材料导热系数测试结果,以及上海依阳公司采用稳态热流计法对国产石墨硬毡导热系数的测试结果。[/color][align=center][img=,566,376]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061729597358_7316_3384_3.png!w566x376.jpg[/img][/align][align=center][color=#ff0000]硬质碳纤维隔热材料[/color][/align][b][color=#ff0000]一、碳纤维隔热保温材料及其导热系数测试特点[/color][/b]碳纤维隔热保温材料是一种碳纤维与一定比例粘结剂成型制得的软毡材料,在软毡材料基础上通过碳化、石墨化、机加工制成硬质碳纤维隔热保温材料。评价这类材料隔热保温性能的一个重要指标为导热系数,而在导热系数测试中存在着与其他类型隔热材料不同的特点:(1)测试温度高:最高至1000~2000℃以上;(2)惰性气体环境;真空、氮气、氩气、氦气等;(3)两种温度分布形式:温度均匀和大温度梯度;(4)两类材料形式:柔性和刚性;(5)材料导电性:导电材料。[color=#ff0000][b]二、隔热材料高温导热系数国内外常用测试方法[/b][/color]对于低导热系数的隔热材料,常用的导热系数测试方法主要分为以下三类:[align=center][img=00.隔热材料导热系数常用测试方法,690,176]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061731593097_6773_3384_3.png!w690x176.jpg[/img][/align][align=center][color=#ff0000]三类导热系数常用测试方法[/color][/align]从以上列表可以看出,目前国内外可满足碳纤维隔热保温材料导热系数测试的商品化设备只有德国耐驰公司的稳态保护热板法导热仪和上海依阳实业有限公司的稳态热流计法导热仪,可实现在真空和惰性气体环境下对碳纤维隔热败落材料导热系数进行测试,而美国NASA的稳态热流计法导热仪则是非标自制的非商品数测试仪器。[b][color=#ff0000]2.1 稳态保护热板法[/color][/b]依据的标准为:ASTM C177 和 GB/T 10294,测量原理如图1所示。[align=center][img=01.单样品防护热板法示意图,516,301]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061732313057_7803_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图1 单样品形式稳态保护热板法测量原理图[/color][/align]对于稳态保护热板法导热系数测试仪器,目前国内外具有在高温和真空条件下进行导热系数测试能力的设备只有德国耐驰公司生产的商品化设备和美国NIST自制的标准化测试设备,如图2和图3所示。[align=center][img=02.德国耐驰公司保护热板法分析仪,500,333]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061732576517_3719_3384_3.jpg!w500x333.jpg[/img][/align][align=center][color=#ff0000]图2 德国耐驰公司的稳态保护热板法导热仪[/color][/align][align=center][img=03.美国NIST保护热板法导热仪,600,403]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061733230452_8623_3384_3.jpg!w600x403.jpg[/img][/align][align=center][color=#ff0000]图3 美国NIST稳态保护热板法导热仪[/color][/align][b][color=#ff0000]2.2 稳态热流计法[/color][/b]依据的标准为:ASTM C201、GB/T 10295和YBT 4130-2005。其中YBT 4130-2005完全照搬了ASTM C201,是一种采用水量热计法进行热流密度测量,也是一种热流计法。稳态热流计法的基本原理如图4所示。[align=center][img=04.热流计法高温导热仪测量原理图,690,389]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061733428187_8222_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图4 稳态热流计法测量原理图[/color][/align]对于稳态热流计法导热系数测试仪器,目前国内外具有在高温条件下进行导热系数测试能力的设备有以下四家机构的设备,如图5和图6所示,但只有美国NASA和上海依阳实业有限公司具有自制的标准化测试设备,如图7和图8所示。[align=center][img=05.国产水流量平板法高温导热仪,500,365]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061734048203_1810_3384_3.jpg!w500x365.jpg[/img][/align][align=center][color=#ff0000]图5 国产水量热计法高温导热仪[/color][/align][align=center][img=,608,600]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061753072806_6516_3384_3.jpg!w608x600.jpg[/img][/align][align=center][color=#ff0000]图6 美国Orton公司水量热计法高温导热仪[/color][/align][align=center][img=07.美国NASA稳态热流计法高温导热仪,624,473]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061734509267_416_3384_3.png!w624x473.jpg[/img][/align][align=center][color=#ff0000]图7 美国NASA稳态热流计法高温导热系数测试系统[/color][/align][align=center][img=08.上海依阳公司热流计法高温导热仪,690,535]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061735204189_1658_3384_3.jpg!w690x535.jpg[/img][/align][align=center][color=#ff0000]图8 上海依阳实业有限公司稳态热流计法高温导热系数测试系统[/color][/align][b][color=#ff0000]2.3 瞬态热线法[/color][/b]依据的标准为:ASTM C1133 和 GB/T 5990。瞬态热线法的基本原理如图9所示。[align=center][img=09.热线法导热仪结构原理图(平行线法),475,359]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061735445173_2323_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图9 瞬态热线法导热仪原理图(平行线法)[/color][/align][align=center]对于瞬态热线法导热系数测试仪器,目前国内外具有在高温条件下进行导热系数测试能力的设备有以下两家公司的设备,如图10和图11所示。[/align][align=center][img=10.美国TA公司热线法高温导热仪,690,555]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061736056747_5297_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图10 美国TA公司热线法高温导热仪[/color][/align][align=center][img=11.德国耐驰公司热线法高温导热仪,401,600]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061736304489_8933_3384_3.jpg!w401x600.jpg[/img][/align][align=center][color=#ff0000]图11 德国Netzsch公司热线法高温导热仪[/color][/align][b][color=#ff0000]三、碳纤维隔热材料测试技术现状[/color][/b]从以上三类隔热材料测试方法和相关导热系数测试设备可以看出,商品化设备仅有德国耐驰的保护热板法和上海依阳的热流计法设备可以满足碳纤维隔热材料在惰性气体环境下的测试要求。国外对碳纤维隔热材料导热系数测试多为非标自制设备,文献和隔热材料厂家报道全部是热流计法和热线法设备。主要因为只有这两种方法可实现高温。除了上海依阳实业有限公司之外,还未见到国内其他机构具有碳纤维隔热材料导热系数测试设备,也未见到相应的测试结果文献报道。[b][color=#ff0000]四、碳纤维隔热保温材料导热系数的两种主要测试技术[/color][/b]从上述介绍可以看出,针对碳纤维隔热保温材料的导热系数测试,目前国内外只有稳态热流计法和瞬态热线法能实现高温条件下的测试。下面分别介绍这两种方法在导热系数具体测试中的特点。[b][color=#ff0000]4.1 稳态热流计法高温导热系数测试[/color][/b]这是一种国内外隔热材料高温导热系数测试的主流方法,除可实现高温外,主要特点是模拟实际隔热时的大温差环境,可测量复合材料构件,并可测试不同方向上的导热系数。可在真空和惰性气体控制气压环境下进行导热系数测试,美国NASA有过大量文献报道,技术非常成熟,几乎对所有航天用隔热材料都进行过测试评价。上海依阳也采用此技术,以满足国内航天高温隔热材料导热系数测试需求。国外碳纤维隔热材料生产厂家的柔性和刚性隔热毡产品资料中也能看出采用的是稳态热流计法。[b][color=#ff0000]4.2 瞬态热线法高温导热系数测试[/color][/b]在未出现稳态热流计法前,是隔热材料和碳纤维隔热材料的主流测试方法,以前多用于耐火材料导热系数测试中。热线法导热系数测试设备结构简单,较易实现高温测试。热线法导热系数测试设备特点之一是均温测试,得到的是真导热系数,而不是高温下具有大温差时辐射传热起主导作用的有效导热系数。但对于碳纤维隔热材料这种导电材料,要设法解决热线高温绝缘难题。同时整个测试过程十分漫长,需要整个样品温度恒定。[b][color=#ff0000]4.3 稳态热流计法与瞬态热线法测量结果的区别[/color][/b]稳态热流计法导热系数测试过程中,样品厚度方向上存在较大温差,在高温下会存在导热、对流和辐射传热等多种传热 形式,这时所测试得到的导热系数对应于等效导热系数。瞬态热线法导热系数测试过程中,被测样品温度均匀无温差,测试过程中只存在固体和气体导热传热形式, 这时所测试得到的导热系数对应于真导热系数。图12所示为两种不同低密度隔热材料中导热、对流和辐射传热时的相应导热系数随温度变化曲线,从曲线中可以明细看出,由于辐射传热的影响,会使得整体导热系数明细的增加。[align=center][img=,667,412]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061750302779_5461_3384_3.png!w667x412.jpg[/img][/align][align=center][color=#ff0000]图12 固体、气体和辐射传热对应的导热系数分量随温度变化曲线[/color][/align]另外,对同一样品用热流计法测试得到的等效导热系数都比瞬态法热线法测试得到的真导热系数大,如图13所示。[align=center][img=13.等效导热系数与真导热系数对比,690,392]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061737172107_4763_3384_3.png!w690x392.jpg[/img][/align][align=center][color=#ff0000]图13 有效导热系数与真导热系数对比[/color][/align][b][color=#ff0000]五、国外碳纤维隔热材料测试典型报道[/color][color=#ff0000]5.1 美国 NASA Langley Research Center 工作[/color][/b]美国 NASA Langley Research Center研制的热流计法高温导热系数测试系统技术指标如下:(1)被测对象:刚性和柔性片状材料;(2)样品热面温度最高:1800℉;(3)气压控制范围:0.0001 ~ 760 torr。美国 NASA Langley Research Center研制的热流计法高温导热系数测试系统结构如图14所示。[align=center][img=,537,374]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061754362037_9065_3384_3.png!w537x374.jpg[/img][/align][align=center][color=#ff0000]图14 美国NASA和上海依阳稳态热流计法高温导热系数测试系统结构示意图[/color][/align]相关报道可参考以下文献:(1) Daryabeigi, Kamran. "Effective thermal conductivity of high temperature insulations for reusable launch vehicles." NASA/TM-1999-208972 (1999).(2) Daryabeigi, Kamran, George R. Cunnington, and Jeffrey R. Knutson. "Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation." Journal of thermophysics and heat transfer 25, no. 4 (2011): 536-546.[color=#ff0000]5.2 日本 NIPPON CARBON 公司产品性能[/color]日本 NIPPON CARBON 公司的碳纤维隔热保温材料主要有GF-F软毡系列和FGL多层复合硬毡系列,如图15和图16所示。[align=center][img=15.GF-F软毡系列,345,290]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061738366157_2988_3384_3.png!w345x290.jpg[/img][/align][align=center][color=#ff0000]图15 Soft Felt GF-F Series[/color][/align][align=center][img=16.FGL多层复合硬毡系列,315,250]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061738596568_157_3384_3.png!w315x250.jpg[/img][/align][align=center][color=#ff0000]图16 Felt Laminated FGL Series[/color][/align]对于这两类碳纤维隔热保温材料,日本 NIPPON CARBON 公司在其官网分别给出了高温导热系数测试结果,如图17和图18所示。[align=center][img=17.日本碳公司软毡导热系数测试结果,599,515]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061739203059_8251_3384_3.png!w599x515.jpg[/img][/align][align=center][color=#ff0000]图17 日本碳公司软毡高温导热系数测试结果[/color][/align][align=center][img=18.日本碳公司多层硬毡导热系数测试结果,576,510]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061739426081_5945_3384_3.png!w576x510.jpg[/img][/align][align=center][color=#ff0000]图18 日本碳公司多层硬毡高温导热系数测试结果[/color][/align]从上述 NIPPON CARBON 公司给出的软毡和硬毡高温导热系数测试结果可以看出,导热系数测试是在20Pa的真空环境下进行,而且声明测试的是垂直于样品表面方向,这就代表了高温导热系数测试采用的稳态热流计法,因为只有稳态热流计法才有明确的方向性。[b][color=#ff0000]5.3 日本吴羽株式会社 KRECA FR石墨硬毡产品性能[/color][/b]日本吴羽株式会社的碳纤维隔热保温材料主要有KRECA FR石墨硬毡系列,如图19所示。[align=center][img=19.日本吴羽公司石墨硬毡,566,376]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061740320551_5825_3384_3.png!w566x376.jpg[/img][/align][align=center][color=#ff0000]图19 日本吴羽株式会社的KRECA FR石墨硬毡系列[/color][/align]对于KRECA FR石墨硬毡系列,日本吴羽株式会社在其中文官网上颁布的高温导热系数测试结果如图20所示。[align=center][img=20.日本吴羽公司硬毡导热系数测试结果,499,477]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061740533317_6109_3384_3.png!w499x477.jpg[/img][/align][align=center][color=#ff0000]图20.日本吴羽公司硬毡高温导热系数测试结果[/color][/align]从图20中可以看出,高温导热系数测试是在1.33Pa的真空环境下进行,样品厚度为50mm。尽管日本吴羽株式会社并未标注导热系数测试方法,但从样品厚度来判断应该是稳态热流计法,因为热线法导热系数测试中样品厚度较大。[b][color=#ff0000]5.4 美国 Carbon Composites公司产品导热性能[/color][/b]美国 Carbon Composites公司在其官网上颁布了其碳纤维隔热保温材料产品的高温导热系数在氩气和真空环境下的测量结果,如图21和图22所示。[align=center][img=,690,436]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755145297_131_3384_3.png!w690x436.jpg[/img][/align][align=center][color=#ff0000]图21 美国CCI公司碳纤维保温隔热材料产品导热性能对比-氩气气氛[/color][/align][align=center][img=,690,436]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755269885_9003_3384_3.png!w690x436.jpg[/img][/align][align=center][color=#ff0000]图22 美国CCI公司碳纤维保温隔热材料产品导热性能对比-真空环境[/color][/align]另外,从美国CCI公司官网的产品技术指标文件中,可以看到以上导热系数测量结果都有明显的导热系数方向性标识。尽管没有明确方向性标识,但只要是方向性标识就代表了采用的稳态热流计法。[b][color=#ff0000]5.5 瞬态热线法石墨毡高温导热系数测试文献报道[/color][/b]澳大利亚Chahine等人在2005年报道了采用瞬态热线法对石墨毡高温导热系数进行了测量:Chahine, Khaled, Mark Ballico, John Reizes, and Jafar Madadnia. "Thermal Conductivity of Graphite Felt at High Temperatures." In Australasian Heat & Mass Transfer Conference. Curtin University of Technology, 2005.文中报道了采用热线法对WDF级石墨毡导热系数进行的测试,石墨毡的密度为80 kg/m^3,石墨纤维直径在7.0 ~12.5 μm 范围,平均直径为10.5 ± 3.2 μm。测试分别在真空和氩气条件下进行,测量结果如图23所示。[align=center][img=,690,445]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755436092_3412_3384_3.png!w690x445.jpg[/img][/align][align=center][color=#ff0000]图23 瞬态热线法在不同气氛环境下测量石墨毡高温导热系数结果[/color][/align][b][color=#ff0000]六、上海依阳实业有限公司所做的工作[/color][color=#ff0000]6.1 测试仪器[/color][/b]针对碳纤维隔热保温材料,上海依阳实业有限公司采用自制的商品化热流计法高温导热仪(型号TC-HFM-1000)和瞬态平面热源法导热仪(型号TC-TPS 1010)分别进行了常温和高温下的导热系数测试,在国内首次得到了碳纤维隔热保温材料在不同真空度下室温~1000℃范围内的导热系数测试结果。瞬态平面热源法导热仪(型号TC-TPS 1010)以及样品安装如图24和图25所示,热流计法高温导热仪(型号TC-HFM-1000)和样品安装如图26和图27所示。[align=center][img=24.瞬态平面热源法导热仪,600,399]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061742257237_5181_3384_3.jpg!w600x399.jpg[/img][/align][align=center][color=#ff0000]图24 上海依阳公司瞬态平面热源法导热仪[/color][/align][align=center][color=#ff0000][img=25.瞬态平面热源法导热仪样品安装,690,196]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061742566835_5032_3384_3.jpg!w690x196.jpg[/img][/color][/align][align=center][color=#ff0000]图25 瞬态平面热源法导热仪测试样品安装[/color][/align][align=center][img=26.上海依阳公司热流计法高温导热仪,690,535]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061743276756_2316_3384_3.jpg!w690x535.jpg[/img][/align][align=center][color=#ff0000]图26 上海依阳公司真空型热流计法高温导热仪[/color][/align][align=center][img=27.热流计法高温导热仪试样安装,690,425]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061743534172_2846_3384_3.jpg!w690x425.jpg[/img][/align][align=center][color=#ff0000]图27 热流计法高温导热仪样品安装[/color][/align][b][color=#ff0000]6.2 真空型温热流计法高温导热仪技术指标[/color][/b](1) 被测对象:刚性和柔性片状材料;(2) 温度范围:100℃~1000℃(最高1500℃) ;(3) 气压范围:10 Pa ~ 1 atm;(4) 导热系数测试范围:5 W/mK;(5) 试样尺寸:正方形 300 × 300 mm;(6) 试样厚度范围:10 ~ 100 mm;(7) 温度测量精度:±1%;(8) 气压测量精度:±1%;(9) 导热系数测量精度:±5%。[b][color=#ff0000]6.3 碳纤维隔热保温材料样品(石墨硬毡)[/color][/b]对国内厂家提供的碳纤维隔热保温材料样品(石墨硬毡)进行导热系数测试,厂家提供了两种尺寸规格但相同材料的石墨硬毡样品分别用于瞬态平面热源法和稳态热流计法测试,材料密度为156 kg/m^3。其中一种样品规格为50mm×50mm×40mm,如图28所示;另一种样品规格为310mm×310mm×44.5mm,如图29所示。[align=center][img=28.平面热源法测试试样,690,391]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061744214427_5030_3384_3.jpg!w690x391.jpg[/img][/align][align=center][color=#ff0000]图28 石墨硬毡样品 50mm×50mm×40mm[/color][/align][align=center][img=29.四川创越炭材料公司石墨硬毡大样品,690,446]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061744478427_2043_3384_3.jpg!w690x446.jpg[/img][/align][align=center][color=#ff0000]图29 石墨硬毡样品 310mm×310mm×44.5mm[/color][/align][b][color=#ff0000]6.4 常温常压大气环境下瞬态平面热源法导热系数测试结果[/color][/b]采用瞬态平面热源法导热仪对石墨硬毡样品在常温常压大气环境下进行了15次的导热系数重复测量,测试结果如图30所示,导热系数测量平均值为0.112±0.002 W/mK。[align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756110777_6506_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图30 瞬态平面热源法常温常压下石墨硬毡导热系数多次测量结果[/color][/align][b][color=#ff0000]6.5 常压氮气环境下采用热流计法导热仪测量石墨硬毡高温导热系数结果[/color][/b]针对碳纤维隔热保温材料的高温导热系数测量,首先在常压惰性气体(氮气)环境下进行了不同温度点下的高温导热系数测量,不同温度下导热系数测量数值如图31所示,用横坐标为样品热面温度、纵坐标为有效导热系数的图形表示如图32所示。[align=center][img=31.热流计法高温导热系数测量数值,690,250]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061745380347_78_3384_3.png!w690x250.jpg[/img][/align][align=center][color=#ff0000]图31 石墨硬毡样品测试参数和结果数值[/color][/align][align=center][img=32.热流计法高温导热系数测量结果曲线,690,388]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061745567597_5912_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#ff0000]图32 石墨硬毡有效导热系数随样品热面温度变化测量结果和拟合曲线[/color][/align]从图31所示的测量结果可以看出,拟合曲线为一条三次多项式公式,随着热面温度的增大曲线向上弯曲,这说明随着温度的升高,辐射传热的作用变得更加明显。[b][color=#ff0000]6.6 不同氮气气压(真空度)下采用热流计法导热仪测量石墨硬毡高温导热系数结果[/color][/b]为了测量不同氮气气压(真空度)下石墨硬毡样品的高温导热系数,分别将样品热面温度控制在200、600和1000℃,如图33所示。在每个热面温度恒定控制过程中,再分别控制氮气气压(真空度)的变化,真空度设定值分别为10、100、1000、5000和10000Pa,由此测量不同温度下和不同真空度下的有效导热系数,有效导热系数测量结果数值如图34所示。[align=center][img=,690,371]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756353244_4739_3384_3.png!w690x371.jpg[/img][/align][align=center][color=#ff0000]图33 变真空测试过程中的样品热面温度变化曲线[/color][/align][align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756457394_5389_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图34 石墨硬毡在不同温度和不同真空度下的有效导热系数测量结果数值[/color][/align]将图34得到的有效导热系数测量结果数值绘制成图形,如图35所示。从图中可以看出,在每个恒定温度下,有效导热系数都会随着气压的增大而增大,并在接近常压时导热系数变化趋于稳定,这完全符合低密度隔热材料导热系数随气压增大的变化规律。[align=center][img=,690,383]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061757054144_6566_3384_3.png!w690x383.jpg[/img][/align][align=center][color=#ff0000]图35 不同温度下石墨硬毡导热系数随真空度变化测量结果[/color][/align]通过以上采用上海依阳实业有限公司的导热系数测试设备进行的石墨硬毡高温变真空条件下的测试,首次在国内得到了石墨硬毡完整的隔热性能测试评价结果,这将有助于碳纤维隔热保温材料的研究、生产、质量控制和性能评价等方面的需要。[b][color=#ff0000]七、稳态热流计法法导热系数测试更高温度(1500℃)测试系统方案[/color][/b]上海依阳实业有限公司现有测试设备已经证明完全可以满足1000℃以下碳纤维隔热材料的导热系数测试,若需要将测试温度提升到1500℃,需要进行以下改动,但不存在技术难度。(1) 更换加热方式,将金属发热体更换为石墨或碳/碳材料发热体,采用更大功率的低压大电流直流电源;(2) 碳纤维隔热材料导热系数一般偏高,样品冷面温度控制需更换为更大制冷功率的高精度冷却循环系统。(3) 温度测量采用更高使用温度的 S 型热电偶;(4) 加厚高温热防护装置以保证最高运行温度下的安全性;(5) 真空抽取根据真空度要求配备相应的真空系统。[align=center][img=,573,573]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061757151027_2570_3384_3.png!w573x573.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 激光热扩散/导热系数测试仪-德国linseis

    全球最先进的激光导热系数分析仪模块化设计—随时升级,体积更小大功率能量源—测量更准确6样品自动分析—节约宝贵时间高真空设计—测量更精确应用多晶石墨石墨非常适合评估激光法热导仪的性能优劣。对多晶石墨进行的测试曲线显示材料在室温附近导热系数达到最大,热扩散系数随温度增加递减。材料比热可通过参比法测得,测试显示比热与热扩散系数增减趋势相反。铜、铝分别测量了纯铜和纯铝的热扩散系数,测试结果如下图,热扩散系数的测量值与文献值之间的偏差小于 2%。体现了Linseis仪器性能的卓越。石墨(Isotropic)用LFA1000测量了蛤同性石墨的热扩散系数,与日本AIST机构的数据比较,偏差小于2%。德国林赛斯 (LINSEIS Messgeräte GmbH) 林赛斯总部位于德国巴伐利亚州泽尔布(Selb),是一家有超过50年丰富专业经验的世界领先(热)分析仪器设备生产商,公司专门致力于研究、开发、生产热分析科学仪器,其产品的技术和质量方面一直处于业界领先地位。

  • 【原创大赛】保温材料的导热系数测定

    【原创大赛】保温材料的导热系数测定

    保温材料的导热系数测定1. 实验原理 平板式导热仪的工作原理:在一定厚度的具有平行表面的均匀板状试件中,建立理想状态下,以两个平行的均温平板为界的无限大平板的一维恒定热流,通过测量中心计量板达到稳态后的热量Q,按照热阻的计算公式,求得试件的导热系数λ。 任何物体的热量传递都有三种形式:热传导、热辐射、热对流。不同温度流体的各部分流体之间,由于发生相对运动产生热传递称为热对流。物质的微观粒子的运动以光的形式辐射能量,称成为辐射。 在温度不平衡条件下,物体内存在温差,热能分布不均匀,在物体内部没有宏观位移的情下,热量从高温向低温部分传递,不同温度物体的互相接触时,同样存在没有物质转移而存在热量传递现象,这种借助于物质微观粒子的无序运动的热传递现象称为热传导,又称为热扩散。 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251322_479096_2784284_3.jpg 根据传热学理论,垂直于无限大平板方向的热流量,沿厚度d方向与平板面侧的温度差、平板面积成正比,与平板厚度成反比(上图)。 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251334_479107_2784284_3.jpg 式中,Q—垂直于平板方向传递的热量,称为热流量;t1-t2 平板两面的温度差;d—平板厚度;S为平板面积。λ—为比例系数,称为导热系数。所以导热系数的方程如下所示: http://ng1.17img.cn/bbsfiles/images/2013/11/201311251336_479108_2784284_3.jpg 上式就是导热系数的运算方程。如果用用功率P表示,P=kQ,k是系数,如果P单位为W(瓦),长度单位用m,温度单位用K(℃),则导热系数单位为W/(mK)。导热系数方程变为: http://ng1.17img.cn/bbsfiles/images/2013/11/201311251336_479109_2784284_3.jpg式(3)就是绝对测量的导热系数方程。2. 实验仪器:DZDR-P 平板法导热仪 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251324_479098_2784284_3.jpg3. 试样准备试样长×宽应为300×300mm,试样厚度在1mm-50mm。试样应覆盖中心量热器和内保护装置的整个表面。4. 实验步骤打开便携式空气压缩泵开关,将压力调节至0.4MPa,抽取1分钟后关闭。打开回流装置,提升测试槽上方的冷板,将样品放入其中,降下冷板,开始测试实验,冷板温度为30℃,热板温度为50℃。5. 实验结果 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251325_479099_2784284_3.jpg该保温材料的导热系数为0.02676。

  • 【分享】激光热导仪用途

    激光法导热仪是采用一束激光照射样品,用红外检测器测量样品背面温度的升高,来计算样品的热扩散系数。具有快速、方便的特点。其测量热扩散系数为0.001...10cm2/sec, 并可测量样品的比热,进一步计算导热系数。应用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。

  • 耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    [table][tr][td][color=#ff0000]摘要:本文针对耐火隔热材料导热系数测试中的大温差和小温差这两类主流测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确选择和设计。[/color][/td][/tr][/table]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#ff0000]1. 引言[/color][/b] 导热系数是评价和使用耐火隔热材料的关键参数,但在实际测试和应用中还存在许多困惑和误区。 耐火隔热材料在实际高温条件下使用时多为板材和管材,隔热材料大多处于一个受热面和背热面温度相差巨大的热环境中。而在材料样品导热系数具体测试中,有些是在模拟实际使用热环境的大温差条件下进行测量,而有些则是在很小温差、甚至没有温差的条件下进行测量,不同的测量导致所得到的结果相差很大,这给耐火隔热材料的性能评价和使用带来很大困扰。 由于技术上的局限性和测试及验证手段不足等原因,耐火隔热材料行业多年来一致对耐火隔热材料导热系数测试方法缺乏准确的理解,对哪种测试方法更能准确表征耐火隔热材料性能并不明确,由此造成测试方法混杂和乱用的现象,使得很多隔热结构设计人员在耐火隔热材料的性能评价和选材中不知该用哪种测试方法,经常会出现误导现象,甚至导致工程应用中出现漏热等重大事故。 为了满足耐火隔热材料在实际工程中的应用,加强对耐火隔热材料导热系数测试的准确了解,规范耐热隔热材料导热系数测试方法的选择,本文首次将耐火材料导热系数测试方法,按照测试过程中样品一维热流方向上的大温差和小温差进行分类,由此分别定义出有效导热系数和真导热系数。通过对这两种导热系数分析、计算和验证,展示出这两种导热系数的区别、相互关系以及可转化性,明确如何正确选择耐火隔热材料测试方法,明确如何正确描述和表达耐火隔热材料的隔热性能,由此实现耐火隔热材料测试评价和选材的规范性。[color=#ff0000][b]2. 耐火隔热材料导热系数主要测试方法和设备2.1. 测试方法[/b][/color] 材料导热系数测试方法主要分为稳态法和瞬态法,对于耐火隔热材料的导热系数测试而言也是如此。但由于耐火隔热材料一般都是在高温下使用,所以相应的测试方法也需要满足高温要求。由此,目前国内外也仅有限几种方法可用于耐火隔热材料高温条件下的导热系数测试,如图 2‑ 1所示。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142042533218_8908_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#ff0000]图2‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 采用以上测试方法进行耐火隔热材料的测试设备如下:[color=#ff0000][b]2.2. 测试设备2.2.1. 稳态热流计法高温导热系数测试仪器[/b][/color] 稳态热流计法高温导热系数测试仪器依据GB/ T 10295、ASTM C201和ASTM C518标准测试方法,是一种标准的稳态法导热系数测试设备。稳态热流计法高温导热系数测量原理如图 2‑ 2所示,当水平放置的被测平板状样品上下热面和冷面处在恒定温度时,在被测样品的中心区域和热流测量装置的中心区域会建立起类似于无限大平板中存在的一维稳态热流。通过测量热流密度、试样的热面和冷面温度以及试样厚度则可获得被测试样的导热系数。稳态热流计法高温导热系数测试仪器图 2‑ 3所示。[align=center][img=,690,389]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044227159_7689_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图2‑ 2 热流计法高温导热系数测量装置原理图[/color][/align][align=center][color=#ff0000][img=,690,535]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044416555_2241_3384_3.jpg!w690x535.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 3 上海依阳公司热流计法高温导热仪[/color][/align] 与其它测试方法相比,稳态热流计法高温导热系数测试方法及其仪器最显著特点就是测试条件可以模拟耐火隔热材料在各种实际工程中的应用环境,稳态热流计法是目前唯一能模拟出实际工程隔热环境的测试方法,在被测样品上能够建立起工程实际应用中的隔热大温差,即温度样品冷面可以控制在室温~50℃以下,而样品热面温度则可以达到1500℃以上的高温。[b][color=#ff0000]2.2.2. 稳态保护热板法中温导热系数测试仪器[/color][/b] 稳态保护热板法导热系数测试仪器依据GB/T 10294和ASTM C177标准测试方法,是一种标准的稳态法导热系数测试设备。稳态保护热板法导热系数测试原理如图 2‑ 4所示。保护热板法有单样品和双样品之分,样品置于加热板上,样品2/3尺寸大小的热板内布置用于量热的加热丝,其它尺寸外缘部分布置防护加热丝,并有隔离缝,下部是辅助防护加热,这样热板部分的发热量通过样品形成一维稳态热流,均作为热流密度的计算量,因此保护热板法是一种绝对方法。稳态保护热板法高温导热系数测试仪器如图 2‑ 5所示。[align=center][img=,516,301]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045185716_9092_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图2‑ 4 单样品防护热板法测量原理图[/color][/align][align=center][color=#ff0000][img=,441,486]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045307632_8761_3384_3.jpg!w441x486.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图2‑ 5 德国耐驰公司高温保护热板法分析仪[/align] 稳态保护热板法高温导热系数测试方法及其仪器最显著特点就是其测量精度最好,常用于计量和校准标准材料和其它测试仪器,被测样品冷热面温差小,最大不超过50℃,但保护热板法测试仪器用于耐火保温材料导热系数测试中的最大问题是测试温度不高,样品热面温度最高只能达到600℃。[b][color=#ff0000]2.2.3. 准稳态高温导热系数测试仪器[/color][/b] 准稳态导热系数测试技术是一种新型测试方法,准稳态高温导热系数测试仪器依据ASTM E2584标准测试方法。准稳态法是一种介于稳态法和瞬态法之间的一种测试方法,准稳态导热系数测试原理如图 2‑ 6所示。[align=center][img=,560,370]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142046135293_9233_3384_3.png!w690x457.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 6 准稳态法导热系数测量原理图[/color][/align] 准稳态法采用的是一维热流加热方式,被测平板状样品在被加热或冷却到一定阶段后,通过试样的热流速度将达到一个缓慢变化状态,也就是准稳态状态,由此可以测量样品在加热和冷却过程中热流随时间的变化速度,,通过得到的准稳态条件下的热流和温度变化测试数据,可以准确计算出被测材料的热扩散系数、热容、热焓和导热系数。准稳态法高温导热系数测试仪器如图 2‑ 7所示。[align=center][img=,500,578]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142047447306_5655_3384_3.png!w690x798.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 7 上海依阳公司准稳态法高温导热仪[/color][/align] 从原理上讲准稳态法是一种大温差形式的动态测试方法,在试验过程中的测量参数都是试样表面温度变化,不涉及到材料的内部变化,而是将材料的内部变化都看成为一个等效传热过程,因此这种方法可以用于材料在具有相变和化学反应过程中的有效热扩散系数、热容、热焓和有效导热系数测量。准稳态法的另外一个突出优点在于大大缩短了测试周期,基本可在36小时内测试得到一条有效导热系数随温度的变化曲线。[b][color=#ff0000]2.2.4. 瞬态热线法高温导热系数测试仪器[/color][/b] 瞬态热线法导热系数测试仪器依据GB/T 5990和ASTM C1133标准测试方法,是一种标准的瞬态法导热系数测试设备。瞬态热线法导热系数测试原理如图 2‑ 8所示。[align=center][img=,475,359]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048251129_5443_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 8 热线法导热仪结构原理图[/color][/align] 热线法是在样品(通常为大的块状样品)中插入一根热线。测试时,在热线上施加一个恒定的加热功率,使其温度上升。测量热线本身或与热线相隔一定距离的平板的温度随时间上升的关系。热线法高温导热系数测试仪器如图 2‑ 9所示。[align=center][img=,690,555]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048505870_3628_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图2‑ 9 美国TA公司热线法高温导热仪[/color][/align] 瞬态热线法高温导热系数测试方法及其仪器最显著特点就是仪器结构简单和测试温度高,可以轻松实现1400℃下的高温测试,这也是过去常用的耐火隔热材料导热系数测试方法和仪器。 与上述稳态测试方法相比,瞬态热线法高温导热系数测试方法及其仪器在测试过程中要求被测样品整体温度达到均匀一致后再进行测量,所以瞬态热线法是一种无温差的测试方法。由于热线法中的热线很细,热线通电加热后热量向热线的径向方法传播,所以热线法测量的是样品整体导热系数而没有方向性,所以热线法要求被测样品由各向同性材质制成。[b][color=#ff0000]2.2.5. 瞬态闪光法高温导热系数测试仪器[/color][/b] 需要特别指出的是:传统意义上的瞬态闪光法并不适合对耐火隔热材料材料的导热系数进行测试, 这主要是因为耐火隔热材料的导热系数普遍偏低,脉冲光辐照到样品前表面后,脉冲形式的加热热量无法传递到样品背面,使得样品背面几乎没有任何温度变化,背温探测器基本检测不到任何温升信号。因此,Gembarovic和Taylor在闪光法基础上开发了一种步进加热三点测温的测试方法用于低导热材料的高温热扩散系数测量,测量原理如图 2‑ 10所示,整个测量装置的结构如图 2‑ 11所示。[align=center][img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049373131_4398_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 10 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][align=center][b][img=,690,441]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049522161_6872_3384_3.png!w690x441.jpg[/img][/b][/align][align=center][color=#ff0000]图2‑ 11 瞬态步进加热三点测温法高温热扩散系数测试系统结构示意图[/color][/align] 这种测试方法和设备可以对相对较小的样品()进行温度高达1500℃下的高温热扩散系数测量,测量原理与闪光法近似,只是将闪光加热的脉冲宽度加的很长,对样品表面进行长时间的加热,从而使得热量能传递到样品背面获得有效测量信号。但这种测试方法在取样过程中样品不能太厚,否则热量还是无法传递到样品背面,由此很容易造成取样没有代表性问题。[b][color=#ff0000]2.3. 各种测试方法测试能力比较[/color][/b] 通过上述耐火隔热材料导热系数各种测试方法和相应测试设备的描述,将各种测试方法和测试仪器的主要特点、能力和要求进行汇总比较,如图 2‑ 12所示,由此对各种测试方法有一个直观的了解。[align=center][color=#ff0000][img=,590,160]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142051019290_574_3384_3.png!w690x188.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 12 耐火隔热材料导热系数测试方法和测试仪器比较[/color][/align] 从图 2‑ 12中的综合比较可以看出,综合能力排名前两位的是准稳态法和稳态热流计法,这也就是上海依阳实业有限公司选择生产这两种测试仪器的主要原因之一。[b][color=#ff0000]3. 真导热系数和有效导热系数的定义[/color][/b] 根据上述针对耐火隔热材料导热系数测试方法所进行的介绍,可以发现尽管测试方法和测试设备有不同形式,但这些测试方法都离不开温度场这个环境变量和测试条件,即无论测试方法怎么变化,都必须使得被测样品要么是大温差、要么是小温差(将无温差归到小温差范围内)。这样,我们就可以将耐火隔热材料的导热系数按照温差大小分别对应进行定义,即: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数。 以往有效导热系数的定义多根据被测样品的均质性和组分结构的多样性来定义,并没有明确的按照测试温差大小(或使用过程中的温差大小)来定义。现在明确采用温差大小来定义和区分有效导热系数和真导热系数的不同,一方面是便于今后对耐火隔热材料测试方法选择和耐火隔热材料热性能的准确描述,另一方面也是依据标准测试方法所做的规定。 在国内外所有稳态法导热系数标准测试方法中,都指出:“通过测量热流、温差及样品厚度尺寸,利用稳态傅立叶导热公式计算得到的材料传热性质(导热系数或有效导热系数),可能并不是材料自身固有特性,因为它很大程度上可能取决于具体测试条件,例如试验过程中样品上的冷热面温差大小”。这句话指出了两个基本事实,可以理解为有两个含义: (1)一个事实就是材料的固有特性,即材料的固有特性是不受测试条件影响而本身存在的。所以在测试过程中要明确了解到底测量的是不受测试条件影响的材料固有特性,还是测量与测试或使用环境有关的特定环境特性。 (2)材料的固有特性,很大程度取决于具体测试条件,即取决于样品上的冷热面温差大小。温差小时测量得到则是固有特性,温差大时测量得到的则不是固有特性。 根据标准测试方法中的这些规定,就可以很容易进一步明确耐火隔热材料导热系数的定义: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数,即样品材料的固有导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数,即样品材料的环境导热系数。 由此可见,一旦材料制成,其真导热系数就会固定不变,真导热系数就是这材料的固有特性。而这种材料在不同使用温度环境下,则会有相应的有效导热系数,这主要是因为在大温差条件下,有效导热系数会包含除真导热系数之外,还包括与辐射和对流传热相对应的辐射导热系数和对流导热系数。 由此可见,在小温差条件下,假设不考虑辐射传热和对流传热形式,同时假设也忽略气体导热传热,那么所谓的真导热系数,基本就代表了材料的固相导热系数。因此,为了对样品材料的真导热系数进行准确测量,很多标准测试方法对导热系数测试中的小温差进行了规定:GJB 329规定测试温差应控制在10~50℃,GB/T 10295建议温差控制在5~10℃,ASTM相关标准规定该温差应不大于25℃。由此可见,在最大温差不超过50℃条件下,就可以忽略稳态法测量中辐射和对流传热的影响,稳态法测量得到的样品导热系数,就是真导热系数。需要注意的是:耐火隔热材料由于低密度和高孔隙率,材料内部有大量孔隙,由此这个真导热系数,包括了材料的固体导热系数和气体导热系数。 根据上述小温差的定义,温差小于50℃的导热系数测试都是真导热系数测试。那么对于样品温度均匀无温差的测试,所得到的导热系数更是真导热系数。完成了两种导热系数定义后,就可以很明确知道不同测试方法测量得到不同类型的导热系数,即: (1)真导热系数测试方法:保护热板法、瞬态热线法、瞬态闪光法。 (2)有效导热系数测试方法:热流计法、准稳态法。[color=#ff0000][b]4. 真导热系数与有效导热系数的关系及其转换4.1. 问题的提出[/b][/color] 对于耐火隔热材料的性能测试,国内外都处于非常混乱的局面,有些测试得到的有效导热系数,有些测试得到的则是真导热系数,这些不同导热系数往往会引起隔热材料选择和隔热结构设计的混乱,特别是在耐火隔热材料高温性能测试中,测试方法的混乱使用很容易造成对隔热性能的高估,从而造成隔热效果不佳,甚至出现漏热事故和爆炸。因此,针对耐火隔热材料,如何才能准确测试和描述导热系数才能准确和实用呢,下面将从理论分析方面来对这个问题进行求解。[b][color=#ff0000]4.2. 真导热系数与有效导热系数的关系[/color][/b] 按照上述小温差和大温差形式分别定义真导热系数和有效导热系数,我们选择小温差的保护热板法法和大温差的热流计法来研究真导热系数与有效导热系数的关系。对于大温差的热流计法导热系数测量,有效导热系数的测量公式为: 式中表示流经样品厚度方向上的热流密度,表示样品厚度,表示样品热面温度,表示样品冷面温度。在热流计法大温差测量过程中,样品冷面温度的变化一般较小,基本都控制在50℃以下,而热面温度则较大(1000℃)。大温差下得到的有效导热系数的描述,都需要明确热面温度和冷面温度,并可用平均温度来表达。对于小温差的保护热板法导热系数测量,真导热系数的测量公式为: 式中同样表示流经样品厚度方向上的热流密度,表示样品厚度,表示被测样品冷热面之间的温度差。在保护热板法小温差测量过程中,冷热面温差很小,基本都控制在50℃以下。小温差下得到的真导热系数的描述,由于温差小,则可以直接用平均温度来描述,而无需标明热面温度和冷面温度。 尽管大温差和小温差所对应的两种测试方法不同,但这两种方法都是基于稳态傅立叶传热定律,公式和中各个参量的物理意义是相同的。因此,大温差的热流计法导热系数测量,可以在测试模型和数学上假设是由多个相同厚度的小温差保护热板法多层叠加而成,即和。这个假设的前题是: (1)样品材料在测试温度范围内没有化学反应或相变。 (2)在小的温度和气压区间内,真导热系数或保持不变、或呈线性关系。 (3)耐火隔热材料中的热传递形式一般由固相介质导热、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]介质导热及辐射传热三部分构成,如果材料内部不存在通孔形式的孔隙,可忽略辐射传热对整体热传递的贡献。 这样,大温差的热流计法导热系数测试模型数学表达式,就可以用小温差的保护热板法导热系数测试模型数学表达式的积分形式来描述,由此得出有效导热系数与真导热系数关系式为: 式中的和代表温度和气压变量。通过公式所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#ff0000]4.3. 由真导热系数推导有效导热系数[/color][/b] 由真导热系数测试结果推导出大温差条件下的有效导热系数,即据根真导热系数测试结果推算出在温度~范围内的大温差有效导热系数,具体实施方法就是在温度~范围内选择一系列温度点进行保护热板法或瞬态热线法导热系数测试,得到一系列不同温度下的真导热系数测试结果。这里的在保护热板法测试中代表样品的平均温度,在瞬态热线法和瞬态闪光法中代表样品温度。然后将测试结果(,)进行最小二乘法拟合得到一个多项式表达式: 式中的、、和是与样品材料自身特性有关的多项式常数。大多数耐火隔热材料的真导热系数与温度的非线性关系一般都可以用一元三次多项式描述。 将得到的真导热系数随温度变化多项式代入公式,然后进行积分求解就可以得到相应的有效导热系数。针对气压变量的真导热系数推导有效导热系数也是如此操作。[b][color=#ff0000]4.4. 由有效导热系数推导真导热系数[/color][/b] 同样,在有效导热系数推导真导热系数过程中,假设真导热系数随温度变化关系是一个三元一次多项式,即: 式中的、、和是与材料自身特性有关的待定常数。将式直接代入与式可得: 在式中只有、、和四个未知数,理论上可以通过4个式的联立方程就可求解出这四个未知数。即在理论上通过4次值调整,即进行4个不同热面温度下的稳态热流计法导热系数测试试验,同时保持样品冷面温度基本不变,由此得出4组相应的、值,就可建立这4个联立方程,从而求出4个待定常数、、和的值,最终得到真导热系数与温度的关系表达式。 从式中可以看出,式对温差大小没有任何限制。因此可以在容易实现的大温差测试条件下进行相应测试和测算。为了提高这种方法的推导计算准确性,在选取值时应尽可能接近所需要的温度值。例如需求1000℃的材料真导热系数,选取的4个值中至少应有一个值为1000℃或大于1000℃。如果需要某一特定温度段的真导热系数,比如需要500~1000℃之间的材料真导热系数,那么4个值建议选取为500℃、l 000℃以及介于500℃与1000℃之间的2个温度点数据。同时,需要说明的是本方法不是利用低温段真导热系数进行高温真导热系数简单外推,而是在掌握大温差测试条件下有效导热系数相关数据的基础上,通过确定所假设的函数待定常数来最终获取耐火隔热材料高温真导热系数,并且假设的函数形式是统计分析得出的结论以及ASTM相关标准认可的。[b][color=#ff0000]5. 结论[/color][/b] 通过以上的理论分析和计算,针对耐火隔热材料导热系数测试中常用的小温差和大温差两类测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确的选择和设计。 下一部工作将针对各种耐火隔热材料的有效导热系数和真导热系数测试数据,对上述的真导热系数和有效导热系数之间的关系和转换方式进行试验验证,由此来对测试方法、测试设备和两种导热系数相互关系及其转换进行评价。[b][color=#ff0000]6. 参考资料[/color][/b] (1) Gembarovic, J., and Taylor, R. E., “A Method for Thermal DiffusivityDetermination of Thermal Insulators,” International Journal of Thermophysics,Vol. 28, No. 6, 2007, pp. 2164-2175.[align=center][img=上海依阳公司热流计法高温导热系数测试系统,690,499]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142040536176_2249_3384_3.png!w690x499.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

  • 激光热导仪应用及原理介绍

    激光法导热仪是闪光法的实验原理是用激光器向厚度为L的圆形薄试样表面发出一个能量为Q的热脉冲,同时测量并记录试样背面的温度响应T(L,t),根据非稳态导热过程的数学模型,即可确定试样的热扩散率。来计算样品的热扩散系数。具有快速、方便的特点。其测量热扩散系数为0.001-10cm2/sec, 进一步计算导热系数。应用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。热扩散率是表征材料内部非稳态导热过程的重要热物理参数之一,用来表征物体在加热或冷却过程中各部分趋于一致的能力。热扩散率的测量方法主要分为稳态法和非稳态法两大类。由于非稳态法具有装置简单、快速、准确的特点,并且可以同时测量多个热物性参数,方式灵活多样,测量范围覆盖多种材料。主要非稳态法:热线法、闪光法、平面热源法、瞬态热栅法、光热辐射法、激光压电光声法、蜃景效应(Mirage技术)等方法,其中闪光法被公认为精度最高的一种方法。闪光法物理模型是基于加热脉冲照射时间远远小于热流流经试样的传递时间的假设。目前,国际上没有热扩散率测量的统一标准,美国、欧洲、日本、中国等各自有各自的测量标准,而且各国热扩散率的测量相对标准不确定度在10-2左右。

  • 物性测试仪器的厂家

    请问做的比较好的关于物性测试仪器的厂家有那些,这些仪器主要指粘度仪、导热仪、电导仪、热膨胀仪、同步热分析仪、高温DSC、热重分析仪、密度仪、蒸汽压测试仪

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制