当前位置: 仪器信息网 > 行业主题 > >

电解电容器

仪器信息网电解电容器专题为您提供2024年最新电解电容器价格报价、厂家品牌的相关信息, 包括电解电容器参数、型号等,不管是国产,还是进口品牌的电解电容器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电解电容器相关的耗材配件、试剂标物,还有电解电容器相关的最新资讯、资料,以及电解电容器相关的解决方案。

电解电容器相关的资讯

  • 湖南地区万京源电子生产企业,卡尔费休水分仪安调、培训顺利完成
    万京源电子有限公司位于美丽的湖南省益阳市,是一家从事铝电解电容开发、制造及销售一体化的专业高新企业,铝电解电容器是各种电子产品中不可替代的基础元件,广泛应用在包括电源器,主机板,音响等电子设备。公司主要品种有:CD11G,CD11GH,CD11GA型等高压电解系列产品。 近年电子元器件的迅猛发展,全球市场对电容产品性能提出更高要求。小体积、长寿命、耐高温、低电阻是铝电解电容器的发展趋势。影响电容器性能的因素很多,除了制造工艺水平、阳极铝箔质量等方面,电容器中的工作电解液是一个重要制约因素,电解液是电容器的实际阴极,起提供氧离子、修补阳极氧化膜的重要作用。工作电解液要求具有高的氧化效率,稳定的物化性质、水分含量控制等,在铝电解电容器工作中,电解液介质中的水分子会与铝氧化膜反应生成水合氧化膜,导致电解电容器性能恶化甚至失效,因此在铝电解电容器中电解液的水分含量检测非常重要。 结合以上对铝电解电容器研发、生产的严格标准,上海禾工与万京源电子公司开展合作,禾工AKF-1卡尔费休容量法水分测定仪为铝电解电容器的发展尽锦薄之力。 2017年6月初,禾工技术工程师结合客户需求,精心安排了水分测定仪组装、样品测试、上机操作、日常维护等培训工作。电解液的水分含量检测结果符合标准,AKF-1水分测定仪简单的操作也是得到操作人员的“芳心”,仪器使用起来得心应手。
  • 高能镍碳超级电容器问世 解决电动车电源问题
    周国泰院士(左二)和科技人员一起检验汽车用高能镍碳超级电容器  你看满大街上跑的汽车,有几辆是电动车?  2008年北京奥运会,2010年上海世博会,人们看见电动汽车上路了,跑起来了。让人振奋!  可是,到了今天,电动汽车还是“雾里看花”。  怎么回事呢?  周国泰院士斩钉截铁地说,问题出在电动车的电源上。电动车的电池技术还没有“过关”。  这是在北京的总后军需物资油料部“周国泰院士工作室”,科技日报记者采访周国泰院士的一段对话。  紧接着,周国泰说:“如今,我们研发成功了高能镍碳超级电容器,这是电动车电源的一个新突破,将对电动车产业发展带来深刻影响。”  他随手拿给记者一份邀请函,是8月24日天津市政府印发的。上面写道:“天津市围绕推动新能源产业发展,与中国工程院院士周国泰合作,成功开发出高能镍碳超级电容器产品。经天津市科委组织成果鉴定,达到国际先进、国内领先水平,在电动汽车和储能电站中将具有竞争优势。天津市人民政府定于2011年9月1日上午10时在天津大礼堂召开高能镍碳超级电容器产品新闻发布会。”  眼前的周国泰院士,怎么搞起电动汽车研究了?  周国泰,我国军用、民用功能服装材料和士兵个体防护研究领域的知名专家。  从一名战士,到大学生,到走上总后军需装备研究所的科研之路,几十年来,周国泰在防弹装备、特种防护服装和防寒保暖材料研究等方面,取得多项成果。先后主持研制防弹背心、防弹头盔,解决了防弹材料及防弹结构体复合成型、树脂基体合成等一系列技术关键,研究成果居国际先进水平,他研制出的服装已装备军、警、法等部门,并出口美国等10余个国家。开展静电防护理论、特种防护服装研究与技术开发,研制的防静电、抗油拒水、阻燃等系列防护服装,装备到全国各大油田,并广泛用于石化、冶金、林业等部门。主持被服保暖材料、保暖机理和生产技术研究,合作研制成功热熔粘结絮片和PTFE防风防水透湿层压织物,广泛用于作训服、防寒服、南极考察服和运动服等。创建我国服装工效研究中心和单兵防弹装备V50弹击试验室,系统开展了服装工效学研究,实现了我国防弹装备测试评价与国际接轨。曾先后获得国家科技进步一等奖3项、二等奖3项,省部级科技进步奖多项成果奖励。1999年,当选为中国工程院院士,并晋升为少将。  今天的话题,还是谈谈你搞的超级电容器吧。  “你千万别说是我一个人搞成的。我有一个研发团队,有中央领导同志、有多个部委的关心支持,有天津市、张家港市、淄博市,有一大批多学科、多领域的专家协同合作创新,才开发出超级电容器,成为电动汽车的新电源。”院士、将军集于一身的周国泰,说话睿智果断,开门见山。  高能镍碳超级电容器,有哪些技术突破  高能镍碳超级电容器,成为一种用在电动车上的全新电源,周国泰说:“实现了几个突破。”  周国泰介绍,高能镍碳超级电容器,首先在加大材料的比表面积上实现突破。传统电容,100年前就发明了,电容是靠比表面积存储电荷,其优点是可无数次充放电,而且不发热。储电量的大小由其内部比表面积大小而决定。超级电容器,就是在研发出新材料的基础上,尽可能地扩大比表面积,使储电量大幅增加 第二,超级电容在正负极的材料结构上获突破。电池的优点是储电量大,由电能转化成化学能,再转化成电能释放出来,其比功率比传统电容高得多。超级电容,在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。  锂离子电池,不是业界推崇的电源吗?周国泰说:“技术还不过关!”他将这种电池与超级电容器作了比较。  第一,锂离子电池存在安全隐患。锂离子、有机电解质,其本身有易燃、易爆性,杭州、上海曾发生的电动汽车自燃事件,今天谈起来还让人后怕。超级电容器,充满电后用射钉枪打,使其短路,任何反应都没有 放火上烧,不锈钢外壳快烧红了,也没发生爆炸。锂离子电池,一旦发生短路,就会燃烧或者爆炸。  第二,锂离子电池,基本是300A电流充电,时间长,一次充电要6—8小时,使用不方便。超级电容器,可1500A,甚至3000A大电流充电,单块充满电只要几秒钟,上百块串联在一起充电,6分钟可达90%以上。  第三,锂离子电池寿命短。充放电的标准是2000次,目前很少有能达到的,即使达到了,性价比不实用。超级电容器,可大电流充电,瞬间大电流放电,效果理想,充放电可达5万—50万次,而充放电的国家标准是5万次。就说在淄博那次试验,公交车装上超级电容器充电后,乘坐满员,上了高速路,时速120公里,一次充电跑了210公里。使用超级电容器的小轿车,瞬间可大提速,时速可达130公里。  “你说超级电容器的优势怎么样?”说到此,周国泰问记者。大家都笑了。  回顾电动汽车发展历程,人们不难掂量出超级电容器的分量,也不难理解天津市政府为什么要召开新闻发布会的原因。  电动汽车诞生有100多年了,1839年,苏格兰人罗伯特安德森造出了世界上的第一台“电动车”。不过它不十分成功。主要原因是,电池寿命太短,电力太小,只能挪动一个非常轻的底盘。到了19世纪后期,长效电池诞生,促进了电动车的进一步发展,人们才在伦敦的大街上见到电力驱动的出租车,不过行驶距离非常短,还必须不停地在充电站里充电。  罗伯特不会预想到,历史进入到21世纪,随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的主攻方向,发展电动汽车成为解决这两个技术难点的最佳途径。电动汽车也随之成为世界各国的选择和技术竞争的一个焦点。  一些专家曾经估计,全球能源矿产资源仅够支撑不到100年 而我国的石油只能支撑国内消耗30年,煤炭最多能支撑100年。目前,我国每年有85%的汽油和20%的柴油被汽车烧掉,汽车无疑成为了能源消耗大户,能源紧张与汽车行业发展的关系十分密切。如果中国的人均汽车拥有量追上美国,中国的道路上就会奔跑着6亿多辆小汽车,这一数字将超过世界其他国家小汽车数量的总和,对能源的需求将不言而喻,中国必将成为第一大油耗和石油进口国。  国人不会忘记,当年铁人王进喜在首都北京看到汽车背着的“大包袱”,缺石油,被人瞧不起啊!  到了今天,汽车背的“大包袱”没有了,可城市却背上了“大包袱”。从地上看天,见不到蓝天白云,从空中往下看,灰蒙蒙的,不见城市的倩影。说重了,是民族的耻辱!  从能源、环境的角度审视,发展新能源汽车,是我国的必然选择。而且从技术的角度看,我国有自身的优势。  据相关资料显示:我国虽然在传统汽车领域落后于发达国家近二三十年,但在电动汽车领域,我国与国外的技术水平和产业化程度差距相对较小,并有机会在该领域获得重要席位。这也为我国汽车工业技术实现跨越发展提供了一次历史性的机遇,更重要的是我国还有后发优势。目前,我国电动汽车的研发已具备一定的基础,一些企业在20世纪90年代中期就推出了电动汽车样车。  我国“八五”以来电动汽车被正式列入国家攻关项目,对电动汽车的投入显著增加。我国的汽车企业和高校、科研院所等200多家单位投入了大量的人力、财力和物力研发电动汽车,并取得了一系列科研成果。“九五”期间,电动汽车被列入863计划12个重大专项之一,全国汽车标准化技术委员会于1998年新组建了电动汽车车辆标准化分技术委员会。科技部又于2001年启动了电动汽车重大科技专项,使我国电动汽车技术水平和产业化程度与国外处在同一起跑线上。    现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。但是近几年在传统混合动力汽车的基础上,又派生出一种外接充电式(Plug-In)混合动力汽车,简称PHEV。目前在全世界,电动汽车一直是各大汽车集团花费巨资研发的新兴领域。  然而,制约电动汽车发展的瓶颈,还就是电池。世界电动车协会主席陈清泉在2011中国长春国际汽车论坛上表示,当前我国电动汽车电池技术存在两个明显缺点:第一个缺点就是缺乏深层次技术。比如电池的化学问题、物理问题、温度问题、结构问题等,在这些方面我们研发还不够,没有能够建立数学模型把这些问题搞清楚 另一个缺点是缺乏评价体系。比如电池的安全性怎么样,在高温、低温环境下能不能正常工作,这些都没有一个好的评价。  有资料介绍,电动汽车对电池的要求比较高,电池要具备高比能、高比功率、快速充电和具有深度放电功能,循环和使用寿命要长。铅酸电池,虽然其比能量、比功率和能量密度都比较低,但是高的性价比使其应用广泛,然而带来的是严重的环境问题。镍镉电池和镍氢电池虽然性能好于铅酸电池,但是其性价比不高,含重金属,用完后回收处理难,若遗弃会对环境造成严重污染。  目前,越来越多的研究人员选用锂离子电池作为电动汽车的动力电池,但这种电池的缺陷十分明显,前面已叙。  “针对目前各种电池的缺陷,我们开发了超级电容器。”周国泰顿了一下,说,这种电容器的技术优势前面说了。所以,很顺利地通过了天津市科委组织的成果鉴定。  高能镍碳超级电容器,老百姓也用得起  有专家说,目前,几乎所有的人都认为电动汽车是未来的发展趋势,但种种迹象表明,电动汽车离我们还是比较遥远。但电动自行车风靡全国,每天提几公斤的电池上下楼,在居民小区并不鲜见。电动汽车怎么办?  为此,有学者发表文章,对电动汽车提出种种担忧和质疑。有说电动汽车在电池上不成熟的,有说原子电池、聚合物电池、燃料电池、锂离子电池等任何电池都不环保的,各种议论不绝于耳。  有各种质疑和担心,也属正常。科技创新,正是在质疑中前行、在争论中创新的。说着,周国泰从沙发上站起来:“在发展电动汽车的过程中,有各种担心,是可以理解的。电池的问题卡住了电动汽车的脖子,这也是事实。”他扳着手指头,就说公交车吧,一辆公交车,走100公里,若用油30升,按8元1升算,要240元 而用电,走100公里。用电70度,每度电平均按6毛钱算,是42元钱。还是用电省吧。因此,发展电动车,不应动摇!  还以锂离子电池为例,与超级电容器比,锂离子电池成本7万元,充电2000次,每充电1次按行驶100公里算,20万公里就要更换电池 超级电容器,也按充电1次行驶100公里算,可充电5万次,甚至可达10万次、50万次,超级电容器的价格不高于锂离子电池。超级电容器回收后,对材料再激活处理后还可以使用。计算一下,综合成本有多低!这样,老百姓是不是就能用得起了?  超级电容器的生产是环保的,你可以到淄博年产100万只的生产基地去看,生产车间,只有一个地漏,那是用来打扫卫生冲水用的,整个生产过程,不产生废水、废气,没有污染排放。还用担心环保问题吗?  高能镍碳超级电容器,“协同会战”的结果  话题回到采访周国泰院士的开头。他还是坚持说那句话,超级电容器的研发,是多方支持,多领域、多学科专家协同攻关的成果。  “周院士说的是事实!”原海军后勤部技术装备研究所研究员陈同柱讲起了周国泰。  周院士是一位军人科学家。多年来,他创建了我们国家的军事科研的新模式和新路子。他作为领军专家,坚持军民融合发展,他把军内外有关专家,战略研究的,军事需求的,科研管理的专家都联合起来,充分集成地方的科研力量、技术成果,甚至地方的资金资源,高效组合起来,形成优势。这就是他的“小核心大联合”的科研创新模式。  陈同柱说,就说超级电容器这个新能源项目,看起来是解决电动汽车动力问题,最终是军民两用,可能在潜艇、航天,包括新型飞机、导弹都可应用,解决国防军事急需的新能源,花了最少的钱,取得了大成果。现在,导弹、飞机、航天火箭,液体燃料的推力远远不够用了,他的科研找到了路子,很可能要在这方面突破。这就是军民融合。  回顾周国泰的科研历程,他倡导“大科研”的思路清晰可见。  多年来,他打破研究所的“高大院墙”,广泛合作,先后有十几名院士和知名专家给他当顾问,直接参与课题研究。他把研究室主任带到训练场上去,带到船上去,干什么?上去找科研课题。他说,你研究的防寒服装,要自己穿上到寒区部队去和战士一块体验。比如,研究出舰船食品,就到船上去,风浪颠簸后看自己能不能吃。  他说:“好舵手会用八面风!科研,要兼容式、融合式,广泛联合、协作,充分发挥各方面的力量,发扬‘两弹一星’精神!”正是这样,在“九五”期间,周国泰创造了一个不足百人的研究所获得11项全军科研重大贡献奖,而有几千人的一个研究院才获9项。  关于获得多方面支持和合作,周国泰讲了一个故事。  一次,周国泰向一位中央领导同志汇报,说超级电容器用在电动汽车上,从起步,上坡,提速,包括充电速度如何快等等,讲得头头是道。这位领导同志说,我不听你讲,把车开来看看。  果然,周国泰把车开来了,领导坐了一圈,给予肯定:好!并详细过问还有什么困难。这件事发生在2010年。  超级电容器研发,像许多创新成果一样,最初从实验室做起,始于2008年。  怎么想到了研发超级电容器呢?  先看看这一年有关电动汽车的信息,各种电池技术及生产的消息,铺天盖地。人们的胃口吊起来了,期待着大街上有更多的电动汽车在跑。同时,业界在电动汽车电池技术上,也有不少争论。有人认为,电动汽车电池技术上解决了,只是成本高,国家出台补贴政策,就能推进电动汽车产业的发展。也有人提出,靠国家补贴,不是长久之计,有人在借机圈钱,电池技术还没有真正“过关”。  在这样的氛围下,周国泰组织创新团队攻关。他注意到,有人在传统电池上做文章,力求技术新突破。传统电池,是电能变成化学能,再转变成电能。而传统电容,是做大比表面积,通过研发各种物质材料,用增加比表面积的办法,来提高电容的性能。比表面积最大的材料,是活性碳。周国泰,在传统电池和传统电容之间,选择了一条科研的“中间路线”,集成电池和电容的优点于一身。  科技创新,往往是在不经意间,又往往以科研思路正确取胜。有成就的科学家,首先是在科研思路和方法上与众不同,从而获得科学突破。周国泰就是这样的科学家。在近4年的时间里,他领着科研团队,日夜苦干。他像当年研究石油工人防护服那样,从实验室到油田,身背大包服装搞试验,四处奔波 他像当年研究作战防护服、防弹头盔那样,上靶场,进深山,钻猫耳洞。研发超级电容器,还是那样“拼命三郎”。为此,4年间,周国泰病倒两次住院。  这里难以记述周国泰和研发团队更多的创新故事。不过,在近4年的时间里,他和研发团队终于获得了新成果:高能镍碳超级电容器。在天津市科委组织的成果鉴定会上,获得很高的评价。  采访周国泰院士,他不愿讲自己“过五关、斩六将”的故事,而是不间断地谈超级电容器研发获得的方方面面的大力支持和研发中的大团队协同。  他说,这是事实啊!从中央领导,到国家发改委、科技部等多个部委、天津市、天津市科委、张家港市、淄博市等,各级领导重视、关心、支持,涉及汽车等多领域、多学科专家密切合作,步调一致,协同攻关。不如此,这个超级电容器搞不出来,更不能成功用在汽车上。  举个例子吧。发改委的有关领导多忙啊!可是,领导多次表示:“周院士来谈项目,随时可见。”  做实验,急需一笔资金,张家港市委书记黄钦、市长徐美健得知后,当即拍板:“资金一周内到位。” 徐美健说:“这是国家的大事、民族的大事,即使失败了,我们张家港也愿意交这个学费!”  超级电容器中试,需要投入一笔资金,建中试生产线,淄博市委书记刘慧晏、市长周清利也还是当即决定:“中试生产线建在淄博,年产100万块,投资一周内到位。”周清利说:“实现零排放,还百姓一片蓝天是我们共产党人的责任,我豁出老命也要一干到底。”不仅如此,市科技局局长周元军就住在厂里,中试生产线高质量、高标准,以最快的速度建成。  周国泰还讲了几件他难忘的事。  超级电容器要在汽车上做试验。那是一个大冬天,北京那天出奇的冷。淄博市科技局局长周元军带着汽车,大汽车上驮着小汽车,一路从淄博赶到北京,下了车双手冰凉,身体发抖。再看几位穿工作服的随行,装车、卸车。旁人不知道,这几位是山东理工大学领军级的教授啊!  超级电容器做汽车发动机试验,涉及到天津军交实验室、天津无线电18所、汽研中心等多家单位、多位科研人员,大家一呼百应,一项试验要求5天完成,天津军交学院院长犹如战场下命令:“5天完成,只能提前。”  尤其是天津市,张高丽书记在不到一年的时间5次亲自召开会议协调和讨论此项目,并做多次批示。分管工业的副市长王治平召开20余次专门会议协调政府有关部门。天津市有关企业联合攻关,科委领导多次来试验室,具体指导项目的进程。他们心中装的是环境,装的是百姓,装的是那一片蔚蓝的天!  周国泰说:“我不是搞汽车的。超级电容要用在汽车上,如果没有这样的大力支持、协同攻关、良好的合作,是根本不可能的!协同,使每个人的创新潜能充分释放出来,整合起来。”  又说起为研发超级电容器项目,周国泰不到4年两次住院。院士也当了,将军的衔也授了,功成名就了,何必再“拼命”呢?!  周国泰说:“节能减排,哥本哈根会议上,温总理有承诺。还老百姓一片蓝天,作为科技工作者,我有一份责任!”  走出周国泰院士工作室,记者还回味着这句话。
  • 大连化物所研制高系统性能和高集成度的微型超级电容器模块
    近日,大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队与单细胞分析研究组(1820组)陆瑶研究员团队,以及中国科学院深圳理工大学、中国科学院金属研究所成会明院士等合作,开发了高精度的光刻、自动喷涂和3D打印技术,研制出具有高系统性能和高集成度的小型单片集成微型超级电容器。   为适应小型化、可穿戴、可植入微电子设备的快速发展,需要发展具有小体积、高集成度、高性能和高兼容度的微型储能器件。平面微型超级电容器由于无需隔膜和外部金属连接线的特殊结构,同时具有可靠的电化学性能和易于调控的连接方式,在微电子领域有着重要的发展潜力。然而,由于缺少可靠的高精度微电极阵列制备和高效的电解液精确沉积技术,大规模制备高集成度、高性能的微型超级电容器仍具挑战。因此,急需发展创新性的微加工技术,来实现规模化、稳定性地制备高度集成、高性能、可定制的微型超级电容器。本工作中,合作团队发展了一种结合高精度的光刻、自动喷涂和3D打印技术的通用可靠策略,实现了高精度微电极阵列的大规模制备和凝胶电解质精确快速添加,研制出具有高面积数密度、高输出电压、性能稳定的集成化微型超级电容器模块。团队首先采用高精度光刻加工技术和高稳定性自动喷涂技术,制备出超小型集成化微型超级电容器,单个器件的面积仅为0.018cm2,器件间距为600μm,实现了面积器件数密度为每平方厘米28个,即3.5×4.1cm2区域内包含400个器件。随后,团队设计并发展了具有优异流变特性的凝胶电解质墨水,采用精确可控的3D打印技术,实现了极小区域内电解质的精确均匀添加,使得相邻单元微器件之间形成良好的电化学隔离,所得集成化微型超级电容器可以稳定输出200V的高电压,单位面积工作电压达75.6V/cm2,是目前已有报到工作的最高值。此外,该微型超级电容器模块在162V的极端工作电压下,循环4000次后,仍然保持92%的初始容量。该工作为超小体积、高电压微型功率源的发展奠定了一定的科学基础。   相关研究成果以“Monolithic integrated micro-supercapacitors with ultrahigh systemic volumetric performance and areal output voltage”为题,于近日发表在《国家科学评论》(National Science Review)上。该工作的共同第一作者是我所508组博士后王森和1820组博士后李林梅。上述工作得到国家自然科学基金、中科院A类先导专项“变革性洁净能源关键技术与示范”、大连市高层次人才创新支持计划、中国博士后科学基金等项目的资助。
  • 中南大学物理仪器研发中心落户益阳
    1月17日上午,中南大学物理仪器研发中心揭牌仪式在益阳市鹏程科技有限公司举行。  创立于1988年的鹏程科技有限公司,是一家专业制造节能灯具、特长寿命中高压铝电解电容器的科技企业。公司致力于铝电解电容器技术的研究与开发,生产的Pchicon、Pchwl牌铝电解电容器已为国内外许多知名企业广泛应用,并获得市“优秀民营企业”等诸多称号。他们研制的新型数字旋光仪于2009年12月29日通过省科技厅鉴定,可广泛应用于药品制造等方面。鉴定委员会一致认为,该仪器技术先进,性能稳定,测量精度高,操作简便,其综合技术达国内领先水平。
  • 哈工大(深圳)魏军团队 AFM综述:3D打印超级电容器 - 技术、材料、设计及应用
    便携式、柔性和可穿戴电子设备的发展促进了高性能的电化学储能设备的快速发展。与电池和燃料电池相比,超级电容器表现出显著的优势,具有优异的倍率性能、杰出的循环寿命和卓越的安全性。然而,超级电容器的能量密度相对较低,不足以为电子设备提供连续且稳定的电源。为了提高能量密度,厚电极设计是有效的手段。而在传统的三明治结构的超级电容器中,平面电极的活性材料质量负载是相当有限的。设计三维多孔电极可以有效地提高活性物质的质量负载,同时保持较短的离子/电子传输距离和快速的反应动力学。但传统的制备三维多孔电极的方法通常复杂、昂贵、耗时,并且很难精确控制电极的结构。3D打印技术,通过计算机辅助设计/制造模型,对预定义的3D模型进行数字化控制,使得在短时间内精确控制和制造复杂结构成为可能。区别于传统的等材和减材制造技术, 3D打印技术可以实现几乎任何所需的立体几何形状,不需要所谓的模具或光刻掩模。这使得打印的超级电容器具有可调整的几何结构、高度集成、节省时间和低成本、以及卓越的功率和能量密度。为了总结这一领域的最新进展并为未来的研究提供设想,来自哈尔滨工业大学(深圳)的魏军教授团队,在Advanced Functional Materials上发表题为“3D Printed Supercapacitor: Techniques, Materials, Designs and Applications”的综述文章,回顾了3D打印超级电容器的最新进展,如图1所示。 图1. 3D打印超级电容器研究进展首先,介绍了用于制备超级电容器的代表性的3D打印技术,不同技术的原理图和特点如图2所示。 图2. 制备超级电容器的各种3D打印技术的原理图和特点接下来,文章重点介绍了超级电容器的可打印模块,包括电极、电解液和集流体,如图3所示。 图3. 用于3D打印超级电容器的材料在研究合适的可打印材料的同时,制造中的打印设计对于优化超级电容器的性能也是重要的。因此,文章总结了电极的设计(图4)、打印电极的后处理,并概括了3D打印超级电容器的不同构型(图5)。图4. 3D打印电极的不同结构设计 图5. 3D打印超级电容器的构型此外,还总结了3D打印超级电容器的各种应用,包括柔性可穿戴电子设备(图6)、自供电集成电子设备和传感系统(图7)。 图6. 不同类型的智能响应型超级电容器 图7. 3D打印的自供电集成系统,和超级电容器驱动的传感器系统。如图8可知,目前制备的3D打印超级电容器的能量密度与铅酸、镍氢电池和锂电池相当,有的甚至更高。 图8. 3D打印超级电容器的 (a)质量Ragone图, (b) 面积Ragone图最后,总结了目前3D打印技术的局限性和未来3D打印超级电容器的研究面临的挑战,并提出了一些可能的研究方向。 图9. 3D打印超级电容器的未来展望文章信息:Mengrui Li, Shiqiang Zhou, Lukuan Cheng, Funian Mo, Lina Chen,* Suzhu Yu,* Jun Wei,* 3D Printed Supercapacitor: Techniques, Materials, Designs and Applications, Advanced Functional Materials, 2022, 202208034.原文链接:https://doi.org/10.1002/adfm.202208034
  • 超级电容器用电极片首个国际标准发布
    近日,中科院山西煤炭化学研究所(以下简称山西煤化所)主持制定的国际标准IEC/TS 62565-5-2 (超级电容器电极片—空白详细规范)由国际电工委员会纳米电工产品与系统技术委员会(IEC/TC 113)对外正式发布。  该标准是超级电容器用电极片的首个国际空白详细规范,详细梳理了电极片影响器件性能的化学、物理、结构和电化学关键控制特性及其相应测试方法。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛应用于电动汽车、高速列车、飞机、光伏、风电和电子等领域。山西煤化所开展超级电容器研究以来,打通了“原料—材料—器件—应用”产业创新链,建立了超级电容器中试平台,用于评估电容炭的电化学性能,进一步反馈指导材料研发、生产和质量控制。该所科研人员发现,对超级电容器电极片的关键控制特性进行准确表征,并阐明“电容炭—电极片—电容器”之间的构效关系,对整个产业链的基础科学研究和技术开发十分重要。  2018年,山西煤化所提出制定电极片空白材料规范的设想。2020年,该标准项目正式立项。  该标准的发布,将为超级电容器电极片统一术语概念、规范生产流程、建立产品规范提供指导,为促进相关领域行业技术交流、技术合作及消除贸易壁垒提供支持。同时,该标准是超级电容器用电极片的首个国际标准,填补了国际标准化的空白,也为IEC/TC 113引入了超级电容器及其材料的概念,开启了IEC/TC 113在超级电容器用炭纳米结构材料领域的国际标准化制定工作,提升了我国在相关领域的国际影响力和话语权。
  • 高性能石墨烯基锂离子电容器研究获进展
    近日,电工研究所马衍伟团队联合大连化学物理研究所研究员吴忠帅在高性能石墨烯复合材料制备、石墨烯基锂离子电容器研制方面取得进展。相关研究成果以2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors为题,发表在《先进功能材料》(Adv. Funct. Mater., 2022, 2202342)上。 锂离子电容器作为一种有效结合锂离子电池与超级电容器的新型电化学储能器件,具有高功率密度、高能量密度以及长循环寿命,有效弥补了锂离子电池和超级电容器之间的性能差异。电极材料作为锂离子电容器的重要组成部分,是影响锂离子电容器性能的关键因素。 精细的结构设计工程被认为是提高电极材料电化学性能的有效方式之一。马衍伟团队提出了一种通用静电自组装策略,在还原氧化石墨烯上原位生长了具有卷心菜结构的MnO复合纳米材料(rGO/MnO)。通过深入的原位实验表征以及理论计算,证实了rGO/MnO异质结构具有较强的界面作用和良好的储锂动力学。由于rGO/MnO复合纳米材料具有高电荷转移速率、丰富的反应位点以及稳定的异质结构,基于rGO/MnO复合纳米材料制备的电极具有高比容量(0.1 A/g电流密度下比容量为860 mAh/g)、优异的倍率性能(10 A/g下比容量为211 mAh/g)以及长循环稳定性。因此rGO/MnO复合纳米材料可作为高性能锂离子电容器理想的负极材料。 通过将这种高性能石墨烯基复合材料作为负极与活性炭正极进行组装,马衍伟团队成功制备出柔性固态锂离子电容器(AC//rGO/MnO)。经测试,这一电容器基于电极活性材料总质量的能量密度最高达到194 Wh/kg,功率密度最高可达40.7 kW/kg。这是迄今为止报道柔性固态锂离子电容器能量密度和功率密度的最高值。此外,在10000次充放电循环后,AC//rGO/MnO电容器的容量保持率可达77.8%,并且安全性能高。 科研团队表示,这一研究提出的金属氧化物/石墨烯复合材料设计策略在高能量密度和高功率密度的柔性锂离子电容器中具有很好的应用前景。 该研究工作得到国家自然科学基金、中科院大连洁净能源研究院合作基金、中科院青年促进会等的支持。 论文链接: https://doi.org/10.1002/adfm.202202342 石墨烯复合材料结构示意图和锂离子电容器原理性能图
  • 大连化物所吴忠帅团队研制出可定制化全3D打印锌离子杂化电容器
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队,提出了通过油墨直写成型和熔融沉积成型两种3D打印方法,构建全打印可定制水系锌离子杂化电容器的新策略。团队利用该策略,构筑了具有分级多孔结构的高面容量正极,以及无枝晶稳定结构的锌金属负极,制备出高比能、长循环稳定的锌离子杂化电容器。随着定制化电子产品使用的增加,发展高能量密度且形状可定制的电化学储能器件已逐渐成为清洁能源转化和存储的迫切需求。锌离子电化学储能器件因其低氧化还原电位(-0.76 V)、高理论电容(823 mA h/g)、高安全性而引起了广泛关注。锌离子杂化电容器有效结合了锌离子电池和超级电容器的优点,可同时实现高能量密度和高功率密度。然而,水系锌离子杂化电容器仍存在面容量较低、锌枝晶生长及器件形状因子的限制,阻碍了其在实际应用中的进一步发展。本工作中,该团队通过油墨直写成型和熔融沉积成型两种3D打印方法构建了全打印锌离子杂化电容器,包括多孔微晶格正极、无枝晶的金属锌负极、凝胶电解质和塑料封装。其中,锌负极上打印的金属稳定结构有效地抑制了锌枝晶的生长,延长了锌离子杂化电容器的循环寿命(10000次循环后的电容保持率为100%)。分级多孔正极提高了活性材料的面积负载,从而提高了锌离子杂化电容器的面积电容,所制备的锌离子杂化电容器表现出4259 mF/m2的高面电容和1514 μWh/cm2的高面能量密度。团队结合熔融沉积成型3D打印技术,在构建锌离子杂化电容器的基础上,构筑出了与电极结构相符的封装结构,成功实现了形状可定制的全3D打印锌离子杂化电容器。该工作展现了3D打印技术在可定制化储能器件的应用潜力。相关研究成果以“All 3D Printing Shape-conformable Zinc Ion Hybrid Capacitors with Ultrahigh Areal Capacitance and Improved Cycle Life”为题,于近日发表在《先进能源材料》(Advanced Energy Materials)上。上述工作得到国家自然科学基金、中科院洁净能源创新研究院合作基金、辽宁省中央引导地方专项等项目的资助。文章链接:https://doi.org/10.1002/aenm.202200341
  • 超级电容器多孔炭首个国际标准发布
    记者24日从中国科学院山西煤炭化学研究所获悉,日前由该所主持,宁波中车新能源科技有限公司、深圳市标准技术研究院及国家纳米科学中心共同参与制定的国际标准——电化学电容器多孔炭(简称电容炭)空白详细规范,经国际电工委员会纳米电工产品与系统技术委员会通过,正式对外发布。该标准由中国科学院山西煤炭化学研究所709组技术团队承担制定工作。  这一电容炭领域首个国际材料空白详细规范,全面梳理了材料对器件性能的影响因素,包括电容炭的化学、物理、结构及电化学关键控制特性23项,其中电化学关键控制特性除了比容量、倍率性能等一些短期性能指标,还包括了下游用户更加关心的长期稳定性、温度耐受性等指标。标准对这23项关键控制特性的测试方法进行了详细的阐述,并且通过查阅国际国内标准,对这些测试方法的标准化成熟度进行了归类。  技术团队通过主持该标准的制定,一方面能全方位梳理总结材料影响器件性能的潜在因素,从内部把技术做精做细,另一方面也能促进国内研发人员与技术水平先进的国际公司充分交流,帮助技术升级,从而助力国产电容炭走向国际市场。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛用于电力监测通信终端、电网调频和规模储能等领域,拥有广阔的市场前景。然而,我国电化学电容器的关键活性材料——电容炭,长期依赖日韩进口。  近年来,我国电容炭生产技术取得重要突破。中国科学院山西煤炭化学研究所打通电容炭料—材—器—用技术创新链,成功实现成果转移转化,启动500吨电容炭产业化项目建设,目前已进入量产阶段。在电容炭研究过程中,科研人员发现其制备工艺路线长、影响因素繁多、构效关系复杂,缺乏标准文件指导。  基于此,技术团队自2019年向IEC(国际电工委员会)提出制定电容炭空白详细规范国际标准和超级电容器电极片空白详细规范的标准提案,旨在通过一系列高质量的国际标准“组合拳”引导该行业健康快速发展。
  • 比奥罗杰参展2016年超级电容器关键材料与技术专题会议
    为发展超级电容器器件及关键材料,促进解决关键科学问题,突破应用瓶颈,进一步推动超级电容器关键材料及技术的发展,促进我国超级电容器行业的健康有序融合与发展,由中国化工学会储能工程专业委员会主办,燕山大学环境与化学工程学院承办的“2016超级电容器关键材料与技术专题会议”于2016年8月25-27日在秦皇岛召开。比奥罗杰携SP-300系列高性能电化学工作站参展了本次会议, SP-300电化学工作站现场测试超级电容器样品表现出的稳定性及精确性让参会的超级电容器科研老师对bio-logic系列电化学工作站表现出浓厚的兴趣,并非常欣赏EC-LAB电化学软件在超级电容器应用上的优化。第一分会场报告实况 Bio-Logic仪器展示 晚宴黄晟副校长致辞 报到大厅
  • AEM:高储钠性能超级电容器研究分享
    北京化工大学杨志宇教授AEM:高储钠性能超级电容器研究分享超级电容器因其良好倍率性能、循环性能的可再生能源存储设备,已成为热门的电化学可再生设备。然而,超级电容器的实际应用仍面临能力密度低、性能提升依赖于先进电极材料开发等困难。目前常采用法拉第电极材料,包括过渡金属氧化物、过渡金属氮化物和过渡金属二硫化物等提高超级电容器的能量密度。其中,过渡金属氧化物因具有高理论电容,低成本,环境友好等优势,作为潜力巨大的电极材料应用在超级电容器中。然而半导体性质的过渡金属氧化物仍有固有电子电导率低,充放电过程中容量和倍率性较差等不足,因此如何设计良好的电子结构对于优化过渡金属氧化物的电化学性能至关重要。北京化工大学杨志宇研究员及团队在知名期刊Advanced Energy Materials上发表了题为“Elevating the Orbital Energy Level of dxy in MnO6 via d–π Conjugation Enables Exceptional Sodium-Storage Performance”的文章。过渡金属氧化物 (TMO) 具有固有的低电子电导率,而原子轨道相关的调节对于促进储能应用中的电子转移动力学至关重要。该研究利用 d-π 共轭策略来提高 TMO 的电子电导率。选择具有大共轭体系的酞菁 (Pc) 分子来修饰过渡金属氧化物 (δ-MnO2)。通过密度泛函理论(DFT)模拟,验证MnO2和Pc之间的强d-π共轭可以提高MnO6单元中低能轨道(dxy)的轨道能级,进而提高dxy的氧化还原活性,从而显著提高电化学钠存储性能。结果与讨论作者采用扫描电镜和透射电镜等设备分析材料的形貌结构,X射线能谱分析样品的电子结构和成分信息,紫外可见吸收光谱检测材料在250-800nm波长范围带隙,采用X射线吸收光谱展现材料的边缘结构和精细结构。使用北京卓立汉光仪器有限公司自主研发的Finder Viseta激光显微共聚焦拉曼光谱仪检测原位拉曼光谱,用于揭示其充放电循环过程中结构变化。图1 a)MnO2-Pc合成示意图;b)XRD谱图;c)FTIR光谱图;d)能量损失图;e) TEM图像;f)选定区域电子烟摄图;g)高分辨率TEM图像;h-l)元素映射图图2:a)CV曲线,MnO2-Pc 和MnO2 在20 mV s&minus 1;b)GCD曲线,MnO2-Pc 和MnO2 在 1 Ag&minus 1;c)GCD曲线,MnO2-Pc在不同电流密度下;d)比容量 ,MnO2-Pc和MnO2在不同电流密度下;e)Nyquist图,MnO2-Pc and MnO2;f) CV曲线,MnO2-Pc在不同扫描速率下;g)拟合曲线 h)电流贡献值 i)三次充放电过程中原位拉曼光谱图图3 a-c)pDOS(投影状态密度)曲线;d)轨道能级图;e-f)计算 ELF的DFT切片;g)轨道能级提升和加速电子转移特征示意图。图4 a) MnO2-Pc(阴极)// AC(阳极)ASC原理图。b) 1.0 m Na2SO4溶液中MnO2-Pc和AC的CV曲线。c) 100 mV s&minus 1时不同电位范围的CV曲线。d)不同扫描速率下CV曲线;e) GCD曲线(不同电流密度)。f)本工作中ASC的Ragone图与报道结果进行比较。结论:本文用 Pc 修饰 MnO2 以调节低能轨道 dxy 的轨道能级,并获得了更高的 MnO2-Pc 电化学储能性能。DFT 研究表明,轨道杂化引起的强 d-π 共轭提高了 dxy 的轨道能级并扩展了轨道能量分布,从而促进了电子转移动力学并激活了 dxy 的氧化还原活性。轨道能级提升策略有效地提高了 MnO2-Pc 的电化学 Na+ 存储能力。获得的 MnO2-Pc 在 1 A g-1 时显示出 310.0 F g-1 的高比电容,在 20 A g-1 时显示出 211.6 F g-1 的优异倍率容量。这项工作为改进 过渡金属氧化物的电化学 Na+ 存储提供了轨道能级提升策略的机理见解,这种有效的策略可以扩展到储能应用中其他先进电极材料的设计。原文链接:https://doi.org/10.1002/aenm.202300384相关产品推荐本研究的拉曼光谱采用Finder系列拉曼光谱仪检测,该系统全新升级为930全自动化拉曼光谱分析系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1105_1562.html 作者简介杨志宇,北京化工大学研究员。北京理工大学博士学位,清华大学博士后。主要研究方向为电化学领域。目前的研究方向是 (i)电化学储能,(ii)电催化CO2还原,电催化甲酸氧化和电催化氮还原 (iii)电容除盐。已发表一作、通讯SCI论文60余篇,包括JACS、AEM、AFM、Nano Energy、JEC、Small、CEJ、JMCA、JPS,申请专利7项,授权5项。免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 第八届超级电容器及关键材料学术会议顺利召开
    为推动超级电容器器件、关键材料及相关技术的发展,解决瓶颈性问题,促进我国超级电容器行业的持续发展及有序融合,2023第八届超级电容器及关键材料学术会议于2023年7月21-23日在天津滨海丽呈酒店顺利召开。华洋科仪作为大会主要赞助商之一,携法国BioLogic最新系列电化学工作站产品出席了此次会议,吸引了众多参会者纷纷驻足咨询交流,了解最新的技术应用。随着能源危机与环境问题不断加剧,如何开发新的绿色能源已经成为全球关注的大事。超级电容器作为新一代绿色能源技术之一,近年来备受关注。华洋科仪一直致力于为我国各学科领域的前沿科学技术发展贡献一份力量,我司总代理的法国BioLogic电化学工作站及电池测试系统,能够为超级电容器器件及关键材料的科学研究提供完整的解决方案,满足不同用户的需求。华洋科仪报导2023年7月23日
  • 规模化制备高度集成微型超级电容器研究获进展
    p  近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅团队与中科院院士包信和团队,以及中科院金属研究所成会明、任文才团队合作,采用丝网印刷方法规模化制备出高度集成化、柔性化、高电压输出的石墨烯基平面微型超级电容器,相关成果发表在《能源与环境科学》(Energy Environ. Sci.)上。/pp  微型化、柔性化电子器件的快速发展,让人们对与之匹配的微型储能器件的需求越来越大。然而,单个微型储能器件的输出电压和电流有限,难以满足需要高电压、大电流驱动的电子器件的应用需求,在实际中通常需要将多个储能器件进行串联和(或)并联集成来提高电压和(或)电流。目前集成化储能器件一般需要借助金属连接体,导致器件一体性、机械柔韧性差,加工过程复杂,以及性能难以定制。因此,急需发展新的规模化技术来批量化制备高度集成、性能可定制的微型储能器件。/pp  在该工作中,研究人员首先发展了一种具有优异流变学和电化学性能的石墨烯导电油墨,然后采用丝网印刷的方法,利用一步法实现了平面型及集成化微型超级电容器的集流体、图案化微电极和器件间导电连接体的制备,大大简化了制作流程,显著提高了集成器件的整体性和机械柔韧性。根据不同的实际应用需求,科研人员不仅可以对集成化微型超级电容器的形状和大小进行有效调控,而且能够实现任意数量平面微型超级电容器的串并联集成,进而有效定制输出电压(几伏至几百伏)和电流(纳安至毫安)。例如,由130个单器件串联得到的微型超级电容器模块,其输出电压可达到100V以上。该工作证明了石墨烯导电油墨可以同时作为集流体、导电连接体,以及高容量电极材料,丝网印刷技术可以高效、规模化地制备出高度集成化、一体化、高电压输出的平面微型超级电容器,获得的模块化器件具有出色的良品率、性能一致性、高电压输出等特征,具有广阔的应用前景。/pp  上述工作得到国家自然科学基金、国家重点研发计划、大连化物所科研创新基金等的资助。)/pp style="text-align: center "img title="W020181210353843556910.jpg" alt="W020181210353843556910.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/01dbcb67-90ca-4395-a863-2e1d7866840e.jpg"//pp style="text-align: center "规模化制备高度集成微型超级电容器研究获进展/p
  • 山西煤化所主持的一项超级电容器用材料领域国际标准正式发布
    近日,由山西煤化所主持制定的国际电工委员会(IEC)国际标准IEC/TS 62565-5-2 《Nanomanufacturing – Material Specifications – Part 5-2: Nano-enabled electrodes of electrochemical capacitor – Blank detail specification》正式发布。该标准提案于2018年提出,2020年5月立项,山西煤化所王振兵和陈成猛担任项目组组长,黄显虹作为执行负责人,项目组由来自中国、加拿大、韩国、德国、俄罗斯的十名专家组成,制定过程广泛采纳征求IEC成员国意见,为标准的高适用性和广泛采用奠定了基础。 电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛应用于电动汽车、高速列车、飞机、光伏、风电和电子等领域。山西煤化所开展超级电容器研究十余年,打通“材料-器件-应用”产业创新链,在国产化超级电容器用纳米孔结构活性炭材料技术攻关过程中,建立了超级电容器中试平台,用于评估材料的电化学性能,进一步反馈指导材料的研发、生产和质量控制。山西煤化所科研人员发现,超级电容器电极片的制备工艺和理化关键控制特性,不仅能反映原材料的特性,而且直接决定器件的性能,是原材料和器件之间的关键桥梁,因此超级电容器电极片的准确表征对整个产业链的高质量发展十分重要。 目前,国际国内对于超级电容器电极片的标准化仍是空白,亟需标准化的规范引领指导。山西煤化所科研人员基于行业需求,通过研发积累、与产业界广泛深入交流以及对科学文献和标准方法进行系统调研,提出了超级电容器电极片的首个材料规范标准,该标准详细梳理了电极片影响器件性能的化学、物理、结构和电化学关键控制特性及相应测试方法。 该标准的发布,将为超级电容器电极片统一术语概念、规范生产流程、建立产品规范提供指导,促进相关领域行业技术交流、技术合作,并为消除贸易壁垒提供标准支持。同时,该标准是超级电容器电极片的首个国际标准,填补了国际标准化的空白,也为IEC/TC113(国际电工委员会纳米电工产品与系统技术委员会)引入了超级电容器的概念,开启了国际电工委在该领域的标准化制定工作,提升了我国在超级电容器用材料领域的国际影响力。
  • 大连化物所发表可降解聚合物基超级电容器的综述论文
    近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队发表了有关可降解聚合物基超级电容器的综述文章,系统总结了生物可降解聚合物在超级电容器中的应用现状,并对该领域存在的挑战和机遇进行了展望。   超级电容器在未来可穿戴和可植入电子设备领域具有应用潜力,但用于超级电容器的传统材料往往不可降解,随着其推广应用,将产生大量的电子垃圾,无法满足当今社会日益增长的环保要求。生物可降解聚合物包括天然生物可降解聚合物和合成生物可降解聚合物,它们在自然条件下可以被分解为无害的小分子,而且优异的生物相容性使其避免了对环境的污染和生物的危害,这些独特的性质若能应用于超级电容器,将对其环境无害化处理产生重要影响。该文章系统地综述了现有生物可降解聚合物的分类、典型结构、性能和制备工艺,并从制备策略和改性方法方面概括了生物可降解聚合物基超级电容器的最新研究进展。在此基础上,文章指出了目前可降解超级电容器发展中亟需解决的问题。该综述对生物可降解聚合物在超级电容器甚至是储能领域的进一步应用有一定的指导作用。   该综述以“Recent Advancements and Perspectives of Biodegradable Polymers for Supercapacitors”为题,发表在《先进功能材料》(Advanced Functional Materials)上,该工作的第一作者是我所508组博士后吴鲁和师晓宇。上述工作得到国家自然科学基金、中国博士后科学基金、我所创新基金等项目的资助。
  • 半导体电容器组件三合一检测关键技术通过评价
    3月7日,中国机电一体化技术应用协会在广州组织并主持召开了“半导体电容器组件三合一检测关键技术研究及应用”项目科技成果评价会议。此次成果评价会议以线上线下相结合的形式进行,经专家评价,该项目整体技术水平达到国际先进水平。该项目由广州诺顶智能科技有限公司、华南理工大学、广州天极电子科技股份有限公司共同完成,特邀中国工程院院士、浙江大学求是特聘教授谭建荣担任专家组组长,广东省科学院智能制造研究所教授级高工程韬波为副组长,评价会议由中国机电一体化技术应用协会科技质量部主任、专家委秘书长刘明雷主持。针对微小半导体电容器组件的外观检测、电性能检测、分选三合一高速高精度集成测试难题,该项目研发了光度立体成像技术与互补融合视觉检测算法、电容充电及测量快速精准切换控制技术、首创微小电容器组件三合一无损吸附测试技术等,研制出半导体电容器组件三合一智能检测设备。该设备集成了外观检测、电性能检测、分选等功能,具备兼容性好、测量精度高、智能化程度和分选效率高等特点,填补了微小半导体电容器组件的外观检测、电性能检测、分选三合一检测集成装备的空白,实现了进口替代。项目产品经广东产品质量监督检验研究院检测,所检项目符合相关要求。来自浙江大学、广东省科学院智能制造研究所、广州机械科学研究院有限公司、广东产品质量监督检验研究院、广东省机械研究所等单位的7位专家组成的评价委员会,认真听取了项目完成单位的报告,审查了相关资料。经质询和讨论,他们一致认为,该项目成果具有创新性,整体技术水平达到国际先进水平。此次成果评价会议得到多方资源的支持,受到中国机电一体化技术应用协会的高度重视及聚智诚团队专业的科技成果评价指导。据悉,广州诺顶智能科技有限公司自主研发的设备覆盖芯片、元器件、通信、汽车电子、新能源等领域。2020年,该公司在芯片半导体微小器件领域投入大量研发后,成功研发出01005级别微小器件封测技术。科技成果评价会议现场。中国工程院院士谭建荣以线上方式参加评价会议。评价专家与项目团队合影。项目产品(局部)。本文图片由朱汉斌拍摄
  • 两国家地方联合实验室落户乌市企业
    乌鲁木齐国家高新区驻区企业新疆众和股份有限公司、特变电工新疆新能源股份有限公司日前经国家发改委批准,分别成立国家地方联合工程实验室。  据了解,众和公司被批准成立“铝电子材料国家地方联合工程实验室”,新疆新能源公司被批准成立“光伏发电控制及集成国家地方联合工程实验室”。众和公司是全球最大的高纯铝研发和生产企业之一,也是中国最大的铝电解电容器用电子铝箔生产企业之一,形成了“能源—高纯铝—电子铝箔—电极箔”资源优势转化链。新疆新能源股份有限公司是我国最早从事太阳能产业开发的企业之一,目前已形成了从太阳能级硅片—太阳能电池组件—光伏控制逆变系统—太阳能光伏发电系统集成的完整产业链条,成为我国集研究、生产、示范和应用于一体的太阳能高科技示范基地和专业的太阳能系统应用集成商,设计建造的离网型光伏电站和并网型光伏电站在国内市场占有率已分别位居第一和第二。  这两个国家地方联合工程实验室将依托企业自身的科研条件和人才技术优势,主要围绕铝产业和太阳能优势资源工程建设和产业发展的迫切需求,加强关键技术供给,提升产业持续发展能力,推进建立产学研合作机制,加快产业关键共性技术的研发步伐,促进科技成果向现实生产力转化,形成西部地区集试验研究、技术开发与集成、新产品产业化及人才培养为一体的高水平实验平台。
  • 半导体电容器组件三合一智能集成检测装备科技创新成果获评国际先进水平
    3月7日,中国机电一体化技术应用协会在广州组织并主持召开了“半导体电容器组件三合一检测关键技术研究及应用”项目科技成果评价会议。经专家评价,该项目整体技术水平达到国际先进水平。该项目由广州诺顶智能科技有限公司、华南理工大学、广州天极电子科技股份有限公司共同完成。此次成果评价会议以线上线下相结合的形式进行,特邀中国工程院院士、浙江大学求是特聘教授谭建荣担任专家组组长,广东省科学院智能制造研究所教授级高工程韬波为副组长,会议由中国机电一体化技术应用协会科技质量部主任、专家委秘书长刘明雷主持。针对微小半导体电容器组件的外观检测、电性能检测、分选三合一高速高精度集成测试难题,该项目研发了光度立体成像技术与互补融合视觉检测算法、电容充电及测量快速精准切换控制技术、首创微小电容器组件三合一无损吸附测试技术等,研制出半导体电容器组件三合一智能检测设备。该设备集成了外观检测、电性能检测、分选等功能,具备兼容性好、测量精度高、智能化程度和分选效率高等特点,填补了微小半导体电容器组件的外观检测、电性能检测、分选三合一检测集成装备的空白,实现了进口替代。项目产品经广东产品质量监督检验研究院检测,所检项目符合相关要求。来自浙江大学、广东省科学院智能制造研究所、广州机械科学研究院有限公司、广东产品质量监督检验研究院、广东省机械研究所、广东阿达半导体设备股份有限公司、广东博威尔电子科技有限公司的7位专家组成的评价委员会认真听取了项目完成单位的报告,审查了相关资料。经质询和讨论,他们一致认为,该项目成果具有创新性,整体技术水平达到国际先进水平。此次成果评价会议得到多方资源的支持,受到中国机电一体化技术应用协会的高度重视及聚智诚团队专业的科技成果评价指导。该项目获授权发明专利6件、实用新型专利8件和软件著作权6件;主导制订企业标准1项;发表高水平论文2篇。项目成果在国内外头部半导体企业转化应用后,取得了良好的经济效益和社会效益。
  • Autosorb-iQ用于石墨烯基超级电容器的研究在《科学》(Science)杂志发表
    德克萨斯大学奥斯汀分校机械工程系材料科学与工程教授Rodney S. Ruoff领导的科研团队成功制备出一种由石墨烯衍生出的新型三维多孔碳材料。利用该材料作为电极组装成的超级电容器,其能量密度可达到铅酸电池的水平,同时还保持超级电容器固有的高功率输出和极快的充电速度,有望应用于电动汽车以及解决风能、太阳能等间歇性能源的存储问题。这一发现意义深远:它有望使超级电容器存储的电能大大增加至电池的水平,将成为电化学储能设备和其他许多前所未有的研究领域的一个里程碑。  电化学储能设备中,超级电容器被比喻为“百米运动员”,其能量转移速度和效率都非常高,但是通常储存的电能少 而电池更像是“马拉松运动员”,具有较高的能量存储能力,充放电速度虽然慢但较稳定。“我们合成的新型碳材料像海绵一样具有大量的纳米级微孔,其比表面积达到了3100平方米每克(两克此种材料的表面积就和一个美式橄榄球场的大小相当),它的导电性也比一般材料高得多。  这项工作主要是由该研究小组的博士后研究员朱彦武博士及合作者来完成,于5月12日发表在《科学》(Science)杂志的在线预印版本ScienceXpress上。该小组的另一位博士后蔡伟伟博士也参与了此项研究。德克萨斯大学达拉斯分校的研究人员、布鲁克海文国家实验室的科研工作者以及佛罗里达美国康塔仪器公司的科学家也参与了这项工作。  其中,美国康塔仪器公司的Autosorb-IQ和NOVA被用于对合成的新型碳材料的孔结构、孔容和比表面积进行表征,通过研究N2@77K, Ar@87K及CO2@273K不同吸附质、不同吸附温度的实验等温线,可得到包括孔结构在内的丰富信息,与TEM、XRD等实验结果相互印证,为材料合成、应用提供关键信息。    来源:  www.sciencexpress.org / 12 May 2011 / Page 3 / 10.1126/science.1200770
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 超级电容又添新材料,稳定性大幅度提高
    p  多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在其表面涂了一层几纳米厚的氮化钛涂层,使其性质得以改变。/pp  该团队负责人麦卡· 普伦尼拉解释说,因化学反应导致的不稳定性和高电阻导致的低功率,不带涂层的多孔硅本是一种极差的电容器电极材料。涂上氮化钛的能提供化学惰性和高导电性,带来了高度稳定性和高功率,且多孔硅有很大的表面积矩阵。/pp  根据荷兰爱思唯尔出版集团《纳米能源》杂志在线发表的论文,新电极装置经13000次充放电循环而没有明显的电容减弱。普伦尼拉说,报告数据受检测时间的限制,而并非电极真实性能。他们继续对其进行充放电循环,至今已达到5万次,甚至在循环中让电极干燥,也没有出现物理损坏或电学性能衰减问题。“超级电容要求稳定地达到10万次循环。目前用多孔硅—氮化钛(Si-TiN)做电极的电容装置能完全稳定地通过5万次测试。”/pp  在功率密度和能量密度方面,新电极装置比得上目前最先进的超级电容器。目前由氧化石墨烯/还原氧化石墨烯制造的芯片微电容器功率密度为200瓦/立方厘米,能量密度为2毫瓦时/立方厘米,而新电极装置功率密度达到214瓦/立方厘米,能量密度为1.3毫瓦时/立方厘米。普伦尼拉说,这些数字标志着硅基材料首次达到了碳基和石墨烯基电极方案的标准。/pp  从电子产品的功率稳定器到局部能量采集存储器,芯片超级电容器有着广泛的应用。普伦尼拉说,他们在整体设计中还存在一些难题,每单位面积电容仍需提高,要达到技术许可的最高水平,他们还需进一步研究。/pp  总编辑圈点/pp  日本厨师发现将牛油果加上芥末竟然有了三文鱼的味道。如今,芬兰科学家也玩起了这样混搭的“戏法”——他们给多孔硅穿上一层氮化钛的外衣,尽管这层薄薄的外衣只有几纳米那么厚,却足以改变多孔硅电极的性能。这样的想象力让超级电容器的电极材料又多了一位优质成员,且它给人们的生活带来的改变也许远比一道日本料理大得多!随着芯片技术的广泛应用,希望科学家尽快解决多孔硅电极材料在超小型超级电容器上的设计问题,让这样巧思的发明早日造福人类。/ppbr//p
  • “检测别动队”在身边 ——访北京有色金属与稀土应用研究所理化中心主任王峰
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "伟业往往孕于平凡,默默无闻处总有顶天立地的脊梁。在北京就有这样一家单位,他们的工作鲜见报道,但却是“身怀绝技”。北京奥运场馆热轧带钢筋的检查工作由其负责,国庆60周年观礼台工程主结构材料由其检测,北京朝阳区保障性住房钢筋的检测工作中也尽是他们的身影… … 完成这些成就的单位究竟是怎样的面貌,又有哪些不为人知的精彩?近日,仪器信息网有幸走进北京有色金属与稀土应用研究所理化中心,采访了理化中心主任王峰。/span/pp style="text-align: left text-indent: 0em "span style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 663px height: 482px " src="https://img1.17img.cn/17img/images/201912/uepic/74e7e3d8-5f8a-4682-8d07-2f4ff4b8e404.jpg" title="“检测别动队”在身边.1.jpg" alt="“检测别动队”在身边.1.jpg" width="663" height="482" border="0" vspace="0"/ /span/pp style="text-align: center text-indent: 0em "strong工作中的北京有色金属与稀土应用研究所理化中心主任王峰/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong有色检测标准的“攻坚别动队”/strong/span /pp style="text-align: justify text-indent: 2em "标准与检测一向焦不离孟,作为有色及黑色金属材料及制品权威检测机构,除了在上述国家重大任务中承担检测职责,理化中心还参与了大量相关标准的制制修订工作,其中就有国家标准《GB/T 22638.6-2016 铝箔试验方法 第 6 部分 直流电阻的测定》,王峰恰好是该标准的主要起草人之一。“铝箔直流电阻是电子、电力、电解电容器用铝箔的一个重要技术指标,指标的均匀性可以反映出铝箔化学成分控制、内部组织和厚度均匀性的优劣,如何准确的测定铝箔直流电阻,为铝箔生产提供准确、客观的数据,是铝箔质量控制的一个重要保障。”王峰强调。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/c60fea25-9de6-4833-8814-c43edf8b0a05.jpg" title="“检测别动队”在身边...jpg" alt="“检测别动队”在身边...jpg"//pp style="text-align: center text-indent: 0em "strong理化中心的电阻率仪/strong/pp style="text-align: justify text-indent: 2em "随着“一带一路”基础设施建设的相继开展,铝箔已成为应用最广泛的有色金属制品之一,在建筑、车辆、船舶、能源等领域发挥着越来越大的作用,也为中国铝箔产品全面走向世界带来巨大机会。王峰表示,为铝箔产品标准的修订提供检测技术支撑是非常重要的工作。“我们的修订,主要是结合国内仪器设备生产情况与国外先进标准,使该系列检测方法标准更加科学、合理,符合国际惯例,并真正起到指导国内铝箔企业生产、提高技术水平。”/pp style="text-align: justify text-indent: 2em "在上述国标之外,理化中心也参与了大量有色行业标准的制定,包括金锡合金化学分析检测标准、变形铝合金铸锭超声波检测标准、氯化钯化学分析标准等等… … 据王峰介绍,我国目前已建立起比较完善的有色金属标准体系,但部分标准使用率还不高,标准在检测维度的适应性、有效性以及配套协调性也有待进一步提高。“比如有的产品标准中规定了检测指标,但却没有检测方法,或者有了检测方法标准,又缺乏产品标准中规定的检验标准。”王峰说道,“而这一部分就需要我们做相关检测工作的人积极参与其中,并且付出更多的努力。”/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "五脏俱全的高精尖仪器基地/span/strong/pp style="text-align: justify text-indent: 2em "支撑理化中心参与国家标准化工作的底气,来源于单位雄厚的仪器储备。在参观走访中笔者了解到,理化中心检测仪器设备达40余台套。拥有电子扫描显微镜、激光粒度仪、电感耦合等离子体质谱仪、电感耦合等离子体光谱仪、三坐标测量仪、水浸超声探伤、金相显微镜、同步热分析仪、激光热导仪、热膨胀仪、氧氮联测仪、原子吸收光谱仪、力学实验机、硬度计等一系列国内外先进仪器。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 300px height: 400px " src="https://img1.17img.cn/17img/images/201912/uepic/87b5c6cb-d170-4c3a-bc7b-6ff6f94ab721.jpg" title="“检测别动队”在身边....jpg" alt="“检测别动队”在身边....jpg" width="300" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong理化中心进口显微硬度计/strong/pp style="text-align: justify text-indent: 2em "“比如我们这套进口的显微硬度计,最小载荷可达到0.00002kg,镜头放大倍数可达到1000倍,比头发丝还细的键合丝硬度都可以测量,此外还能应用于材料不同相区的检测分析。”王峰介绍到。这些高水准的仪器错落分布在1000余平米的检测专用实验室中,在理化中心数十位专业检测人员的操控下,井然有序地开展着各项检测任务。“我们实验室麻雀虽小,但是五脏俱全。”王峰开玩笑说,谦虚又充满自信。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "开放共享 “检测别动队”并不遥远/span/strong/pp style="text-align: justify text-indent: 2em "如此权威又专业的检测单位,其实离我们普通人的距离并不遥远。“作为第三方检测机构,我们是可以面向社会承接金属制品的物理性能和成分分析等测试服务的。”王峰笑着说,“比如北工大、北科大等高校的学生,在学校排不上号时,经常也会把相关样品送到我们这检测。”/pp style="text-align: justify text-indent: 2em "在他看来,当前在检测行业,资源的开放与共享是未来发展的一个重要方向。“比如我们理化中心,除了专门用于有色金属检测的专用仪器设备外,还拥有很多通用型的高端仪器设备,很多仪器其实闲置率是很高的,与其浪费资源,不如造福社会。”正因为如此,理化中心相继加入了北京材料测试服务联盟、首都科技条件平台检测与认证领域中心、国家新材料测试评价平台等一系列促进科学仪器设备共享服务的重要组织,不断探讨如何为社会提供更好的检测服务。”就在仪器信息网到访之时,恰好有外面的用户送来了一组氧化物粉末样品,工作人员正在使用产自珠海欧美克的LS-909激光粒度仪测量该样品的粒度和粒度分布。/ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/85a61b82-9693-4b2d-aa23-906de92f134c.jpg" title="“检测别动队”在身边.....jpg" alt="“检测别动队”在身边.....jpg"//pp style="text-align: center text-indent: 0em "strong图电脑后侧为LS-909干湿二合一激光粒度仪/strong/pp style="text-align: center text-indent: 0em "strong图电脑左侧为仪器所配的DPF-110干法进样器和SCF-105B湿法进样器/strong/pp style="text-align: center text-indent: 0em "strong(a href="https://www.instrument.com.cn/netshow/C240671.htm" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "点击了解仪器详情/span/a)/strong/pp style="text-align: justify text-indent: 2em "“我们研究所本身需要检测的金属合金粉体材料往往是球形的,数十微米级单分散颗粒,检测粒度非常容易。”王峰解释说,“但是像这种从外面送来的样品往往粒度粒形更为复杂,对激光粒度仪分散性、重现性、重复性、精准度等指标的要求更高,并且经常会提出检测异常尺寸颗粒的灵敏性等涉及其他应用测试特性的要求,而这也恰好能让我们购买的高端仪器物尽其用。”现如今理化中心的LS-909激光粒度仪几乎每天都要迎来各种需求的粒度测试任务。“还是那句话,物尽其用,我们单位的仪器设备是开放共享的。”/pp style="text-align: justify text-indent: 2em "后记:采访中,王峰主任还分享了他对中国检测机构未来发展趋势的第二个看法,认为:检测机构将从单纯提供样品检测数据向提供产品的综合性能评价转型。而想做到这一点,需要检测机构在精通检测的同时,更多地深入学习、掌握相关材料和产品的应用。“我还只是个学徒工,需要提高的还很多。”王峰认真地说。/pp style="text-align: justify text-indent: 2em "strong附录1,理化中心简介:/strong/pp style="text-align: justify text-indent: 2em "北京有色金属与稀土应用研究所理化中心隶属于北京有色金属与稀土应用研究所,负责研究所自研有色金属焊接材料、功能材料等产品的研发与检测工作。同时,理化中心还是北京市有色金属与黑色金属材料权威检验机构,并在此基础上成立了由北京市质量技术监督局依法授权的市级质量监督检验站——北京市冶金产品质量监督检验站,具有独立法人资格。/ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/1a7b2127-d910-42e9-9838-eba69d64dc9b.jpg" title="“检测别动队”在身边......jpg" alt="“检测别动队”在身边......jpg"//pp style="text-align: center text-indent: 0em "strong理化中心一角/strong/pp style="text-align: justify text-indent: 2em "理化中心拥有CMA计量认证和CNAS实验室认可证书,目前已授权检测方法 200 余项,授权检测产品 100 余项。”测试的材料,被广泛应用于航空航天、电力电子、光电信息、铁路交通、建筑检测等诸多领域。/pp style="text-align: justify text-indent: 2em "strong附录2,王峰简介:/strong/pp style="text-align: justify text-indent: 2em "王峰,男,1985年出生,硕士学位,现任北京有色金属与稀土应用研究所理化中心主任,先后从事金属材料物理性能检测、有色金属新产品研发、标准起草与修订、实验室体系管理等工作。十多年来,始终坚持扎根科研检测一线,为首都打造科技创新中心贡献一份力。/p
  • 国家市场监督管理总局发布《电容计量器具检定系统表》等29项国家计量技术规范
    根据《中华人民共和国计量法》有关规定,批准《电容计量器具检定系统表》等29项国家计量技术规范发布实施,现予公告。市场监管总局2024年2月7日附件下载《电容器计量器具检定系统表》等29项国家计量技术规范名录.pdf
  • 复旦大学微电子学院朱颢研究团队实现低功耗负量子电容场效应晶体管器件
    当前MOSFET器件的持续微缩所带来的功耗问题已经成为制约集成电路发展的主要瓶颈。研发新原理器件以突破MOSFET亚阈值摆幅(SS)为60mV/dec的室温极限,是实现高速度、低功耗CMOS技术和集成电路的重要途径。近年来,包括隧穿晶体管(TFET)、负电容晶体管(NCFET)、冷源晶体管(CSFET)等在内的多种器件技术为实现陡峭亚阈值摆幅和低功耗器件性能提供了思路。复旦大学微电子学院朱颢研究团队针对上述晶体管器件技术的关键需求,与美国国家标准与技术研究院(NIST)及美国乔治梅森大学合作,提出了一种具有陡峭亚阈值摆幅的负量子电容晶体管器件。研究成果以《Steep-Slope Negative Quantum Capacitance Field-Effect Transistor》为题在近日召开的第68届国际电子器件大会(IEDM,International Electron Devices Meeting)上发表,微电子学院朱颢以及美国NIST的Qiliang Li为通讯作者,课题组杨雅芬博士为第一作者,复旦大学微电子学院为第一单位。该工作将单层石墨烯二维金属系统集成于MoS2晶体管的栅极结构中,构建负量子电容晶体管(NQCFET)器件,利用单层石墨烯在低态密度条件下产生的负电子压缩效应,通过栅极电压调控形成负量子电容。类似于传统基于铁电材料的负电容器件,NQCFET器件中利用石墨烯提供的负量子电容贡献,实现内部栅压放大和小于60mV/dec亚阈值摆幅的特性。该工作中,通过对器件栅极叠层结构以及制备工艺的优化,实现了最小31mV/dec的亚阈值摆幅和可忽略的滞回特性,以及超过106的开关比,有效降低器件静态与动态功耗。同时结合理论仿真揭示了器件陡峭亚阈值摆幅的形成机理,为未来高速低功耗晶体管器件技术的发展提供了新的路径。该项研究工作得到了国家自然科学基金等项目的资助。负量子电容晶体管器件结构与器件性能图
  • 南理工纳米储能材料研究进展发表在《Advanced Materials》
    p  近日,南京理工大学材料学院/格莱特研究院纳米能源材料(NEM)实验室夏晖教授团队在超级电容器氧化铁电极材料研究方面又取得新的突破。相关研究成果“Achieving Insertion-Like Capacity at Ultrahigh Rate Via Tunable Surface Pseudocapacitance”于2018年2月在线发表在材料科学领域顶尖期刊《Advanced Materials》(Adv. Mater., 2018, 1706640 IF=19.791)上。青年教师翟腾为第一作者,夏晖教授为通讯作者。这是该团队近一年内发表的第十篇影响因子10以上的论文。/pp  img src="http://img1.17img.cn/17img/images/201803/insimg/65ea0c55-1754-4fe1-9d91-1251d20715d3.jpg" title="1cf9e2e6-cadc-4938-be3e-aa30c04f9a31.jpg"//pp  图 改性氧化铁/亚硫酸钠体系容量随扫速变化及储能机理/pp  与超级电容器的其它负极材料如碳材料相比,三氧化二铁(Fe2O3)不但拥有较高的比电容量,而且资源丰富、价格低廉、环境友好,是一种极具应用潜力的高性能负极材料。但是其弱电子、离子传导性能,导致功率密度偏低和稳定性较差,严重制约着它在高性能超级电容器中的广泛应用。自2017年以来,夏晖教授团队在超级电容器电极材料的研究上取得了一系列研究进展,其研究结果均发表在国际材料能源领域的顶尖期刊上。在前期工作中,青年教师徐璟等人利用超细镍纳米管阵列上生长Fe2O3纳米片(Adv. Funct. Mater., 2017, 27, 1606728 IF=12.124),有效的提高了复合电极的赝电容性能。尽管如此,氧化铁的本征弱电子、离子传导性能依然亟待提升。在此基础上,NEM实验室的博士生孙硕首先发明了一种利用硼氢化钠溶液还原处理的普适方法制备具有本征高导电性和高离子传导性的Fe2O3结晶/非晶-核壳异质纳米结构(Nano Energy, 2018, 45, 390 IF=12.343):通过构筑非晶壳-结晶核异质结构并引入氧空位,成功在不损失能量密度的前提下有效地提高了赝电容超级电容器的功率密度以及循环稳定性。在这一工作进行的同时,夏晖教授团队通过同种改性方法引入的氧空位,调控改性氧化铁电极“牵手”氧化还原电解液中可贡献赝电容量的亚硫酸钠电解质。增量吸附的亚硫酸根为电极提高了可存储的电量,同时不受离子扩散限制的储能反应的快速动力学过程保证了大充放电倍率下实现更高的比容量(3.2 V s-1,290 C g-1)。高性能氧化铁负极材料/体系的研发,为高能量密度水系超级电容器的构筑提供了新的思路。此外,青年教师翟腾等人通过在金属氧化物表面实现磷酸根离子的表面改性,从而大幅度提高材料的表面反应活性而显著提高其赝电容贡献(Adv. Mater., 2017, 29, 1604167)。除了电极材料/体系比容量的提升,工作电压的拓展是获得高能量密度水系超级电容器的另一个关键。夏晖教授与化工学院朱俊武教授合作的2.6 V水系不对称超级电容器的研发成果于2017年6月在线发表在《Advanced Materials》(Adv. Mater., 2017, 29, 1700804)上。系列研究成果的结合将为水系高电压不对称超级电容器的应用研究提供有力的技术支撑,有望在未来取代铅酸电池。/pp  习近平总书记在十九大报告中关于“建设美丽中国”中指出,要“推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系”。能源存储材料作为高效储能装置的关键,是大力发展清洁能源不可或缺的一环。夏晖教授团队立足于清洁能源高效利用,围绕多种储能系统的关键材料开展研究,在过去一年中取得了一系列进展。/pp  其中围绕锂离子电池研究方向,取得的研究成果包括博士生薛亮完成的三维自支撑多孔LiCoO2纳米片阵列正极(Adv. Funct. Mater., 2018, 28, 1705836 IF=12.124)、青年教师岳继礼和硕士生嘉蓉完成的碳包覆SnO2-x多孔纳米片阵列负极(Energy Storage Mater., 2018, 13, 303 即时IF=13.39)、博士生夏求应完成的简易可控的硼(B)氮(N)双掺杂三维多孔碳纳米纤维正负极用于锂离子电容器(Adv. Energy Mater., 2017, 1701336 IF=16.721)、青年教师徐璟和硕士生蒋瑶完成的多孔氧化锰纳米立方负极的研究工作(Small, 2018, DOI:10.1002/smll.201704296 IF=8.643)。/pp  围绕钠离子电池研究方向,取得的研究成果包括青年教师杨梅和硕士生马依凡完成的氮(N)硫(S)共掺类石墨烯材料(Energy Storage Mater., 2018, 13, 134)、青年教师杨梅和博士生陈婷婷完成的功能化石墨烯/硫化钴量子点复合电极(J. Mater. Chem. A, 2017, 5, 3179 IF=8.867)、博士生郭秋卜完成的CoSx量子点内嵌氮硫共掺类石墨烯材料(ACS Nano, 2017, 11, 12658. IF=13.942)、硕士生陈琪等完成的硫化镍嵌入的柔性三维碳纤维电极材料用于柔性钠离子电池(Adv. Energy Mater., 2018, DOI:10.1002/aenm.201800054 IF=16.721)的研究工作。上述研究工作受到了能源存储领域的专家学者以及新能源企业的广泛关注。/p
  • 兰州化物所柔性纸基集成器件研究取得进展
    p  柔性传感器可穿戴或植入人体,并可检测周围环境信息,在医疗健康领域受到广泛关注。然而,作为用电器件的传感器自身并不能独立工作,需要电源为其供电。平面型微型超级电容器(MSC)作为新型的微型电化学储能器件易与传感器或其它电子器件进行有效集成。一般的方法是将传感器与电源通过外接导线连接,但在柔性可穿戴技术中引起不便。如何将柔性和无线电源与传感器集成到同一芯片,是当前研究所面临的挑战。/pp  纸质材料成本低、可即用即弃,并具有多孔和粗糙的纤维结构,可以增强其与电子器件的结合力。由于纤维素孔隙引起的毛细作用使通过印刷技术印刷的墨水材料在纸基表面扩散,导致形成的图案质量较差。中国科学院兰州化学物理研究所清洁能源化学与材料实验室研究员阎兴斌团队通过丝网印刷技术,在滤纸表面形成金属Ni叉指化集流体,并结合后续的电镀技术增强集流体的导电性,并抑制金属Ni在纸基表面的扩散,形成了分辨率较高的图案化集流体。在Ni表面通过电化学沉积MnO2或者聚吡咯(PPy)活性材料,并滴凃凝胶电解质,形成了基于MnO2的对称性超级电容器,以及基于MnO2和PPy的非对称超级电容器。经过测试,表明该纸基超级电容器具有较好的电化学特性和很强的耐机械形变特性(弯折1万次后容量几乎没有衰退),其能量密度和功率密度皆位于同类型超级电容器的前列。/pp  基于在纸面印刷的金属集成电路,研究人员将MSC和紫外传感器或气体传感器集成到同一单片纸上,集成器件显示出良好的传感特性和自供电特性。未来有望将能量采集、能量存储和用电器件集成到同一纸基芯片。这种基于纸质基底的集成策略为便携式和可穿戴电子开拓了新的设计方法。/pp  该研究在线发表在Advanced Functional Materials上,研究工作得到了国家自然科学基金和研究所“一三五”重点培育项目的资助和支持。/pp style="text-align: center "img title="1.png" src="http://img1.17img.cn/17img/images/201709/insimg/1ef655a3-bf7a-4a9f-b5ba-3c7d959f2d5a.jpg"//pp style="text-align: center "strong纸基自供电传感器的集成示意图与实物图/strong/pp /p
  • 【热点应用】Empyrean锐影银靶硬射线PDF分析助力研发具有高质量电容的新型 MXene 材料
    具有高质量电容的新型Ti2V0.9Cr0.1C2Tx MXeneMXene是一类具有二维层状结构的金属碳/氮化物,于2011年由美国德雷塞尔大学Yury Gogotsi教授首次制得。MXene独特的理化性质使其近年来在能源存储与转换、传感器、催化等领域受到学界广泛关注。尽管目前已合成了超过100种的MXene材料,但这些材料大多只包含单金属或双金属。由于构型熵的增加将带来优异的性能,因此合成中熵或高熵(三过渡金属及以上)MXene对于提升其独特性能,扩展其应用领域具有重要意义。但制备中熵或高熵MXene是一项重要且具有挑战性的任务。鉴于此,来自重庆大学的党杰教授、吕学伟教授等人和马尔文帕纳科的黄德军工程师,设计并成功合成了三过渡金属中熵MXene(Ti2V0.9Cr0.1C2Tx),大大提升了MXene材料的性能(包括导电性、质量电容等),成果发表于国际知名期刊《Nano Energy》。在其研究中,利用了马尔文帕纳科Empyrean锐影XRD银靶硬射线光路,对材料进行对分布函数(PDF)分析,为设计和合成更高性能的MXene材料奠定了可靠的数据基础。原文链接A New Ti2V0.9Cr0.1C2Tx MXene with Ultrahigh Gravimetric Capacitancehttps://doi.org/10.1016/j.nanoen.2022.107129图1. MXene电极在KOH溶液中离子迁移示意图文章概述该文章通过增加MXene的M位点元素和调节原子比例,得到三过渡金属MXene,并将这种MXene应用到超级电容器中。通过静电自组装法,将带负电的MXene负载于CTAB溶液改性的泡沫镍表面,该电极在KOH碱性环境中具备高达260 F g-1的电容。研究成果为钒钛资源高值利用提供了新思路。要点一制备三过渡金属MXene将Ti、V、Cr、Al和C粉按一定摩尔比混合后,在氩气气氛中无压烧结合成得到Ti2V1-yCryAlC2MAX 材料(y = 0.1, 0.25, 0.5),随后采用氢氟酸刻蚀相应的 MAX 相得到不同原子比例的三过渡金属(Ti -V-Cr) MXene。XRD精修表明M位点元素的原子比例对材料纯度有一定的影响。此外,XRD表明M位点元素的增加会导致MXene的层间距增加,对应于(0 0 2)峰向低角度偏移。通过马尔文帕纳科锐影衍射仪上银靶光路进行的对分布函数(PDF)检测,我们进一步发现,原子对分布函数中峰强、峰位以及单双峰的差异表明不同的MXene结构有一定的差异,但局部结构相似。0.97 Å, 2.13 Å and 3.04 Å处的峰分别代表O-H, Ti-C/O/F 和 Ti-Ti/C-C键。图2. (a) 合成方法示意图。(b) 不同MAX相的XRD。(c) Ti2V0.9Cr0.1AlC2 MAX相的精修图谱。(d) 不同MXene的XRD。(e) 不同MXene的原子对分布函数图。要点二三过渡金属MXene形貌结构表征及PDF测试Ti2V0.9Cr0.1AlC2 MAX相粉末呈现典型的层状堆叠结构。MAX相与氢氟酸反应后,由于Al的溶解及干燥时水分子蒸发膨胀产生的应力,MAX相转换成具有手风琴状的MXene。在球差电镜下显示了 Ti/V/Cr 的三个原子层,证实了 Ti2V0.9Cr0.1AlC2到 Ti2V0.9Cr0.1C2Tx的转化已经实现,三个原子层的厚度为0.63nm。此外,我们使用 ED-XRF 确定了钛、钒和铬的原子比,测试结果接近用于合成 MAX 相粉末和多层 MXene 粉末的 Ti:V:Cr 比例。图3. (a) Ti2V0.9Cr0.1AlC2 MAX相粉末和 (b) Ti2V0.9Cr0.1C2Tx粉末的SEM图。(c) Ti2V0.9Cr0.1AlC2 MAX相的TEM与SAED图。(d) (e) (f) Ti2V0.9Cr0.1C2Tx粉末的球差电镜图。(g) (h) Ti2V0.9Cr0.1AlC2 MAX相粉末和Ti2V0.9Cr0.1C2Tx粉末的元素分布图。由于AC-STEM显示Ti2V0.9Cr0.1C2Tx在三个原子层中呈现Ti/V/Cr固溶体,基于此,我们构建了一系列模型进一步探究Ti2V0.9Cr0.1C2Tx的原子结构(包括有序排列与固溶体排列)。此外,为了探索 Ti2V0.9Cr0.1C2Tx 的结构,将对分布函数分析与 DFT 计算相结合。采用DFT计算优化构建的结构并计算其吉布斯自由能,将优化后的结构与PDF数据相拟合,以此进一步探究三过渡金属MXene的结构。如图所示,随着结构体积的减小,形成能减小,说明结构趋于稳定。此外,PDF的拟合表明形成能较低的结构具有更好的拟合结果,表明它更接近实际结构。加入铬后,Ti2V0.9Cr0.1C2Tx的形成能低于Ti2.5V0.5C2Tx,说明Ti2V0.9Cr0.1C2Tx更加稳定。这从理论上表明可以合成 Ti2V0.9Cr0.1C2Tx。拟合结果表明,Ti2V0.9Cr0.1C2Tx和Ti2.5V0.5C2Tx是具有空间群pseudo-P63/mmc的固溶体结构,Ti/V/Cr原子随机排列。此外,Ti2V0.9Cr0.1C2Tx和Ti2.5V0.5C2Tx的晶体体积分别为608.992Å3和618.899Å3。最后,计算了材料的态密度(DOS),发现Ti2V0.9Cr0.1C2Tx在费米能级附近拥有最大的DOS。这表明Ti2V0.9Cr0.1C2Tx具有更高的导电性和更快的电子传输,这与EIS测试的结果一致。图4. (a) Ti2V0.9Cr0.1C2Tx 结构优化图。 (b) Ti2V0.9Cr0.1C2Tx (Rw=0.34)的最佳PDF拟合图,对应的晶体结构如(a)的红星所示。(c) Ti2.5V0.5C2Tx(Rw=0.37)的最佳拟合模式和相应的晶体结构如图S7的红星所示。(d)Ti2V0.9Cr0.1C2Tx、Ti2.5V0.5C2Tx 和 Ti3C2Tx MXenes 的态密度 (DOS)。要点三不同组分MXene的超级电容器性能基于MXene 带负电的特点,本文采用静电自组装法制备了一系列MXene基电极。在KOH碱性环境中,Ti2V0.9Cr0.1C2Tx展现了260 F g-1的质量电容,优于双过渡金属MXene (Ti2.5V0.5C2Tx) 与单过渡金属MXene (Ti3C2Tx)。同时,EIS结果表明Ti2V0.9Cr0.1C2Tx的电荷转移电阻相较于文中合成的其他MXene最低,这也揭示了Ti2V0.9Cr0.1C2Tx高质量电容的原因。图5. (a)不同MXene在2 mV s-1的CV图。(b) Ti2V0.9Cr0.1C2Tx 在 2 到 200 mV s-1 范围内不同扫描速率下的 CV 曲线。(c) Ti2V0.9Cr0.1C2Tx 在电流密度为 1 到 10 A g-1 时的恒电流充放电曲线比较。(d) 不同扫描速率下的质量电容。(e) 不同MXene 在 η=10 mA-2、η=20 mA-2、η=50 mA-2 和 η=100 mA-2 时的 I-t 曲线,持续 24 小时。(f) Ti2V0.9Cr0.1C2Tx的性能对比。原文链接A New Ti2V0.9Cr0.1C2Tx MXene with Ultrahigh Gravimetric Capacitancehttps://doi.org/10.1016/j.nanoen.2022.107129什么是对分布函数分析(PDF)?原子对分布函数(PDF, Pair distribution function)描述了在材料中发现距离为r的一对原子的概率(参见图 1)。二维晶体的对分布函数示意图此方法以高能硬X射线测量样品广角全散射数据(因此也称为Total scattering全散射分析),同时对布拉格衍射峰和漫散射进行归一化和傅里叶变换等处理,不仅提供长程(10 nm)原子有序性信息,还提供材料中短程结构信息,如短程有序/无序排布、键长、局部缺陷等。通过对不同状态同类样品的PDF数据进行差异化分析,还可以进一步研究过程中材料精细结构的变化,获得材料物理性能或化学性能的变化与材料结构变化之间的关系,深入研究变化/反应过程机理。PDF极大拓展了X射线结构表征的分析范围,样品不再局限于晶态材料,非晶、液体等均可测量。PDF测试有两项核心要求:短波长(获得高Qmax和高实空间分辨率),高强度(漫散射信号极弱)。在实际工作中,同步辐射光源和加速器线站天然具有高强度多波长的射线源,因此经常在粉末衍射线站搭建PDF光路,使用单色器选取短波长高能射线进行PDF实验。PDF线站强度极高,波长短,PDF数据质量高,但机时申请难度较大,日常科研工作难以依赖光源线站及时获得数据。2015年,马尔文帕纳科公司发布了独有的GaliPIX3D重元素半导体矩阵探测器,在Empyrean锐影X射线衍射平台构建了基于银靶辐射的高能硬射线透射光路用于PDF分析,从此用户可以在实验室平台即可获得高质量的PDF数据。
  • 第五届先进高功率电池国际研讨会第一轮通知
    第五届先进高功率电池国际研讨会The 5 th International Conference on Advanced High Power Battery (CHPB-5)时间:2022年11月1-2日地点:中国.苏州主办单位中国化学与物理电源行业协会中国电子科技集团公司第十八研究所承办单位北京中联毅晖国际会展有限公司第一轮通知我们刚刚在苏州召开的第六届先进电池正负极材料国际论坛(ABCA-6)取得了圆满成功,在疫情不稳定的情况下,会议参加人数达到了800人!在此,我们向所有参会人员、演讲嘉宾以及赞助商表达衷心的感谢!ABCA-6是以纯电动汽车动力电池技术发展为主线的会议,主要涉及动力电池正负极材料创新研究与应用的新进展,以及材料产业链创建与发展。对于纯电动汽车而言,动力电池一般是高比能量设计,即具有高的能量密度,确保一次充电的行驶距离;具有长的循环寿命和日历寿命,确保电池总行驶里程超过数十万公里和至少10年以上的使用寿命。ABCA-6论坛充分展示了近年来动力电池关键正负极材料以及辅助材料(导电剂、粘合剂等)研究与应用的新进展,其在确保动力电池比能量、寿命等要求方面起到了越来越重要的作用。尤其是本届会议特邀加拿大著名教授、锂电池专家、美国Tesla公司首席顾问杰夫.丹做了专题演讲,他用大量实验结果阐明,采用合适工艺与配方、特别是电解质添加剂等的优化,使采用NMC三元正极材料的动力电池完全可以满足电动汽车总行驶里程100万公里和使用期数十年,乃至一个世纪的要求,为新能源汽车的可持续发展提供了重要技术支撑。从全球来看,预计到2025年,全球新能源汽车销量将达到1800万辆;到2030年,全球电动汽车销量预计达到3000万辆规模。从国内来看,2021年我国汽车销售量重新转为正增长,销量达到了2628万辆,增幅为3.8%,结束了调整期。按照每年3%至5%的增速预测,到2035年,我国汽车年销量有望达到目前的1.5至2倍,约为4500万辆,再叠加4倍的渗透率成长空间,预计到2035年时,新能源汽车销量有6至8倍的成长空间,发展前景非常广阔。尽管COVID-19疫情依然严重,但来自韩国市场研究机构SNE Research发布的报告显示,2022年1-6月,全球动力电池装机量高达202GWh,较去年的115GWh大幅提升75.65%。随着疫情控制加强,我国汽车产业正在恢复增长,其中新能源汽车稳定保持世界第一的位置。因此,实现由工业和信息化部指导、中国汽车工程学会组织行业1000余名专家历时一年半修订完成的《节能与新能源汽车路线图2.0》中设定的目标是可以期待的。其中到2025年,BEV和PHEV年销量占汽车总销量15%-25%;到2025年混合动力乘用车当年销量占比达到50-60%(平均油耗达到5.6L/100km)。这预示我国未来的动力电池市场会越来越大。2021年中国动力电池的投资已超过万亿,产能扩张到1000 GWh; 2025年中国动力电池出货量将进入TWh时代,产值进入万亿级别。行业研究机构统计显示,2022上半年全球新能源汽车销量约408.7万辆,同比增长65%,相应的全球动力电池装机量为196GWh,同比增长82%。其中,排名前十的电池企业合计约183GWh,占总装机量的94%。相对于我国快速发展的BEV和PHEV市场而言,我国混合动力(微混/轻混和中混/全混)汽车也迎来了快速发展的良好机遇,如珠海COSMX冠宇通过快充电池材料的研究,在持续降低电池容量设计的前提下,大幅提升了12V锂离子电池的功率特性,推出一款“ 小体积、轻量化且低成本的启停电池”,取代目前采用的铅酸电池。不久以前, 中国化学与物理电源行业协会发布了《48V微混锂离子电源系统》(T/CIAPS0019—2022)标准 ,该标准的实施将极大地推进12-48V低电压电池技术与产品在混动车辆上的发展与应用。除混合动力车辆领域的发展需求外,近年来我国在电动工具和无人机装备等领域成为产销大国,由此对高性能、低成本、长寿命、高安全性“先进功率型”电池提出了创新要求, 为行业持续大力推进“新型高功率电池技术发展与推广应用”提供了重要依据。前四届论坛取得了丰硕成果,2022 年将继续举办第五届“先进高功率电池国际研讨会”,在当前我国技术与市场需求持续发展的有力支撑下,在广泛听取了业界的意见和建议基础上,进一步拓展和深化了论坛的内容,具体如下四个方面。1、先进高功率电池体系向多元化或混合体系创新发展:包括由金属氢化物镍电池扩展至锌镍电池,由双层超级电容器扩展至混合型电容器,由铅酸电池扩展至锂离子电池、钠离子电池,以及其它全新的混合电源体系等(如铅酸/功率型锂离子电池,超级电容器/高比能量锂离子电池)。2、增加先进高功率电池材料和化学体系最新研究进展:现有高功率电池综合性能的进一步提升,离不开新型电极材料、其它关键材料和集成创新技术的支撑。本次会议将增加“新型功能性电解质材料,含新型溶剂、盐(含离子液体)、各种添加剂等”和“隔膜材料,如低阻抗隔膜、高热稳定性隔膜或创新性处理技术等”的创新研究与应用等。3、拓展先进高功率先进电池的技术探讨:混合动力用先进功率型电池,不仅关注大电流脉充放电,更关注“大电流脉冲充电(可获取高效率瞬时能量回收),如微混或轻混车辆中使用的48V电池,充电功率要求高于放电功率等;消费者对电池低温充放电性能要求越来越高。因此对电池提升快充电性能、低温大电流充放电的创新技术研究将予以特别交流安排。4、拓展高功率电池应用领域的技术探讨:本届会议将继续围绕微混、轻混和全混合动力汽车、电动工具、无人机、电网储能调频等及相关电池系统的技术需求、创新研究与应用进展开展探讨。一、主要内容1、微混/轻混车辆市场展望及低电压应用(48V以内)的电池技术创新,特别是12&48V新型电池技术进展:1)微混车/轻混车辆市场现状与发展趋势及其对12&48V电池技术创新的要求;2)12&48V高功率锂离子电池或钠离子电池创新技术与应用进展;3)先进铅酸电池的技术进展(包括12&48V铅酸电池);4)其它可能的48V电池体系及技术进展(如氢镍、锌镍、超级电容器或混合电源等);5)12&48V电池系统集成技术(包括电性能、安全、循环、环境适应性、可靠性等);6)12&48V高功率电池的标准化进展;7)适合极端条件下(如-40℃或更低、+50℃或更高等)的高功率电池技术开发与应用等。2、混合动力车辆(中混/全混)市场展望及高电压应用(100-300V或更高)的先进电池及体系创新技术进展:1)混合动力车辆市场发展现状及趋势分析;2)功率型金属氢化物镍电池技术及其在混合动力车辆上的应用新进展;3)其它功率型电池(锂离子、钠离子、锌镍、铅碳、超级电容器、锂离子超级电容器及其混合电源体系等)技术发展及其在混合动力车辆上的应用新进展;4)功率型电池系统集成技术(包括电性能、安全、循环、环境适应性、可靠性等);5)功率型电池的评价技术及相关标准等。3、电动工具市场趋势及其对功率型电池的新要求:1)电动工具市场(包括北美、欧洲、亚太、拉美等地区市场)发展现状及趋势分析;2)功率型电池技术(包括锂离子和锌镍等电池技术)进展;3)超大电流持续放电对功率型锂离子电池应用的新挑战;4)电动工具用锂离子电池的能量密度和功率密度的发展趋势;5)电动工具的使用工况与功率型电池和电池包(块)的技术指标要求与评价技术。4、无人机市场趋势及其对功率/能量兼顾型电池的新要求:1)无人机市场趋势分析,包括消费级、行业级和农用级等;2)锂离子电池提升能量密度的技术方案及发展规划;3)全(半)固态电池的技术方案及发展规划;4)电池极限低温环境下充放电能力的研究进展;5)电池极限高温环境下长循环寿命的研究进展等。5、电网储能调频市场趋势及其对功率型电池的新要求6、起吊设备市场趋势及其对功率型电池的新要求7、列车高牵引力市场趋势及其对功率/能量型电池的新要求8、先进高功率电池的关键材料技术创新与应用进展:1)先进高功率电池新型正负极材料的研究与应用进展;2)降低高功率电池内部阻抗的关键材料研究与应用进展,包括高导电率电解质,高导电电极添加剂如碳纳米管、科琴黑等,低电阻粘合剂,高导电集流体,高强度/低离子电阻薄型隔膜等的研究与应用等;3)先进高功率电池全新正负极材料体系研究与应用进展等。9、提升先进高功率电池在高充电倍率下的充电接受能力:1)各种先进高功率电池的充电性能比较;2)镍氢高功率电池的充电行为与性能提升研究进展(在宽广温度区间);3)锌镍高功率电池的充电行为与性能提升研究进展(在宽广温度区间);4)锂离子高功率电池的充电行为与性能提升研究进展(在宽广温度区间);5)超级电容器的充电行为与性能提升研究进展(在宽广温度区间);6)其它新型高功率电池的充电行为与性能提升研究进展(在宽广温度区间)等。二、会议会期与方式:以大会演讲方式进行,会议安排两天技术交流(关于设立分会场、看报告数量)。三、会议征文:1、大会报告遴选:采取邀请、推荐与投稿相结合,特别欢迎踊跃投稿;2、投稿或推荐安排;1)凡期望能够在本次会议上发表论文单位与个人,均可直接投稿或推荐演讲人及题目(包括推荐国外人员);2)投稿时只需先交上题目与摘要(说明涉及的主要成果内涵,最长一页纸);3)推荐演讲人时,请写明演讲人姓名、国家、主要从事研究内容以及详细联系方法(电子邮件地址);3、推荐演讲人截止时间定于2022年9月25日;个人或单位投稿截止时间初定2022年10月10日。四、会议注册费:2022年10月25日前报名并交费:2800元/人2022年10月25日后报名及现场交费:3400元/人银行账号:单位名称:中国化学与物理电源行业协会地址:天津市滨海新区华苑产业区(环外)海泰华科七路6号开户行:中国银行天津西青支行开票注意事项:如果需要增值税专用发票,请提供单位名称、税号、地址、电话、开户行、账号。2022年11月后及现场交费的,增值税专用发票将于报到现场领取。正式注册代表享有:1、会议提供的资料及参会胸卡;2、会议茶歇提供的饮料及点心;3、会议提供的自助午餐;4、参加会议与讨论以及会议组织的活动;5、会后会议提供的总结报告 6、优惠的会议用房;7、会员单位代表参会可享受10%注册费优惠(仅限于2022年10月25日前报名并交费)。五、会议赞助:为了共同办好这次论坛,热烈欢迎各企业、科研院所,特别是大型电池/材料企业以及为电池/材料企业提供设备/仪器和服务的厂家赞助本次会议,并借此机会提高公司或单位的知名度。有关赞助事宜,请联系会议组委会。赞助商:本次会议设置总冠名、专场冠名、晚宴冠名、白金赞助商等赞助形式,赞助商根据不同的形式可分别享受到相应的权益。参展商:每个展位费用20000元(往届展商九折优惠),双开口展位23000元。包括2人的用餐、展台搭建、资料费用等。六、组委会联系方式:中国化学与物理电源行业协会E-mail:luhui@ciaps.org.cn北京中联毅晖国际会展有限公司E-mail:shaojie@sinobattery.com.cn中国化学与物理电源行业协会2022年8月30日
  • 第十五次全国电化学学术会议第一轮通知
    由中国化学会电化学委员会主办的第十五次全国电化学学术会议定于2009年12月16-20日在吉林省长春市吉林大学举行。本次大会由吉林大学承办,中国科学院长春应用化学研究所协办。本次会议的主题是电化学科学与技术。  全国电化学学术会议是国内规模化、系列化的学术会议之一,每两年举办一次,以此推动国内电化学领域的学科发展和科技进步,促进科研合作和技术转化。这次会议是我国电化学界的又一次高水平、高信息容量的学术交流。会议将构筑高水平的学术交流平台,围绕电化学和技术发展中的基础问题,提出创新观点,交流学术思想,展示最新成果。  中国化学会电化学委员会热诚邀请大陆、港、澳、台地区和海外华裔电化学家从事电化学基础研究、应用研究、仪器开发以及产业界同仁聚会长春, 交流和展示最新成果,讨论电化学学科的前沿和基础问题,探索如何进一步推动电化学科学和技术在国民经济发展中的应用。  一、会议安排形式  1、大会报告  (1)突出研究成果的电化学科学工作者的邀请报告,每人30分钟,4人左右。  (2)经营优秀的企业界代表的邀请报告,每人20分钟,8人左右  2、主题报告  具有优秀研究成果的中、青年电化学科学工作者的邀请报告,每人30分钟,分3个会场,每个分会场8人左右报告。  (1)电化学基础研究  (2)化学电源和超级电容器  (3)其他研究方向  3、分会报告  分10个分会场,每人报告15分钟,每个分会场45人左右报告  电化学基础(包括谱学电化学和电催化)  锂离子电池  超级电容器与其他电池  燃料电池  工业电化学和电化学工程(电解、电镀、金属腐蚀与防护、电沉积和表面处理技术)  生物电化学  有机电化学和环境电化学  电分析化学和传感器  材料电化学(纳米电化学、高功能金属和金属合金、高功能电化学聚合物、电极和电活性物质的分子设计)  电化学设备与技术及其产业发展研讨会(电解工业、电镀与修饰、湿法冶金、腐蚀与防护、电化学仪器和设备)  4、墙报  每篇论文限展一整张纸(一般高×宽=110 cm×80 cm),同时,在展出时间至少有一位作者现场讲解和回答问题。  5、电化学技术及其产业发展专题讨论  6、产品及仪器展示  二、投稿方式、起始和截止日期  投稿起始和截止日期2009年6月30日-9月30日,论文用在线投稿方式投稿,论文格式要求及其他有关会议详情请登陆:http://09cse-online.org  三、联系方式:  地址:长春市前进大街2699号吉林大学化学学院 邮编:130012  联系人:陆海彦,黄卫民,施峥  电话:0431-85155189 传真:0431-85155358  E-mail:luhy@jlu.edu.cn huangwm@jlu.edu.cn shizheng@jlu.edu.cn.  第十五次全国电化学会议组委会附:邀请函.pdf
  • 美国Gamry电化学亮相第一届先进材料前沿学术会议
    2016年11月18-20日,第一届先进材料前沿学术会议在古城西安开幕,来自全国各高校、研究机构及企业的众多专家、学者参加了此次会议。 本次会议由《材料导报》杂志社、西安科技大学联合主办。会议围绕“创新引领材料科技未来、实践助力材料产业升级”的主题,对当前先进材料领域前沿问题展开研讨,交流和共享材料研究的最新成果,对高性能金属材料、储能与动力电池材料、生态环境材料等领域进行了深入讨论。美国Gamry电化学仪器公司携Gamry电化学产品参加了此次会议,与参会代表们进行了广泛的交流。Gamry电化学工作站广泛应用于材料研究领域,包括电池相关的电极材料、隔膜、电解质等,以及各种电池、超级电容器等储能装置;燃料电池、太阳能电池等能量转换装置;材料的腐蚀与防护以及生物传感器、电解电镀、电化学分析等研究领域。 Gamry公司特色产品:Reference3000 AE是大电流与高品质的的电化学工作站,其设计尤其适合电池,电容器和燃料电池的研究人员。具有21个电极,±32V槽压,以及3A电流(可扩展至30A),仪器噪声和干扰非常小(共模抑制比 80dB@100kHz; 仪器噪声 2μV rms);浮地设计让用户可以直接测试各种接地装置;擅长测量超低阻抗(μ?);附加的电位测量通道, 可以监测电池堆的各个电池电压、进行半电池阻抗测试、同步阴阳极阻抗测试、以及同时监测压力、温度或pH值等。 在交流振幅小于10mV,60cm电极线条件下测得的阻抗精度图 Gamry一直致力于为用户提供超一流的电化学技术支持!以研究方向、领域为导向,开发了一系列针对具体应用的方法软件包,例如PWR800™ 能源软件包、DC105™ 直流腐蚀软件包、EIS300™ 电化学阻抗谱、PHE200物理电化学软件包等,其中包含丰富的测试方法,供用户选择使用。 用户使用Gamry仪器,已经在Nature或Science顶级杂志上发表了为数不少的论文,下面仅列举一二: 了解更多Gamry电化学技术,请登陆cn.gamry.com。刚瑞(上海)商务信息咨询有限公司地址:上海市杨浦区逸仙路25号同济晶度310室电话:021-65686006传真:021-65688389邮编:200437微信公众号:Gamry电化学
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制