当前位置: 仪器信息网 > 行业主题 > >

孔径影像仪

仪器信息网孔径影像仪专题为您提供2024年最新孔径影像仪价格报价、厂家品牌的相关信息, 包括孔径影像仪参数、型号等,不管是国产,还是进口品牌的孔径影像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合孔径影像仪相关的耗材配件、试剂标物,还有孔径影像仪相关的最新资讯、资料,以及孔径影像仪相关的解决方案。

孔径影像仪相关的论坛

  • 你所不注意的细节——色谱柱填料孔径对分析的影响~

    一般情况下,我们在购买色谱柱时,很少考虑色谱柱孔径方面的信息,其实,色谱柱填料孔径对分析也有些影响,具体如下:*HPLC吸附介质是多孔的颗粒,绝大多数的反应表面于孔内。因此,分析物必须进入孔内才能被吸附和分离*孔径小,含孔率高,则比表面积大,碳载量高,色谱柱分离性能也随之提高*另外,孔径大小必须和分子大小相匹配。一般情况下,分子量小于2000的分析物使用100 Å 或更小;分子量在2000-10000之间的分析物使用100-200 Å的填料;大于10000的包括多肽,蛋白质等需要选用300 Å或更大的孔径。为了达到最佳分离,一般要求孔径直径是分子直径的3倍以上

  • 怎么样选择滤膜的孔径呢,要考虑哪些因素,孔径对这些因素的影响有多大?

    怎么样选择滤膜的孔径呢,要考虑哪些因素,孔径对这些因素的影响有多大?

    孔径是滤膜选择的重要参数,关系到两方面问题:1、有没有除净会造成堵塞的颗粒物;2、滤掉了颗粒物,时间上能不能更快。从这两方面出发,怎样选择呢?1、估算、判断色谱柱对滤膜孔径的要求:以下是经典的膜片孔径计算方法:假设色谱柱的硅胶填料是均一的球形颗粒,粒径是3µm,紧密排列。可能会造成堵塞的是填料颗粒之间的空隙,也是流动相通过的路径。http://ng1.17img.cn/bbsfiles/images/2012/02/201202291946_351671_2456076_3.jpg假设流动相里面的颗粒物也是球形,那就可以通过平面几何的手段计算出多大的颗粒会堵塞色谱柱。http://ng1.17img.cn/bbsfiles/images/2012/02/201202291946_351673_2456076_3.jpg最外边等边三角形的边长就是3µm,颗粒物的临界直径就是中间黑色等边三角形的内切圆的直径。黑色等边三角形的边长是0.75µm,计算出颗粒物的临界直径是0.43 µm。http://ng1.17img.cn/bbsfiles/images/2012/02/201202291947_351674_2456076_3.jpg也就是说对于粒径是3µm的色谱柱来说,孔径是0.45µm的膜片已经不能满足要求了,而需要用0.22µm的膜片。

  • 怎么校准孔径仪器

    我们单位有一台美国PMI公司的气液置换法的孔径测量仪,主要用于检测过滤材料的孔径,现在想对其进行校准,怎么校准,去哪里校准?

  • 【求助】测定孔径的仪器

    要求测定中空纤维的孔径,在0.01-0.1um的孔,但压力不能太大,压汞仪是不行的。大家知道的还有什么好的仪器可以测定?或推荐。价格不是问题。

  • 平均孔径的计算方法

    一、平均孔径的概念 平均孔径有三种不同的表示方法 : ①吸附平均孔径:由吸附总孔体积与BET比表面积计算得到的平均孔径包含了所有的孔,只有孔径上限的界定。 ②BJH吸附平均孔径:由BJH吸附累积总孔体积与BJH吸附累积总孔内表面积计算得到的平均孔径,有孔径的上下限。 ③BJH脱附平均孔径:由BJH脱附累积总孔体积与BJH脱附累积总孔内表面积计算得到的平均孔径,有孔径的上下限。二、平均孔径的计算 平均孔径等于对应的孔体积和对应的比表面相除的结果。 公式为:平均孔径=k×总孔体积/比表面积,k和选的孔的模型有关,如果是圆柱形孔,那么k=4,如果是平面板模型,那么k=2. 三、应用案例 最可几孔径大概在8nm左右,而计算出的平均孔径则高达35nm,这说明什么问题?又是什么原因造成的呢? 平均孔径是4倍的孔体积除以比表面积,是从简单的柱状孔求得,对非均一窄分布孔误差极大。平均孔径没有多大的意义。平均孔径是对所有孔大小取平均,而最可几孔径是指分布最多的孔,当较小的孔数量多但也有较大的孔时就会出现你这种情况

  • 孔径(孔隙度)分布测定

    孔径(孔隙度)分布测定气体吸附法孔径(孔隙度)分布测定利用的是毛细凝聚现象和体积等效代换的原理,即以被测孔中充满的液氮量等效为孔的体积。吸附理论假设孔的形状为圆柱形管状,从而建立毛细凝聚模型。由毛细凝聚理论可知,在不同的P/P0下,能够发生毛细凝聚的孔径范围是不一样的,随着P/P0值增大,能够发生凝聚的孔半径也随之增大。对应于一定的P/P0值,存在一临界孔半径Rk,半径小于Rk的所有孔皆发生毛细凝聚,液氮在其中填充,大于Rk的孔皆不会发生毛细凝聚,液氮不会在其中填充。临界半径可由凯尔文方程给出了:http://www.app-one.com.cn/images/ps/11.jpgRk称为凯尔文半径,它完全取决于相对压力P/P0。凯尔文公式也可以理解为对于已发生凝聚的孔,当压力低于一定的P/P0时,半径大于Rk的孔中凝聚液将气化并脱附出来。理论和实践表明,当P/P0大于0.4时,毛细凝聚现象才会发生,通过测定出样品在不同P/P0下凝聚氮气量,可绘制出其等温吸脱附曲线,通过不同的理论方法可得出其孔容积和孔径分布曲线。最常用的计算方法是利用BJH理论,通常称之为BJH孔容积和孔径分布。

  • 【讨论】关于硅胶的孔径

    大家好,我是新手,有个问题请教大家。一般C18柱硅胶孔径有60A,120A等等,那这个“60A,120A”是怎么说明这根柱子的所有或者大部分硅胶孔径就是这么大的?比例是怎么衡量的?谢谢。

  • 筛分机目数和孔径的关系???

    看了一些有关筛分机孔径和目数关系的帖子,好像有两种标准,一个是目数为1平方厘米的面积内所含的孔数,一个是1英寸长度内所含的孔数,不知道一般国内用的是哪种?好像孔径与目数的关系还和所用钢丝的直径有关,那国标对于产品颗粒的大小是怎样规定的呢?是规定的孔径还是目数?如果规定的是目数那钢丝直径的标准是多少?如能给出明确答案,不胜感激。

  • 【求助】筛分机目数与孔径的关系???

    看了一些有关筛分机孔径和目数关系的帖子,好像有两种标准,一个是目数为1平方厘米的面积内所含的孔数,一个是1英寸长度内所含的孔数,不知道一般国内用的是哪种?好像孔径与目数的关系还和所用钢丝的直径有关,那国标对于产品颗粒的大小是怎样规定的呢?是规定的孔径还是目数?如果规定的是目数那钢丝直径的标准是多少?如能给出明确答案,不胜感激。

  • 气体吸附法比表面积及孔径分布(孔隙度)测试中,对测试过程和结果会产生非常重要的影响的因素

    气体吸附法比表面积及孔径分布(孔隙度)测试中,有几个因素对测试过程和结果会产生非常重要的影响。对测试结果的有效分析需考虑这些因素。这些因素包括:样品处理条件,吸附质气体特性,测试方法的不同等,以下分别进行详细介绍。样品处理条件由于比表面积和孔隙度的测定与颗粒的外表面密切相关,且吸附法测定的关键是吸附质气体分子“有效地”吸附在被测颗粒的表面或填充在孔隙中,因此样品颗粒表面的是否“洁净”至关重要。样品处理的目的主要是让被非吸附质分子占据的表面尽可能地被释放出来,以便测试过程中有利于吸附质分子的表面吸附,一般的样品测定前都需进行预处理,处理的方法依测定的样品特性进行选择。一般情况下,大多数样品需要去除的是其表面吸附的水分子,因此高于100℃(一般取105℃-120℃)常压下的烘干即可达到此目的,这样有利于简化操作流程。对于含微孔类的或吸附特性很强的样品,常温常压下就很容易吸附杂质分子,或是在制造过程中导致其表面吸附很多其它分子,通常情况下有必要在真空条件下进行脱气处理,有时还必须在预处理过程中通入惰性保护气体,以利于样品表面杂质的脱附。总之,样品预处理的目的是使样品表面变得洁净,以确保比表面积及孔径(孔隙度)测量结果的准确有效。吸附质气体特性气体吸附法比表面积及孔径分布分析测试中,对吸附质气体最基本要求是其化学性质稳定,被吸附过程中不会对样品本身的性能和表面吸附特性产生任何影响,且必须是可逆的物理吸附。氮气是最常用的吸附质,实践表明,绝大多数物质的测定选择氮气作为吸附质,测试的结果准确性和重复性都很理想。对于含有微孔类的样品,若微孔尺度非常小,基本接近氮气分子的直径时,一方面氮气的分子很难或根本无法进入微孔内,导致吸附不完全;另一方面,气体分子在与其直径相当的孔内吸附特性非常复杂,受很多额外因素影响,因此吸附量大小不能完全反应样品表面积的大小。对于这类样品,一般采用分子直径更小的氩气或氪气来作为吸附质,以利于样品的吸附和保证测试结果的有效性。测试方法因素不同的测试方法对测试结果也会有很大的影响,不同的测试方法有着各自的优缺点。连续流动法中,由于采用的是“对比”的原理,相比容量法,能有效降低样品处理对测试结果的影响。通过对比的方法,在某种程度上,标准样品和被测样品由于处理的不完善导致的误差可以抵消掉,前提是两种样品的表面结构和吸附特性相近似,处理条件相同。这对于用于产品质量现场控制目的的检测非常有价值,减少样品处理时间,可以大大提高检测效率。如果用同样的物质作为标准样品和被测样品,由于表面结构和吸附特性近似,比表面积测试结果就会对样品处理条件不敏感,换句话说就是误差被抵消掉。因此连续流动法非常适合产品质量现场检测。相反,容量法可以说对样品处理非常敏感,因其采用的是绝对的吸附量测定原理,任何的表面不洁净或其它影响吸附质吸附过程的因素都会对测定结果产品直接的影响。

  • 泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    [b][color=#3366ff]摘要:针对现有压力衰减法孔径测量中存在的基本概念不清和实施方法不明确等问题,本文详细介绍了压力衰减法的孔径测量基本原理,并重点介绍压差法测量中的高精度压力控制方法,为各种微小孔径和等效孔径的准确测量提供切实可行的解决方案。[/color][/b][align=center][img=压力衰减法孔径测量,550,294]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230914562217_9430_3221506_3.jpg!w690x370.jpg[/img][/align][b][size=18px][color=#3366ff]1. 问题的提出[/color][/size][/b] 在工业生产和实验室研究中存在着大量管件内部孔径的测量需求,而且还要求具有较高的测量精度,常见的需要精密测量的几类孔径有: (1)毛细管内径。 (2)鲁尔接头或其他连接器母接头孔径。 (3)各种喷灯气孔孔径。 (4)栓环缝通道等效孔径。 (5)药用玻璃瓶或药品包装系统漏孔孔径。 通道孔径主要分为直接测量方法和间接测量方法。直接测量主要是通过精密的尺规等工具进行测量,如游标卡尺、圆锥尺、针规和塞规等,但直接测量方法并不适应于细长管和针栓环缝通道等的孔径或等效通径的测量。 间接测量法主要有光学法和流体标定法。光学法一般是利用像素为基本单位对各种形状的孔进行测量,适用于元件表面孔和裂纹的测量。但对于细长或者弯曲多变的孔径,光学法不适用。流体标定方法是一种基于压力衰减法的有效的等效通径标定方法,流体介质多以气体和液体为主,通过流量计和压力传感器分别测量流体流量和压力差。但在目前的压力衰减法中普遍存在以下几方面的问题: (1)在低于和高于一个标准大气压的负压和正压条件下,都可以采用压力衰减法进行孔径测量,但绝大多数文献和专利报道对此并没有明确的规定,正负压测试条件的使用显着非常随意和混乱。 (2)压力衰减法的核心是在被测孔径管道的两侧形成恒定压力差,并同时测量由此压差引起的流量变化,其中的恒定压力控制是建立试验条件和影响测量精度的最重要因素。对于精确的压力控制在各种文献和专利报道中很少看到,大多报道只是给出一个不完整的压力衰减法测试框图,对精确的压力控制以生成高精度的恒定压差还未见报道。 针对上述现有压力衰减法孔径测量中存在的问题,本文将详细介绍压力衰减法孔径测量的基本原理,重点介绍压差法测量中的高精度压力控制方法,为微小孔径和等效孔径的准确测量提供切实可行的解决方案。[b][size=18px][color=#3366ff]2. 压力衰减法基本原理——泊肃叶定律[/color][/size][/b] 在恒定压差条件下,在粗细均匀的水平刚性圆管中作层流流动的黏性流体,其体积流量满足如图1所示的泊肃叶(Poiseuille)公式。[align=center][img=泊肃叶定律,600,311]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230917419388_2550_3221506_3.jpg!w690x358.jpg[/img][/align][align=center][color=#3366ff][b]图1 流体介质的泊肃叶定律[/b][/color][/align] 从泊肃叶公式中可以看出,体积流量与管孔半径的四次方成正比,孔径微小的变化都会对流量产生明显的影响。这就是压力衰减法孔径测量的依据,孔径的微小改变都会引起流量的显著变化,因此压力衰减法在孔径测量中具有很高的灵敏度,但前提是一要准确控制管道两端的压力,二是要准确测量体积流量。[b][size=18px][color=#3366ff]3. 孔径测量解决方案[/color][/size][/b] 依据泊肃叶定律,孔径测量的关键是实现准确的压力控制和流量测量。为此,本文针对高精度孔径测量提出的解决方案如图2所示。[align=center][b][color=#3366ff][img=压力衰减法孔径测量装置结构示意图,600,572]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230918265466_3029_3221506_3.jpg!w690x658.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图2 压力衰减法孔径测量装置结构示意图[/color][/b][/align] 如图2所示,被测孔径管件安装在两个压力腔室之间,整个装置的目的是精确控制这两个腔室的压力以形成稳定的压力差,在压力差稳定的装置下测量流进和留出两个腔室的气体流量,从而可计算得到被测孔径大小。 此孔径测量装置涉及以下几方面的主要内容: (1)此孔径测量装置采用了正压压力控制方案,这主要是因为正压控制同样可以达到很高的精度,而且,相对于负压真空环境下的测量和控制造价较低。正压控制过程中,采用纯净的高压气瓶和减压阀提供稳定的高压气源,高压气源同时供给两个压力控制阀以实现不同的正压压力控制。 (2)由于要测量进出两个腔室的气体流量,需要在两个腔室的进气口和出气口处分别安装气体质量流量计进行流量测量,因此压力控制阀无法直接对两个腔室的压力直接控制。为此,解决方案采用了串级控制方式,即在两个腔室上分别增加压力传感器,通过双通道PID压力控制器采集压力传感器信号,并两个通道分别设定不同的压力值,由此来驱动压力控制阀进行双回路的压力控制,由此实现两个腔室内的压力准确稳定在设定值上。 (3)压力控制阀是一个自带PID控制板和压力传感器的闭环压力控制装置,通过接收双通道PID压力控制器的控制信号,可以使压力控制阀出口处的压力准确恒定。压力控制阀自带泄压放气孔,由此两个压力控制阀组成的压差控制回路可使气体单向流过被测孔径管件。 (4)此解决方案中的孔径测量装置是一个对称装置,这种对称结构设计的目的是可以对被测孔径管件进行双向测试,这也是一种提高孔径测量精度的途径之一。 (5)压力控制器采用的是双通道高精度PID控制器,AD精度为24位,DA精度为16位,两个通道独立运行,可满足各种孔径精度测量中的压力控制需要。 (6)整个孔径测量装置的测量精度,除了受压力控制器精度影响之外,还会受到压力控制阀、压力传感器和气体质量流量计精度的影响,因此要针对不同的孔径测量精度要求选择合适精度的部件。 (7)由于此孔径测量装置是直接控制两个腔室的压力,所以在室温下运行时腔室温度的波动对压力变化没有影响,腔室压力控制自动会消除掉温度影响而保持腔室气压恒定。 (8)为了实现数据的自动采集和计算孔径测量结果,双通道压力控制器和两个气体质量流量计需要与计算机通讯连接(图2中并未绘出)。由此,通过计算机可设定控制压力,采集压力和流量变化曲线以监控压力和流量是否稳定,当达到稳态状态后可通过压力和流量采集数据并依据泊肃叶公式计算得到孔径测量值。[b][size=18px][color=#3366ff]4. 总结[/color][/size][/b] 综上所述,本文所提出的基于压力衰减法的孔径测量解决方案,具有很高的测量精度和广泛的适用性,整个测量过程自动运行,关键是可以满足多种形式的微小孔径测量,在替代传统塞规的前提下,是一种高精度的无损测量解决方案。特别是采用气体作为流体介质,非常适合微小尺寸(如毛细管等)和漏孔的等效口径测量。[align=center]~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创】高校应如何选择国产比表面及孔径分布测定仪

    1. 引言微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,其中表面效应来源于表面原子的状态与特性的特殊性以及材料的使用性能往往与其表面最相关,表面特性主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化;微纳米材料的表面特性具有极为重要的意义,因为材料的许多功能直接取决于表面原子的特性,例如催化功能、吸附功能、吸波功能、抗腐蚀功能、烧结功能、补强功能等等。比表面仪就是测定这两个指标的分析仪器。由于微纳米材料已成为近代材料科学的前沿之一,因此“比表面及孔径分布的测定”已作为基础实验列入我国高等院校的教学计划中,为此很多院校都面临选购比表面及孔径分布测定仪的问题,下面就如何选择国产比表面仪提出一些分析意见,供老师们参考。2. 我国比表面及孔径分析仪概况2.1比表面及孔径分析仪分类对于微纳米材料而言,其颗粒尺寸本来很小,加上形状千差万别,比表面及孔尺寸不可能直接测量,必须借助于更小尺度的“量具”,氮吸附法就是借助于氮分子作为一个“量具”或“标尺”来度量粉体的表面积以及表面的孔容积,这是一个很巧妙、很科学的方法。按测量氮吸附量的方法不同及功能不同,我国常用的比表面及孔径分析仪分类如下: 动态直接对比法比表面仪连续流动色谱法氮吸附仪 动态BET比表面仪 动态比表面及孔径分布测定仪 静态容量法比表面及孔径分布测定仪“连续流动色谱法”是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,这种方法可以实现直接对比法快速测定比表面,BET比表面测定和介孔孔径分布测定,目前国内动态仪器趋向于一机多能,在仪器结构基本相同的情况下,只要配备适当软件,就可实现既测比表面又测孔径分布的功能,而且能基本实现自动化;“静态容量法”测量氮吸附量与动态法不同,他是在一个密闭的真空系统中,精密的改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国已有少数公司可以生产。2.2国产静态容量法比表面及孔径分布测定仪的介绍国产静态容量法氮吸附仪在我国只有2、3年历史,一般了解较少,先通过下列两个表格的对照来介绍。表 静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪国产静态容量法比表面及孔径分析仪1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙BET比表面测3~5点,重复精度≤2%孔径分布只测定(脱附过程)~12点 测量的压力点多,表明测试更为精确可靠,BET比表面一般测7~9点,重复精度≤1%孔径分布测定,吸附过程≥26点,脱附过程≥26点,最高都可测到100点[/font

  • 【原创】动态色谱法比表面仪不适合做孔径测试原因分析

    [align=center][b][size=3][font=宋体]动态色谱法比表面仪不适合做孔径测试原因分析[/font][/size][/b][/align][size=3][font=宋体] 国外比表面及孔径分析仪测试孔径全部为静态容量法,没有任何一个型号的仪器采用动态色谱法来测试孔径分布;虽然国内动态色谱法在比表面测试方面已经比较成熟,但在前两年市面上出现的把动态色谱法应用到孔径分析,此种仪器虽然软件做到了勉强可以做出孔径分析数据,但由于受动态色谱法仪器检测器检测范围和测试原理的限制,其在孔径分析方面有诸多缺陷,当其作为在静态法仪器推出之前的一种国产孔径分析仪器的补充和过度,填补了国产比表面仪在孔径分析方面的缺失,而这个仅仅对商家利益有益,用动态法测得的孔径分布数据时近似或难以被认同的。[/font][/size][size=3][font=宋体]相对静态容量法,动态色谱法比表面仪不适合不适合做孔径测试,主要有四个因素:[/font][/size][size=3][/size][b][size=3][font=宋体]一、[/font][/size][size=3][font=宋体]动态色谱法测试液氮消耗比静态容量法快,需要补充,不适合长时间连续自动多点运行;[/font][/size][/b][size=3][font=楷体_GB2312]孔径分析时,通常要分析40个以上的分压点。[/font][/size][size=3][font=楷体_GB2312]动态色谱法测试时,每一个分压点的吸附脱附需要样品管进出液氮杯一次,吸附时样品管进入液氮杯吸热降温,吸附平衡后再离开液氮杯升温脱附,下个分压点时再次浸入液氮,使得每个分压点的测试都使液氮消耗量较大;每个分压点需要约20-30min,所以对孔径测试40-80个分压点测试需要15-40小时,耗时长,且需要多次人为添加液氮,使得测试过程繁琐,不能脱离人工看管而完全自动化,所以动态法仪器不适合做需要大量分压点的精确分析; [/font][/size][size=3][font=楷体_GB2312]静态法仪器,装样管可以很长(液氮杯深度和样品管长度一般在20-30cm),插入深而小口的杜瓦杯内,并将杯口遮盖,测试过程中无需样品管出入液氮杯,保温效果好,热量损失小,每个分压点需要约3-5min,40-80个分压点耗时4-8小时,在整个测试过程中都可以不用添加液氮,可以进行大量分压点的精细分析; [/font][/size][size=3][font=楷体_GB2312]1.[/font][/size][size=3][font=楷体_GB2312]没有任何一款动态法仪器测试40个分压点可以低于12个小时;而静态法平均只需要3小时左右;做70个分压点的精细分析,动态法仪器耗时不可能低于24小时,而静态法需要约6小时;[/font][/size][size=3][font=楷体_GB2312]2.[/font][/size][size=3][font=楷体_GB2312]动态法通常需要1小时就添加一次液氮,而静态容量法由于配备有液氮面伺服保持系统,整个测试过程中无需添加液氮;[/font][/size][size=3][font=楷体_GB2312]所以这两点是动态法仪器不适合进行孔径分析这种长时间自动运行的第一个原因;[/font][/size][size=3][font=楷体_GB2312]二、[/font][/size][b][size=3][font=宋体]由于高纯气体内杂质的影响,使动态色谱法每测试一点需要对样品进行吹扫处理后再继续测试下一个点,而静态容量法不需要。[/font][/size][/b][size=3][font=楷体_GB2312][/font][/size][size=3][font=楷体_GB2312]测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面测试中气体是连续流过待测样品,所以每个分压点测试的(20-30min)过程中将有大约1000ml的气体流经待测样品,40个分压点的整个测试过程将有40L左右的气体流经每个样品表面;对于单个分压点流经样品表面的1000ml气体中的高沸点杂质将有0.01-0.05ml左右,[/font][/size][size=3][font=楷体_GB2312]而对于500mg比表面积为1m[sup]2[/sup]/g的材料,在其表面形成水的单分子层吸附所需要的水的量为:0.069 ml(标况),[/font][/size][size=3][font=楷体_GB2312]所以,杂质吸附对下一分压点氮气吸附的影响就不能忽略,而需要重新吹扫处理后再进行下分压一点吸附,否则将得到的是表面被水分子包裹后的材料颗粒对氮气分子的吸附了,此测试结果显然不会可靠;[/font][/size][size=3][font=楷体_GB2312]静态法仪器每个分压点充入样品管的氮气量很少,每个分压点注入的氮气量只有几个毫升,消耗氮气量只有动态法的几百分之一,吸附质气体中的杂质影响程度将降到非常小; [/font][/size][size=3][font=楷体_GB2312]而目前市面上可测孔径的动态色谱法仪器没有一款会在一个分压点结束后对样品进行重新处理;所以动态色谱法仪器若是省略吹扫处理,这将造成结果的不准确;若是不省略,那将需要每测试完一个分压就得将样品重新处理,这将使仪器无法连续自动运行,成为繁琐长时间的人工操作;[/font][/size][size=3][font=楷体_GB2312]所以这点是动态法仪器不适合进行孔径分析这种长时间自动运行的另一个原因;[/font][/size][b][size=3][font=宋体]三、[/font][/size][size=3][font=宋体]动态色谱法仪器不能测试真正意义的脱附等温线;[/font][/size][/b][size=3][font=楷体_GB2312]动态色谱法仪器的吸附脱附方式决定了动态法仪器是不能测试材料的脱附等温线的,只能测试材料的吸附等温线;而脱附等温线和吸附等温线是不重合的,即有脱附回线;而国际常用的孔径分析理论都建议采用脱附等温线进行孔径分析;所以用动态法仪器采用吸附等温线得到的孔径分析数据时不可靠或难以被认可的,只能作为一种参考数据;[/font][/size][b][size=3][font=宋体]四、[/font][/size][size=3][font=宋体]动态色谱法仪器测试范围窄;[/font][/size][/b][size=3][font=楷体_GB2312]若用吸附等温线来代替脱附等温线进行孔径分析,动态色谱法仪器由于检测器是采用热导池检测器,所以氮气的分压测试范围不能过低也不能过高,其对氮气分压的测试范围只能最大只能达到0.01-0.95,无法达到孔径测试所要求的分压范围0-1,使孔径测试范围只能达到2-100nm,而静态容量法仪器的氮气分压测试范围将达到0-1全范围内,测试孔径的范围将达到0.35-400nm;[/font][/size][color=blue][size=3][font=宋体] [/font][/size][/color][size=3][font=宋体] [/font][/size][size=3][font=宋体]由以上4点可以看出,静态容量法是通过对固定空间的压力变化来检测粉体材料对氮气的吸附量,更适合做孔径及比表面分析;而动态色谱法是通过载气中氮气浓度变化来检测粉体材料对氮气的吸附量,则只适合进行比表面分析。[/font][/size]

  • 薄膜表面穿透孔的孔径检测

    我现在使用的薄膜,可以渗透水蒸气,但是不能透过液态水。所以想找相关得仪器测试测试一下薄膜表面能够穿透薄膜的孔的大小,做过扫面电镜和比表面积及孔径分析仪的检测,扫面电镜只能看到薄膜表面的凹坑,不能确定这个凹坑是否穿透薄膜。孔径分析也是这样,测得都是凹坑的孔径分布。但我现在想做穿透孔的测试,望大神们给予建议,谢谢!

  • 孔径角的定义是什么?

    孔径角的定义是什么?在光轴上的一个点的四十五度的光可以被看到,它的孔径角是四十五度,那那个点应该在什么位置呢?想不出来

  • 薄膜表面穿透孔的孔径检测

    我现在使用的薄膜,可以渗透水蒸气,但是不能透过液态水。所以想找相关得仪器测试测试一下薄膜表面能够穿透薄膜的孔的大小,做过扫面电镜和比表面积及孔径分析仪的检测,扫面电镜只能看到薄膜表面的凹坑,不能确定这个凹坑是否穿透薄膜。孔径分析也是这样,测得都是凹坑的孔径分布。但我现在想做穿透孔的测试,望大神们给予建议,谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制