当前位置: 仪器信息网 > 行业主题 > >

孔径分布仪

仪器信息网孔径分布仪专题为您提供2024年最新孔径分布仪价格报价、厂家品牌的相关信息, 包括孔径分布仪参数、型号等,不管是国产,还是进口品牌的孔径分布仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合孔径分布仪相关的耗材配件、试剂标物,还有孔径分布仪相关的最新资讯、资料,以及孔径分布仪相关的解决方案。

孔径分布仪相关的论坛

  • 孔径(孔隙度)分布测定

    孔径(孔隙度)分布测定气体吸附法孔径(孔隙度)分布测定利用的是毛细凝聚现象和体积等效代换的原理,即以被测孔中充满的液氮量等效为孔的体积。吸附理论假设孔的形状为圆柱形管状,从而建立毛细凝聚模型。由毛细凝聚理论可知,在不同的P/P0下,能够发生毛细凝聚的孔径范围是不一样的,随着P/P0值增大,能够发生凝聚的孔半径也随之增大。对应于一定的P/P0值,存在一临界孔半径Rk,半径小于Rk的所有孔皆发生毛细凝聚,液氮在其中填充,大于Rk的孔皆不会发生毛细凝聚,液氮不会在其中填充。临界半径可由凯尔文方程给出了:http://www.app-one.com.cn/images/ps/11.jpgRk称为凯尔文半径,它完全取决于相对压力P/P0。凯尔文公式也可以理解为对于已发生凝聚的孔,当压力低于一定的P/P0时,半径大于Rk的孔中凝聚液将气化并脱附出来。理论和实践表明,当P/P0大于0.4时,毛细凝聚现象才会发生,通过测定出样品在不同P/P0下凝聚氮气量,可绘制出其等温吸脱附曲线,通过不同的理论方法可得出其孔容积和孔径分布曲线。最常用的计算方法是利用BJH理论,通常称之为BJH孔容积和孔径分布。

  • 【原创】高校应如何选择国产比表面及孔径分布测定仪

    1. 引言微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,其中表面效应来源于表面原子的状态与特性的特殊性以及材料的使用性能往往与其表面最相关,表面特性主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化;微纳米材料的表面特性具有极为重要的意义,因为材料的许多功能直接取决于表面原子的特性,例如催化功能、吸附功能、吸波功能、抗腐蚀功能、烧结功能、补强功能等等。比表面仪就是测定这两个指标的分析仪器。由于微纳米材料已成为近代材料科学的前沿之一,因此“比表面及孔径分布的测定”已作为基础实验列入我国高等院校的教学计划中,为此很多院校都面临选购比表面及孔径分布测定仪的问题,下面就如何选择国产比表面仪提出一些分析意见,供老师们参考。2. 我国比表面及孔径分析仪概况2.1比表面及孔径分析仪分类对于微纳米材料而言,其颗粒尺寸本来很小,加上形状千差万别,比表面及孔尺寸不可能直接测量,必须借助于更小尺度的“量具”,氮吸附法就是借助于氮分子作为一个“量具”或“标尺”来度量粉体的表面积以及表面的孔容积,这是一个很巧妙、很科学的方法。按测量氮吸附量的方法不同及功能不同,我国常用的比表面及孔径分析仪分类如下: 动态直接对比法比表面仪连续流动色谱法氮吸附仪 动态BET比表面仪 动态比表面及孔径分布测定仪 静态容量法比表面及孔径分布测定仪“连续流动色谱法”是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,这种方法可以实现直接对比法快速测定比表面,BET比表面测定和介孔孔径分布测定,目前国内动态仪器趋向于一机多能,在仪器结构基本相同的情况下,只要配备适当软件,就可实现既测比表面又测孔径分布的功能,而且能基本实现自动化;“静态容量法”测量氮吸附量与动态法不同,他是在一个密闭的真空系统中,精密的改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国已有少数公司可以生产。2.2国产静态容量法比表面及孔径分布测定仪的介绍国产静态容量法氮吸附仪在我国只有2、3年历史,一般了解较少,先通过下列两个表格的对照来介绍。表 静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪国产静态容量法比表面及孔径分析仪1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙BET比表面测3~5点,重复精度≤2%孔径分布只测定(脱附过程)~12点 测量的压力点多,表明测试更为精确可靠,BET比表面一般测7~9点,重复精度≤1%孔径分布测定,吸附过程≥26点,脱附过程≥26点,最高都可测到100点[/font

  • 【讨论】请教计算孔径分布的理论模型

    我选用的仪器是麦克的tristar 3020其中计算BJH孔径分布的理论模型有几种现在我要测SBA-15(一种具有柱状介孔的SiO2材料)样品的孔径分布,请问应该选择哪种模型比较好?

  • 表面电位测试,粒度测试,氮气吸附法测孔径分布、比表面积和孔容、压汞法测孔径分布、孔隙率,孔容

    表面电位测试、粒度测试、比表面积测试、氮气吸附法测孔径分布、氮气吸附法测孔容、压汞法测孔径分布、压汞法测孔隙率(或气孔率)、压汞法测孔容。表面电位/激光粒度测试仪器 型号:zeta plus(made in USA);粒度测试范围:3nm~3um。比表面仪(氮气吸附法)型号:ASPA2010(made in USA) 孔径测试范围:1.7nm~300nm。压汞仪 型号:poresizer9320(made in USA) 孔径测试范围10nm~360um。流变仪 型号:SR5上海硅酸盐研究所国家重点实验室电话:52412224

  • 测定固体材料孔径分布和孔隙度 压汞法

    测定固体材料孔径分布和孔隙度 压汞法

    一般测试样品的孔径分布,所使用的方法就是静态容量法和压汞法。其原理是通过测试的分压和对应的各级孔的吸附量,来表征材料孔径的分布。表征的方法是,通过各级孔径的体积与对应的分压下的一个曲线图,来表征材料的孔径分布。今天我们主要讲讲测定固体材料孔径分布和孔隙度 -压汞法它的原理如下: [font=宋体]由于非浸润[/font][font=宋体]液体[/font][font=宋体]汞仅在施加外压力[/font][font=宋体]时方可[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔体(不包含[/font][font=宋体]闭孔[/font][font=宋体]),在[/font][font=宋体]不断增压的情况下,[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔[/font][font=宋体]体的汞体积[/font][font=宋体](或孔径)[/font][font=宋体]与外压力具有一定函数关系[/font][font=宋体],[/font][font=宋体]从而测得样品的孔径分布。[/font][font=宋体]在假设孔为圆柱形的前提下,[/font][font=宋体][color=#222222]Washburn方程[/color][/font][font=宋体][color=#222222]给出了压力与孔径[/color][/font][font=宋体][color=#222222]间[/color][/font][font=宋体][color=#222222][font=宋体]的关系[/font],[/color][/font][font=宋体][color=#222222]见下[/color][/font][font=宋体][color=#222222]式[/color][/font][font=宋体][color=#222222]。[/color][/font][img=,156,66]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301515009551_4103_2140715_3.png!w156x66.jpg[/img][font=宋体]其中,[/font]γ为汞的表面张力、θ为汞在样品上的接触角。我们实验室所购压汞仪为美国麦克仪器的9500系列的全自动压汞仪。最高压力可加至33000psia(≈230MPa),可分析孔径范围为0.0055um-400um。压汞检测适用范围: 适用于大多数非浸润多孔材料,不适用于汞齐化的材料,如:金、铝、还原铜、还原镍和银等一些金属;样品预处理: 最好在>110℃温度下,真空状态下干燥处理1h以上;样品尺寸的选择 因为检测中心使用的是5cc的膨胀计,样品尺寸为φ14×20mm的样品较为适宜。 但样品最佳的尺寸要根据所分析材料的总孔体积选择。一般,当Stem Volume Used 小于25%或大于90%时,需要改变分析变量。第一:可以选择稍大或稍小的样品量以提供更好的分辨率,第二改变毛细管体积。具体操作如[b][font=黑体] 1.[/font][font=黑体][color=#222222]样品烘干[/color][/font][/b][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222]10[/color][/font][font=宋体][color=#222222]℃±[/color][/font][font=宋体][color=#222222]5[/color][/font][font=宋体][color=#222222]℃,2h,贮存在干燥器中冷却至室温备用。[/color][/font][font=宋体][color=#222222] [/color][/font][font=宋体][color=#ff0000][font=宋体]最好在>[/font][font=宋体]110℃温度下,真空状态下干燥处理1h以上[/font][/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=黑体][color=#222222]2 [/color][/font][b][font=黑体][color=#222222]膨胀计[/color][/font][font=黑体][color=#222222]装样[/color][/font][/b][font=宋体][color=#222222]将干燥[/color][/font][font=宋体][color=#222222]冷却后的样品[/color][/font][font=宋体][color=#222222]称重[/color][/font][font=宋体][color=#222222]后[/color][/font][font=宋体][color=#222222]放入[/color][/font][font=宋体][color=#222222]一干净的膨胀计中,[/color][/font][font=宋体][color=#222222]用成套[/color][/font][font=宋体][color=#222222]的密封件[/color][/font][font=宋体][color=#222222]密封[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]密封时[/color][/font][font=宋体][color=#222222]必须使用密封脂[/color][/font][font=宋体][color=#222222],确保[/color][/font][font=宋体][color=#222222]密封性[/color][/font][font=宋体][color=#222222],密封不严可能造成真空度无法达到要求[/color][/font][font=宋体][color=#222222]。[/color][/font][font=楷体][color=#222222]注意:在样品装样等过程中必须戴好乳胶手套,皮肤不得直接接触样品和膨胀剂等,全程佩戴好口罩等防护用品。[/color][/font][font=黑体][color=#222222]3 [/color][/font][b][font=黑体][color=#222222]抽真空[/color][/font][/b][font=宋体][color=#222222]抽真空的目的是去除样品中的大多数水分及气体。[/color][/font][font=宋体][color=#222222]首先[/color][/font][font=宋体][color=#222222]将[/color][/font][font=宋体][color=#222222]装有样品的[/color][/font][font=宋体][color=#222222]膨胀计[/color][/font][font=宋体][color=#222222]安装在压汞[/color][/font][font=宋体][color=#222222]仪低压[/color][/font][font=宋体][color=#222222]站,建立低压测试文件开始分析,[/color][/font][font=宋体][color=#222222]真空度[/color][/font][font=宋体][color=#222222]达到小于[/color][/font][font=宋体][color=#222222]50μmHg[/color][/font][font=宋体][color=#ff0000][font=宋体](使用真空泵将膨胀计抽真空至[/font][font=宋体]20mg汞柱[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=宋体][color=#222222]要求后开始下一步低压测试[/color][/font][font=宋体][color=#222222]。[/color][/font][font=黑体][color=#222222]4 [/color][/font][b][font=黑体][color=#222222]低压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]抽真空结束后压汞仪[/color][/font][font=宋体][color=#222222]以分级连续升压或在[/color][/font][font=宋体][color=#222222]可[/color][/font][font=宋体][color=#222222]控[/color][/font][font=宋体][color=#222222]的[/color][/font][font=宋体][color=#222222]方式下以步进式[/color][/font][font=宋体][color=#222222]升压[/color][/font][font=宋体][color=#222222]的方式增压[/color][/font][font=宋体][color=#222222]。系统[/color][/font][font=宋体][color=#222222]记录压力和对应的进[/color][/font][font=宋体][color=#222222]汞[/color][/font][font=宋体][color=#222222]体积。当[/color][/font][font=宋体][color=#222222]达到设定[/color][/font][font=宋体][color=#222222]的压力[/color][/font][font=宋体][color=#222222][back=#ffff00](一般为[/back][/color][/font][font=宋体][color=#222222][back=#ffff00]30psia[/back][/color][/font][font=宋体][color=#222222][back=#ffff00])[/back][/color][/font][font=宋体][color=#222222]后,减压[/color][/font][font=宋体][color=#222222]力[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=宋体][color=#222222]当泄压结束后将膨胀计组件松开取下,毛细管向上称重并记录。[/color][/font][font=黑体][color=#222222]5 [/color][/font][b][font=黑体][color=#222222]高压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]安装膨胀计于[/color][/font][font=宋体][color=#222222]高压[/color][/font][font=宋体][color=#222222]站[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]确保密封性。建立高压测试文件开始孔径分布的高压分析。通过[/color][/font][font=宋体][color=#222222]计算机图表[/color][/font][font=宋体][color=#222222]记录[/color][/font][font=宋体][color=#222222]压力和相应的注汞体积。当[/color][/font][font=宋体][color=#222222]达到[/color][/font][font=宋体][color=#222222]所需的最大压力,[/color][/font][font=宋体][color=#222222]逐步减压[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=黑体][color=#222222]6 [/color][/font][b][font=黑体][color=#222222]测试[/color][/font][font=黑体][color=#222222]完毕[/color][/font][/b][font=宋体][color=#222222]从测[/color][/font][font=宋体][color=#222222]孔仪中取出膨胀计前,必须确保[/color][/font][font=宋体][color=#222222]仪器[/color][/font][font=宋体][color=#222222]内的压力已降至大气压。[/color][/font][font=黑体][color=#222222]7 [/color][/font][b][font=黑体][color=#222222]空管校准[/color][/font][/b][font=宋体][color=#222222]为消除由于汞压缩而产生的相对注汞体积、样品管和其他仪器元件等产生的误差[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222][font=宋体]在使用新的膨胀计时需按住[/font][font=宋体]8[/font][/color][/font][font=宋体][color=#222222].2-8.6[/color][/font][font=宋体][color=#222222]进行空管校准测试,建立专用的膨胀计数据,以便后续测试时减去空白,得到样品的真实孔径分布数据。[/color][/font][b][font=黑体]8.结果计算[/font][font=黑体] [/font][/b][font=宋体][font=宋体]通过以上测试获取样品的中位孔径、最可几孔径以及孔径分布曲线等数据,典型孔径分布曲线如下图[/font][font=宋体]1[/font][/font][font=宋体]-3[/font][font=宋体]所示。[/font]8.1压汞图谱介绍[font=宋体] [/font][img=,690,584]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301522043958_4855_2140715_3.png!w690x584.jpg[/img]8.2压汞过程中汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301523249691_5499_2140715_3.png!w690x575.jpg[/img]8.3压力转化为孔径后的汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301524109350_4028_2140715_3.png!w690x575.jpg[/img]8.4压汞测试报告结果[img=,690,274]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301526057747_9550_2140715_3.png!w690x274.jpg[/img]Total intrusion Volume【总侵入体积】,mL/g,是指在分析过程中获得的最大压力下,汞侵入样品孔隙的最大体积。 Total Pore Area【总孔面积】,m2/g,是基于圆柱几何假设的孔壁面积。Median Pore Diameter(Volume)【中值孔径(体积)】,nm,是指在较大和较小的直径上出现等量孔隙体积时的孔径。Median Pore Diameter(Area)【中值孔径(面积)】 ,nm,是在较大和较小的直径上出现相等数量的孔壁面积时的孔径。 注:中值孔径(体积)和中值孔径(面积)经常不同,因为分布中较大的孔对总体积贡献很大,而较小的孔对总孔面积贡献更大。随着孔隙分布变得更宽或呈双峰,这两个数字之间的差异将变得更大。END

  • 如何准确解析比表面积和孔径分布

    作为固体材料最重要的物理性质之一,比表面积和孔径分布的性能表征在许多行业中都有着广泛的应用。材料吸附性能的优劣、吸附特点等与其孔隙结构有着密切的联系。本次微课从物理吸附理论出发,系统地介绍了多孔材料

  • 关于氮气等温吸脱附计算比表面积、孔径分布的若干说明

    目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。◆六类吸附等温线类型  几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在: 低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。◆几个常数※ 液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm※ 标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL※ STP每mL氮气分子铺成单分子层占用面积4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明 此等温线属IUPAC 分类中的IV型,H1滞后环。从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。在p/p0 =0.5~0.8左右吸附量有一突增。该段的位置反映了样品孔径的大小,其变化宽窄可作为衡量中孔均一性的根据。在更高p/p0时有时会有第三段上升,可以反映出样品中大孔或粒子堆积孔情况。由N2-吸脱附等温线可以测定其比表面积、孔容和孔径分布。对其比表面积的分析一般采用BET(Brunauer-Emmett-Teller)方法。孔径分布通常采用BJH(Barrett-Joiner- Halenda)模型。◆Kelvin方程  Kelvin方程是BJH模型的基础,由Kelvin方程得出的直径加上液膜厚度就是孔道直径。弯曲液面曲率半径R‘=2γVm/,若要算弯曲液面产生的孔径R,则有R’Cosθ=R,由于不同材料的接触角θ不同,下图给出的不考虑接触角情况弯曲液面曲率半径R‘和相对压力p/po对应图:◆滞后环※滞后环的产生原因  这是由于毛细管凝聚作用使N2 分子在低于常压下冷凝填充了介孔孔道,由于开始发生毛细凝结时是在孔壁上的环状吸附膜液面上进行,而脱附是从孔口的球形弯月液面开始,从而吸脱附等温线不相重合,往往形成一个滞后环。还有另外一种说法是吸附时液氮进入孔道与材料之间接触角是前进角,脱附时是后退角,这两个角度不同导致使用Kelvin方程时出现差异。当然有可能是二者的共同作用,个人倾向于认同前者,至少直觉上(玄乎?)前者说得通些。※滞后环的种类 滞后环的特征对应于特定的孔结构信息,分析这个比较考验对Kelvin方程的理解。 H1是均匀孔模型,可视为直筒孔便于理解。但有些同学在解谱时会说由H1型滞后环可知SBA-15具有有序六方介孔结构,这是错误的说法。H1型滞后环可以看出有序介孔,但是否是六方、四方、三角就不知道了,六方是小角XRD看出来的东西,这是明显的张冠李戴; H2比较难解释,一般认为是多孔吸附质或均匀粒子堆积孔造成的,多认为是 “ink bottle”,等小孔径瓶颈中的液氮脱附后,束缚于瓶中的液氮气体会骤然逸出; H3与H4相比高压端吸附量大,认为是片状粒子堆积形成的狭缝孔; H4也是狭缝孔,区别于粒子堆集,是一些类似由层状结构产生的孔。※中压部分有较大吸附量但不产生滞后环的情况  在相对压力为0.2-0.3左右时,根据Kelvin方程可知孔半径是很小,有效孔半径只有几个吸附质分子大小,不会出现毛细管凝聚现象,吸脱附等温线重合,MCM-41孔径为2、3个nm时有序介孔吸脱附并不出现滞后环。◆介孔分析  通常采用的都是BJH模型(Barrett-Joiner- Halenda),是Kelvin方程在圆筒模型中的应用,适用于介孔范围,所得结果比实际偏小。  针对MCM-41、SBA-15孔结构分析的具更高精度的KJS(Kruk-Jaroniec-Sayari)及其修正方法,KJS出来时用高度有序的MCM41为材料进行孔分析,结合XRD结果,得出了比BJH有更高精度的KJS方程,适用孔径分析范围在2-6.5nm之间。后来又做了推广,使之有较大的适用范围,可用于SBA-15孔结构(4.6-30nm)的表征。◆关于t-Plot和αs方法  是对整条吸附或脱附曲线的处理方法,t-Plot可理解为thickness图形法,以氮气吸附量对单分子层吸附量作图,凝聚时形成的吸附膜平均厚度是平均吸附层数乘以单分子层厚度(0.354nm),比表面积=0.162*单分子层吸附量*阿伏加德罗常数。样品为无孔材料时,t-Plot是一条过原点直线,当试样中含有微孔,介孔,大孔时,直线就会变成几段折线,需要分别分析。αs方法中的下标是standard的意思,Sing提出用相对压力为0.4时的吸附量代替单分子层吸附量,再去作图,用这种方法先要指定一个标准,或是在仪器上做一个标样,处理方法和图形解释两种方法是类似的。两则之间可以相互转化,t=0.538αs◆微孔分析  含微孔材料的微孔分析对真空度,控制系统,温度传感器有不同的要求,测试时间也比较长,时间可能是普通样品的十倍甚至二十倍。由于微孔尺寸和探针分子大小相差有限,部分微孔探针分子尚不能进入,解析方法要根据不同的样品来定,需要时可借鉴相关文献方法来参考,再则自己做一批样品采用的是一种分析方法,结果的趋势多半是正确的。现在用一种模型来分析所有范围的孔径分布还是有些困难,非线性密度泛涵理论(NLDFT)听说是可以,但论文中采用的较少。★送样提醒★  明确测试目的:比表面积和孔结构对活性中

  • 气体吸附法比表面积及孔径分布(孔隙度)测试中,对测试过程和结果会产生非常重要的影响的因素

    气体吸附法比表面积及孔径分布(孔隙度)测试中,有几个因素对测试过程和结果会产生非常重要的影响。对测试结果的有效分析需考虑这些因素。这些因素包括:样品处理条件,吸附质气体特性,测试方法的不同等,以下分别进行详细介绍。样品处理条件由于比表面积和孔隙度的测定与颗粒的外表面密切相关,且吸附法测定的关键是吸附质气体分子“有效地”吸附在被测颗粒的表面或填充在孔隙中,因此样品颗粒表面的是否“洁净”至关重要。样品处理的目的主要是让被非吸附质分子占据的表面尽可能地被释放出来,以便测试过程中有利于吸附质分子的表面吸附,一般的样品测定前都需进行预处理,处理的方法依测定的样品特性进行选择。一般情况下,大多数样品需要去除的是其表面吸附的水分子,因此高于100℃(一般取105℃-120℃)常压下的烘干即可达到此目的,这样有利于简化操作流程。对于含微孔类的或吸附特性很强的样品,常温常压下就很容易吸附杂质分子,或是在制造过程中导致其表面吸附很多其它分子,通常情况下有必要在真空条件下进行脱气处理,有时还必须在预处理过程中通入惰性保护气体,以利于样品表面杂质的脱附。总之,样品预处理的目的是使样品表面变得洁净,以确保比表面积及孔径(孔隙度)测量结果的准确有效。吸附质气体特性气体吸附法比表面积及孔径分布分析测试中,对吸附质气体最基本要求是其化学性质稳定,被吸附过程中不会对样品本身的性能和表面吸附特性产生任何影响,且必须是可逆的物理吸附。氮气是最常用的吸附质,实践表明,绝大多数物质的测定选择氮气作为吸附质,测试的结果准确性和重复性都很理想。对于含有微孔类的样品,若微孔尺度非常小,基本接近氮气分子的直径时,一方面氮气的分子很难或根本无法进入微孔内,导致吸附不完全;另一方面,气体分子在与其直径相当的孔内吸附特性非常复杂,受很多额外因素影响,因此吸附量大小不能完全反应样品表面积的大小。对于这类样品,一般采用分子直径更小的氩气或氪气来作为吸附质,以利于样品的吸附和保证测试结果的有效性。测试方法因素不同的测试方法对测试结果也会有很大的影响,不同的测试方法有着各自的优缺点。连续流动法中,由于采用的是“对比”的原理,相比容量法,能有效降低样品处理对测试结果的影响。通过对比的方法,在某种程度上,标准样品和被测样品由于处理的不完善导致的误差可以抵消掉,前提是两种样品的表面结构和吸附特性相近似,处理条件相同。这对于用于产品质量现场控制目的的检测非常有价值,减少样品处理时间,可以大大提高检测效率。如果用同样的物质作为标准样品和被测样品,由于表面结构和吸附特性近似,比表面积测试结果就会对样品处理条件不敏感,换句话说就是误差被抵消掉。因此连续流动法非常适合产品质量现场检测。相反,容量法可以说对样品处理非常敏感,因其采用的是绝对的吸附量测定原理,任何的表面不洁净或其它影响吸附质吸附过程的因素都会对测定结果产品直接的影响。

  • “比表面与孔径分析原理及应用”免费讲座福利包拿走不谢!

    [align=center][b][color=#ff0000]《比表面与孔径分析原理及应用》系列讲座之第一讲 [b]氮吸附法比表面及孔径分析原理[/b][/color][/b][/align][b][color=#ff0000]主讲人:[/color][/b]钟家湘,北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”。[b][color=#ff0000]开讲时间:[/color][/b]2018年7月5日 10:00[b][color=#ff0000]免费报名链接:[/color][/b][url]http://www.woyaoce.cn/webinar/meeting_3335.html[/url][b][color=#ff0000]课程简介:[/color][/b]本讲主要介绍超细粉体材料比表面及孔径分布的基本概念;吸附科学在比表面及孔径分析中的应用要点;氮吸附比表面测定原理;氮吸附孔径分布测定原理。比表面与孔径分析原理及应用专家系列讲座之课程目录第一讲 氮吸附法比表面及孔径分析原理第二讲 连续流动色谱法比表面仪原理及应用第三讲 超细粉体表面孔径分布的表征与测试原理第四讲 静态容量法比表面及孔径分析仪原理及应用第五讲 超微孔孔径分布的分析原理及方法第六讲 密度函数理论在孔径分析中的应用 这样的学习充电机会你舍得错过吗?[b][color=#ff0000]系列课程链接:[url]https://www.instrument.com.cn/ykt/video/106_0.html[/url][/color][/b][img]http://5b0988e595225.cdn.sohucs.com/images/20170916/a327e21777b4435893b261c0d2dea633.gif[/img]

  • 平均孔径的计算方法

    一、平均孔径的概念 平均孔径有三种不同的表示方法 : ①吸附平均孔径:由吸附总孔体积与BET比表面积计算得到的平均孔径包含了所有的孔,只有孔径上限的界定。 ②BJH吸附平均孔径:由BJH吸附累积总孔体积与BJH吸附累积总孔内表面积计算得到的平均孔径,有孔径的上下限。 ③BJH脱附平均孔径:由BJH脱附累积总孔体积与BJH脱附累积总孔内表面积计算得到的平均孔径,有孔径的上下限。二、平均孔径的计算 平均孔径等于对应的孔体积和对应的比表面相除的结果。 公式为:平均孔径=k×总孔体积/比表面积,k和选的孔的模型有关,如果是圆柱形孔,那么k=4,如果是平面板模型,那么k=2. 三、应用案例 最可几孔径大概在8nm左右,而计算出的平均孔径则高达35nm,这说明什么问题?又是什么原因造成的呢? 平均孔径是4倍的孔体积除以比表面积,是从简单的柱状孔求得,对非均一窄分布孔误差极大。平均孔径没有多大的意义。平均孔径是对所有孔大小取平均,而最可几孔径是指分布最多的孔,当较小的孔数量多但也有较大的孔时就会出现你这种情况

  • 【分享】微孔分布测试仪的主要特性

    微孔分布测试仪主要应用领域:催化剂,广泛用于石化、化工、医药、食品、农业、精细化工等领域;吸附剂,如活性炭、分子筛、活性氧化铝等,广泛用于环保领域;颜填料,无机颜料、碳酸钙、氧化锌、氧化硅、矿物粉等;陶瓷材料原料,氧化铝、氧化锆、氧化钇、氮化硅、碳化硅等;炭黑、白炭黑、纳米碳酸钙等用于橡塑材料的补强剂等;新型电池材料,如钴酸锂、锰酸锂、石墨等电极材料;发光稀土粉末材料;磁性粉末材料,如四氧化三铁、铁氧体等;纳米粉体材料,包括纳米陶瓷材料、纳米金属材料,纳米银粉、铁粉、铜粉、钨粉、镍粉等;其他,如超细纤维、多孔织物、复合材料、沉积物、悬浮物等  微孔分布测试仪的主要特性:  测试时间:多点BET法比表面积平均每个样品15分钟,孔径分布测试、孔隙度测试平均每个样品100分钟  主要功能:可实行BET比表面积(多点及单点)测试,Langmuir比表面积测试,炭黑外比表面积测定,吸附、脱附等温曲线测定,BJH孔径分布、总孔体积和平均孔径测定;  真空系统:极限真空度6×10-2Pa  微孔分布测试仪测量范围:比表面积≥0.01M2/g至无规定上限,孔尺寸0.7~400nm;  样品数量:可同时测定1-4个样品;  测量精度:≤±2%;  微孔分布测试仪的压力控制:高精度压力传感器,数字显示,精度0.2%,独特的充气与抽气速度自动控制系统  运行方式:高度自动化,智能化,长时间运行可以无人看管自行测试  测试气体:高纯氮气(不用氦气),氮气消耗量极小  微孔分布测试仪的吸附过程:样品不需要频繁从液氮杜瓦瓶中进出,液氮消耗极少  软件系统:在Windows平台上,提供过程控制和数据采集、处理、报告系统,多种测试方法可自由方便选择,在计算机屏幕上,同步显示吸、脱附,比表面积及微孔分布测量仪测试过程、可随时查看已完成部分的测试数据;本机软件功能强大、界面友好、兼容性高、使用方便;

  • 薄膜表面穿透孔的孔径检测

    我现在使用的薄膜,可以渗透水蒸气,但是不能透过液态水。所以想找相关得仪器测试测试一下薄膜表面能够穿透薄膜的孔的大小,做过扫面电镜和比表面积及孔径分析仪的检测,扫面电镜只能看到薄膜表面的凹坑,不能确定这个凹坑是否穿透薄膜。孔径分析也是这样,测得都是凹坑的孔径分布。但我现在想做穿透孔的测试,望大神们给予建议,谢谢!

  • 薄膜表面穿透孔的孔径检测

    我现在使用的薄膜,可以渗透水蒸气,但是不能透过液态水。所以想找相关得仪器测试测试一下薄膜表面能够穿透薄膜的孔的大小,做过扫面电镜和比表面积及孔径分析仪的检测,扫面电镜只能看到薄膜表面的凹坑,不能确定这个凹坑是否穿透薄膜。孔径分析也是这样,测得都是凹坑的孔径分布。但我现在想做穿透孔的测试,望大神们给予建议,谢谢!

  • 【原创】活性炭孔径测试需注意的问题

    活性碳是一种含碳材料制成的外观呈黑色,内部孔隙结构发达,比表面积大、吸附能力强的一类微晶质碳素材料,是一种常用的吸附剂、催化剂或催化剂载体。孔径一般分为三类:大孔:1000-1000000A过渡孔:20-1000A微孔:20A,据经验分析活性炭的孔在直径10纳米以下分布较多;所以对于活性炭孔径的测试,在压力较低的位置,应该设置较多的压力点,相应的吸附时间也加长一些,以保证在改点吸附完全;而在压力较高的点就可以设置较少的点,吸附平衡时间可设位3分钟左右,个别点可相应延长,这根据具体情况来确定。

  • 【原创】为啥康塔仪器测试微孔最可几孔径偏大

    如题。原因之一,个人认为是源于计算模型中把微孔中吸附(脱附)的氮气完全当成是液态的氮,其密度也是依照液氮的密度来计算,我们做完实验得到是氮气气体的体积,氮气气体体积我们用小写v表示,液态氮体积用大写V表示,他们之间的关系式是:V=v*0.001547(纯气体换算成纯液体)。而根据密度分布函数可知,微孔中吸附的氮是处于一种“松流体”状态,也就是说不完全是液态的,同时还存在气态的氮,其密度(或者说气液转换关系式)应介于气体和液体之间,且随着孔径的变小,孔中松流体的密度越来越趋向于氮气气体密度。所以,从这个层面上说,上面的关系式已经不适合于做微孔孔容得计算。新的关系式V=v*k(k应小于0.001547,且和微孔孔径、以及其他复杂参数有关的一个参数,),所以V应该更小,同理相对应的孔径也应该更小。故最可几孔径应该更小。我想这应该是康塔仪器做微孔测试,为啥结果总是偏大的原因之一吧。以上只是个人见解,不对之处还望老师指正。谢谢!

  • 【分享】选择比表面积孔径测定仪注意的问题!

    如何选择比表面积孔径测定仪注意的问题?——李鹏 北京彼奥德电子有限公司在工业上,固体高度分散后的固体比表面积的测定和分析(微观结构性能),对于吸附,催化,色谱,冶金,陶瓷,建筑材料的生产和研究工作都有重要意义。在定温下,测定不同相对压力时的气体在固体表面的吸附量后,基于布朗诺尔-埃米特-泰勒(BET)的多层吸附理论及其公式可计算出固体的比表面积,基于凯尔文的毛细管凝理论及其公式,惠勒关于综合考虑毛细管凝聚和多层吸附的理论,原则上便可以计算出固体精细比表面积。一款比表面积孔径测定仪的性能主要体现在1.气体流量怎样自动设定?孔径分布测定,需要测定几十甚至上千个吸附、脱附点。如果是手动设定气体流量,每设定一个点,需5至20分钟(精确度低于1毫升的流量,无法手动精确设定),假如某个样品需要测定100种孔径,若用手动设定流量,仅仅是在流量设定上就要耗废8至33小时。2.吸附及脱附自动化控制?每吸附及脱附一次需要大约10分钟时间(时间长短与样品和装样量有关),完整测定一个样品就需要10至30个小时,如果是手动吸附及脱附,操作员的测定工作将十分的繁重3.液氮饱和蒸气压怎样测定? 液氮饱和蒸气压是计算孔半径的重要数据之一,它对液氮温度很敏感,若液氮温度从-190摄氏度变化到-200摄氏度,液氮饱和蒸气压将会从1428降至459毫米汞柱。可想而之,液氮饱和蒸气压不能精确测量,会对孔隙的测定有多大的影响。4.进行吸附测定?吸附分支的测定与脱附分支的测定,在孔径分布报告中,有着同等重要的意义5.具有内置高精度定量管?定量管是转化氮气量的维一途径,如果保证不了其精度,测定结果将有很大偏差。如有需要可联系我们进行进一步讨论。彼奥德电子联系电话:010-62443971 82899987手机:13671343017联系人:李鹏

  • 【原创大赛】物理吸附法or BET法? ---浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称

    【原创大赛】物理吸附法or BET法? ---浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称

    [align=center][color=#333333]物理吸附法[/color][color=#333333]or BET[/color][color=#333333]法?[/color][/align][align=center][color=#333333]---[/color][color=#333333]浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称[/color][/align][align=center][color=#333333]丁延伟[/color][/align][align=center][color=#333333](中国科学技术大学理化科学实验中心,安徽省合肥市,[/color][color=#333333]230026[/color][color=#333333])[/color][/align][b][color=#333333]摘要:[/color][/b][color=#333333]气体吸附技术作为对固体材料的比表面积、孔径分布、孔隙度、表面性质等参数的分析的必备手段,在物理、化学、材料、生物、环境等学科中得到日益广泛的应用。[/color][color=#333333]BET[/color][color=#333333]法作为一种[/color][color=#333333]多分子层吸附理论,常用来计算固体材料的比表面积。[/color][color=#333333]本文介绍了物理吸附法和[/color][color=#333333]BET[/color][color=#333333]法的相关理论及应用,力图规范确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称为物理吸附法。[/color][color=#333333] [/color][b][color=#333333]关键词:物理吸附,[/color][color=#333333]BET[/color][color=#333333]模型,比表面积[/color][/b][color=#333333] [/color][b][color=#333333]1. [/color][color=#333333]前言[/color][/b] 多孔材料由于其特殊的多孔性结构,使其具有高比表面积、高孔隙率、高透过性、高吸附性、可组装性等诸多优异的物理化学性能,因而在化工、生物医药、环保、功能材料等领域均有广泛应用[sup][/sup]。多孔材料的研究已成为当今材料科学研究领域的一大热点。多孔材料的研究离不开结构表征分析,多孔材料的孔隙结构特性主要包括孔径、孔径分布、孔形态、孔容积及孔通道特性等方面。多孔材料的孔隙结构是不规则的,孔穴尺寸在不同方向上存在着差异。多孔材料的这种各向异性状态,可以对其各项性能产生不同程度的影响[sup][/sup]。了解多孔材料的比表面积和孔隙形貌对研究其活性、吸附、催化、力学性能等都具有重要意义。多孔材料的表征方法很多,根据检测目的不同,一般可分为X射线小角度衍射法、气体吸附法、电子显微镜、压汞法、气泡法、离心力法、透过法、核磁共振法等。 气体吸附技术作为对固体材料的比表面积、孔径分布、孔隙度、表面性质等参数的分析的必备手段,在物理、化学、材料、生物、环境等学科中得到日益广泛的应用[sup][/sup]。气体吸附技术主要分为物理吸附和化学吸附两大类。通常使用物理吸附技术来确定固体材料的比表面积、孔径分布、孔隙度等信息[sup][/sup]。 然而,在许多已经公开发表的各种科研论文、专利等技术资料中通常对用来确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称存在比较混乱的现象。例如,有些技术资料中称这种方法为BET法,而有的则称为比表面积测定法。本文试图从理论角度来规范这类方法的名称。[b]2.物理吸附相关理论[sup][/sup][/b] 通常将互不相混溶的两相接触所形成的过渡区域称为界面,吸附作用则发生在两相之间的界面上。吸附是物质(通常为固体物质)表面吸着周围介质(液体或气体)中的分子或离子现象,是一种传质过程。吸附质(adsorbate)通常定义为在界面上被吸附的物质,而吸附剂(adsorbent)则被定义为具备从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]或者液相中吸附某些组分的能力的物质。吸附作用通常可以分为物理吸附与化学吸附。依靠分子间普遍存在的van der Waals力产生的吸附作用称为物理吸附,而由于吸附质分子与吸附剂发生化学作用产生的吸附称为化学吸附。 吸附质在吸附剂上的吸附量([i]x[/i])是绝对温度([i]T[/i])、气体压力([i]p[/i])或液体浓度([i]c[/i])和固体-气体之间的吸附作用势([i]E[/i])的函数,用式(1)表示。[img=,576,135]http://ng1.17img.cn/bbsfiles/images/2017/08/201708140959_01_2984502_3.jpg[/img] 对于给定的气-固体系,当温度[i]T[/i]保持恒定时,通常可认为吸附作用势[i]E[/i]保持不变。此时平衡吸附量[i]x[/i]只是压力[i]p[/i]的函数,该表达式得到的曲线通常称为吸附等温线(adsorptionisotherm)。同样的道理,当压力[i]p[/i]保持恒定时,吸附量[i]x[/i]与温度[i]T[/i]的关系曲线则称之为吸附等压线;当吸附量[i]x[/i]保持恒定不变时,[i]p[/i]与[i]T[/i]的关系则称为吸附等容线。[color=#333333] 物理吸附是由分子间的弱相互作用力所引起的吸附,由于该作用较弱,由此产生的吸附热较小,吸附和脱附速度也都较快。被吸附物质也较容易脱附下来,因此物理吸附是可逆的。例如分子筛对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。[/color] 通常情况下,我们可以通过分析吸附体系的吸附等温线根据相关的理论模型来得到固体材料的比表面积、孔径分布、孔隙度、表面性质等参数。 实验上,利用专业的商品化的物理吸附仪或化学吸附仪,先将吸附剂在一定温度下以真空或吹扫气的形式对其进行彻底脱气,再在恒定温度下,控制吸附质与载气的分压,使吸附体系逐步达到平衡。这种通过控制吸附质分压与相应的平衡吸附量的关系所得到的实验曲线即为吸附等温线。 由于气体在固体表面的吸附状态多种多样,由此所得到的吸附等温线也不是一成不变的。2015年8月,国际化学领域最权威的国际纯粹与应用化学联合会(IUPAC)公布了最新的比表面积和孔参数分析的气体吸附分析规范[sup][/sup]。图1为物理吸附等温线的最新分类方法,实际由实验得到的各种吸附等温线大多是这六类等温线的不同组合。多年来,许多研究者对各类吸附等温线提出了许多吸附相互作用理论,并推导出了等温吸附公式,如Henry吸附式、Freundlich吸附式、Langmuir理论、BET吸附理论等,并依托于这些理论表征吸附剂的结构与成分,如比表面积、孔容积、孔径分布等,其研究深入到吸附作用的机理。[b]3. 气体吸附法测定比表面积与孔参数的基本原理[/b][color=#333333] 用于测量材料的物理吸附性质的仪器主要有容量法和重量法两种,其中以容量法更为常用。容量法测量物理吸附的仪器又分为流动法和静态法两种。本文主要介绍静态容量法仪器的工作原理及实验样品用量。[/color][color=#333333] 静态容量法由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动。该方法测量是在等温(通常用液氮)条件下,向样品管内通入一定量的吸附质气体(通常为[/color][color=#333333]N[sub]2[/sub][/color][color=#333333]),通过控制样品管中的平衡压力直接测得吸附分压,由气体状态方程(通常为理想气体状态方程)得到该分压点的吸附量。测量过程中逐渐增加吸附质气体使吸附平衡压力逐渐变大,最终得到吸附等温线。通过逐渐吸附质气体被抽走来降低吸附平衡压力,得到脱附等温线(如图[/color][color=#333333]2[/color][color=#333333])。[/color][align=center][img=,494,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141000_01_2984502_3.jpg[/img][/align][align=center][img=,494,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141000_02_2984502_3.jpg[/img][/align][color=#333333] 根据所测得的吸附[/color][color=#333333]-[/color][color=#333333]脱附等温线可以判断吸附现象的本质,如属于分配(线性),还是吸附(非线性);测量吸附剂对特定吸附质的吸附容量;用于计算吸附剂的孔径、比表面、孔容积、孔形状等重要物理参数。[/color][color=#333333] 气体吸附法测定比表面积利用的是多层吸附的原理。其基本原理是测算出某种气体吸附质分子在固体表面形成完整单分子吸附层的吸附量,然后再乘以每个分子的覆盖面积即得到样品的总表面积。单位质量的吸附剂的总表面积([/color][color=#333333]m[sup]2[/sup]/g[/color][color=#333333])称为比表面积,它是表面积的常用表示方式。[/color][color=#333333]但是由于实际的固体表面并不是理想的二维平面,而是粗糙不平滑的。因此吸附法测得的表面积只是吸附质分子可以直接[/color][color=#333333]“[/color][color=#333333]接触[/color][color=#333333]”[/color][color=#333333]到的表面的面积,这一数值会因吸附质分子大小不同而发生变化。为了得到固体材料的真实有效的表面积,吸附质分子应该尽量小、接近球形而且对表面惰性。高纯氮气、氪气和氩气等气体都是适合的选择。其中,由于液态氮的价格便宜、容易高纯度获得,其在大多数表面上都可以形成典型的[/color][color=#333333] II[/color][color=#333333]、[/color][color=#333333]IV [/color][color=#333333]型吸附等温线,并且分子截面积已经得到了公认值,所以最为常用。气体吸附质分子在固体表面形成完整单分子吸附层的吸附量需要通过处理吸附等温线数据求出。[/color][color=#333333] 气体吸附法测定孔径分布利用的是毛细冷凝现象和体积等效交换原理,即将被测孔中充满的液氮量等效为孔的体积。[/color][color=#333333] 由于不同材料的孔结构大有不同,因此我们采用不同的数据处理方法与模型(如表[/color][color=#333333]1[/color][color=#333333])对不同情况下的孔结构进行具体处理[/color]。[align=center]表1 常用孔结构分析中的数据处理方法与模型[/align] [table][tr][td] [align=center]孔结构参数[/align] [/td][td] [align=center]数据处理方法或模型[/align] [/td][/tr][tr][td] [align=center]比表面[/align] [/td][td]BET, Langmiur(微孔), DR, BJT, DH[/td][/tr][tr][td] [align=center]中孔分布[/align] [/td][td]BJH, DH[/td][/tr][tr][td] [align=center]微孔分布[/align] [/td][td]DA(DR理论的扩展), HK, SF, MP[/td][/tr][tr][td] [align=center]微孔/中孔分布[/align] [/td][td]NLDFT[/td][/tr][tr][td] [align=center]微孔体积[/align] [/td][td]t-方法, DR(含平均孔宽,分子筛和活性炭等微孔表征)[/td][/tr][tr][td] [align=center]分形维数[/align] [/td][td]FHH, NK[/td][/tr][/table][b]4. BET理论[/b][color=#333333] BET[/color][color=#333333]理论是根据吸[/color]附等温线得到固体材料的比表面积的一种理论模型,最初是由三位美国学者S. Brunauer、P. Emmett和E. Teller于1938年提出的[url=https://baike.baidu.com/item/BET][color=black]BET[/color][/url]多分子层吸附理论,BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。其数学表达式即BET方程。 推导BET方程所采用的模型主要做了以下基本假设:(1)吸附表面在能量上是均匀的,即各吸附位具有相同的能量;(2)被吸附分子间的作用力可略去不计;(3)固体吸附剂对吸附质气体的吸附可以是多层的,第一层未饱和吸附时就可由第二层、第三层等开始吸附,因此各吸附层之间存在着动态平衡;(4)自第二层开始[color=#333333]至第[/color][i][color=#333333]n[/color][/i][color=#333333]层([/color][i][color=#333333]n[/color][/i][color=#333333]→∞[/color][color=#333333]),各层的吸附热都等于吸附质的液化热。[/color][color=#333333] 我们可以通过热力学和动力学两种方法来推导[/color][color=#333333]BET[/color][color=#333333]方程,表达式如下:[/color][align=center][img=,675,272]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141001_01_2984502_3.jpg[/img][/align][color=#333333] 由上式可见,当物理吸附的实验数据按[/color][color=#333333] [i]p[/i]/[i]v [/i]([i]p[/i][sub]0[/sub]-[i]p[/i])[/color][color=#333333]与[/color][i][color=#333333]p[/color][/i][color=#333333]/[i]p[/i][sub]0[/sub][/color][color=#333333]作图时应得到一条直线。直线的斜率[/color][i][color=#333333]m [/color][/i][color=#333333]= ([i]C[/i]-1)/([i]v[/i][sub]m[/sub][i]C)[/i],[/color][color=#333333]在纵轴上的截距为[/color][i][color=#333333]b[/color][/i][color=#333333]=1/([i]v[/i][sub]m[/sub][i]C)[/i][/color][color=#333333],所以以[/color][color=#333333]/V(P[sub]0[/sub]-P)[/color][color=#333333]对[/color][color=#333333]P/P[sub]0[/sub][/color][color=#333333]作图[/color][color=#333333],[/color][color=#333333]得一直线如图[/color][color=#333333]3[/color][color=#333333]所示。[/color][align=center][img=,534,396]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141002_01_2984502_3.jpg[/img][/align][color=#333333] 根据直线的斜率和截距[/color][color=#333333],[/color][color=#333333]可求出形成单分子层的吸附量[/color][color=#333333]V[sub]m[/sub]=1/([/color][color=#333333]斜率[/color][color=#333333]+[/color][color=#333333]截距[/color][color=#333333])[/color][color=#333333]和常数[/color][color=#333333]C=[/color][color=#333333]斜率[/color][color=#333333]/[/color][color=#333333]截距[/color][color=#333333]+1[/color][color=#333333]。[/color][color=#333333] 根据[/color][i][color=#333333]V[/color][/i][sub][color=#333333]m[/color][/sub][color=#333333]由下式可以计算吸附剂的[/color][color=#333333]BET[/color][color=#333333]比表面积:[/color][img=,557,134]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141002_02_2984502_3.jpg[/img][color=#333333] 需要指出,为满足以上假设[/color][color=#333333]BET[/color][color=#333333]方程的总有效区为相对压力在[/color][color=#333333]0.05~ 0.3[/color][color=#333333]之间。即便如此,[/color][color=#333333]BET[/color][color=#333333]方程还是不精确的,主要原因如下:([/color][color=#333333]1[/color][color=#333333])吸附剂表面吸附中心能量不均匀;([/color][color=#333333]2[/color][color=#333333])同一层中吸附质分子与相邻分子存在相互作用;([/color][color=#333333]3[/color][color=#333333])在大于[/color][color=#333333]1[/color][color=#333333]的多层吸附中,随吸附质远离吸附中心,相互之间作用力会减弱[/color][color=#333333]。[/color][b][color=#333333]5 [/color][color=#333333]结论[/color][/b] 测定多孔材料的孔结构,关键是通过正确的实验操作获得材料的吸附-脱附曲线,再利用合适的数据处理方法或模型获得相应的结构参数。通过以上分析我们可以清楚的看到,用来确定固体材料的比表面积、孔径分布等孔参数的实验方法的规范名称应为物理吸附法,由物理吸附法可以得到固体材料的比表面积、孔径分布、孔容积、分形维数、孔形状等更为丰富的信息,而BET法只是由吸附曲线中p/p[sub]0[/sub]在0.05-0.3之间的数据根据BET模型计算得到固体材料的BET比表面积。另外,BET法确定比表面积只是确定比表面积的其中一种方法。在实际工作中,我们不应该把这两种不同的方法混为一谈。[align=center]参考文献[/align]1. 徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学.北京:科学出版社,2004:13.2. Stein, A. Wang, Z.Y. Fierke,M.A. Functionalization of porouscarbon materials with designed porearchitecture. Adv Mater, 2008, 20:1.3. Ajayan, V. Toshiyuki, M. Katsuhiko, A. New families of mesoporous materials, science and technology ofadvanced materials. Sci Techn Adv Mater, 2006, 10:1.4. Jianlin Shi*, “On thesynergetic catalytic effect of heterogeneous nanocomposite catalysts” , Chemical Reviews, 2013, 113 (3) 2139-21815. Stein, A. Wang, Z.Y. Fierke,M.A. Functionalization of porouscarbon materials with designed porearchitecture. Adv Mater, 2008, 20:1.6. Do D D, Adsorption analysis:equilibria and kinetics, Imperial College Press, 1998.7. Guiqing Lin, Huimin Ding,Daqiang Yuan, Baoshan Wang, and Cheng Wang, J. Am. Chem. Soc.2016, 138,3302-3305.8. Matthias Thommes, KatsumiKaneko, Alexander V. Neimark, James P. Olivier, Francisco Rodriguez-Reinoso, Jean Rouquerol and Kenneth S. W. Sing.Physisorption of gases, with special reference to the evaluation of surfacearea and pore size distribution (IUPAC Technical Report). Pure Appl. Chem.2015 87(9-10): 1051-10699. 甄开吉,王国甲,毕颖丽, 李荣生, 阚秋斌. 催化作用基础科学出版社,2005.

  • 【原创大赛】核磁实验-利用低场核磁测定水泥材料的水分状态及孔径分布

    【原创大赛】核磁实验-利用低场核磁测定水泥材料的水分状态及孔径分布

    1. 目的测试水泥材料的水分状态及孔径分布。2. 材料与方法2.1 实验材料15个淤泥材料样品,表1 样品信息表 土样编号取样时间实验条件实验前土样S273 S364 E685-2无真三轴试样1S279 S4705-8试样饱和度0.93,围压100kPa,冲击载荷100kPa(可冲击3次,每次间隔时间10min),冲击频率8Hz真三轴试样2E28 E885-12试样饱和度0.93,围压100kPa,冲击载荷100kPa(可冲击3次,每次间隔时间10min),冲击频率16Hz高速冲击试样1S348 E255-8冲击1遍(每遍三击),每击冲击力2t,每遍间隔24h高速冲击式样2S299 S3945-10冲击3遍(每遍三击),每击冲击力2t,每遍间隔24h高速冲击式样3S352 E735-12冲击5遍(每遍三击),每击冲击力2t,每遍间隔24h高速冲击式样4S408 E635-15置于刚性容器(Ø17cm*H8cm)内,冲击1遍(每遍三击)2.2 实验仪器MiniMR60,上海纽迈电子科技有限公司生产,共振频率23.309MHz,磁体强度0.55T,线圈直径为60mm,磁体温度为32.00℃;2.3 样品制备 a.标样制备:称取不同质量的氯化锰水溶液;b. 准备待测样品称取质量并记录后,直接测试;2.4 实验参数P90(us)=19, P180(us)=34.00, TD=266424, SW(KHz)=200, D3(us)=80, TR(ms)=1000, RG1=20, RG2=3, NS=4, EchoTime(us)=260, EchoCount=4000;2.5 实验方法运用核磁共振测量分析软件及CPMG序列采集样品T2衰减曲线,并以.pea格式保存,运用反演软件反演该文件。3. 分析与结果3.1 各样品含水率测试结果与分析自然界中水为氢质子最多的一种物质,又由于核磁共振的信号来源主要为氢质子,氢质子越多,说明含水率越多,反之则越低。因此通过信号量定标的方法,核磁共振技术可以被用来测量物质中水的质量。,磁共振技术通过测定水的质量,可计算出待测淤泥样品中水的含量,从而得到其含水率。测定5个标准样品,可得到下图所示的水的质量与幅度的相关线性关系。其中图中横坐标为水的质量,纵坐标为信号幅度。表3 标样测量结果标样质量(g)幅度水信号幅度与水质量的关系0084.2701http://ng1.17img.cn/bbsfiles/images/2016/08/201608171021_605190_1423_3.png 11.92432262.53223.86194332.29235.55416324.39247.09368053.15测试各个样品水峰面积,同时利用水峰面积与水质量的线性关系,得到样品中的含水量,进而得到各样品的含水率(如表4所示)。根据客户说明对比核磁法结果表明:核磁法测试的含水率在25-35%之间,而常规方法肯定大于50%。因此,核磁法可能没有测到全部的水分。并且可以观察到,实验前的土样3个平行样含水率相差较大,分析原因可能是均一性不是很好;同时真三轴试样2的两个平行样测得的含水率相差也较大。表4 样品测量结果 实验前真三轴式样1真三轴式样2高速冲击式样1高速冲击式样2高速冲击式样3高速冲击式样4样品编号E68S237S364S279

  • 【原创大赛】毛细管孔径仪数据处理实用小技巧

    [b]毛细管流动孔径分析仪[/b] Capillary Flow Porometer用于测定材料孔径大小测定,原理为有小孔的材料被润湿液体完全润湿后,液体受到表面张力的作用而保留于材料内部,如果要想将液体挤出材料就需要外加一个气体压力。能够克服表面张力将材料孔内的液体完全挤出时所需要的最小压力,就是该材料的泡点值压力,也就是我们常说的起泡点,基于这种原理的测试方法,就是起泡点测试法。这也是应用最为广泛的一种非破坏性完整性测试方法。以下为泡点值计算公式:d=K*C*t/PP = 泡点压力d = 最大孔径k = 形状矫正因子C = 液固接触角t =表面张力泡点值直接与过滤器孔径相关联。不同孔径大小的泡点不同,开孔压力也不同,随着压力的增加,大孔,小孔都打开,直到足够压力,所有孔都打开后,气体从孔洞出来, 气体流量随气体压力增加而增加,最后成线形关系。这样的一条气体流量和压力的一条线,我们称为湿线,刚出来流量时的压力为泡点压力,根据上述公式计算出最大孔径。如果材料没浸润液体,一直处于开孔状态,气体流量会随着压力的增加而增加,是个线形关系。我们再根据一个干线和湿线拟合一条半干线,模拟计算出孔径的分布图。但是有些材料在随着压力增大时,有可能被压扁,变形,特别是一些高分子材料,柔性材料,这时候在压力变大到一定时,气流量和气压力就不是一条很好的线形曲线了,在拟合曲线时就不是很好看,但是我们可以找个气通量曲线和目标材料差不多的样品,做一条干线,然后保存,再数据处理下(data editor),就会做得很漂亮。具体看视频。

  • 2013年4月2日网络会议:微纳米粉体的比表面及孔径分布的测试与分析

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646405_2507958_3.gif微纳米粉体的比表面及孔径分布的测试与分析主讲人:钟家湘 北京精微高博 董事长 活动时间:2013年4月2日 下午 14:30http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646405_2507958_3.gif1、报名条件:只要您是仪器网注册用户均可报名参加。2、参加及审核人数限制:限制报名人数为120人,审核人数100人。3、报名截止时间:2013年4月2日下午14:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg5、参与互动:本次讲座采取网络讲堂直播模式,欢迎大家积极发言提问。 *参会期间您还可以将有疑问的数据通过上传的形式给老师予以展示,并寻求解答* 每次会议从提问的用户中随机抽取出一名幸运之星,奖励一个价值150元的耳机。6、环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。7、提问时间:现在就可以在此帖提问啦,截至2013年4月1日8、会议进入:2013年4月2日14:00点就可以进入会议室9、开课时间:2013年4月2日14:3010、特别说明:报名并通过审核将会收到1 封电子邮件通知函(您已注册培训课程),请注意查收,并按提示进入会议室!为了使您的报名申请顺利通过,请填写完整而正确的信息哦~http://simg.instrument.com.cn/webinar/20110223/images/zb_11.gif注意:由于参会名额有限,如您通过审核,请您珍惜宝贵的学习交流机会,按时参加会议。如您临时有事无法参会,请您进入报名页面请假。无故不参会将会影响您下一次的参会报名。快来参加吧:我要报名》》》快来提问吧:我要提问》》》

  • 10月18日直播|《比表面与孔径分析原理及应用》系列讲座之第三讲开播啦!

    [b][color=#ff0000]讲师介绍:[/color][/b]钟家湘 : 北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”[color=#ff0000][b]内容简介:[/b][/color]本讲主要详细介绍:超细粉体中孔径分布的氮吸附法的分析原理;孔径分布的表征方法,各种表征参数的正确含义;BJH法进行孔径分布的分析中,值得注意的若干问题。比表面与孔径分析原理及应用专家系列讲座目录第一讲 [color=#ffffff]1.[/color]氮吸附法比表面及孔径分析原理[color=#ffffff][/color]第二讲 连续流动色谱法比表面仪原理及应用第三讲 静态容量法比表面及孔径分析仪原理及应用第四讲 氮吸附法介孔与大孔的测试与分析第五讲 氮吸附法微孔的测试与分析第六讲 密度函数理论在孔径分析中的应用[b][color=#ff0000]免费报名链接:[/color][/b][url]https://www.instrument.com.cn/ykt/course/live/index?sid=115[/url][b][color=#ff0000]直播时间:[/color][/b]2018/10/18 10:00[b][color=#ff0000]温馨提示:[/color][/b]本讲座直播免费哦,点播需购买整个系列讲座,详情见[url]https://www.instrument.com.cn/ykt/course/course/detail?sid=106[/url],还有8个免费名额哦,先到先得![color=#ffffff]2.连续流动色谱法比表面仪原理及应用[/color][color=#ffffff]3.[/color][color=#ffffff]静态容量法比表面及孔径分析仪原理及应用[/color][color=#ffffff]4.氮吸附法介孔与大孔的测试与分析[/color][color=#ffffff]5.氮吸附法微孔的测试与分析[/color][color=#ffffff]6.密度函数理论在孔径分析中的应用[/color][color=#ffffff]1.氮吸附法比表面及孔[/color][color=#ffffff]径分析原理[/color][color=#ffffff]2.连续流动色谱法比表面仪原理及应用[/color][color=#ffffff]3.[/color][color=#ffffff]静态容量法比表面及孔径分析仪原理及应用[/color][color=#ffffff]4.氮吸附法介孔与大孔的测试与分析[/color][color=#ffffff]5.氮吸附法微孔的测试与分析[/color][color=#ffffff]6.密度函数理论在孔径分析中的应用[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制