当前位置: 仪器信息网 > 行业主题 > >

电话传感器

仪器信息网电话传感器专题为您提供2024年最新电话传感器价格报价、厂家品牌的相关信息, 包括电话传感器参数、型号等,不管是国产,还是进口品牌的电话传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电话传感器相关的耗材配件、试剂标物,还有电话传感器相关的最新资讯、资料,以及电话传感器相关的解决方案。

电话传感器相关的论坛

  • 电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 【分享】电化学传感器

    最早的电化学传感器可以追溯到20世纪50年代,当时用于氧气监测。到了20世纪80年代中期,小型电化学传感器开始用于检测PEL范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。电化学传感器经过这么多年的发展,技术上已经取得了不少进步。那么它现在主要应用在哪些领域呢?

  • 生物芯片之电化学生物传感器

    前面已经讲过生物芯片是生物传感器的延伸,所以生物传感器的研究就是生物芯片的研究基础中的重要部分了!下面对电化学生物传感器方面的研究进行简单的介绍。须指出的是,生物芯片中用到的生物传感器与传统的电化学传感器有一些不同,但这并不妨碍我们将传统电化学传感器的认识应用到生物芯片的研究中去。电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 【讨论】硫化氢对电化学传感器的影响

    前天听一位老师说,测氨气的电化学传感器长期在有硫化氢的环境中,就会失灵了,貌似很有道理,可是我对具体的还不了解,大侠们来讲讲是什么原理啊,硫化氢对测其他气体的电化学传感器也有影响吗?那为什么测硫化氢本身的传感器可以受的了呢?[em06]

  • 电化学传感器测甲醛原理

    各位专家老师好,请问能否请各位老师用简洁易懂的语言介绍一下电化学传感器甲醛测定仪的原理?我新入行的小白,最近正在学习这一块内容,希望专家老师们指导一二,谢谢??

  • 电化学传感器的“春天”:重金属检测、物联网技术

    电化学传感器的发展具有悠久的历史,它的基本理论和技术发展与电分析化学密切相关,最早的电化学传感器可以追溯到20世纪50年代,并随着微电子和材料加工技术不断更新而发展。近年来,电化学传感器在小型化、微型化、智能化方向得到了日新月异的发展。 纳米材料传感器与电化学仪器的结合日益成为热点,主要因为其在构建物联网的成本和运营方面,比光谱类仪器有巨大的优势。同时,近年来频发的重金属事件,电化学传感器的便携、低成本、操作简单、选择性好、灵敏度高和多元素同时检测等优点使其迎来发展新契机。 据了解,电化学传感器具有十分广阔的市场,仅经典的pH传感器,每年全球的市场近100亿美元,另外一种电化学传感器--血糖仪,其市场规模也达到50亿美元以上。那么,传统的电化学仪器是否要以此为突破,寻求市场增长点?而电化学传感器在重金属检测中又能获得多大的发展契机呢?请看仪器信息网采访电化学传感器专家——华南理工大学叶建山教授http://bimg.instrument.com.cn/lib/editor/UploadFile/20122/201221018371828.jpg华南理工大学叶建山教授

  • 【分享】生物芯片之电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。

  • 【讨论】电化学传感器和傅里叶红外法,相比如何??

    [em09511]近期在调研烟气在线监测仪器,看到比如NO,CO,有的测量原理是电化学,有的是ndir红外,进而还有傅里叶红外方式测量。电化学方式相比红外,价格要低。测量精度相似。请问这里的高手,电化学传感器有什么缺点?当对象为烟气这种比较复杂的情况,电化学传感器适用性如何?

  • 【资料】电化学传感器技术及原理应用

    电化学传感器技术及原理应用 基本原理 化学传感器主要由两部分组成:识别系统;传导或转换系统。 识别系统反待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。

  • 【分享】一篇论文《电化学生物传感器研究进展》

    电化学生物传感器研究进展覃 柳 1,2, 刘仲明 1, 邹小勇2 (1.广州军区总医院,广 东广州510010;2.中山大学化学与化学工程学院,广东广州510275)摘要: 电化学牛物传感器对临床联学和遗传T=程的研究具有深远的意义和应用价值.已逐渐成为分子_牛物学和生物技术研究重要领域。近 年来,天丁它的性能和检测方法的优化研究也越来越多。本文_主要介绍电化学生物传感器的原理、分类及最近几年来国内外的一 研究进展。关键词:生物传感器; 自组装:免疫;静电吸附; 同定方法中图分类号:TP212.3 文献标识码:A 文章编号: 1005-202X(2007)01—0060—03下载地址:http://www.instrument.com.cn/download/shtml/155568.shtml

  • 【技术@创新】我国电化学气体传感器技术达国际先进水平

    中国科学院网2007年5月22日报道:“2006年中国科学仪器及分析测试行业十大新闻”评选结果近日揭晓,中科院长春应化所研发的“电化学气体传感器”成果获此殊荣。电化学气体传感器以其体积小、检测速度快、准确、便携、可现场直接检测和连续检测等优点,越来越引起国内外专家学者的普遍关注和成为竞相研发的热点项目之一。 我国电化学气体传感器研发起步较晚,一些核心技术还受制于国外某些国家,所需传感器几乎依赖进口。为此,不断强化电化学传感器核心技术的突破,尽快研发出具有我国自主知识产权的电化学气体传感器,成为我国经济建设急需解决的重要课题之一。 中科院长春应化所是国内开展电化学气体传感器研发较早的单位之一,不仅在该领域有较深厚的科研积累,也具有较强的技术和人才优势。结合国家需求,他们从 1999年起开始了此项技术的攻关。在研发中,他们注重把基础研究和应用研究紧密结合起来,成功解决了传感器漏液、性能衰降、催化剂中毒等一系列关键技术难题,并使SO2、CO、NO、NO2、O2、Cl2、N2S、NH3、偏二甲肼、无水肼、甲基肼等气体传感器的工艺进一步定型,其中研究的Au催化剂和 Pt催化剂的制备工艺先进、催化剂粒径小、比表面积大、催化剂活性高,大幅度提高了传感器的灵敏度,具有创新性;研制的多种气体过滤剂,成功解决了交叉干扰等难题,有效提高了传感器的选择性,具有自主知识产权;设计的传感器结构具有大贮液室、组装方便等突出优点。在此基础上,他们又根据行业用户的不同特点和使用需求,进行了系列产品研发。目前已研发出11种气体、30多个型号的系列电化学气体传感器,并广泛应用在我国环保、化工、矿山等行业。 该系列成果在研发中先后获国家专利10项,并获吉林省科技进步二等奖等奖项。专家认为,这一系列创新成果整体达国际先进水平,标志着我国已掌握了电化学气体传感器的核心技术。

  • 锂的电化学传感器的研制

    [font=&]【题名】:锂的电化学传感器的研制[/font][font=&][size=12px][color=#333333][/color][/size][/font][font=&]【全文链接】: https://www.cnki.com.cn/Article/CJFDTOTAL-HXCH199104002.htm[/font]

  • 电化学气体传感器应用出现的问题

    在现实实验中,发现用电化学气体传感器在冲入底气为氮气的情况下,CO传感器得到的数据的先上升至顶点后下降,SO2是一直上升来着,查找资料发现,电流i=Z × F × S × D ÷δ × C(Z:电子转移数 F:法拉第常数S:气体扩散面积D:扩散常数δ:扩散层厚度C:被测气体浓度)安照上面的公式来看,这些数据都是知道的,为什么还会出现电流变化。

  • CO电化学传感器检测原理

    电化学一氧化碳气体传感器采用密闭结构设计,其结构是由电极、过滤器、透气膜、电解液、电极引出线(管脚)、壳体等部分组成。 一氧化碳气体传感器与报警器配套使用,是报警器中的核心检测元件,它是以定电位电解为基本原理。当一氧化碳扩散到气体传感器时,其输出端产生电流输出,提供给报警器中的采样电路,起着将化学能转化为电能的作用。当气体浓度发生变化时,气体传感器的输出电流也随之成正比变化,经报警器的中间电路转换放大输出,以驱动不同的执行装置,完成声、光和电等检测与报警功能,与相应的控制装置一同构成了环境检测或监测报警系统。 当一氧化碳气体通过外壳上的气孔经透气膜扩散到工作电极表面上时,在工作电极的催化作用下,一氧化碳气体在工作电极上发生氧化。其化学反应式为: CO+H2O→CO2+2H++2e- 在工作电极上发生氧化反应产生的H+离子和电子,通过电解液转移到与工作电极保持一定间隔的对电极上,与水中的氧发生还原反应。其化学反应式为: 1/2O2+2H++2e-→H2O 因此,传感器内部就发生了氧化-还原的可逆反应。其化学反应式为: 2CO+2O2 →2CO2 这个氧化-还原的可逆反应在工作电极与对电极之间始终发生着,并在电极间产生电位差。 但是由于在两个电极上发生的反应都会使电极极化,这使得极间电位难以维持恒定,因而也限制了对一氧化碳浓度可检测的范围。 为了维持极间电位的恒定,我们加入了一个参比电极。在三电极电化学气体传感器中,其输出端所反应出的是参比电极和工作电极之间的电位变化,由于参比电极不参与氧化或还原反应,因此它可以使极间的电位维持恒定(即恒电位),此时电位的变化就同一氧化碳浓度的变化直接有关。当气体传感器产生输出电流时,其大小与气体的浓度成正比。通过电极引出线用外部电路测量传感器输出电流的大小,便可检测出一氧化碳的浓度,并且有很宽的线性测量范围。这样,在气体传感器上外接信号采集电路和相应的转换和输出电路,就能够对一氧化碳气体实现检测和监控。

  • 【转帖】烟气分析仪中电化学气体传感器的使用与维护

    烟气分析仪中电化学气体传感器的使用与维护 烟气分析仪是对有害气体如二氧化硫、一氧化氮、二氧化氮、一氧化碳等排放以及氧含量的气体检测的仪器。用于燃油、燃气锅炉污染排放、烟道气及污染源附近的环境监测。气体传感器是烟气分析仪检测气体的核心,常用气体传感器多为电化学传感器。  电化学气体传感器性能比较稳定,寿命较长,耗电很小,对气体的响应快,不受湿度的影响,分辨率一般可以达到0.1μmol/mol(随传感器不同有所不同)。它的温度适应性也比较宽(有时可以在-40℃到50℃间工作)。然而,它受读数温度变化的影响也比较大。所以很多仪器都有软硬件的温度补偿处理。同时电化学式传感器又具有体积小、操作简单、携带方便、可用于现场监测及成本低等优点,所以,在目前各类气体检测设备中,包括烟气分析仪,电化学气体传感器占有很重要的地位。1 常用电化学传感器原理及结构  按照检测原理的不同,电化学气体传感器主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等等。目前,烟气分析仪中使用较多的是定电位电解式气体传感器和迦伐尼电池式氧气传感器。   定电位电解式气体传感器工作原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择地使气体进行氧化或还原,从而能定量检测各种气体。其结构是:在一个塑料制成的筒状池体内安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体在电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。可测量SO2、NO、NO2、CO、H2S等气体,但这些气体传感器灵敏度却不相同,灵敏度从高到低的顺序是H2S、NO、NO2、SO2、CO,响应时间一般为几秒至几十秒,一般小于1min;它们的寿命,短的只有半年,长则2年、3年,而有的CO传感器长达几年。  伽伐尼电池式气体传感器与定电位电解式一样,通过测量电解电流来检测气体浓度。但由于传感器本身就是电池,所以不需要由外界施加电压。这种传感器主要是用于O2的检测,检测缺氧的仪器几乎都使用这种传感器。隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分设置阳极(用铅、镉等离子化倾向大的金属)。用KOH、KHCO3作电解液。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。2 如何科学地延长电化学传感器的使用寿命  电化学气体传感器大都是以水溶液作为电解质,电解质的蒸发或污染,常会导致传感器的信号下降,使用寿命短;由于在空气中有被测物质存在,传感器中的有效成分被消耗,因此传感器一旦被启封,就视为参加了使用,即使没用于测量,它的生命也在缩短;电化学型气体传感器的寿命期望值为2年,使用不当它的寿命可能更短,而传感器更换的费用较高。因此如何保证其使用寿命,传感器的正确维护对烟气分析仪的使用尤为重要。  传感器长时间暴露在烟气中会极大影响使用寿命,只有短时间与被测对象接触,长期处于新鲜的空气中即可维护其正常使用寿命。因此,仪器开机时,一定要在清洁的空气中。测量完毕后,不要立即关机,仪器必须在清洁空气保持运行时间5~10min,待仪器气体显示值降至10单位以下,保持仪器内部处于新鲜空气的环境,方可关机或停泵,否则,传感器容易“中毒”并加速传感器的损耗。  对于装有粉尘过滤装置的仪器,要及时更换过滤芯,避免粉尘进入传感器内,污染传感器。对于便携式仪器,不论仪器是否经常使用,至少每隔2~3周充电一次,且采样时电池电量不应低于30%。  有些厂商安装了两个泵:抽气泵和内置的清洗泵,在仪器连续监测一段时间后,抽气泵会关闭,在仪器内部的清洗泵会自动开启,抽取仪器周围的清洁空气,使仪器的传感器得到充分的清洗,这样也延长了传感器的使用寿命。3 如何保证仪器的准确性  为了保证烟气分析仪的精度和系统的完整性,对仪器还需要进行正常运行性流量检查及示值标定。  烟气分析仪是通过抽取烟道中气体到气体传感器,对被测量气体检测的,为利于烟气排放,烟道常采用负压,也就是说在烟道中如果仪器的泵抽力小,即泵的流量小,当负压超过仪器中泵的吸力时,会导致实际测量数值偏低。因此,使用仪器时,既要根据测试工况的负压范围,选择相应型号的仪器,还要对仪器的流量进行测量,一般仪器的流量要保证在0.7L/min以上,才有可能保证仪器测量的准确性。  日常工作中,可以根据本身具备的环境及条件选择不同的方法进行示值标定,以保证仪器的正常运转,但要对外出具公证数据时,则一定要到计量检定部门按周期检定,以保证仪器的准确性。  其一:选择洁净的空气,对仪器的零点进行标定。此时有害气体的含量应为“零”,而氧的含量则应为20.9%。  其二,选择纯氮,通入氮气氧传感器的显示应迅速下降为0.2mg/m。以下,否则氧传感器失效,而有害气体的显示应为“零”。  其三,选择一定体积质量的被测量标准气体进行标定,按照仪器使用说明书对每个传感器进行一一标定,如果发现示值误差超过说明书给出的技术指标,可通过校准程序或仪器内部电器指标的调整,对仪器进行调整。如果在使用中监测的数据异常偏低,反应非常慢;或在标定过程中发现传感器反应非常慢,线性误差较大,无法调整;或是刚刚调整好,再进行测量数值又发生了变化,则可以考虑更换传感器。  在更换传感器之后,也要对传感器或仪器进行及时反复的标定,调整准确后,才能使用。  总之,科学合理的使用、维护,可有效地延长电化学传感器的寿命,以保证烟气分析仪的测量准确性。

  • PID和半导体式、电化学式传感器性能优缺点比较

    PID具备优秀的灵敏度,动态范围大,可在较高无机气体浓度背景下测量低ppb的VOC浓度。但还有其他技术测量VOC:[b]火焰电离检测器(FID)[/b]与PID非常相似,FID常常用于在实验室中检测从气体色谱中提取的VOC。FID与PID传感器普遍相似,实际上所有有化合物包括甲烷都是可选的,FID传感器非常灵敏和线性。但FID传感器需要氢分子离子源,体积大且更昂贵。FID传感器可用于实验室或固定装置,但一般不作为便携VOC检测仪的灵活选择。[b]便携GC/MS[/b]这种传统实验分析仪应用于混合结果领域。带有微型机械硅,便携MS和GC仍然是一个实际的选择,但价格太高。因为GC/MS只能循环测试,并不是持续检测仪,大约每几分钟测量一次。选择它的优点在于它并不是宽带分析仪。尺寸,价格,需要真空泵和维护需求使其仅当其他检测仪都失效时才会被选择。[b]热脱附或者聚氟乙烯取样袋[/b]针对所有吸附在土样,其他固体,液体和气体中的VOC的回顾性分析,ASTM建议使用吸附剂管或者聚氟乙烯取样袋。样品一般再送至实验室进行吸附剂管的热脱附,然后使用GC/MS分析。这是调查某种问题的最好方法,但很明显不能提供实时保护。同样,这些是平均测量,昂贵而且非指定点/时间。[b]电化学传感器[/b]可用电化学元件测量多种VOC,分辨率从10-200ppb。这些都是低成本,低功耗和小巧的传感器。Alphasense提供ETO-A1传感器用于测量VOC,PID和电化学元件都是宽带传感器,但PID具备不同的配置,可以比ETO-A1测量更多的VOC,具备更大的灵敏度。如果你想用电化学元件测量VOC,就应针对目标VOC改良电化学传感器:每一种VOC需要不同的理想偏置电压以达到最好的灵敏度,这并不简单。电化学元件约在25秒内反应,而PID则只需3-4秒。[b]金属氧化半导体传感器[/b]金属氧化传感器也可以测量VOC,他们小巧,低成本,功耗与PID相似。MOS传感器存在湿度灵敏度,非线性反应和长期漂移的问题。它们也与无机气体反应,所以如果你想测量低浓度VOC,不应使用MOS,因为NO, NO2 或 CO等气体以更高浓度存在,不幸的,使用MOS技术时很容易得到假阳性和假阴性。如果你想使用MOS,就要确认长期稳定性和湿度灵敏度。如果你要求高灵敏度,特别是不用PID(例如CFC)测量的VOC,不在意精度和交叉灵敏度,MOS传感器可提供可能的解决方案。[b]比色(色斑)管[/b]作为已被大家接受的取样某种VOC的技术,比色管已经存在几十年了,主要由Draeger 或 Kittegawa提供。他们的优势在于一次性费用较低和一些特性,但劣势包括化学废品的处理(废弃管通常包含有毒化学物),精度差,色变的人工判断,取样问题和非连续测量:不能用于保护,只能作质量上取样。转载本站文章请注明出处:仪器仪表应用_传感器应用_智能硬件产品 - 工采资讯

  • 【资料】气体传感器的基础知识

    目前按照气敏特性来分,气体传感器主要分为:半导体型、电化学型、固体电解质型、接触燃烧型、光化学型等气体传感器,又以前两种最为普遍。 一、半导体型气体传感器的优缺点自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器已经成为当今应用最普遍、最实用的一类气体传感器。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。不足之处是必须在高温下工作、对气体或气味的选择性差、元件参数分散、稳定性不理想、功率高等方面。 二、半导体传感器需要加热的原因半导体传感器是利用一种金属氧化物薄膜制成的阻抗器件,其电阻随着气体含量不同而变化。气体分子在薄膜表面进行还原反应以引起传感器电导率的变化。为了消除气体分子达到初始状态就必须发生一次氧化反应。传感器内的加热器可以加速氧化过程,这也是为什么有些低端传感器总是不稳定,其原因就是没有加热或加热电压过低导致温度太低反应不充分。 三、电化学气体传感器的工作原理 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的原电池式以及需要供电的可控电位电解式,目前可以检测许多有毒气体和氧气,后者还能检测血液中的氧浓度。电化学传感器的主要优点是气体的高灵敏度以及良好的选择性。不足之处是有寿命的限制一般为两年。 四、半导体传感器和电化学传感器的区别 半导体传感器因其简单低价已经得到广泛应用,但是又因为它的选择性差和稳定性不理想目前还只是在民用级别使用。而电化学传感器因其良好的选择性和高灵敏度被广泛应用在几乎所有工业场合。 五、固态电解质气体传感器 顾名思义,固态电解质就是以固体离子导电为电解质的化学电池。它介于半导体和电化学之间。选择性,灵敏度高于半导体而寿命又长于电化学,所以也得到了很多的应用,不足之处就是响应时间过长。 六、接触燃烧式气体传感器 接触燃烧式气体传感器只能测量可燃气体。又分为直接接触燃烧式和催化接触燃烧式,原理是气敏材料在通电状态下,可燃气体在表面或者在催化剂作用下燃烧,由于燃烧使气敏材料温度升高从而电阻发生变化。后者因为催化剂的关系具有广普特性应用更广。 七、光学式气体传感器光学式气体传感器主要包括红外吸收型、光谱吸收型、荧光型等等,主要以红外吸收型为主。由于不同气体对红外波吸收程度不同,通过测量红外吸收波长来检测气体。目前因为它的结构关系一般造价颇高。

  • 基于电化学酶生物传感器的食品和药物分析的研究进展

    [font=Encryption][color=#898989]摘要:[/color][/font][font=Encryption][color=#666666] 近年来,基于电化学酶的生物传感器已成为一种简单、快速、超灵敏的检测药物和食品样品中不同化合物的装置.本文介绍了酶的分类、固定化和抑制信息等方面的研究进展,对电化学酶基生物传感器进行了详细的论述,总结并列出了一些用于食品和药物分析的电化学酶生物传感器研究.[/color][/font]

  • 【转帖】葡萄糖传感器的电化学

    葡萄糖传感器的电化学: 在葡萄糖和葡萄糖氧化酶(GOx)存在时,稀溶液中羧酸二茂铁(FCA)的循环伏安实验。"空白“实验(蓝色)信号显示没有葡萄糖存在时的循环伏安图。当FCA+中电化学生成 Fe(III) 时,葡萄糖被氧化。在氧化条件下,电极上不断生成FCA+。阳极电流的大小取决于酶和葡萄糖的浓度。关键词: 循环伏安法, Cyclic Voltammetry. 电分析化学, Electroanalytical Chemistry. 生物化学, Biochemistry.为什么没有人只是测量葡萄糖呢?一定要引入传递介质吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制