当前位置: 仪器信息网 > 行业主题 > >

空气测漏仪

仪器信息网空气测漏仪专题为您提供2024年最新空气测漏仪价格报价、厂家品牌的相关信息, 包括空气测漏仪参数、型号等,不管是国产,还是进口品牌的空气测漏仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合空气测漏仪相关的耗材配件、试剂标物,还有空气测漏仪相关的最新资讯、资料,以及空气测漏仪相关的解决方案。

空气测漏仪相关的论坛

  • 移液器泄漏检测仪 改善空气活功能检查的可靠性

    移液器是实验室日常使用最多的小仪器之一,移液器的精准度在很大程度上也影响着实验的结果,怎样知道您正在使用的移液器是否精准呢?  有数据显示,导致活塞式移液器精准度下降最常见的原因是泄漏。而泄漏可能来自于密封圈,活塞或者吸头锥的损坏。而许多时候这种导致显著体积误差的泄漏无法用裸眼识别。 根据计量仪器监测要求,空气活塞移液器需要定期检查并将结果与ISO 8655-2规定的误差极限相比较。 然而,校准证书仅反映了测试当时的结果。两次测试之间的时间非常关键,因为在这段时间内随时可能发生泄漏。即便看不出明显的滴漏,超过80%的送修移液器有泄漏现象并且超出了他们的容差范围。PLT可以作为两次校准间的日常的移液器检查提供保障, 即便最小的泄漏,BRAND 泄漏测试仪 (PLT unit) 也可在数秒内检出。 预设市售量程范围自1 μl至 10 ml的单通道与多通道移液器的极限值。  那么测漏仪的原理是什么呢?我们来简单了解一下几个定义。  泄漏率为单位时间内泄漏的物质的量(质量)。对于空气活塞移液器,PLT检漏仪通过测量压力变化确认泄漏率的值。即在创造一个负压之后,测定在给定时间内压力的升高值。泄漏率的测量需考虑一系列 复杂的物理关系。PLT检漏仪内置极限值的计算必须包含如移液器/吸头系统的死体积,移液器吸头的流体截面,单位时间的压力升高, 移液器的量程与型号,等等因素。  泄漏率 QL:为pV值与单位时 间的比率,即单位时间流经 某一截面的气体的量。  pV值:是一定量的气体在当 时的温度下压力与体积的乘 积。它可作为物质的量或气 体的量的衡量标准。  体积损失 :对于测试移液器,hPa ml/s 是泄漏率QL的合适单位。在 空气压力为1000 hPa的条件 下1 hPa ml/s的泄漏率意为 着体积损失率为1 μl/s。  德国BRAND 泄漏测试仪 (PLT unit)可进行如下状态的测试:  带吸头或不带吸头测试 :测试安装新吸头的移液器可以 检查整个移液系统。  当发现泄漏时,可以通过重复 测试不带吸头的移液器,鉴定 泄漏发生的位置是否在吸头锥/ 吸头接触的位置。  动态测试:使用动态测试可以快速确定是 否是活塞的问题( 污染, 刮伤)造成的泄漏。测试时,需 按压移液器移液按钮数次。带 动活塞的移动可以帮助识别活 塞上的缺陷。  静态测试:静态测试时,不需按压移液器 按钮,即活塞不移动。这仅仅 能确定通常意义的泄漏存在, 但并不能确定来自于哪一组件。

  • GC空气漏气

    用GC-FID检测器,检测器能正常点火,基线平衡很长时间,依旧漂移严重。关闭仪器后面空气阀门,空气压力表压力迅速降到0。这是正常的还是仪器内部空气管路漏气啊?

  • 空气管路有漏,却一直找不到原因

    最近分析室在某一天,二级减压表上发现,空气开始漏了。于是一段一段检漏,没有找到漏点,但是从表上看,压力一直在下降。已经有快两、三个星期了,还是没有找到是什么原因,求助各位大侠!

  • 气质调谐空气和水峰很高仪器泄漏

    气质调谐空气和水峰很高仪器泄漏

    使用的是安捷伦7890色谱和瓦里安220离子肼,有一段时间没有开机了,开机之后发现空气和水峰很高,就关机检查,排查了气体气路补集肼没问题,GC进样口、传输线密封垫圈等也都检查拧紧了,再次开机烤肼20h后,空气水峰还是很高,RIC和base amount也很高,如下图,应该是哪里有泄漏,但是找不出来!!!仪器其他状态都是正常的,分子泵电流这些也正常,RF和cal gas矫正也能通过。还望各位大神指点!![img=,690,458]http://ng1.17img.cn/bbsfiles/images/2017/10/201710121748_02_2525115_3.jpg[/img][img=,690,438]http://ng1.17img.cn/bbsfiles/images/2017/10/201710121748_01_2525115_3.jpg[/img]

  • 【求助】热电工程师说他们的仪器看到空气峰很大是正常现象,不代表漏气,对吗?

    用的是TSQ Quantum [url=https://insevent.instrument.com.cn/t/Mp]gc[/url],从来没用过,刚开始接触。以前在仪器出问题前手动打开灯丝看到空气峰很大,而且似乎比例一直都维持在3比1,加了调谐液时,更加清晰的能看到空气峰是绝对意义上的基峰,水峰很小。但是问过热电的工程师,说这跟Agilent的不同,是正常的。当时也没见有什么问题,于是也没过多理会。不过其实也没做过多少次,一直都是同事在操作。现在正式开始用它了,就开始出问题了。 自从自动调谐出了问题(一直不给做),怀疑点之一就是漏气(刚洗了离子源),可是实在又看不出来漏气的地方在哪里,丙酮测露也试过了,没见到58峰,不过看到了一个不大不小的40峰。因为热电工程师之前的说法,实在确认不了到底是否漏气。 但是自动调谐就是不给做。找到了一个default的文件夹,想调其中的调谐文件试试,总是失败,估计那个文件有问题。有没有哪位遇到过类似情况的?热电工程师说得有道理吗?难道不同厂家的仪器差别这么大?请问,自动调谐都跟什么设置有关啊?为什么手动进调谐液能看到峰,而且不算很小,但是自动时就是说信号不足呢?请指教啊!这个问题一日不解决,就什么都做不了啊。急啊!极度的困扰中! [em09509]

  • 【讨论】关于漏电开关和空气保护开关

    看到一份资料讲:漏电开关是对人的保护,所以一般要求规格为25MA,超过25MA不能起到保护人的作用,而空气开关是负载过高时对仪器设备的保护,所以两者最好一起安装。疑问1:既然漏电开关在仅有25mA电流时就跳闸了,为什么不能起到保护仪器的作用?疑问2:现在我们单位电工给实验室装了个100MA漏电开关,那岂不是既不能保护人又不能保护仪器?

  • 检漏时候氮气强度和空气气度比是4比1

    检漏时候氮气强度和空气气度比是4比1,水峰和比氮气峰低了一点点,是漏气吗可能是哪里问题,如果强度比是大于四比一,或者小于四比一都算不漏气吗[img]https://ng1.17img.cn/bbsfiles/images/2019/10/201910230732276562_8810_4004805_3.png[/img]

  • 空气压缩机连接的空气净化器漏气,怎么解决?

    因为休假一周,没有人开[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],所以就把空气压缩机电源关了。昨天上班来测试,居然发现连接在空气压缩机后面的净化器装置漏气,拆卸了也没有发现什么原因,给PE工程师电话,居然也不知道我们是配的哪一款,跟他说了,他说不知道。不知道各位有没有遇到这样奇怪的漏气问题?

  • 【求助】看看这个空气谱图,你们认为漏气吗?

    我是DSQII新手用户,附件的空气谱图你们认为漏气吗?我检漏过了,但没发现漏气,柱子两边接口和进样口都用丙酮检漏,GC的Lead cheak也是Pass。但看谱图这个样子,都觉得是漏气,心里没底啊,你们认为是漏气吗?

  • 手推式埋地管道泄漏检测仪介绍

    手推式[url=http://www.dscr.com.cn/list.asp?classid=42]埋地管道泄漏检测仪[/url],检测时不需要钻孔和挖开覆土,只需推着仪器在燃气管道上方行走,便可以直接在地面检测地下输气管道的泄漏位置,是地下输气管道探漏理想的仪器。广泛应用于城镇燃气、石油、石化、油库、气站、油气田等部门气体输配管道的安全检查以及管道维护和泄漏抢险等。【主要技术指标和特点】外形设计:手推式检测气体:A型:天然气,液化石油气B型:人工煤气灵敏度:0~1000ppm,优于50ppm 1~100%LEL时,优于1%LEL探测范围:0~1000ppm,1~100%LEL(自动)预热时间:10s响应时间:小于10s电 池:9.6v可充电锂离子电池充电时间:不小于4H待机时间:大于8H工作条件:温度:-10~60摄氏度 相对湿度:小于95%(无结露)环境风速:小于2m/s气体流量:1L/min显 示:液晶显示(带背光)尺 寸:1100 mm×230 mm×280mm重 量:6.7kg【其它配件】充电器、滤纸、装箱文件【检测原理及方法】当含有可燃气体的空气,通过气泵送到传感器时,检测元件的阻值会迅速变大(其阻值变化的大小跟气体的浓度成正比),同时输出一电压信号,经电路放大后送到显示部分,并产生报警信号。

  • 空气污染公用写字楼、开放式办公室是重灾区

    写字楼、办公室空气污染惊人 现在在办公人群中流行一种病叫“办公楼综合症”,直接由室内空气污染所引起,会使人出现头痛、恶心、气喘气促、鼻咽部不适等多种症状,还会产生焦躁等不良情绪,严重影响工作质量。 而这些还仅仅是一些小疾患,更有一组令人心颤的数据:中国室内装饰协会环境检测中心日前公布,我国每年由室内空气污染引起的死亡人数已达11.1万人,每天大约是304人,同时造成107亿元的经济损失。 由于室内环境的恶化,我国的肺癌发病率以每年26.9%的惊人速度递增;目前80%的白血病发病率与室内空气污染有直接关联;因装修污染引起上呼吸道感染而导致重大疾病的儿童约有210万名。

  • 埋地管道泄漏检测仪的主要特点和指标

    埋地管道泄漏检测仪的检测原理是:当地下输气管道发生腐蚀性穿孔、断裂必然产生气体的微量泄漏,在地面沟井、下水道等处缓慢扩散。检漏仪将含有可燃气体的空气,通过气泵送到传感器时,检测元件的阻值会随气体浓度迅速变化(其阻值变化的大小跟气体的浓度成正比),同时输出电压信号,经电路放大,单片机处理后送到显示部分,并产生随浓度变化的报警信号。  具有抗干扰、耐低温和稳定性、灵敏度高,选择性好,无需钻孔,直接地面检测埋地管道的泄漏点;报警声音随气体浓度变化而变化,操作人员无需观察显示部分,提高了工作效率。  主要技术指标和特点  外形设计:手持,伸缩式  检测气体:A型:天然气,液化石油气  B型:人工煤气  灵敏度:0~1000ppm,优于50ppm  1~100%LEL时,优于1%LEL  探测范围:0~1000ppm,1~100%LEL(自动)  预热时间:10s  响应时间:小于10s  电 池:9.6V可充电锂离子电池  充电时间:不小于4H  待机时间:大于8H  工作条件:温度:-10~60摄氏度 相对湿度:小于95%(无结露)  环境风速:小于2m/s  气体流量:1L/min  显 示:液晶显示(带背光)  尺 寸:165 mm×155 mm×68 mm  重 量:1.1kg  埋地管道泄漏检测仪采用伸缩式设计,功能一体化。具有质量轻,操作简便的特点;采用了军品锂电池,快速智能充电,无需人工控制;采用大规格集成电路,LCD显示,声音报警,电源欠压报警功能;选用进口传感器和进口气泵,具有抗干扰、耐低温和稳定性、灵敏度高,选择性好,无需钻孔,直接地面检测埋地管道的泄漏点;报警声音随气体浓度变化而变化,操作人员无需观察显示部分,提高了工作效率。

  • SL-808埋地管道泄漏检测仪的检测原理

    SL-808[url=http://www.dscr.com.cn/list.asp?classid=42]埋地管道泄漏检测仪[/url]的检测原理是:当地下输气管道发生腐蚀性穿孔、断裂必然产生气体的微量泄漏,在地面沟井、下水道等处缓慢扩散。检漏仪将含有可燃气体的空气,通过气泵送到传感器时,检测元件的阻值会随气体浓度迅速变化(其阻值变化的大小跟气体的浓度成正比),同时输出电压信号,经电路放大,单片机处理后送到显示部分,并产生随浓度变化的报警信号。 主要技术指标和特点  外形设计:手持,伸缩式  检测气体:A型:天然气,液化石油气  B型:人工煤气  灵敏度:0~1000ppm,优于50ppm  1~100%LEL时,优于1%LEL  探测范围:0~1000ppm,1~100%LEL(自动)  预热时间:10s  响应时间:小于10s  电 池:9.6V可充电锂离子电池  充电时间:不小于4H  待机时间:大于8H  工作条件:温度:-10~60摄氏度 相对湿度:小于95%(无结露)  环境风速:小于2m/s  气体流量:1L/min  显 示:液晶显示(带背光)  尺 寸:165 mm×155 mm×68 mm  重 量:1.1kg

  • 气泡泄漏检测方法的特点以及压力衰减法检漏新技术

    气泡泄漏检测方法的特点以及压力衰减法检漏新技术

    [color=#ff0000]摘要:针对传统的气泡法检漏技术,本文详细介绍了气泡法的基本原理、气泡法中的两种标准方法——加压法和真空法以及对应的标准规范,并对这两种气泡法进行了对比分析。本文还对气泡法的技术特点进行了分析,指出了气泡法检漏技术的局限性,由此引出和介绍了更先进的自动化高精度的检漏测试技术——压力衰减法。[/color][align=center]~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]1. 气泡泄漏检测方法概述[/b][/color][/size] 气泡泄漏检测(bubble leak test)一般简称为气泡排放检测(bubble emission test)、浸没泄漏检测(submersion leak test)、水下浸没泄漏检测(underwater immersion leak test)或“浸泡检测(dunking test)”,是一种通过排放气泡来检测和定位被测物泄漏的试验方法。 如图1所示,气泡捡漏法的基本原理是设法使浸泡在水介质中的被检对象内外产生压力差,如果存在泄漏,则高压气体通过泄漏点向低压流动,在低压侧可以观察到泄漏气体在水中产生的气泡,由此来检测泄漏,具有操作简便、快捷和低成本的特点。[align=center][img=气泡泄漏检测基本原理图,500,343]https://ng1.17img.cn/bbsfiles/images/2023/01/202301172050596927_5663_3221506_3.jpg!w690x474.jpg[/img][/align][align=center][color=#ff0000]图1 气泡泄漏检测方法基本原理[/color][/align] 气泡泄漏检测方法的灵敏度受压力差、加压气体和起泡溶液的影响。目前气泡泄漏检测方法主要依据以下两种技术和相应方法: (1)加压技术:给被检对象内部直接用气体加压,在被检对象外部直接施加起泡溶液或将被检对象直接浸入溶液,根据泄漏气体通过液体时形成的气泡,确定被检对象是否泄漏及漏孔位置。相应标准为 ASTM F2096“通过内部加压检测医用包装严重泄漏的标准试验方法”。 (2)真空技术,适用于检测时不能直接加压设备的泄漏检测方法。在被检设备壳体局部区域施加起泡溶液,然后通过真空罩使这一局部区域两侧形成一定的压力差,如有泄漏发生,则会在压力低的一侧产生气泡,从而可以确定泄漏产生的部位。相应标准为 ASTM D3078“通过气泡排放测定软包装渗漏的标准渗漏试验方法”。 国家标准 GB∕T 34637“无损检测 气泡泄漏检测方法”将上述两种方法进行了汇总,对于刚性容器的检漏也有相应标准 ASTM D4991"用真空法测试空刚性容器泄漏的标准试验方法“,但基本原理都相同。本文将对这种气泡泄漏检测方法进行分析,介绍相应的特点和局限性,由此引出后续将介绍的目前气体泄漏检测新技术。[b][size=18px][color=#ff0000]2. 两种气泡法检漏装置简介[/color][/size][/b] 依据上述气泡法的测试系统是一种能够检测、定位和一定程度上量化气泡排放泄漏的装置,检漏装置主要由两部分组成。第一个组件是一个在被检对象内外之间产生压力差的装置,该压力差将开始驱使对象的内部气体通过泄漏路径从较高压力(对象内部)流向较低压力(对象外部)。这种压差的形成通过两种方式实现: (1)通过插入或连接压力探针(加压管线)进行内部加压。这意味着内部压力大于环境空气压力。 (2)通过将被检对象放置在真空室中来抽真空。这意味着对象内部的压力是大气环境压力,而对象外部的压力小于环境压力。 检漏装置的第二个组成部分是浸没液体介质。这种介质(在大多数情况下是水)将使操作者能够检测到从泄漏的被检对象中发出的气泡。浸没液体介质有时可以是油、酸浴或其他液体物质,该液体主要是充当能够视觉检测气泡的介质。[color=#ff0000] (1)采用内部加压技术的检漏装置(ASTM F2096)[/color] 在采用加压技术的检漏装置中,对于柔性被检对象的检漏,理想方法是通过插入皮托管式静态探针对被检对象进行内部加压,或直接通过刚性被检对象的管路和接口进行内部加压,如图2所示。该装置需要一个压力控制系统,该系统由压力源、高精度压力控制器和压力计组成,可实现较宽范围的精确压力控制以满足柔性和刚性被检对象的加压捡漏需求。 对于柔性被检对象,内部加压方法有时需要静态探针刺穿被检对象,以便进行内部加压。内部加压方式可以更好地控制压力,处理被检对象,如在测试过程中转动或旋转袋子。[align=center][color=#ff0000][img=气泡法加压检漏装置结构示意图,600,353]https://ng1.17img.cn/bbsfiles/images/2023/01/202301172051374796_2780_3221506_3.jpg!w690x407.jpg[/img][/color][/align][align=center][color=#ff0000]图2 气泡法内部加压检漏装置结构示意图[/color][/align][color=#ff0000] (2)采用外部真空技术的检漏装置(ASTM D3078)[/color] 在采用外部真空技术的检漏装置中,最理想的是丙烯酸塑料(亚克力)材料制成的真空室,如图3所示。因为丙烯酸塑料是透明的,能够在测试过程中看到漏气过程的全貌。就检测准确性而言,它也是最具成本效益和最划算的。[align=center][color=#ff0000][img=气泡法检漏装置亚力克真空箱,450,526]https://ng1.17img.cn/bbsfiles/images/2023/01/202301172051518809_7707_3221506_3.jpg!w609x713.jpg[/img][/color][/align][align=center][color=#ff0000]图3 气泡法外部真空检漏装置[/color][/align] 该真空室必须与真空泵连接,该真空泵可以是旋转叶片泵或文丘里泵。旋转叶片泵由电力驱动,将产生更高的真空,并且不需要加压供气来运行。另一方面,文丘里泵不需要电力,将产生较低的真空,且需要压缩空气源。[b][size=18px][color=#ff0000]3. 两种气泡检漏法的对比分析[/color][/size][/b] 对于上述内部加压和外部真空这两种气泡检漏法在实际应用中的选择,往往并没有明确的答案。选择哪一种气泡检漏法要根据被测对象的具体情况而定。表1列出了两种检漏方法对比。[align=center][color=#ff0000][img=两种气泡法检漏技术对比,690,209]https://ng1.17img.cn/bbsfiles/images/2023/01/202301172052182542_7313_3221506_3.jpg!w690x209.jpg[/img][/color][/align][align=center][color=#ff0000]表1 两种气泡法检漏技术对比[/color][/align] 当涉及到标准测试方法指导文件时,方法会有所不同。外部真空法和内部加压法分别以ASTM D3078和F2096为依据。外部真空法需要真空源,如采用真空泵或压力驱动的文丘里泵,内部压力法需要压力源和压力调节设备,不要求在真空法泄漏测试期间刺穿被检对象,而内部加压法则需要用探针刺穿样品以充入空气。在真空室内进行测试时,不能旋转或处理样品,这可以通过内部加压方法来实现。另外,加压法的压差更高、压力控制更好和更精确,因为可以更精确地控制压力。真空系统更复杂,因为内部腔室是气密和密封的,以便能够抽真空,且压差较小。[b][size=18px][color=#ff0000]4. 气泡法检漏特点分析[/color][/size][/b] 通过上述对气泡法检漏装置的介绍和对比,概括地说,气泡法检漏测试有如下特点优点。 (1)经济且有效的密封性能测试:涉及到产品的密封性能测试评价,没有比水浸气泡法泄漏测试更好的方法了,而事实上,比气泡法更好的方法要贵一两个数量级。 (2)简单易行的泄漏测试:将测试样品放入水浴中,抽真空或加压,寻找气泡,这是一种非常简单的检测和定位泄漏的方法。这在实际应用中非常便利,操作人员不需要太多的技术培训就可以进行检漏测试。 (3)泄漏小袋和包装的实际测试:所有需要仅是一个丙烯酸塑料箱和一个真空泵来进行检漏测试,对于大多数商业和医疗包装来说,测试的准确性也相当不错。 (4)包装泄漏的视觉检测和定位:泄漏可以在几秒钟内可通过视觉进行检测和定位。 (5)快速样品制备:许多被测样品无需太多准备,这意味着测试流程可以非常顺利地进行。 (6)通用测试方法:气泡泄漏测试可用于各种形状和大小的被测对象。 气泡法作为一种最传统的检漏技术,仍然在众多领域得到应用。然后根据研究表明,当结果依赖于人工视觉检查时,近30%的泄漏被遗漏,且通常检测效率和灵敏度低,需要操作人员目视识别泄漏。其面临的挑战主要包括: (1)如不加精密的真空压力控制,难以保持一致的测试条件。 (2)水很容易被污染。 (3)粘性物质可以掩盖测试过程中的泄漏。 (4)由于测试时间长、测试后清洗和干燥被检对象。 (5)对于较大尺寸的被检对象,大型水箱和吊装装置会占用场地和空间。 气泡法检漏测试的具体缺点是: (1)破坏性测试:即使包装的内部没有被水损坏或破坏,气泡法泄漏试验也被认为是破坏性试验,皮托管式静压探头的插入会在包装上造成一个穿孔。 (2)主观泄漏检测方法:气泡排放需要测试人员的参与,这给测试方法带来了主观性。测试操作员必须参与测试,否则可能会出现问题。 (3)密封被检对象的制备和处理:必须清洁被检对象,并为泄漏试验做好准备。此外,有些人可能不喜欢处理潮湿对象所带来的不便。 (4)测试程序取决于被检对象:对水敏感的被检对象,如电子设备,可能不适合这种测试方法。泄漏无法量化,没有办法知道泄漏的大小,只能知道泄漏在哪里。[b][size=18px][color=#ff0000]5. 气泡法检漏技术的局限性[/color][/size][/b] 气泡法检漏中产生气泡的唯一原因是因为在被检对象的内部和外部之间存在压力差,气体被从较高压力的环境驱入较低压力的环境,由此所带来的局限性如下: (1)最小可检测漏率 真空泄漏测试专家的共识是气泡法测试的最小可检测泄漏率为每秒0.001标准立方厘米,这意味着在每秒0.001标准立方厘米的漏率下,1立方厘米的泄漏大约需要100秒。 (2)渗透性材料的气泡泄漏试验 气泡泄漏测试不能在可渗透材料上进行,因为气泡泄漏测试开始时,数百个气泡开始从材料中冒出,这将使得定位和精确定位漏洞几乎不可能。 (3)气泡视觉检测的主观性 当我们研究气泡出现的频率和大小时,这种测试方法的主观性也受到质疑。假设在气泡泄漏实验中肉眼可以合理看到的最小气泡直径约为1mm,并假设一个直径为1mm的完美气泡球,因此气泡的体积为0.000524标准立方厘米。这意味着在0.001scc/s的泄漏率下,被检对象每秒钟将放出约2个气泡。 (4)内部真空法导致有限空气滞留 真空法的另一个局限性是,被检对象的起始压力一般是一个大气压,被检对象内部的空气量有限。在检漏过程中被检对象中存在的空气越来越少,因此压力越来越低,这意味着在低空气体积下,没有足够的空气从样品中排出用于适当的检测。 (5)加压法和真空法的不同 最后,如果被检对象已经加压到高压,真空室可能就没有太大的意义。我们这里假设被检对象已经被加压到200psi的绝对压力,然后浸入一个气泡测试槽中。漏率由以下公式得到:[align=center][img=漏率公式,200,67]https://ng1.17img.cn/bbsfiles/images/2023/01/202301172053406932_1785_3221506_3.jpg!w294x99.jpg[/img][/align] 式中:Q代表漏率;P1代表试样内部压力;P2代表试样外部压力;R代表气体常数;V代表体积;t代表时间。从公式可以看出,这仅仅意味着压差乘以常数乘以体积随时间的变化决定了漏率大小。为了更直观的说明问题,假设R、V和 t 都是1: 若被检对象已加压到200psi,标准大气环境压力为15psi,那么漏率为200–15=185。 若这个加压对象浸入一个水箱容器并抽真空,压力差将是200psi,即漏率为200–0 = 200。 由此可见漏率测量值只提高了7.5%,这意味着会看到多了7.5%的泡沫。如果被检对象可以采用加压法检漏,那么将具有这种内部加压的对象放入真空气泡泄漏箱就没有多大意义。 另一方面,在真空法检漏中,如果被检对象在15psi的标准大气环境压力下密封,浸入一个水箱容器并抽真空,压力差最大也只能是15psi,即漏率为15–0 = 15。由此可见,压差越大,漏率越大,则可观察到的气泡越明显,说明加压法要比真空法的测量灵敏度更高。[b][size=18px][color=#ff0000]6. 压力衰减法检漏技术[/color][/size][/b] 为了进一步解决上述气泡法检漏中的局限性,在气泡法基础上发展起来的压力衰减法泄漏检测技术逐渐成为当今最常用的方法。它的简单性使其易于自动化并集成到生产和装配过程中。 简而言之,压力衰减法测试是用空气填充被检对象直到达到目标压力,切断气源以隔离压力,并测量该压力在设定时间段内的衰减(损失),任何压力损失都表明存在泄漏。压力衰减法的灵敏度是测试部件尺寸和测试时间的函数,大多数测试都可以相当快速地执行,并获得高度准确的结果,但零件越大,获得准确测试结果所需的周期时间就越长。压力衰减法具体方法包括: (1)压力衰减的dP和dP/dT微分法。 (2)压力衰减的泄漏标准校准法。 (3)压差衰减的dP和dP/dT微分法。 (4)压差衰减的泄漏标准校准法。 (5)体积填充(密封设备)捡漏法。 以上压力衰减法详细内容将在后续文章中进行详细介绍。因为压力衰减法的应用可实现检测自动化,给检漏测试带来以下几方面的改进: (1)自动化泄漏测试节省时间和金钱 在制造过程中自动进行空气泄漏测试可以节省时间、金钱和工时。可自动按照设定确定是否符合泄露标准,一旦出现问题泄漏测试仪将通知生产线操作人员,可更快地发现产品缺陷,最大限度地缩短周转时间。 (2)精确和可重复的精密制造方法 与传统的水浸气泡法相比,自动化空气泄漏测试可提供更高准确度和可重复性的精确结果。 (3)可扩展的自动检漏系统符合您的要求 制造过程中使用的数字泄漏测试系统允许扩大生产规模并提高质量保证测试的速度。多种类型的泄漏测试仪可满足不同的需求,不同方法和规格的自动泄漏测试系统可满足大多数需求。 (4)适用于任何行业制造的自动化泄漏测试方法 随着制造方法变得更加自动化、先进和数字化,生产的各个方面都必须跟上步伐。制造过程中使用的自动泄漏测试是在满足需求的同时认证产品质量的绝佳方式。自动化泄漏测试最大限度地提高了各行业的效率,但在制造业尤其有用,典型应用领域有医疗设备和部件、药物、汽车零部件、航空航天部件、消费品和电子产品、包装等应用。 (5)制造过程中的自动空气泄漏测试创造了更高效的系统 制造过程中使用的自动空气泄漏测试将提高应用系统的整体效率,同时提高最终产品的质量。压力衰减法泄漏测试是非破坏性的,因为它使用干燥的空气来检查缺陷,并且具有较小的物理足迹。[align=center]~~~~~~~~~~~~~~~[/align]

  • 【资料】为什么使用渗漏检测仪?

    为什么使用渗漏检测仪?使用渗漏检测仪可以有效地检测到渗漏的位置. 该有效性是有一次传播的(红)色光和二次反射的(蓝)色光来决定的.  渗漏检测仪应用十分广泛,主要应用于石化工业、电力工业、航空造船业、造纸业、纺织业、冶金工业等。  压力/真空泄漏  当任何气体(空气、氧气、氮气……等)通过一泄漏孔隙,均会产生具有可探测高频成份的扰流,以渗漏检测仪来扫描附近区域,经由耳机可听到泄漏的急流声或是指示。检测仪愈靠近泄漏点,则急流声会愈大,指示读 值会更高。当然,环境噪音是个问题,但使用橡皮聚音探头可缩小探测仪的接收区域。以阻隔杂讯噪音波的干扰,渗漏检测仪的频率调整功能可降低背景噪音干扰,让没经验的使用者也可容易地操作来检测泄漏。   应用:瓦斯、天然气管路/筒槽、实验室/医院手术室、空调、气压管路、供气/氮气系统、油罐车及其它任何气体管路/舱室/筒槽之泄漏点的找出  热交换器、锅炉及冷凝器泄漏  真空或压力泄漏可用渗漏检测仪CARGO-SAFE检测出,配件、阀、联结轴都可作泄漏扫描。超声波的高频、短波特性,让使用者在高噪音环境下,也能定位出泄漏位置。冷凝管及热交换管可通过下列三种方法:真空、压力、超声波音响作泄漏测试。   应用:石化工厂、重工业、电厂、实验室、一般工厂的热交换器、锅炉及冷凝器的泄漏点寻找。  阀类泄漏  在线阀发生诸如泄漏或阻塞问题时可准确地作检测,有泄漏的阀,介质从高压侧经泄漏点至低压侧流动时,会产生扰流,而良好的阀则相对较安静,由于渗漏检测仪CARGO-SAFE有一宽广灵敏度及超声波频率选择范围,即使在噪音环境下,各种型式的阀都能准确地测试出泄漏问题。  轴承监测  渗漏检测仪型号:CARGO-SAFEE可检测轴承故障的最初阶段,NASA研究中心已经证实超声波轴承监测比使用传统温度及振动测试法,能更早定位出潜在轴承故障问题。以渗漏检测仪型号:CARGO-SAFE为例,使用者可听到声音品质及观察表头读值大小。因此提 供趋势监测、维护及确认潜在轴承问题,而频宽调整功能使得更容易将某一轴承作隔离分析。弧光或部分放电(电晕)会从绝缘劣化位置产生超声波信号,此种放电讯号用渗漏检测仪CARGO-SAFE作区域扫描能快速定位出故障点。此种信号用耳机听起来就象一油炸声或嗡嗡声。将检测器愈靠近放电处,就会得到愈强的信号。适用于电力开关、变压器、继电器、断路器、汇流排板、绝缘装置等的预防保养维修使用。   应用:电厂、工厂变电所、高压配电箱的电弧、部分放电或漏电痕迹、检测与定位、高压铁塔、变压器、高压绝缘物检测。  电气设备检测  弧光或部分放电(电量)会从绝缘劣化位置产生超声波信号,此种放电讯号用渗漏检测仪CARGO-SAFE作区域扫描能快 速定位出故障点。此种信号用耳机听起来就象一油炸声或嗡嗡声。将检测器愈靠近放电处,就会得到愈强的信 号。适用于电力开关、变压器、继电器、汇流排版、绝缘装置等的预防保养维修使用。   应用:电厂、工厂变电所、高压配电箱的电弧、部分放电或漏电痕迹、检测与定位,高压铁塔、变压 器、高压绝缘检测。  超声波密封测试  超声波音响(渗漏检测仪CARGO-SAFE)密封测试是一种非破坏性离线测试法,不须作加压,因此比传统使用加压或泡 沫的方法,更快速简单并且更精确。  此种测试法是在测密封室/简槽不须加压情况下,将超声波音源发生器置于内部或一端,则超声波信号会流至待 测物内部各角落,并穿透任何泄露位置。因此渗漏检测仪CARGO-SAFE于外部扫描穿透的超声波信号,即可指出泄露位置。   应用:飞机门窗、油箱、座舱泄漏、船舱/潜艇舱房泄露,汽车门窗泄漏。

  • 【分享】车载燃气泄漏检测仪

    【分享】车载燃气泄漏检测仪

    40,000 ppm 交叉干扰无取样泵流量自动调整,700 至2,000 l/h 外形尺寸550 mmx 470 mmx 450 mm 将EGC车载燃气泄漏检测仪与所的车辆结合在一起,即可成为一辆准确高效的燃气泄漏检测车。EGC吸气取样单元 EGC的吸气取样单元分为左右两个部分,由不锈钢制成,安装在车辆的前端,除8只钟型取样头外,还可以换装8个管式取样头,用于路面条件不理想的路段。 每个取样头均采用快接插头的形式联接,配有高效过滤芯,这种连接形式使得更换和日常保养变得非常容易。 高效气泵将气样输送至传感器单元,气泵的运行状态等均由操作人员掌握并有系统自动记录。它的出力大小根据车辆的行驶速度进行调整,以保证气样吸取的最佳状态,避免气样被周边空气稀释。 气样中的一部分在通过疏水过滤器脱除水分后,被送入传感器单元。高度灵敏且快速的甲烷检测–– 红色曲线:T90 = 5 sec –– 绿色曲线: T90 = 2.5 sec (EGC) 本检测系统提供3年质保期。EGC传感器单元采用激光二极管传感器,以确定气样中甲烷的痕迹含量,可在2-3秒内检测到最低至1ppm的甲烷浓度(从气样吸入吸气探头开始)。得益于激光传感器的长期稳定性和选择准确性的特质,在使用过程中,不需要标定调整。 左图为不同反应时间的传感器相同速度条件下的检测曲线。气体浓度:50ppm;接触时间:0.12秒(相当于以30km/h的速度,通过1m宽度的气团)车载燃气检测的重要因素:车载燃气检测过程中,优化吸气泵流量与检测车辆的速度平衡是影响检测效果的重要因素之一。低速行驶条件下,如果吸气泵的流量过大,会导致气样中的气体浓度不必要地被稀释,进而造成检测结果低于报警下限;行驶速度较高时,吸气泵的流量没有相应的调高,也会造成气样浓度偏低,导致检测结果低于实际情况,同时也低于报警下限。基于上述分析,Esders车载燃气泄漏检测仪的吸气泵的流量控制,是与车辆的行驶速度成比例的,吸气泵的运行状态与速度时时关联。

  • 【资料】超声波气体泄漏的检测原理

    超声波泄漏检测仪为超声波检出方式的泄漏检测仪, 可对空气、煤气、蒸气以及液体等的输送管道以及各种设备的泄漏进行检查。如果与附属的超声波发生器配合使用,还可对冰箱,密封容器,空调系统,轮胎,压缩机以及各种输液管道等的密封状态进行检查,是改善环境,节约能源的有力工具。 如果一个容器内或管道内充满气体,当其内部压强大于外部压强时,由于内外压差较大,一旦容器有漏孔,气体就会从漏孔冲出。当漏孔尺寸较小且雷诺数较高时,冲出气体就会形成湍流,湍流在漏孔附近会产生一定频率的声波,声波振动的频率与漏孔尺寸有关,漏孔较大时人耳可听到漏气声,漏孔很小且声波频率大于20kHz时,人耳就听不到了,但它们能在空气中传播,被称作空载超声波。超声波是高频短波信号,其强度随着传播距离的增加而迅速衰减。超声波具有指向性。利用这个这个特征,即可判断出正确的泄漏位置。 R-0501可工作于被动态与主动态。当对输气管道进行实时检查时,可单独使用它,利用它捕捉气体泄漏时所产生的微小的超声波信号,即可判断出正确的泄漏位置。这种工作方式被称为被动态。   超声检测仪将R-0501与T-0501(超声波信号发生器) 配合使用时,可对被检查物进行非实时检查,即由T-0501(超声波信号发生器) 发射一定频率的超声波信号,一旦发生泄漏,超声波将由漏孔漏出,用R-0501捕捉漏出的超声波信号,即可判断出正确的泄漏位置。这种工作方式被称为主动态。与被动态工作方式相比,主动态工作方式不适合于实时检查,但是具有更高的可靠性

  • 气相色谱仪如何检测漏气?具体详细的操作步骤?

    [align=center][b][size=24px] 气相色谱仪如何检测漏气?具体详细的操作步骤?[/size][/b] [/align] 一般来说,你在安装完毕后,或是好久没有使用的仪器以及出现的状况很象漏气时才有必要进行漏气检查。而出现漏气情况多是感觉[url=http://www.ehsy.com/category-15810]流量[/url]使用过大,或是仪器无法准备好,或是有漏气报警等。  漏气点其实是很有限的。  载气来说,有以下几个点,钢瓶与[url=http://www.ehsy.com/category-1810]压力表[/url]连接处,压力表与管线连接处,管线与净化气连接处(含[url=http://www.ehsy.com/brand-3368]进口[/url]与出口)、三通接口、与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]EPC接口(含进口与出口)、分流进出口、色谱柱接口及色谱柱与检测器接口。  检测漏气的办法很简单,就是把仪器打开后不升温,保证载气通过,然后取一瓶皂液(可以自己配,用点洗衣粉加些水就行,也可以买来用,买的效果好,用后不留痕迹)分别在这些接口处涂一些泡沫,注意,不要弄太多的水,尽量用泡沫,看哪个地方有气泡吹起来,哪就是漏点了。其实,最常见的漏点,就是气瓶处和进样口。而进样口,柱温箱内还有检测器等一般不建议用皂液,除非实在无法找到漏点了,再进行全面涂皂液检查,而通常的做法是通过更换进样垫或拧紧进样垫的办法解决就行了,或是在重新上一下柱子,毕竟在柱温箱里,在里面涂皂液不但不方便,而且加热的情况下有水对柱子也不太好。检测器处也是一样,通过重新上柱子的办法就解决了。  至于空气和氢气用同样的办法来解决。  气相色谱仪在气体检测的方法暂时来说是最高端,最可靠的。精度是很高的。能检测到很低的浓度。  具体操作方式是:  1、开机  2、要是机子是扩散式检测的方式的话就只要注意看显示屏,要是是管道式的话就先通气然后注意显示屏读数。  3、只要有读数了一般就是有气体泄漏了。  问题好像很简单啊,从供气气瓶压力阀(高压表、低压表),气路上的接头、分气阀、进色谱的接头,色谱仪内部的表(一般安气路时测试过就可以了),柱箱内(所用色谱柱与进样口及检测器的接头)这些部位用试漏液(商品也可以自制,水+一点洗涤剂,)在供气的状态下都点到。冒泡就说明漏,紧固或者重新连接。平时检查只需要检查[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]外部的气路接头就可以了。  听声音,用于漏气比较严重的时候。(换柱子,换进样垫,清洗内衬管时没密封好)多为人为因素。  在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]变动过的气路接口处用肥皂水涂抹,冒泡说明漏气。  观察稳流阀的流量显示,箭头明显回落的则可能该气路漏气。  用皂沫流量计测流量。

  • H1型埋地管道泄漏检测仪如何使用

    检测原理:当地下输气管道发生腐蚀性穿孔、断裂必然产生气体的微量泄漏,在地面沟井、下水道等处缓慢扩散。检漏仪将含有可燃气体的空气,通过气泵送到传感器时,检测元件的阻值会随气体浓度迅速变化(其阻值变化的大小跟气体的浓度成正比),同时输出电压信号,经电路放大,单片机处理后送到显示部分,并产生随浓度变化的报警信号。  采用H1[url=http://www.dscr.com.cn/list.asp?classid=42]埋地管道泄漏检测仪[/url],在地面沿管路推行,仪器的采样吸气口与地面始终保持接触状态。这样的方式,既可避免在没有管道的地方去进行无意义的检测,同时,因为吸气口紧贴地面,燃气一旦窜出地面还未及扩散就已被吸入,即使是微小的泄漏也会被检出。在实验中检查出的漏点有很多是用肉眼看不出来的,只有当洗衣粉水浇上去,慢慢地才会冒出一个小泡。  在泄漏检测仪的选择上要注意三点:  (1)高灵敏度  (2)采气孔必需是贴地的。  (3)采用内置泵吸式。  3.漏点  发现异常点后就要在异常点上方的地面打出探孔,目的是导引泄漏出的燃气向地面自由、垂直上升,为确认漏点的准确位置提供客观依据。打孔前必需再次对管道进行精确定位,以保证管道的安全。探孔的数量至少在三个以上,探孔的深度应尽可能接近或超过管道的埋深(考虑到漏点有可能是在管道的下方)。本产品设计新颖,功能一体化。具有质量轻,操作简便的特点;采用了锂离子电池,快速智能充电;采用大规格集成电路,LCD显示,声音报警,电源欠压报警功能;选用进口传感器和进口气泵,具有抗干扰、耐低温和稳定性、灵敏度高,选择性好,无需钻孔,直接地面检测埋地管道的泄漏点;报警声音随气体浓度变化而变化,操作人员无需观察显示部分,提高了工作效率。  1、 主要技术指标和特点  外形设计:手推式  检测气体:天然气,液化石油气,人工煤气  灵敏度:0~1000ppm,优于50ppm  1~100%LEL时,优于1%LEL  探测范围:0~1000ppm,1~100%LEL(自动)  预热时间:10s  响应时间:小于10s  电 池:9.6V可充电锂离子电池  充电时间:不小于4H  待机时间:大于8H  工作条件:温度:-10~60摄氏度 相对湿度:小于95%(无结露)  环境风速:小于5m/s  气体流量:1L/min  显 示:液晶显示(带背光)  尺 寸:1100 mm×230 mm×280mm  重 量:6.7kg  【其它配件】  充电器、滤纸、装箱文件

  • TCD和FID检测器联用,为何FID上也会出空气的峰?

    TCD和FID检测器联用,为何FID上也会出空气的峰?

    刚接触[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]不久,在检测微量的CO、H2、CH4、C2H4和CO2(含量较大)等,用的是TDX-01填充柱,TCD和联有甲烷转化炉的FID检测器联用,没有CO2的反吹,在进纯的CO2气体时,在TCD上会出一个空气的峰,如图两分钟左右的峰(红色信号为TCD,蓝色为FID)(色谱气路和内部已验漏,没有漏点.),退一步说,假设有漏气点,在TCD上出现空气峰可以理解(确认为空气峰,在柱温降低后会出现N.O肩峰),在经甲烷转化炉后的FID上为何也出现对应的峰?而且两个检测器上对应的空气峰的强度变化一致(TCD上的峰高,FID上也会相应变高),在进含有CO的气体时,这个空气峰会和CO的峰部分重合,影响分析,见另外一个图,红色为FID,空气峰后有一个高的CO峰。跪求色谱大神,能给予合理的解释和解决方案吗?[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907161121047671_2508_1786659_3.jpg!w690x517.jpg[/img][img=,690,522]https://ng1.17img.cn/bbsfiles/images/2019/07/201907161121335260_6833_1786659_3.jpg!w690x522.jpg[/img]

  • TCD和FID检测器联用,为何FID上也会出空气的峰

    TCD和FID检测器联用,为何FID上也会出空气的峰

    [color=#444444]安捷伦6890N色谱,检测微量的CO、H2、CH4、C2H4和CO2(含量较大)等,用的是TDX-01填充柱,TCD检测器和装有甲烷转化炉的FID检测器联用,没有CO2的反吹,在进纯的CO2气体(99.99%)时,在TCD检测器上会出一个空气的峰,如图两分钟左右的峰(红色信号为TCD,蓝色信号为FID),(色谱气路和内部都已验过漏,没有漏点..),退一步说,假设有漏气点,在TCD上出现空气峰可以理解(确认为空气峰,在柱温降低后会出现N、O的肩峰),在经甲烷转化炉后的FID上为何也出现对应的峰?而且两个检测器上对应的空气峰的强度变化一致(TCD上的峰高,FID上也会相应变高)? 8分钟左右为CO2的峰。 在进含有CO的气体时,这个空气峰会和CO的峰部分重合,影响分析,见另外一个图,红色为FID,空气峰后有一个高的CO峰。[/color][color=#444444]跪求色谱大神,能给予合理的解释吗?[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907080923330599_6589_1823055_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907080923337569_9633_1823055_3.jpg!w690x517.jpg[/img][/color]

  • 一个关于漏与不漏的问题!

    先祝大家新春快乐!龙年大吉!这个时候应该不会有人在线的。不过还是想碰碰运气!问题:TSQ quantum GC 抽真空多日,真空度已经非常好了,查看水峰空气峰时,发现水峰略低于氮气峰,氮气峰与氧气峰的比例接近2,这种情况还有可能是漏气吗?用丙酮测似乎没有问题。以前检查漏气与否 从来没有等10天才查的,所以每次看都是氮气峰与氧气峰比例接近2或者更小,而水的丰度比氮气大很多。这次抽了这么久 看到这种情况是不是有可能抽了很久,水已经差不多干净了,才导致其丰度比氮气还略小?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制