当前位置: 仪器信息网 > 行业主题 > >

空盒气压计

仪器信息网空盒气压计专题为您提供2024年最新空盒气压计价格报价、厂家品牌的相关信息, 包括空盒气压计参数、型号等,不管是国产,还是进口品牌的空盒气压计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合空盒气压计相关的耗材配件、试剂标物,还有空盒气压计相关的最新资讯、资料,以及空盒气压计相关的解决方案。

空盒气压计相关的论坛

  • LCase1000-空盒气压计全自动视觉检测系统

    [b][font=宋体]系统概述:[/font][/b][font=宋体]针对空盒气压计检测过程中遇到装载、加压速度慢、人工读数、手动抄写检测数据、无法自动生成报告等问题,我们开发出LCase1000空盒气压计全自动系统。可实现空盒气压计全自动检测,人工只需进行被检表安装即可,一键操作,真正实现数据全自动采集并生成报告,是智能实验室的理想选择。[/font][font=宋体]所有设备连接成功后,首先把被检设备放置恒温箱中,自动设定不同温度点,当温度点达到后,延时一定时间(根据客户需求来设定),人工读取被检设备温度数值,并记录。温度检测完成后,被检设备转置于智能快速密封承载箱中,软件控制压力校验仪自动增加至设定压力点,压力检测结束后,智能快速密封承载箱震动轻敲、照明提示,软件自动读取被检设备数值,存储入计算机,系统自行计算温度系数数据后,生成报告,并存储数据。[/font][b][font=宋体]系统亮点:[/font][/b][font=宋体]1) [/font][font=宋体]安装、拆卸简易:气压计密封承载箱设计为抽屉式,被检表直接放入相应检测位置内即可,推拉便捷、简易。[/font][font=宋体]2) [/font][font=宋体]密封方式:采用挤压方式,实现O型圈变形密封,实现0泄露。同时推拉一下自动锁定密封和解锁密封;操作更简易,便捷;[/font][font=宋体]3) [/font][font=宋体]数据采集:承载箱内嵌摄像头,可自动读取被检表数据;[/font][font=宋体]4) [/font][font=宋体]自动震动与照明:承载箱内被检表两个为单位,检测结束后自动震动与照明;兼具手动按钮操作;[/font][font=宋体]5) [/font][font=宋体]加压速率快:约1Min到达设定点。承载箱容积仅为6个被检表大小,针对普通密封腔体节省3倍空间,体积小,加压速度快,可提高3-5倍工作效率;[/font][font=宋体]6) [/font][font=宋体]精致、小巧:为达到人工美学和实际工况使用的完美结合,主体采用铝合金材质、易损件采用不锈钢材质设计,外形美观、精致、简洁实用。[/font][font=宋体] [/font][b][font=宋体]应用领域:[/font][/b][font=宋体]计量院、气象局、环境监测站等[/font][font=宋体] [/font][font=宋体] [/font][img=,208.75,118.85]file:///C:\Users\liufeng\AppData\Local\Temp\msohtmlclip1\01\clip_image002.png[/img]

  • LCase1000-空盒气压计全自动视觉检测系统

    [b][font=宋体]系统概述:[/font][/b][font=宋体]针对空盒气压计检测过程中遇到装载、加压速度慢、人工读数、手动抄写检测数据、无法自动生成报告等问题,我们开发出LCase1000空盒气压计全自动系统。可实现空盒气压计全自动检测,人工只需进行被检表安装即可,一键操作,真正实现数据全自动采集并生成报告,是智能实验室的理想选择。[/font][font=宋体]所有设备连接成功后,首先把被检设备放置恒温箱中,自动设定不同温度点,当温度点达到后,延时一定时间(根据客户需求来设定),人工读取被检设备温度数值,并记录。温度检测完成后,被检设备转置于智能快速密封承载箱中,软件控制压力校验仪自动增加至设定压力点,压力检测结束后,智能快速密封承载箱震动轻敲、照明提示,软件自动读取被检设备数值,存储入计算机,系统自行计算温度系数数据后,生成报告,并存储数据。[/font][b][font=宋体]系统亮点:[/font][/b][font=宋体]1) [/font][font=宋体]安装、拆卸简易:气压计密封承载箱设计为抽屉式,被检表直接放入相应检测位置内即可,推拉便捷、简易。[/font][font=宋体]2) [/font][font=宋体]密封方式:采用挤压方式,实现O型圈变形密封,实现0泄露。同时推拉一下自动锁定密封和解锁密封;操作更简易,便捷;[/font][font=宋体]3) [/font][font=宋体]数据采集:承载箱内嵌摄像头,可自动读取被检表数据;[/font][font=宋体]4) [/font][font=宋体]自动震动与照明:承载箱内被检表两个为单位,检测结束后自动震动与照明;兼具手动按钮操作;[/font][font=宋体]5) [/font][font=宋体]加压速率快:约1Min到达设定点。承载箱容积仅为6个被检表大小,针对普通密封腔体节省3倍空间,体积小,加压速度快,可提高3-5倍工作效率;[/font][font=宋体]6) [/font][font=宋体]精致、小巧:为达到人工美学和实际工况使用的完美结合,主体采用铝合金材质、易损件采用不锈钢材质设计,外形美观、精致、简洁实用。[/font][font=宋体] [/font][b][font=宋体]应用领域:[/font][/b][font=宋体]计量院、气象局、环境监测站等[/font][font=宋体] [/font]

  • LABS1000-01空盒气压计检定系统

    LABS1000-01空盒气压计检定系统

    [align=left][font=宋体]北京莱森泰克科技有限公司是从事自动化仪器仪表销售、提供量身定制的系统解决方案和系统集成软硬件开发的高技术公司,竭诚为各界用户提供高品质的解决方案和完善的技术服务。[/font][/align][align=left][font=宋体]莱森公司经营的产品主要有:精密压力检验与控制仪器,数字压力计,活塞式压力计,智能气体配比仪,温湿度仪表,露点仪,温度检验仪,多功能检验仪,以及为各行业量身定制的系统集成软、硬件等。[/font][/align][b]2.2 [font=宋体]校验系统功能概述[/font]2.2.1[font=宋体]系统概述:[/font][/b]LABS1000-01[font=宋体]空盒气压计检定系统由中低压校验仪、恒温箱、真空泵、工控机、过滤装置、大气压腔体、打印机、中压控制台所组成。以纯净干燥氮气为工作介质,以北京莱森公司开发的专用校验软件为核心,通过计算机进行连接,分别实现温度与压力的自动控制。所有设备连接成功后,被检设备首先放置恒温箱中,自动设定不同温度点,当温度点达到后,延时一定时间(根据客户需求来设定),人工读取被检设备温度数值,并记录。温度检测完成后,被检设备转置于大气压腔体中,软件控制压力校验仪自动增加至设定压力点,压力检测结束后,大气压腔体震动轻敲、照明提示,人工读取被检设备数值,手动输入温度与压力数值至计算机中,自动计算温度系数数据后,自动生成报告,并存储数据。[/font][b]2.2.2[font=宋体]系统功能:[/font][/b]1) [font=宋体]可设定不同温度点,自动检测完成后,人工读取被检设备温度数值。[/font]2) [font=宋体]自动设定压力控制点,压力检测结束后,大气压腔体震动轻敲、照明提示。[/font]3) [font=宋体]温度与压力分别检测结束后,人工读数,手动输入温度与压力数据后自动储存、生成报告。[/font]4) [font=宋体]具有良好、简洁的人机操作中文界面。[/font]5) [font=宋体]试验台整体为可移动式(气瓶、打印机除外),所有设备均固定安装在试验台上,外形美观,实现各组成部件的系统集成,实现电路和气路的内部连接。[/font][b] [/b][img=,600,577]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231614458381_1727_5627570_3.jpg!w600x577.jpg[/img][img=,500,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231614456088_2515_5627570_3.png!w500x600.jpg[/img][img=,466,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231614459632_7267_5627570_3.png!w466x600.jpg[/img]

  • 气压计校正到0°C校正值问题

    气压计读数不在表内,这个校正值怎么求[img=,690,621]https://ng1.17img.cn/bbsfiles/images/2023/07/202307052007104146_7015_5193550_3.png[/img]

  • 关于气压计、原始记录,请大侠发表自己的看法

    1、想问一下,大家的实验室都有用气压计吗?如果必须要记录气压值,那从气象局获得的值是否可以使用呢?我们属于河南地区,平原地区,从气象局获取的信息,基本标准大气压附近。我之前经历的几个实验室也都没有买气压计。不知道现在评审要求严不严2、实验室的原始记录(非设备自动生成的),大家都是手写的还是敲到电脑中打印出来签字?电脑敲进去再打印签字是否允许?3.、我们是企业实验室,报告全部打印签字,很浪费,毕竟内部客户传递电子档都可以的。但如何实现从内部OA系统或企业腾讯通传递报告是符合准则要求的? 比如,再OA系统中可以看到审批流程是否OK,这种情况是否必须使用合法胡电子签名?

  • 【仪器心得】上海隆拓仪器 LTP-303温湿度大气压计使用心得

    【仪器心得】上海隆拓仪器 LTP-303温湿度大气压计使用心得

    [align=center][size=21px]上海隆拓仪器[/size][size=21px] LTP-303[/size][size=21px]温湿度大气压计使用心得[/size][/align][align=center] [img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309010759517173_830_2369266_3.jpeg[/img][/align][size=16px] 上海隆拓仪器设备有限公司这款[/size][size=16px]LTP-303[/size][size=16px]温湿度大气压计是一款高精度、小巧、轻便、操作简单、方便,适用范围宽,环境适应性强的仪器,适合实验室、户外、复杂的工况使用。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309010759521177_6207_2369266_3.jpeg[/img][/align][size=16px] 首先说说这台仪器带箱的重量、体积。带[/size][size=16px]箱应该[/size][size=16px]有一斤多,体积差不多[/size][size=16px]20cm*12cm*10cm[/size][size=16px],比较[/size][size=16px]轻比较[/size][size=16px]小,小巧轻便,方便携带。[/size][size=16px]外观也较好看,比较美观。[/size][size=16px] 使用时可以直接打开箱盖按“开[/size][size=16px]/[/size][size=16px]关”键(关机时按这个键,仪器开机;开机时按这个键,仪器关机),也可以把仪器从箱子里拿出来使用,总之咱们方便怎么来,能准确的测试就可以。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309010759522904_8492_2369266_3.jpeg[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309010759525339_9549_2369266_3.png[/img][/align][size=16px] 仪器带显示屏,显示的数字较大较清晰,一般情况下显示的是所测环境[/size][size=16px]的压力和温度值,当然下面也有温湿度按键和大气压按键,可以选择不同的显示内容。操作键总共就三个,就这三个键就可以满足操作需要,非常的方便、简单、实用。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309010759530310_6780_2369266_3.png[/img][/align][size=16px] 温度的测量范围是[/size][size=16px]-20[/size][size=16px]~[/size][size=16px]60[/size][size=16px]℃,湿度是[/size][size=16px]0[/size][size=16px]~[/size][size=16px]100%RH[/size][size=16px],这个范围能满足绝大多数客户使用。大气压是[/size][size=16px]30[/size][size=16px]~[/size][size=16px]110kpa[/size][size=16px],这个范围也是比较宽的,我们用的大多是[/size][size=16px]80[/size][size=16px]~[/size][size=16px]106kpa[/size][size=16px],远远满足我们的使用要求。精度等级是[/size][size=16px]0.5%F.S.[/size][size=16px],我们一般[/size][size=16px]%F.S.[/size][size=16px]就够了,所以精度上也不会有问题。[/size][size=16px] 这款仪器不用充电,装一块[/size][size=16px]9V[/size][size=16px]的干电池用上半年时间不成问题,方便、省事,用起来还安全、可靠。[/size][size=16px] 仪器背后有一个支架,可以把仪器支起来,现场更方便操作、观看。仪器有放传感器的卡子,传感器可以随仪器一起,也可以手握着,握着也方便、舒服,使用灵活性较强。[/size][size=16px] 这款[/size][size=16px]温湿度大气压计是一款高精度、小巧、轻便、[/size][size=16px]美观、[/size][size=16px]操作简单、方便[/size][size=16px]、应用范围广、使用安全、可靠,总的来说是一款不错的仪器[/size][size=16px]。[/size]

  • 当中国还在夜观天象的时候,欧洲发明了气候观测仪

    人类对于自然的崇拜始于远古,在很久很久以前,人类就能按照头天晚上的天象变化预测第二天的天气,曾出现了很多神人,比如诸葛亮,袁天罡等人。而且有很多著作,宋朝人沈括的《梦溪笔谈》就有很多这方面的概述,中国在很长一段时间走在气候观察的前面。然而进入仪器时代,中国就全方位落后了。真正运用仪器开始预测始于17世纪。1643年:在明朝灭亡的前一年,意大利人Evangeliste Torricelli 氏发明水银气压计。1648年:清朝8年,法国人Pascal 氏观测气压与高度变化。1810年:清朝乾隆年间,法国人Fortin 氏发明福丁式水银气压计。1847年:意大利人Vidie 氏发明空盒气压计。气象仪器经多年之研究与改进,发展到现在,已经有水银式气压计(Mercurial Barometer)、空盒或弹力式气压计(Aneroid or Elastic Barometer)、电阻式气压计(Resistance Barometer)、电容式气压计Capacitor's Barometer)及微压计(Micro Barograph)等。

  • 超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    [size=14px][color=#ff0000]摘要:超低重力仪器中要求液氦池温度恒定,为实现小于0.1mK的波动度,气压控制的波动度要小于10Pa。为此本文提出了相应技术方案,核心内容是实现缓冲罐的气压精密控制,采用了双向控制模式,并使用了万分之一精度的气压传感器、电动针阀和PID控制器。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#ff0000]一、问题的提出[/color][size=14px]超导重力仪器有超导重力仪和超导重力梯度仪,都是用来对重力信号进行精密测量的仪器。超导重力仪器需要在低温条件对极微弱信号进行测量,所以对低温温度恒定有很高的要求,即要求液氦池温度波动在0.1mK以内。[/size]对于液氦池温度的精密控制可以通过控制液氦池内的气压来实现,这就要求气压的测量和控制达到极高水平。本文将针对超导重力仪器中液氦池内气压的高精密控制问题,提出相应的解决方案。此方案的优势是液氦池温度的控制精度主要受压力传感器精度的影响,选择超高精度的压力传感器,并通过精密数控针阀和高精度PID控制器,采用下游抽气流量控制模式,可使液氦温度的波动稳定控制在0.1mK以内。[size=14px][color=#ff0000]二、技术方案[/color][/size]液氦温度的精密控制原理是基于液氦饱和蒸气压与对应温度的关系。根据液氦饱和蒸气压与温度的对应关系,液氦温度要控制在4K左右,并要求温度波动小于0.1mK,则要求液氦上部气压控制在100kPa左右时,气压的波动要小于10Pa以内。[size=14px]为了实现上述气压控制精度,本文提出的技术方案具体包括以下几方面的内容:[/size][size=14px](1)液氦池上部的气压控制可以抽象为一个密闭容器内的压力控制。对于密闭容器的压力控制需要增加一个缓冲罐,通过缓冲罐的压力控制实现液氦池的压力控制,结构如图1所示。[/size][align=center][size=14px][img=气压控制,550,490]https://ng1.17img.cn/bbsfiles/images/2022/05/202205230927573218_8908_3384_3.png!w690x615.jpg[/img][/size][/align][align=center][size=14px]图1 高精度气压控制系统结构示意图[/size][/align][size=14px][/size][size=14px](2)缓冲罐的压力控制采用了上下游双向控制模式,通过调节进气和抽气流量进行控制。[/size](3)整个控制系统包括缓冲罐、气压传感器、PID控制器、数字针阀和真空泵。[size=14px](4)如果气压控制在100kPa并要求波动小于10Pa,则要求气压的测量和控制要有10/100k=0.0001(万分之一)的精度,由此需要配备万分之一精度的气压计和PID控制器。[/size]总之,本文所述的技术方案,其控制精度主要受气压传感器和PID控制器精度的限制,结合步进电机驱动的小流量电动针阀,通过高精度传感器和控制器,可以实现超导重力仪液氦温度的精密控制,温度波动可以控制在0.1mK以内,且不受外部环境温度变化影响。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 【分享】大气压发现的历史

    大气压发现的历史 17世纪以前的人们认为自然界不存在真空,即所谓“自然界厌恶真空”。对于抽水机能把水抽上来,认为是活塞上升后,水要立即填满活塞原来占据的空间,以阻止真空的形成。在17世纪中叶,著名意大利物理学家伽利略听到一个奇特的事实:一台抽水机至多能把水抽到10m高,无论怎样改进抽水机,也不能把水抽得更高了。他想自然界害怕真空是有限度的,这个限度可以用水柱的高度量出来。不久他就去世了。对这个问题的研究由他的学生托里拆利继续进行。托里拆利预料,因为水银的密度大约是水的14倍,如果用水银代替水,水银升起的高度应该是水升起高度的1/14。托里拆利设计了用水银柱检验这个预想的方案。1643年他的学生做了这个试验,结果证明了他的预想是正确的。在托里拆利试验中,玻璃管内水银面的上方就是真空,可见自然界是可以存在真空的。管内的水银柱是被大气压支持着的。托里拆利试验不但揭示了大气压的存在,而且测出了大气压的值。托里拆利试验的消息传到法国,引起了科学家们的广泛兴趣。帕斯卡推论说,如果水银柱是被大气压支持着的,那么在海拔较高的地方,水银柱应该较短。1648年他的朋友沿多姆山山坡从山脚到山顶设立了若干观察站,每个站上装一个托里拆利气压计,结果发现水银柱的高度随高度的增加而减小,证明了帕斯卡推论的正确。同一时期,德国的科学家格里克也进行了大气压强的试验研究,他做了一个水气压计,水能升高到他住房的第三层,格里克认为水的上升是大气压的作用。通过长期的观察,他还发现水柱高度的变化与天气有关,1660年他根据一次气压的突然下降,预报了一场大的风暴。

  • 星际空间环境地面模拟:气氛、气压或真空度的精确模拟及控制

    [quote][color=#ff0000]摘要:针对星际空间气氛环境,介绍了地面模拟试验中的气氛、气压或真空度的精确模拟及控制技术,特别介绍了美国标准化技术研究所NIST和上海依阳实业有限公司在这方面所做的研究工作。[/color][/quote][align=center][img]http://p3.pstatp.com/large/5e830001f98c5d356c2a[/img][/align][align=center][color=#ff0000]美国NASA火星探测器[/color][/align][color=#ff0000][b]1. 前言[/b][/color] 航天飞行器和探测器在星际空间中会遇到各种气氛环境,有在深空中的高真空环境,也有在火星大气层中的低压二氧化碳气氛环境。飞行器和探测器中大量使用的防隔热材料在不同气氛和不同气压条件下都会呈现不同特性,因此在隔热材料选择时要准确了解相应气氛条件的材料性能。 防隔热材料经过多年的研究已经初步具备了比较成熟的各种模拟、测试和表征技术,但随着新型高效隔热材料技术的发展,特别是多种阻断传热技术的应用以及低气压使用环境,使得新型绝热材料及元件的热导率更低。如何准确测试评价这些隔热材料在1000℃以上高温和100Pa以上气压环境条件下的有效热导率就成为了目前国内外的一个技术难点。 由于新型高温隔热材料的传热形式是固体导热、气体导热和对流换热以及热辐射等多种形式的耦合传热,传热形式十分复杂,通过理论分析计算获得的有效热导率计算结果往往与实验结果存在很大的偏差,因此对于新型隔热材料的有效热导率测试主要还是依据实验测试结果。 纵观国内外对高温隔热材料有效热导率测试所采用的测试方法基本都集中在稳态热流计法,这主要是因为它是目前可以实现1000℃以上有效热导率测试的唯一成熟有效的技术。美国兰利研究中心1999年研制了一套变气氛压力高温有效热导率测试系统,测试中采用了薄膜热流计测试流经试样的热流密度,试样的冷面温度为室温,试样热面最高温度可达1800℉(约982℃),环境气压控制范围为0.0001~760Torr,正方形试样最大尺寸为边长8in(约203mm)。整个测量装置的有效热导率测量不确定度范围为5.5%~9.9%,在常压环境下对NIST标准参考材料测试的不确定度在5.5%以内。美国兰利研究中心的这篇研究报告给出了几种典型材料随温度和气压变化的有效热导率测试结果,证明了在不同气氛压强范围内对热导率的影响程度的不同。 通过美国兰利研究中心的研究工作从试验上证明了气压对材料热导率有明显的影响,气压(真空度)的控制误差是主要测量误差源,所以在材料热导率测试中要对气压进行准确控制。由此,这就在稳态热流计法热导率测试过程引入了两个控制变量,即除了达到温度恒定条件外,还需要达到气压压强的稳定。 因为温度和气压之间存在相互影响,一般情况下是气压随着温度升降而升降,同时气压下降使得被测试样热导率降低而延长了达到热平衡所需时间,这样就造成整个稳态法热导率测试过程中参数控制的复杂性。 由此可见,在稳态法热导率测量过程中,需要对气压控制的稳定性就行试验研究,摸清气压波动对温度恒定的影响,确定气压的恒定控制精度,并在可易实现的气压控制精度条件下尽可能的缩短气压对温度稳定周期的影响。 我们所研制的热流计法隔热材料高温热导率测试系统就是一个可在变温和变气压环境进行隔热材料热导率测试的设备,可以对温度和气压压强进行控制,因此针对气压对材料热导率测试的影响进行了研究。在气压波动性对材料热导率测试影响方面国内外几乎没有研究工作报道,在我们开展此工作的后期,美国NIST的Zarr等发表了一篇会议论文,文中介绍了NIST在开展直径500mm高温保护热板法热导率测试系统研制过程中所进行的一些气压对热导率影响方面的工作。 本文将对NIST和上海依阳实业有限公司的研究工作做一介绍,尽管两者研究工作的技术指标要求有很大不同,但通过这些研究可以获得很多的借鉴。另外,气压对热导率影响的试验研究,也可以作为其它热导率影响因素(如湿度)测试研究的技术借鉴。[color=#ff0000][b]2. 美国NIST在气压对材料热导率测试影响方面的研究工作2.1. 美国NIST护热板法热导率测试系统简介[/b][/color] 美国NIST多年来一直进行着护热板法热导率测试技术的研究工作,并研制了多套不同尺寸和不同测试温度的护热板法热导率测试系统。最近的研究工作是研制变温变气压环境下试样直径500mm的护热板法高温热导率测试系统,测试系统已经研制完成,如图 2‑ 1所示,正开展一系列的设备考核和试样测试评价工作。 在图 2‑ 1所示的NIST试样直径500mm的护热板法高温热导率测试系统中,热板(1)和冷板(2)由一个圆筒状护热装置(3)包裹,这些部件都悬挂在一个悬臂支撑结构(A)上,整个热导率测量装置放置在一个气氛压强可控的真空试验腔内,真空试验腔体包括一个直立式焊接基座(C)和放置在滚轮支撑架上的一个卧式圆筒腔体(B),(D)为扩散泵,整个测试系统的试验温度范围为280K~340K,真空试验腔的气压控制范围为4Pa至100.4kPa(1个大气压)。NIST研制此设备的目的主要是用于对低热导率标准参考材料进行校准测试。[align=center][img]http://p1.pstatp.com/large/5e7b0003ebf23bc410b6[/img][/align][align=center][color=#ff0000]图 2‑ 1 美国NIST 500mm保护热板法热导率测试系统[/color][/align][b][color=#ff0000]2.2. 气压控制系统[/color][/b] 图 2‑ 2所示的热导率测量装置气压控制系统包含的主要部件有:(a)干燥空气净化发生器(供气系统);(b)真空腔;(c)三个独立可控真空泵系统(11油扩散泵、13机械泵和15隔膜泵)。每个真空泵都由独立的计算机串口控制。[align=center][color=#ff0000][img]http://p3.pstatp.com/large/5e7c00038563ce740831[/img][/color][/align][align=center][color=#ff0000]图 2‑ 2 NIST 测试试样直径500mm护热板法热导率测量装置气压控制结构示意图[/color][/align] 真空系统中采用了三个机械泵来覆盖不同的气压压强范围。在NIST的这套测量装置中,并没有使用到用于超低气压控制的第三级泵(扩散泵)。根据气压范围,真空腔内的气压测量采用了3个薄膜电容规(CDGs)。这些电容薄膜规的三个基本量程为:133kPa(1000torr)、1.33kPa(10torr)和0.0133kPa(0.1torr)。 (1)中等气压:指3.3kPa~107kPa(25torr ~ 800torr)气压范围,可通过采用一个可变速隔膜泵和一个专用控制器将真空腔内的气压控制在此气压范围内。使用隔膜泵将不会使用到气源。 (2)低气压:指0.004kPa~3.3kPa(0.03torr ~ 25torr)气压范围,可通过采用一个机械泵(叶片旋转泵)和一个专用PID控制蝶阀以下游控制形式将真空腔内的气压控制在此气压范围内。 (3)超低气压:指低于0.004kPa(0.03torr)的气压范围,可通过采用一个扩散泵/初级泵系统和一个专用PID控制插板阀以下游控制形式将真空腔内的气压控制在此气压范围内。[b][color=#ff0000]2.3. 控制稳定性[/color][/b] 整个热导率测试系统的控制稳定性是通过图形分析量热计板温度响应来进行考察。图 2‑ 3和图 2‑ 4分别绘出了量热计板温度和真空腔气压随时间的变化曲线,其中左边Y轴为温度坐标轴,右边Y轴为气压坐标轴,X轴表示经历时间(以小时计),图 2‑ 3和图 2‑ 4所示的图中选定了相同的X时间轴(50h)以便于观察对比,量热计温度和真空腔气压的数据采集间隔时间为60s。 量热计板的温度测量采用扩展不确定度(k=2)为0.001K的长杆标准铂电阻温度计(SPRT),真空腔气压测量采用133kPa或1.33kPa量程的薄膜电容规。铂电阻温度计和薄膜电容规以及相应的数据采集系统都分别经过了NIST温度和气压计量部门的校准。 图 2‑ 3显示了从初始温度305.15K(前一个试验温度)到当前控制温度320.15K整个过程中温度随时间的变化过程和稳定性。从图 2‑ 3中可以看出,约在4小时处,在经历一个约0.9K的轻微过冲和近10小时的单调降温过程后,在经历了总共约15个小时后量热计温度达到稳定。在量热计温度稳定测量阶段,即从第24小时到第28小时期间,量热计温度的波动范围为320.1474K~320.1524K,波幅为0.005K,此期间的温度平均值为320.1497K。[align=center][img]http://p3.pstatp.com/large/5e7a00041fc5400d3f33[/img][/align][align=center][color=#ff0000]图 2‑ 3 未进行压强控制情况下,量热计板温度从305.15K控制到320.15K时的温度响应曲线[/color][/align] 在图 2‑ 3中所显示的真空腔气压是未经控制的环境大气气压,从图中可以看出气压有很小的变化。在量热计温度达到稳定测量阶段后,真空腔内的气压平均值为99.53kPa,气压波动范围为99.46kPa~99.58kPa,波幅为0.12kPa。 图 2‑ 4显示了当真空腔气压从前一试验气压突然降低到低气压后整个的量热计温度相应过程和控制稳定性,图中所示的量热计温度控制设定点未发生改变一致控制在320.15K。在开始测试的初期,真空腔气压被抽取到一个固定值0.013kPa,用时15分钟。[align=center][img]http://p1.pstatp.com/large/5e810001cbb901cbaf64[/img][/align][align=center][color=#ff0000]图 2‑ 4 在控制温度为320.15K,气压从0.035kPa控制到0.013kPa过程中温度响应曲线[/color][/align] 需要注意的是在6小时处的气压有一个扰动,但这个气压扰动对量热计温度的影响很小。另外还需要注意的是图 2‑ 4的左边Y坐标轴,与图 2‑ 3相比,图 2‑ 4中放大了温度差,由此可以更清晰的观察量热计温度的变化。 随着气压的突然降低,由于空气导热的减小,通过被测试样的热流量也随之降低,由此造成量热计温度逐渐升高并约在4小时后达到最高点320.8K,这与图 2‑ 3中的温度过冲相似。随后,量热计温度在一个约为22小时的时段内发生了围绕设定点320.15K附近的收敛式振荡,这种振荡现象有些令人惊讶。在43小时到47小时时间段内达到了热平衡,这比图 2‑ 3中所达到的热平衡时间段晚了近20小时。在稳态测量时间范围内,量热计温度的波动范围为320.1476K~320.154K,波幅为0.006K,此期间的温度平均值为320.1506K。[b][color=#ff0000]3. 上海依阳公司对材料热导率测试中实现气氛和气压精确控制[/color][/b] 依阳公司的热导率测试系统采用的是稳态热流计法,试样的热面温度最高为1000℃,试样的冷面温度最低为20℃,气压控制范围为6Pa至100.4kPa(1个大气压)。依阳公司的热流计法热导率测试系统主要应用于防隔热材料在高温和高空环境下的等效热导率测试评价。 在各种稳态法热导率测试设备中会经常用到冷却液冷却的冷板,如果冷板温度低于环境温度,且环境湿度比较大,则会在冷板上形成冷凝水,这将会严重的影响热导率的测量。因此,对于稳态法热导率测量装置来说,不论是不是需要进行气氛压力控制,试验环境中必须是干燥气体则是一个必要试验条件。[b][color=#ff0000]3.1. 气压控制系统[/color][/b] 在依阳公司的热流计法热导率测试系统的气压控制系统中,气压控制系统的整体设计思路与NIST的完全相同,但还是有以下三方面的微小区别:[quote] (1)气压控制范围为6Pa至100.4kPa(1个大气压),所以采用了INFICON公司的两个薄膜电容规气压传感器来覆盖这个气压范围,一个覆盖0.133~133.3Pa,另一个覆盖133.3Pa~133.3kPa。而不是像NIST那样采用了三个气压传感器。 (2)这两个传感器连接到一个INFICON VCC500真空控制器上控制一个数字真空阀INFICON VDE016,数字真空阀与干燥气体系统连接,根据不同的要求自动选择传感器进行气压的定点控制。而不是像NIST那样采用多路控制器进行控制。由于INFICON VCC500真空控制器在定点精确控制上有明显不足,气压控制波动较大,后改用自行研制的气压控制器。 (3)抽气系统仅仅采用了一个机械泵,真空腔体的极限真空度可以达到6Pa,并没有像NIST那样采用了隔膜泵和机械泵。[/quote][color=#ff0000][b]3.2. 气压控制3.2.1. 极限真空时的真空试验腔体的漏率[/b][/color] 真空腔空载情况下开启机械泵,约15分钟后真空腔体内的气压从大气常压降低到6Pa左右后将不再改变。达到极限气压后,此时关闭抽气管路并关闭机械泵,使得真空腔体处于自然状态,同时用数字真空计系统检测真空腔体内真空度的变化情况,由此来确定和考核真空腔体的漏率,检测结果如图 3‑ 1所示。[align=center][img]http://p1.pstatp.com/large/5e7d0002c895b6405a60[/img][/align][align=center][color=#ff0000]图 3‑ 1 停止抽气后真空腔体内的气压变化[/color][/align] 从图 3‑ 1所示的测试结果可以看出,关闭抽气管路后腔体内的气压基本按照线性规律缓慢上升,上升的速度为2.28Pa/h,经过14小时后腔体内的气压从6Pa左右上升到了38Pa左右,整个真空腔体的漏率为0.59m^3Pa/h。[b][color=#ff0000]3.2.2. 真空腔气压控制[/color][/b] 因为采用了两个薄膜电容规气压传感器来覆盖整个气压范围,一个覆盖0.133~133.3Pa,另一个覆盖133.3Pa~133.3kPa,所以针对不同的气压范围进行了相应的控制试验。但在实际压强控制过中发现,INFICON压强控制器的控制效果并不好,气压的波动性较大,因此最终我们采用了自行研制的压强控制系统来进行控制。[color=#ff0000]3.2.2.1.低气压压强控制试验[/color] (1)采用英富康真空控制系统进行低气压压强控制 所谓低气压是指真空腔内的真空度小于133Pa以下的气氛环境,133Pa也是其中一个电容薄膜真空计的最大真空度测量量程。整个低气压压强控制变化过程如图 3‑ 2所示。 试验开始阶段,首先全速抽真空,使得真空腔内的气压快速降低到15Pa左右,然后改变压强设定点为20Pa,控制参数设置为98,此时气压开始在20Pa上下大幅波动,后改变控制参数为1,气压开始逐渐收敛并恒定到20Pa左右。 为了检验加载氮气后对气压控制的影响,当真空腔内气压控制到20Pa后在控制阀的进气口处加载输出的氮气,由于加载的氮气会产生带有一定的压力,减压阀门调整最小刻度,加载后真空腔内的气压在20Pa上下波动较大,无论如何改变控制参数也很难控制稳定。 去除掉加载的氮气后,从新进行恒定气压控制,气压设定点分别为20Pa和10Pa,从图 3‑ 2中的控制曲线可以看出,真空腔内的气压在20Pa上下0.5Pa范围内波动,波动性较小,波动性基本在±2.5%以内。 通过以上试验可以说明为了达到很好的低气压控制的稳定性,加载的氮气压力越低越好。[align=center][img]http://p3.pstatp.com/large/5e7d0002c9e04033cafe[/img][/align][align=center][color=#ff0000]图 3‑ 2 低气压(100Pa以下)控压试验曲线[/color][/align] (2)采用自制真空控制系统进行低气压压强控制 采用自制的真空控制系统进行了初步的气压压强控制试验以后,专门针对低气压(采用1Torr真空计)并接通氮气供气系统进行了进一步考核试验。由于真空腔体的最低气压只能达到0.1Torr左右,所以设计了0.1Torr、0.3Torr、0.6Torr 和0.9Torr 四个气压控制点,整个气压控制过程如图 3-3 所示。[align=center][img]http://p3.pstatp.com/large/5e830001d23bbdd38b1d[/img][/align][align=center][color=#ff0000]图 3‑ 3 压缩氮气接通后的低气压恒定控制曲线[/color][/align] 所从图 3‑ 3所示的气压控制过程可以看出,气压从低点向高点进行恒定控制时,每次向上改变设定点时,都会由于充气使得气压产生超出量程范围的突变,然后再逐渐下降恒定在设定点上。这种现象的产生是由于导入的氮气为带有一定流量和压力的氮气,这个压力容易产生过量的氮气气体导入。 当气压恒定在0.9Torr后,逐渐向下设定气压控制点,气压向下恒定控制变化曲线如图 3‑ 3所示。[color=#ff0000]3.2.2.2.高气压压强控制试验[/color] (1)采用英富康真空控制系统进行高气压压强控制 采用了全开式真空泵抽取外加控制阀控制气压方式,控制阀外接大气,气压控制设定点分别为500Pa和300Pa,整个控制过程的气压变化曲线如图 3-4 所示。[align=center][img]http://p3.pstatp.com/large/5e7b0003f7a4c50b7695[/img][/align][align=center][color=#ff0000]图 3-4 高气压压强控制试验曲线[/color][/align] 从以上高气压控制试验可以看出,采用富士康的VCC 500 真空度的控制是台阶式的变化,而且并不一定能恒定在设定点上,实际恒定点与设定点有一定的偏差,但恒定点的气压很稳定。这种现象需要在实际使用过程中注意。 (2)采用自制真空控制系统首次进行各种气压压强控制试验 采用自制的压强控制器来控制气压变化,首先在控制器上设定5.5Torr进行了PID参数的自整定,自整定完成后分别对设定了17Torr、50Torr、500Torr和100设定点进行控制,整个控制过程中气压随时间变化曲线如图 3‑ 5所示,图 3‑ 6为局部放大后便于观察的变化曲线。 对整个控制过程数据进行分析后得到的结论是:在所有的气压控制点上,气压波动性都小于1%以下。[align=center][img]http://p1.pstatp.com/large/5e7b0003f8579daea883[/img][/align][align=center][color=#ff0000]图 3‑ 5 控制全过程中气压变化曲线[/color][/align][align=center][img]http://p3.pstatp.com/large/5e7a000429b4c4c92e0d[/img][/align][align=center][color=#ff0000]图 3‑ 6 控制过程中部分气压变化曲线(纵坐标缩小后)[/color][/align][b][color=#ff0000]3.2.3. 热流计法高温热导率测试[/color][/b] 为了研究气压波动性对热导率测试的影响,我们在热流计法热导率测试系统上进行了相应的考核试验。被测试样选用耐高温隔热材料,试样热面温度控制在1000℃,水冷板温度控制在20℃,真空腔内的气压控制在50Pa。试验过程中的各个测试参数的响应曲线如图 3‑ 7和图 3‑ 8所示。[align=center][img]http://p3.pstatp.com/large/5e7b0003fc058a0d2773[/img][/align][align=center][color=#ff0000]图 3‑ 7 试样热面和冷面温度响应曲线[/color][/align] 在试验的前4小时,试样热面温度处于恒定控制的初期还没有稳定,而腔体内部气压也没有处于稳定状态,在4.5小时时做了一次控制参数整定后,腔体内部气压很快进入恒定阶段,气压长时间的在50±0.5Pa区间内波动,波动率为±1%。 在控制参数整定过程中,气压波动剧烈,对冷面温度和热流密度的影响严重,从曲线中可以看到有明显的尖峰,但对试样热面温度影响并不大。[align=center][img]http://p3.pstatp.com/large/5e7d0002d4759aee6365[/img][/align][align=center][color=#ff0000]图 3‑ 8 试样厚度方向热流密度和腔体气压响应曲线[/color][/align] 在测试过程进入19个小时后,气压在50Pa处保持±1%的波动,冷面温度和热流密度达到了稳定,这时试样的热面温度为1000.2℃,波动率小于±0.1%;冷面温度为88.9℃,波动率小于±0.5%;热流密度为7928.3W/m^2,波动率小于±0.8%,计算获得的试样有效热导率为0.2611W/mK。[b][color=#ff0000]4. 结论[/color][/b] 通过以上试验可以得出以下结果: (1)两个结构的气压控制研究和试验证明,气氛压强对材料的热导率性能会产生明显的影响。 (2)在变温和变真空测试过程中,优先控制的是热面温度,正确的操作顺序是先在超过100Pa以上的气氛下将热面温度控制恒定在设定温度上,然后再进行不同气压设定点下的测量。因为气压可以很快的达到平衡,如果在热面温度还未恒定前先恒定了气压,则热面温度的恒定会需要很长时间。 (3)将气压波动控制在±1%,气压的波动将对材料的热导率影响不大,而且气压控制也不需要昂贵的控制设备。[b][color=#ff0000]5. 参考文献[/color][/b] (1) Kamran Daryabeigi. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972, 1999 (2)R. R. Zarr and W. C. Thomas, Initial Measurement Results of the NIST 500mm Guarded Hot Plate Apparatus Under Automated Temperature and Pressure Control. 31st International Thermal Conductivity Conference & 19th International Thermal Expansion Symposium, Proceedings: Thermal Conductivity 31/ Thermal Expansion 19, pp. 195 - 204[img=,640,20]http://ng1.17img.cn/bbsfiles/images/2018/02/201802011921102118_2230_3384_3.gif!w640x20.jpg[/img]

  • 氢气发生器、空气压缩机及氮氢空一体机

    我们实验室要采购氢气发生器和空气压缩机,想请教各位同仁,哪种国产的机子比较好,例如无油,更换硅胶和活性炭及比较方便,氮氢空一体机相比于单纯的发生器效果怎样,请大家提提建议

  • 【仪器心得】一款空盒压力表使用心得

    [align=center][size=21px]空盒压力表使用心得[/size][/align][align=left][size=16px] 说起检测,大家都碰到过,有的设备操作起来那叫一个难,又要前处理,又要预热、平衡,又得各种设置,最后还得一通计算,流程环节多且能麻烦死人。而有些设备就不一样了,有的需要一两步操作,有的甚至都不怎么需要操作。比如我们今天要说的这个压力表,[/size][size=16px]上海隆拓[/size][size=16px] DYM3[/size][size=16px]型空盒压力表[/size][size=16px]。[/size][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160909528072_7433_2369266_3.jpeg[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160909530540_8358_2369266_3.jpeg[/img][/align][size=16px] 该压力表里面什么构造咱也看不见,[/size][size=16px]不知道,就外观看是很简单,[/size][size=16px]就一个表。该表[/size][size=16px]不[/size][size=16px]光能测大气压力,还能测环境温度,测试前只[/size][size=16px]需[/size][size=16px]把该设备拿到测试点位,或找个位置轻轻的往那一放(尽量水平放置),压力、温度值就出来了,不用任何额外操作。测量范围,压力是([/size][size=16px]800[/size][size=16px]~[/size][size=16px]1060[/size][size=16px])[/size][size=16px]hpa[/size][size=16px],温度说的是([/size][size=16px]-10[/size][size=16px]~[/size][size=16px]40[/size][size=16px])℃,实际能到([/size][size=16px]-1[/size][size=16px]2[/size][size=16px]~[/size][size=16px]4[/size][size=16px]2[/size][size=16px])℃[/size][size=16px],一般环境温度、压力检测都没问题,测试值很正确,使用非常方便。[/size][size=16px] 该设备带有专业的防护盒,存放或使用都很方便,盒上面有拎手,长宽高都在[/size][size=16px]15[/size][size=16px]厘米左右,[/size][size=16px]重[/size][size=16px]量大概不到一千克,又小又轻便,顺手[/size][size=16px]一[/size][size=16px]拎就可以。防护盒也挺漂亮,挺结实,磕磕碰碰也不会有什么问题。[/size][size=16px] 该设备还有一个特别的优点,它完全是一款机械类设备,不需要接电也不用电池,就光机械反应就能将大气压力和环境温度准确的[/size][size=16px]测量[/size][size=16px]出来[/size][size=16px]。[/size][size=16px]耐环境[/size][size=16px]性也很强,一般的刮风、下雨也不影响[/size][size=16px]测量[/size][size=16px]。[/size][size=16px] 该设备[/size][size=16px]具有[/size][size=16px]使用方便,操作简单,环境适应性强,无需供电,无需配套设施[/size][size=16px],轻便小巧,测量准确等诸多优点。要说缺点,个人认为如果温度[/size][size=16px]测量[/size][size=16px]范围再宽一些,比如[/size][size=16px]([/size][size=16px]-[/size][size=16px]30[/size][size=16px]~[/size][size=16px]70[/size][size=16px])℃[/size][size=16px],再具备个[/size][size=16px]测量[/size][size=16px]湿度的功能那就更完美了。[/size]

  • 空低气压试验箱-HAST高低温低气压试验

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39252.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]高低温低气压试验主要是模拟高海拔低温低压的环境,适用于航空航天、电工电子等科研工业部门,用于(包括元器件、材料和仪器仪表)等在高低温低气压进行贮存运输可靠性试验,并可同时测试电气性能参数。试验的严苛程度取决于温度、气压和曝露持续时间。在高温-低气压环境条件下,空气电介质强度明显降低,电晕起始电压和击穿电压明显降低,增加了飞弧、表面放电或电晕放电的风险;同时降低了空气热传导能力,加剧了产品的过热;其次高温-低气压环境增加了流体和润滑油的挥发,从而增加了产品损坏和易燃气体燃爆的可能性;另外还加速了增塑剂和塑料的挥发和分解,从而加速了产品的老化。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]高空低气压试验,确定仪器仪表、电工产品、材料、零部件、设备在低气压、高温、低温单项或同时作用下的环境适应性与可靠性试验。

  • 玻璃塑形吹气压力自动控制解决方案

    玻璃塑形吹气压力自动控制解决方案

    [color=#ff0000]摘要:玻璃制品吹塑成型工艺中,始终存在人工吹气和机器吹气气压不稳造成成品一致性差、成品率不高等问题。为解决这些问题,本文提出了一种吹气气压全自动控制解决方案,使得吹气气压可以按照设定曲线进行快速和精密控制,可大幅提高生产效率和产品良率。[/color][size=18px][color=#ff0000]一、问题的提出[/color][/size]玻璃是一个非结晶无定形固体,玻璃制品在加工过程中需要加热软化和吹塑成型,但目前的吹塑成型工艺存在以下几方面的问题需要解决:(1)在目前大多数通过人工用嘴吹气方式向玻璃制品的内部进行吹气的吹塑成型工艺中,需要依靠人力用管吹气然后将熔融的玻璃液塑形。这种工艺方法极大增加了生产者的负担,容易使得生产者因脑部缺氧而产生晕眩,同时降低了工作效率。这种工艺所生产的成品一致性差,且成品率不高,同时对于玻璃制品的生产周期延长,不利于广泛的推广和普及。(2)在玻璃瓶成型工艺中,由于风从吹塑管出来后一直作用于玻璃瓶的瓶底,吹塑气压不够均匀,会导致玻璃瓶成型后瓶底厚薄不一,同时现有的自动吹塑装置在吹塑过程中会出现气压不稳定的情况,不具备自动稳压的功能,导致玻璃瓶质量层次不一。分析现有玻璃制品的吹塑成型工艺可以发现,整个吹塑过程是一个典型的小型密闭空间内的气压变化过程,如果可以精密控制这个气压变化过程,并总能准确重复这个气压变化过程,即可实现玻璃制品吹塑工艺的自动化和质量可靠性,大幅提高成品率和缩短生产周期。本文针对玻璃制品吹塑成型工艺中存在的上述问题,提出了一种吹气气压全自动控制解决方案,吹气气压可以按照设定曲线进行快速和精密控制,由此大幅提高生产效率和产品良率。[size=18px][color=#ff0000]二、技术方案[/color][/size]玻璃塑形吹气压力自动控制的基本原理是按照需要快速控制一个密闭空腔内的气压,用此气压来代替人工吹气时的压力变化。整个控制装置的结构如图1所示。[align=center][img=玻璃塑形吹气压力自动控制,500,386]https://ng1.17img.cn/bbsfiles/images/2022/05/202205111628124420_8460_3384_3.png!w690x533.jpg[/img][/align][align=center]图1 玻璃塑形吹气压力自动控制装置结构示意图[/align]吹气压力自动控制装置主要包括腔体、电动针阀、压力传感器、PID控制器和高压气源。腔体内的压力精密控制采用动态控制法,即根据压力传感器的测量值与设定值的比较,PID控制器同时调节进气流量和排气流量,使得腔体内的压力快速达到动态平衡,将压力控制在设定值上。设定值可以是一个不随时间变化的压力恒定点,也可以是根据玻璃吹塑工艺要求设计出来的压力随时间变化的曲线,以此来满足不同压力要求。总之,通过此技术方案,可实现玻璃塑形吹气压力的自动精密控制,并可保证控制精度和重复性,以此保证产品质量和稳定性。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 在昆虫学实验用自动气压室中如何实现正压和负压的高精度程序控制

    在昆虫学实验用自动气压室中如何实现正压和负压的高精度程序控制

    [align=center][img=在昆虫学实验用自动气压室中如何实现正压和负压的高精度程序控制,500,387]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090604445428_4508_3221506_3.jpg!w690x535.jpg[/img][/align][color=#990000]摘要:昆虫的行为模式会受气压变化的明显影响,为在可控气压条件下的气压室内模拟自然气压变化对昆虫行为进行准确和可重复的研究,需要气压室的气压变化可精确程序控制。本文针对客户提出的气压室压力精密程序控制要求,介绍了高精度真空压力控制仪解决方案。真空压力控制仪采用密闭容器进出气体动态平衡法工作原理,以高压气瓶作为高压气源,真空泵进行抽气,通过双通道真空压力程序控制器采集压力传感器并同时自动调节进气针阀和出气针阀的开度,实现任意设定压力变化程序的精密控制和长时间稳定运行。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000][size=18px][b]一、问题的提出[/b][/size][/color]各种生物体所处的环境会影响和改变其生活方式,这些环境条件主要包括风、雨、土壤成分、辐射、温度和大气压力等因素。大量研究表明,不利的天气条件(通常与气压变化有关)会影响繁殖、摄食和栖息。昆虫行为,如飞行、产卵、寄生、交配和鸣叫等,会受到气压的影响。对于昆虫行为模式与气压之间的相关性研究,目前普遍采用的方式是在自然条件下进行观察和记录,存在效率低、周期长和不准确等问题。个别实验室使用了手动控制气压的气压室,但存在气压控制不准确、无法长时间的精密模仿自然压力的缓慢变化过程以及可控的气压变化范围很窄等问题。最近有客户希望能对昆虫研究用的气压室进行正负压自动控制,具体要求如下:(1)气压控制范围:以一个标准大气压为基准,能实现气压室的气压在内正负压力范围内的精密控制,即气压室内的绝对压力在90kPa~110kPa范围内精密可控。(2)气压控制形式:可自动模拟自然界大气压的缓慢变化过程,即气压变化可按照任意设定的变化方向和速度进行控制,气压可准确恒定在任意设定点处。总之,整个气压变化过程可按照任意设定的折线形式进行精密控制。(3)气压控制精度:在90kPa~110kPa范围内,任意压力下的控制精度小于±0.1%。为了满足客户提出的上述要求,本文将提出相应的高精度气压程序控制解决方案。解决方案将采用密闭容器进出气体动态平衡法,采用高压气瓶作为高压气源,真空泵进行抽气,通过双通道真空压力程序控制器采集压力传感器并同时控制进气针阀和出气针阀的开度,实现任意设定压力变化程序的精密控制和长时间稳定运行。[b][size=18px][color=#990000]二、解决方案[/color][/size][/b]从客户提出的上述要求可以看出,用于昆虫行为研究的气压室压力控制是个典型的正负压力自动控制问题。此正负压力自动控制需要解决以下几方面的问题:(1)正压(压力)和负压(真空)如何形成。(2)正负压自动控制方法和控制仪器。(3)压力传感器的选择。(4)控制阀门的选择。为解决上述几方面的问题,本文提出的具体解决方案如图1所示。[align=center][color=#990000][img=气压室压力控制方案结构示意图,550,227]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090607045916_3943_3221506_3.jpg!w690x285.jpg[/img][/color][/align][align=center][color=#990000]图1 昆虫研究用气压室正负压力程序控制方案示意图[/color][/align]首先,为在气压室内形成正压和负压,解决方案采用了动态平衡法。如图1所示,在气压室的左边进气端布置高压气源,在气压室的右边出气端布置真空泵,如果进气流量大于排气流量则形成正压,若排气流量大于进气流量则形成负压。进气和出气流量通过进气阀和排气阀调节。对气压室正压和负压的调节和控制,是一个典型的分程控制案例,即采用一个调节器的输出同时驱动几个工作范围不同的执行器。这里的调节器就是图1所示的压力控制器,工作范围不同的执行器是进气阀和排气阀。由此可见,压力控制器要求具有分程控制功能,即要求压力控制器针对不同工作范围(正压或负压区间)具备同时调节进气阀和排气阀开度大小的功能。另外,为了保证控制精度,所选择的压力控制器为超高精度PID调节器,具有24位AD和16位DA转换器,并具有双精度浮点运算功能,最小输出百分比可以达到0.01%。为了保证气压室内压力变化达到客户提出的控制精度,还需要选择高精度压力传感器。如果要达到±0.1%的控制精度,压力传感器的测量精度需要达到±0.05%。同样,压力控制精度还取决于进气阀和排气阀的调节精度和响应速度。对于体积较小的昆虫学实验用气压室,则要求阀门具有超高的响应速度。我们选择用步进电机驱动的快速电动针阀,电动针阀的全程开启速度为0.8秒,具有超低的真空漏率和7bar的耐正压能力。一系列不同通孔孔径的电动针阀可供选择以满足不同规格尺寸的自动气压室。最关键的是可以使用0~10V(或4~20mA)的模拟信号直接驱动电动针阀,且具有非常好的线性度和重复性。经过上述选择和配置,按照图1所示的解决方案,所配置的真空压力控制仪如图2所示。[align=center][color=#990000][img=用于气压室的真空压力控制仪结构示意图,550,447]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090607364958_9108_3221506_3.jpg!w690x561.jpg[/img][/color][/align][align=center][color=#990000]图2 昆虫研究用气压室真空压力控制仪结构示意图[/color][/align]图2所示的真空压力控制仪是一个集成式仪器,将包括数控针阀、控制器、电源等所有部件都集成安装在控制仪内。控制仪两侧留有连接充气/抽气泵的快插接头。控制仪背面留有连接气压室进气/出气的快插接头,同时还留有连接压力传感器、计算机通讯和工作电源的专用接口。压力传感器以外置形式直接安装在气压室侧壁上,可更准确的检测气压室内的真空压力变化。压力传感器的信号和电源引线连接到真空压力控制仪背面相应的连接器上。这种外置式压力传感器形式更具有扩展性,可根据不同气压室或密闭容器的真空压力控制范围选择不同压力传感器,并便于更换和安装。计算机通讯采用了具有标准MODBUS协议的RS 485接口,由此可连接计算机。通过PID控制器随机所带的控制软件,计算机可直接遥控PID调节器,并采用软件界面操作进行控制程序设置和运行,对控制过程进行数据采集、存储和全过程结果曲线显示。[b][size=18px][color=#990000]三、总结[/color][/size][/b]上述的正负压精密控制解决方案作为一种标准的真空压力控制仪器,除了可以满足昆虫学实验用自动气压室的各项要求外,还具有很强的适用性和可扩展性,主要体现在以下几个方面:(1)可进行更大区间的真空压力控制,绝对压力控制范围可覆盖0.1Pa~0.5MPa,具有非常宽泛的正压和负压控制范围。(2)在正压和负压区间可实现各种形式的控制,如单独控制正压、单独控制负压(真空度),也可正负压连续控制,所有控制可进行定点控制,也可进行折线编程程序的自动控制。(3)可进行更多功能的扩展,如实现不同气体或不同气体含量混合气体下的气压控制,也可用来同时控制其他环境变量,如温度、湿度和光照等。总之,标准化的真空压力控制仪可满足各种实验室气压室的压强程序控制,并具有±0.1%以上的控制精度。同时,控制仪也适用于各种真空压力容器(如气候室、气候环境试验箱、真空气氛炉、真空干燥箱、旋转蒸发仪、精密低温容器、冷冻干燥箱和各种光谱仪等)的气压精密控制,大大提高了自动化程度和控制精度。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】助燃气压力监控器失灵!

    AA6300机子自检时提示:助燃气压力监控器失灵!检查压缩机及进气管均正常,但压缩空气无法进入机子,导致无法点火,请教各位高手是什么原因,该如何处理?QQ :523006425

  • 更安全、精密和快速的一次性生物反应器袋充气压力控制的解决方案

    更安全、精密和快速的一次性生物反应器袋充气压力控制的解决方案

    [color=#000099][b]摘要:目前的一次性生物反应器袋充气压力控制普遍只使用了电气比例阀或双阀压力控制器,此种充气控制方式中,压力安全监控无法自动反馈和响应、所控压力并不是真正的反应器袋压力,且充气速度较慢。本文针对现有技术存在的问题进行了改进,提出采用串级控制法,通过外置压力控制器和传感器,以比例阀作为执行机构组成双闭环控制回路,可大幅提高控制精度和充气速度,更重要的是可实现充气压力安全监控和报警自动处理。[/b][/color][align=center][/align][align=center]~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b]一次性生物反应器(Single Use Bioreactor)或用后可弃生物反应器(Disposable bioreactor)是使用一次性袋的生物反应器,代替由不锈钢或玻璃制成的培养容器,简称SUBs。与可重复使用的生物反应器相比,一次性生物反应器(SUBs)具有的重要优势是减少了工艺认证难度,无需清洁认证,缩短了停机时间和周转时间。在所有的一次性生物反应器使用过程中,都存在一个充气步骤,需要将反应器充气到指定压力。但一次性生物反应器生物反应器袋并不属于压力容器,过度加压会造成反应器袋的破裂、泄漏或其他故障。因此,一次性反应器袋的准确充气加压必须考虑到在生长期间引入、消耗和产生的气体,以及培养基、消泡剂和其它引入流体的影响。目前常用的SUB充气控制装置是采用电气比例阀,也有采用类似电气比例阀的双阀压力控制器,整个充气压力控制装置如图1所示。[align=center][img=一次性生物反应器典型充气压力控制系统结构示意图,690,246]https://ng1.17img.cn/bbsfiles/images/2022/11/202211011730388558_6420_3221506_3.jpg!w690x246.jpg[/img][/align][align=center][color=#000099]图1 一次性生物反应器袋典型充气压力控制系统结构示意图[/color][/align]在实际应用中,图1所示的充气压力控制系统存在以下两方面问题:(1)安全性问题:在图1充气压力控制系统中,双阀压力控制器或电气比例阀都内置有压力传感器,此传感器测量的是出压口处的压力,并不代表一次性生物反应器袋的内部压力。因为,出于安全性考虑,还需增加一个压力表来监控反应器袋的真实压力。因此,很多SUB制造商希望更准确的直接控制一次性生物反应器袋的内部压力,并同时具有报警功能。(2)准确性和滞后问题:由于压力控制器和电气比例阀远离反应器袋,所控压力与反应器袋希望的压力值有一定偏差,而且这种充气控压方式存在明显滞后现象,充气速度较慢。[b][size=18px][color=#000099]二、串级回路充气压力控制[/color][/size][/b]为了解决上述一次性生物反应器袋充气压力控制中存在的问题,本文提出一种更精确可靠且快速的充气压力控制方法,其核心技术是采用串级控制方法,即对图1所示的压力控制系统进行了改良,增加一个独立的压力控制器。新型充气压力控制系统如图2所示。[align=center][img=生物反应器袋新型串级双回路充气压力控制系统结构示意图,690,346]https://ng1.17img.cn/bbsfiles/images/2022/11/202211011731023461_8401_3221506_3.jpg!w690x346.jpg[/img][/align][align=center]图2 生物反应器袋新型串级双回路充气压力控制系统结构示意图[/align]图2所示的升级改良后的新型充气压力控制系统,主要有以下几方面的特点:(1)所采用经典的串级控制法,以电气比例阀作为独立的内部执行回路,再外接独立的压力控制器和压力传感器,结合电气比例阀组成外部控制回路,由此构成的串级控制结构形式,可充分发挥串级控制法能提高控制精度和加快充气速度的优势,有效提高压力控制精度和缩短充气时间,此特性对大容积一次性反应器袋的充气过程尤为具有优势。(2)外接的压力传感器直接安装在反应器袋上,更能准确监测反应器袋的内部压力。(3)外接的压力控制器具有超压报警功能和相应的开关控制信号输出。如果反应器袋内部压力超过设定警戒线后,可立刻报警并输出开关信号驱动安全阀放气。(4)压力控制器采用的是24位ADC和16位DAC,具有超高的压力测量和控制信号模拟量输出精度,另外通过双精度浮点运算,可实现最小0.01%的超高精度压力控制调节。(5)压力控制器可存储多个充气压力控制参数,便于不同容积大小的一次性生物反应器袋的充气压力控制而无需再进行设置和调整。(6)控制器可具有两通道形式,即一个压力控制器可同时控制两个电气比例阀实现两个一次性生物反应器袋的充气压力控制。(7)压力控制器带RS 485通讯,标准MODBUS协议,即可独立运行,也可与上位机通讯。(8)随机配的软件可方便采用计算机对压力控制器进行遥控,避免繁复的仪器按钮操作。[b][size=18px][color=#000099]三、总结[/color][/size][/b]综上所述,通过上述新型串级控制系统,可有效提高一次性生物反应器袋充气过程中压力控制的安全性、精度和速度,并具有操作便捷和可扩展的特点。同时此种串级双回路结构适用于各种形式和规格的电气转换器、电气比例阀和双阀压力控制器。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 螺杆空气压缩机对比于传统空气压缩机的优点

    螺杆空气压缩机对比于传统的活塞空气压缩机的优点:  空气压缩机是一种提升气体压力的的机械。对于工业生产来说,占了很重要的一部分。空气压缩机选择好了,对于企业能够节省很多不必要的消耗。  空压机又有许多结构型式,我们现在来说说螺杆空压机与传统的活塞压缩机的差别  与传统的活塞压缩机相比,螺杆压缩机最突出的优点是可靠性高,此外噪音易消除,无振动,排气纯净。  首先螺杆机具有高效可靠的良好的环境适应性的特点、优越的电控操作系统、先进主机、经济的运行成本,而传统的空压机不具备这些特点。  1、良好的环境适应性:  螺杆空压机超常的冷却系统设计,特别适合亚洲高湿、高温环境。优良的降噪措施和隔振技术,使螺杆压缩机的安装无须专用的基础,只要留有最小的通风和维护空间,就能安置好您的空压机。  2、智能的控制系统:  螺杆空压机机组采用智能化的微电脑控制系统,具备强大的故障诊断和保护功能,能在无人值守的情况下24小时为您工作。操作特别简单,一触即进入自动操作状态。如果机组发生故障,系统会根据不同情况作出相应的反应,及时提示您更换部件并作必要的维护。  3、高效可靠的先进主机:  螺杆空压机其专有的转子齿形及设计、高精度的组装手段、最小的加工间隙和在极端负载下的检验方法,完全满足您对机组性能、可靠性和效率的要求。  4、经济的运行成本:  螺杆空压机系统采用0-100%排气量无级调节。当不用气时,空压机空车运载,空车过久自动停机。当用气量减少时,排气量跟着减少,电机的电流也同时降低 当用气量增加时,恢复重车。节能效果最优。

  • 【试剂课堂】水银知多少

    【试剂课堂】水银知多少

    [color=#DC143C][center]汞[/center][/color][img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001091630_195438_1610969_3.jpg[/img]一种金属元素,通常是银白色液体,俗称“[color=#DC143C]水银[/color]”。[color=#00008B]物理特性[/color]熔点-38.8℃ 沸点356.7℃   一种有毒的银白色一价和二价重金属元素,它是常温下唯一的液体金属,游离存在于自然界并存在于辰砂、甘汞及其他几种矿中。常常用焙烧辰砂和冷凝汞蒸气的方法制取汞,它主要用于科学仪器(电学仪器、控制设备、温度计、气压计)及汞锅炉、汞泵及汞气灯中 [mercury]——元素符号Hg。

  • 低气压精确控制技术在微纳卫星电热等离子体微推进器羽流特性测试中的应用

    低气压精确控制技术在微纳卫星电热等离子体微推进器羽流特性测试中的应用

    [color=#990000]摘要:针对各种微纳卫星电热等离子体微推进器,以口袋火箭这种工作在0.1~10torr低气压范围内的微推进器为例,分析了不同工质气体和不同低气压对羽流特征所产生的影响,说明了低气压精确控制的重要性。关于推进器低气压精确控制这一技术问题,本文详细介绍了具体实施方法,进行了考核试验,试验结果证明低气压控制波动度可以达到±1%以内。最终本文对测试方法进行了优化,提出了更实用化的全量程低气压精确控制技术方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000] 一、问题的提出[/color][/size]近年来,随着微纳卫星(NanoSat)的快速发展,对小体积、轻质量、低成本和高效率的微推进器提出了迫切需求,由此需要开展推进器的等离子体羽流特征等物理性能的测试评价研究。等离子羽流特征会受到工质气体和环境气压的明显影响,以国外口袋火箭羽流性能测试为例分析低气压精确控制的必要性和重要性。口袋火箭(Pocket Rocket)作为一种微纳卫星应用中的典型代表,是一种电热式射频等离子体推进器,可实现μN~mN 量级的推力。口袋火箭因其体积小且采用电容性射频放电,可在小功率条件下获得高密度等离子体射流,且重量轻、成本低、推力小、比冲大,能以阵列形式工作,特别适合配备微纳卫星和长期提供动力。如图1所示,卧式真空仓为口袋火箭等离子体羽流特征的测试提供低气压环境。该真空仓是一个多功能低气压环境模拟试验腔体,可集成多种试验设备用于各种等离子推进器的性能测试评价。[align=center][color=#990000][img=低气压控制,690,517]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957211181_7104_3384_3.jpg!w690x517.jpg[/img][/color][/align][align=center][color=#990000]图1 WOMBAT推进器试验装置[/color][/align][align=left][/align][align=left]如图2所示,为了形成低气压环境,真空仓配备有分子泵、机械泵、电离真空计和电容压力计,真空仓能够达到0.93mPa 的基准真空度。测试中的气体工质通常采用氮气和氩气。[/align][align=right][/align][align=center][color=#990000][img=低气压控制,690,295]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957469237_3688_3384_3.jpg!w690x295.jpg[/img][/color][/align][align=center][color=#990000]图2 WOMBAT推进器试验装置结构示意图[/color][/align]在射频电源功率和频率分别为20W和13.56MHz条件下,并在不同低气压下对口袋火箭的羽流特性进行了测试,图3是不同工质气体在不同气压下出射等离子体羽流的实验照片。其中图a为约1.5torr低压氩,图b为约4.0torr高压氩,图c为约1.0torr低压氮,图d为约7.0torr高压氮。从图中可以看出,在高气压下氮气和氩气的羽流均呈一定的锥角扩散,而低气压下均为准直射光束,但这些特征对于产生推力的影响尚不清楚,还需要进一步研究。[align=center][color=#990000][img=低气压控制,690,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957590245_7203_3384_3.jpg!w690x500.jpg[/img][/color][/align][align=center][color=#990000]图3 不同工质气体和不同气压下电热等离子体微推进器膨胀羽流的数字图像[/color][/align]综上所述,不同工质气体和不同低气压会对羽流特征产生明显影响,口袋火箭这种微推进器工作在0.1~10torr的低气压范围内,在此范围内测试评价羽流特性就需要对低气压进行精确控制。本文将针对低气压控制,详细介绍具体实施方法,并对实施方法进行试验考核,最终对实施方法进行优化,提出了低气压全量程的精确控制技术方案。[size=18px][color=#990000]二、低气压精确控制方法和试验考核[/color][/size]所谓低气压,一般是指低于1个标准大气压的绝对压力,范围为0.1~760torr,准确测量低气压目前普遍采用的是电容压力计,通常会采用10torr和1000torr两个不同量程的电容压力计来覆盖整个低气压范围的测量。通常,模拟试验装置真空仓需要通过进气和排气方式进行低气压控制,根据气流方向,一般将进气端定义为上游,真空泵排气端定义为下游。依据控制精度一般采用上游和下游两种控制模式,由此来实现不同量程(10torr和1000torr)的低气压准确控制。如图4所示,上游模式是维持上游压力和出气口流量,通过调节进气口流量控制仓室压力。[align=center][color=#990000][img=低气压控制,400,421]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958123451_6159_3384_3.jpg!w400x421.jpg[/img][/color][/align][align=center][color=#990000]图4 低气压上游控制模式[/color][/align]如图5所示,下游模式是维持上游压力和进气口流量,通过调节排气口流量控制仓室压力。[align=center][color=#990000][img=低气压控制,450,393]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958232096_7296_3384_3.jpg!w450x393.jpg[/img][/color][/align][align=center][color=#990000]图5 低气压下游控制模式[/color][/align]针对上述两种控制模式,分别采用1torr和1000torr两只电容压力计和24位高精度压力控制器进行了考核试验,试验装置如图6和图7所示。[align=center][color=#990000][img=低气压控制,690,464]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958322992_8227_3384_3.jpg!w690x464.jpg[/img][/color][/align][align=center][color=#990000]图6 低气压上游控制模式考核试验装置[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=低气压控制,690,426]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958424109_3718_3384_3.jpg!w690x426.jpg[/img][/color][/align][align=center][color=#990000]图7 低气压下游控制模式考核试验装置[/color][/align]在上游模式试验过程中,首先开启真空泵后使其全速抽气,然后在 68Pa 左右对控制器进行 PID参数自整定。自整定完成后,分别对 12、27、40、53、67、80、93 和 107Pa共8个设定点进行了控制,整个控制过程中的气压变化如图8所示。[align=center][color=#990000][img=低气压控制,600,363]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958580425_7569_3384_3.jpg!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图8 上游模式低气压定点控制考核试验曲线[/color][/align]在下游模式试验过程中,首先开启真空泵后使其全速抽气,并将进气阀调节到微量进气的位置,然后在300torr左右对控制器进行PID参数自整定。自整定完成后,分别对 70、 200、 300、450 和 600Torr 共5个设定点进行了控制,整个控制过程中的气压变化如图9 所示。[align=center][color=#990000][img=低气压控制,600,357]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959162394_4124_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图9 下游模式低气压定点控制考核试验曲线[/color][/align]将上述不同低气压恒定点处的控制效果以波动率来表示,则得到图10和图11所示的整个范围内的波动率分布。从波动率分布图可以看出,在整个低气压的全量程范围内,波动率可以精确控制在±1%范围,在12Pa处出现的较大波动,是因为采用 68Pa处自整定获得的PID参数并不合理,需进行单独的PID参数自整定。[align=center][color=#990000][img=低气压控制,600,337]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959335886_7215_3384_3.jpg!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图10 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=低气压控制,600,371]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959557611_9052_3384_3.jpg!w690x427.jpg[/img][/color][/align][align=center][color=#990000]图11 下游模式低气压定点控制考核试验曲线[/color][/align][size=18px][color=#990000]三、全量程低气压精确控制实施方案[/color][/size]从上述气压精确控制方法可以看出,可以根据实际需要选择不同的控制模式,如10torr以下的低气压控制可以选择采用上游模式,10~1000torr范围的高气压控制可以选择采用下游模式。在大多低气压环境模拟试验设备中,特别是针对推进器性能测试需要,需要在整个低气压范围内能实现气压的精确控制,并能实现自动化,因此单独使用或切换上游和下游控制模式并不是最佳选择。为实现低气压全量程范围内的自动化精确控制,我们对上游和下游两种模式进行了集成,提出了双向控制模式的技术方案,整体方案布局如图12所示。[align=center][color=#990000][img=低气压控制,500,407]https://ng1.17img.cn/bbsfiles/images/2021/12/202112301000121162_7843_3384_3.jpg!w500x407.jpg[/img][/color][/align][align=center][color=#990000]图12 低气压全量程双向控制模式技术方案真空系统布局图[/color][/align]在低气压全量程控制过程中,需要采用两只不同测量范围的电容式真空计来进行全量程覆盖,也可以材料一直电容式真空计和一直电离式真空计覆盖更宽的低气压范围。在双向控制模式的技术方案中,对控制器和电动阀门提出了更高要求,主要体现在以下几个方面:(1)要求具有可同时连接两个真空传感器的能力,并可根据低气压测量值在两个真空传感器之间进行切换,实时准确的进行低气压测量和控制。(2)控制器需要具有很高的测量精度,如24位A/D采样精度,以适应不同真空计测量精度的要求,并充分发挥真空计的测量能力。(3)在双向控制模式中,还要求真空压力控制器具有正反向控制功能,即对上游电动针阀用反向控制,对下游电动球阀用反向控制。(4)在双向控制模式中,负责上下游气体流量调节的电动针阀和电动球阀需要交替工作,因此这些电动阀需要具有尽可能快的响应速度,真空仓室越小,气压惰性越小,响应速度要求越快,一般要求是阀门从全闭到全开的时间为2秒以内甚至更低。总之,通过采用上述双向模式的低气压控制方案,特别是采用了新型高性能真空压力控制器和高速电动阀门之后,可以实现低气压全量程的精确控制。[size=18px][color=#990000]四、参考文献[/color][/size][1] Corr C S, Boswell R W. Nonlinear instability dynamics in a high-density, high-beta plasma[J]. Physics of Plasmas, 2009, 16(2): 022308.[2] Greig A, Charles C, Boswell R. Plume characteristics of an electrothermal plasma microthruster[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2728-2729.[3] Petkovic M, Pollara R. Dual-purpose space simulation facility for plasma thruster and satellite testing[C]//28th Space Simulation Conference. 2014.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高原环境低气压综合试验箱中的高精度真空度程序控制解决方案

    高原环境低气压综合试验箱中的高精度真空度程序控制解决方案

    [align=center][img=高海拔低气压模拟试验箱中高精度真空度程序控制解决方案,550,523]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011543074519_5661_3221506_3.jpg!w690x657.jpg[/img][/align][b][size=16px][color=#333399]摘要:针对用户提出的低气压试验箱中的真空度精密可编程控制,以及0.001~1000Torr的宽域真空度控制范围,本文基于动态平衡法提出了切实可行的解决方案。解决方案采用了上游控制和下游控制两路独立高精度的PID程序控制回路,基于不同量程的高精度电容真空计,分别调节进气电动针阀和排气电动球阀,可实现各种低气压环境试验箱中高精度真空压力控制。此解决方案已在多个真空领域得到应用,并可以达到±1%的高精度控制。[/color][/size][/b][align=center][b][size=16px][color=#333399]~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/b][/align][b][size=18px][color=#333399]1. 项目背景[/color][/size][/b][size=16px] 低气压试验箱主要用于航空、航天、信息、电子等领域,确定仪器仪表、电工产品、材料、零部件、设备在低气压、高温、低温单项或同时作用下的环境适应性与可靠性试验,并或同时对试件通电进行电气性能参数的测量。低气压试验也是用设备模拟高空气压环境,用来确定元件、设备或其他产品在低气压条件下贮存、运输或使用的适应性。[/size][size=16px] 低气压试验具有很多测试标准可执行,如GB2423.27、IEC60068-2-39、B2423.42、GB2423.102、GB2423.26、IEC60068-2-41、GB2423.21、IEC60068-2-13和GJB 150.24A 等。在单纯的低气压实验中,这些标准都要求在试验中应达到1kPa的最低压力,其允许差未±5%或±0.1kPa(以大者为准),在84kPa等级时的允差为±2kPa。[/size][size=16px] 最近有客户在上述标准的基础上,对低气压控制提出了更苛刻的要求,具体为以下两点:[/size][size=16px] (1)压力变化范围(绝对压力):100kPa→120Pa→1.05Pa→10Pa→1kPa→100kPa,即要求气压在1.05Pa至100kPa(标准大气压)之间可对腔室真空度进行任意点顺序控制和循环。[/size][size=16px] (2)压力变化率:不高于10kPa/min。持续时间:从10Pa到1000Pa变化过程时间不少于20min,最低大气压力(1.05Pa)持续时间不少于10min。[/size][size=16px] 将用户的上述要求绘制成随时间变化的真空度控制曲线,如图1所示。由此可见,要实现上述要求,真空压力的控制需要具有以下特征:[/size][align=center][size=16px][color=#000099][b][img=低气压程序控制曲线,500,313]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011545371588_3376_3221506_3.jpg!w690x433.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 低气压环境试验中的真空度变化曲线[/b][/color][/size][/align][size=16px] (1)在1Pa~100kPa范围内可设置任意真空度点进行恒定控制和程序控制,程序控制可由低到高或由高至低,并具有多次循环控制功能。[/size][size=16px] (2)程序控制过程中需要真空度按照设定的不同的变化斜率进行精密控制。[/size][size=16px] 为了满足上述用户提出的高精度真空度程序控制要求,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 首先,按照用户要求,解决方案拟达到的技术指标如下:[/size][size=16px] (1)真空度控制范围:1Pa~100kPa(绝对压力)。[/size][size=16px] (2)真空度控制精度:读数的±%。[/size][size=16px] (3)控制功能:PID自动控制,多个设定点变化速率可编程自动控制,并可多次循环运行。[/size][size=16px] 为了实现上述技术指标,本解决方案所设计的高精度真空度控制系统如图2所示。[/size][align=center][size=16px][color=#000099][b][img=低气压试验箱真空度程序控制系统结构示意图,690,331]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011546112579_611_3221506_3.jpg!w690x331.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 低气压试验箱真空度程序控制系统结构示意图[/b][/color][/size][/align][size=16px] 对于在1Pa~100kPa如此宽范围的低气压环境试验箱真空度控制,解决方案基于真空压力的动态平衡控制原理,即通过调节试验箱进气流量和排气流量达到某一平衡状态,从而快速实现不同真空度设定点和真空度变化速率的高精度控制。整个真空压力控制系统主要由不同量程的真空计、电动针阀、电动球阀、真空压力控制器、真空泵、上位计算机和各种阀门管件组成,所组成了两个独立的PID控制回路分别进行上游控制和下游控制,以此进项全真空度范围的控制覆盖。此低气压试验箱真空压力控制系统具有如下功能和特点:[/size][size=16px] (1)上游控制模式:所谓上游控制模式就是固定下游排气速率不变而调节控制上游进气流量的一种控制方式,这种控制方法常用于气压低于1kPa的低气压或高真空精密控制。如图2所示,上游控制回路由红色线段示意,此控制回路由10Torr真空计、电动针阀和可编程真空压力控制器组成。在上游控制模式具体运行过程中,控制器采集10Torr真空计信号并与设定值进行比较后,输出控制信号给电动针阀来调节进气流量。需要特别注意的是在上游模式运行过程中,下游真空压力控制器处于手动模式,即下游控制器的输出为一固定电压值,从而是电动球阀始终处于固定开度状态,使得排气流量在低气压或高真空度区间尽可能保持较大的抽速。另外,由于电容真空计对应的是线性电压输出信号,即对应于10Torr真空度电压输出值为10V,0.001Torr真空度是对应的电压输出为0.001V。由此可见在如此小的真空计输出电压信号下要保持较高的测量精度,则真空压力控制器需要配置24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] (2)下游控制模式:所谓下游控制模式就是固定上游进气速率不变而调节控制下游配齐流量的一种控制方式,这种控制方法常用于气压高宇1kPa的高气压或低真空精密控制。如图2所示,下游制回路由蓝色线段示意,此控制回路由1000Torr真空计、电动球阀和可编程真空压力控制器组成。在上游控制模式具体运行过程中,控制器采集10Torr真空计信号并与设定值进行比较后,输出控制信号给电动球阀调节排气流量。需要特别注意的是在下游模式运行过程中,上游真空压力控制器处于手动模式,即上游控制器的输出为一固定电压值,从而是电动针阀终处于固定开度状态,使得进气流量在高气压或低真空度区间尽可能保持恒速。另外,由于电容真空计对应的是线性电压输出信号,即对应于1000Torr真空度电压输出值为10V,10Torr真空度是对应的电压输出为0.01V。由此可见在如此小的真空计输出电压信号下要保持较高的测量精度,则真空压力控制器需要配置24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] (3)在图2所示的真空度控制系统中采用了两个真空压力控制器,此两个控制器都具有可编程程序控制功能以及设定程序的多次循环运行功能。另外,此真空压力控制器自带计算机软件和具有标准MODBUS通讯协议的RS485接口,通过上位计算机运行软件,就能快速实现整个控制过程的参数设置、远程控制和过程参数曲线的监视和存储。[/size][size=18px][color=#000099][b]3. 总结[/b][/color][/size][size=16px] 本解决方案将彻底解决低气压试验箱真空度的宽量程和高精度控制问题,并具有以下特点:[/size][size=16px] (1)本解决方案具有很强的灵活性,目前本解决方案所控制的是0.001~760Torr真空度范围,如果低气压环境试验箱体积较大或体积较小,可以改变电动针阀和电动球阀的型号,以得到合适的进气流量和排气流量控制。[/size][size=16px] (2)解决方案中的真空压力控制器是一款通用性PID控制器,除了具有高精度真空压力控制功能之外,更换温度传感器和流量计后也可以用于温度和流量控制。[/size][size=16px][/size][align=center][size=13px][b][color=#000099]~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 【试剂课堂】元素周期表-汞

    【试剂课堂】元素周期表-汞

    http://ng1.17img.cn/bbsfiles/images/2010/10/201010242326_253755_1610969_3.jpg汞一种有毒的银白色一价和二价重金属元素,它是常温下唯一的液体金属,游离存在于自然界并存在于辰砂、甘汞及其他几种矿中。常常用焙烧辰砂和冷凝汞蒸气的方法制取汞,它主要用于科学仪器(电学仪器、控制设备、温度计、气压计)及汞锅炉、汞泵及汞气灯中 mercury——元素符号Hg。俗称“水银”。

  • 【原创大赛】已通过CNAS 审核文件》“设施与环境条件控制和维护程序”供参考

    1、目的为保证实验室环境符合ISO/IEC17025:2005以及“XXX检定规程”的要求并确保校准结果的有效性,特制定本文件;2、范围本文件适用于实验室内部设施以及环境条件的控制;3、缩写、术语和标准代码3.1 基础设施指校准实验室内的供电线路、照明设施、空调设施、消防设施以及校准工作台等基础性的设施;3.2 仪器、设备指校准实验室内,直接参与或对校准活动有影响的设施,如电子天平、温度计、干湿度计以及气压机、真空检测器等非基础性设施;4、职责4.1 技术负责人4.1.1 技术负责人根据实验室的需求,提出相关资源的申请;4.1.2 技术负责人负责组织、实施对实验室设施及环境条件的监控;4.1.3 负责组织人员,对监控的结果进行记录;4.2 质量负责人4.2.1 负责对监控结果的记录进行适宜的分析、处理,必要时,可借助统计工具;4.2.2 经过分析,当发现设施或环境条件有失控的趋势时,应及时告知技术负责人,并要求其分析原因,进行整改;4.3 实验室负责人4.3.1 应确保实验室能够提供满足法规和实验室能力需求的设施以及环境;5、流程描述5.1 实验室内部设施的识别5.1.1实验室内部,参与或对校准结果有影响的一切实施,均应视为实验室内部设施,并进行监控;5.1.1.1 本校准实验室内部的供电线路、照明设施、空调设施、消防设施、工作台等均属于实验室内部设施;5.1.1.2 本校准实验室内部的用于校准的电子天平,用于环境监测的温度计、干湿度计、气压计、真空检测器等,将直接参与校准活动,因此,应被视为重点监控对象;5.1.2 本校准实验室位于相对独立的建筑物内,能够有效地避免区域内的其他环境影响;5.2 控制与维护5.2.1 对于实验室内的供电线路、照明设施、空调设施、消防设施应定期进行检查,并将结果记录在“实验室基础设施点检表”中,点检周期一般为每月1次;5.2.2 对于实验室内的消防设施,除5.2.1规定的点检外,还应相关消防的法律、法规,定期进行维护,包括送专业监测机构进行检测;5.2.3 对于实验室内的仪器、设备,同样需要进行日常点检,并将结果记录在“实验室基础设施点检表”中;5.2.3.1 仪器、设备的点检频率为每天1次;5.2.3.2 仪器、设备除日常点检外,还应依据相关法律、法规,送专业计量单位,进行周期性的检定,以确保其功能完好;5.2.4 实验室设施使用人员,每次使用前,应对设施进行简单检查,确认无问题后,方可使用,每次使用结束后,应对设施进行必要的维护,如将设施放置在原地,并保持其表面的清洁;5.2.5 对于供电线路、照明设施、空调等,应组织专人或找专业人员,定期进行检修、维护;5.2.6 因本实验室不存在危险品、易燃品、化学品以及废气、废液和固废物等,因此,对于此类的监控,无须特别记录;5.3 实验室环境要求5.3.1 依据“XXX检定规程”标准要求,本实验室温度应控制在20±5℃之间;5.3.2 根据行业要求,本文件规定,本实验室内相对湿度应当超过50 % RH,但不大于80%RH,主要目的是降低校准过程中去离子水的蒸发量,以确保校准结果的准确性;5.3.3 实验室的气压,无特殊要求,但依据行业经验,本文件规定,实验室气压应为常压,即1个标准大气压左右;5.3.4 实验室应配备可连续对温度、湿度进行监控的电子监测仪器,以确保实验室试验环境下温度、湿度得到连续的、实施的监控; 5.3.4.1 根据XXX检定规程要求,由技术人员对电子温度、湿度监控仪器进行设定,将温度设定在20℃-23.5 ℃之间,湿度设定在50%-80%RH之间,以确保校准活动的顺利开展;5.3.4.2 本电子监控仪器

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制