当前位置: 仪器信息网 > 行业主题 > >

电感应式仪

仪器信息网电感应式仪专题为您提供2024年最新电感应式仪价格报价、厂家品牌的相关信息, 包括电感应式仪参数、型号等,不管是国产,还是进口品牌的电感应式仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电感应式仪相关的耗材配件、试剂标物,还有电感应式仪相关的最新资讯、资料,以及电感应式仪相关的解决方案。

电感应式仪相关的资讯

  • 深圳检验检疫局首获中央引导地方科技专项资助
    11月2日,深圳检验检疫局检科院承担的“新型食品安全快筛试剂盒及小型智能设备技术完善和商品化定型”项目获得中央引导地方科技发展专项资助,为深圳检验检疫局首次获得该领域资助。  据介绍,该项目以该局“十二五”科研项目的科技成果—— 新型兽残快筛技术以及配套检测仪器为基础,通过在配套的检测仪器上集成光电感应、软件处理、网路传输技术,实现对肉及肉类产品兽药残留快筛结果自动判定、检测数据自动处理和实时上传等功能,相关技术和设备可在肉及肉类产品的生产、销售、流通环节和质量管理一线部门使用,具有使用简便、高效、高灵敏度、低成本、可网络化布置和实时在线检测等功能。成果的后续商品化和应用推广,将为深圳市食品安全公益性服务领域提供一种全新的技术监管手段和措施,推动深圳局检验检疫科技成果更好的服务地方经济发展、保障食品安全。
  • 3D打印在压电材料方面的应用
    1880年,法国物理学家居里兄弟发现,把重物发在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。利用压电材料的这些特性可以实现机械振动(声波)和交流电的相互转换。打火机的点火装置,就是利用此原理进行打火。后来压电材料广泛应用于各种传感器(如图1)中,例如换能器、传感器、驱动器、声纳、手机和机器人等方面。图1 压电陶瓷传感器压电效应的产生是晶胞中正负离子在外界条件作用下出现相对位移,使得正负电荷的中心不再重合,导致晶体发生宏观极化。压电电荷的流动方向取决并且遵循其陶瓷和晶体材料的晶格排列,因此压电陶瓷和压电聚合物复合材料的压电常数与其结构组成有着密切的相关性。美国弗吉尼亚理工大学的郑小雨(Rayne Zheng)教授及其实验室的博士团队使用3D打印的方式实现了新型压电材料的制造,并且采用这种方法制备了具有高压电特性的材料,实现电压在任意方向可被放大、缩小和反向的特征。图2 高灵敏度压电材料的合成以及3D打印制造图3 压电材料3D打印制造(弗吉尼亚理工大学) 这种压电材料的制造方法为:首先采用功能化剂(三甲氧基甲基丙烯酸丙脂)共价接到PZT(锆钛酸铅压电陶瓷)颗粒上合成表面功能化的压电纳米粒子,表面通过硅氧烷键在表面留下自由的甲基丙烯酸酯(如图2-a);通过提高表面功能化水平,提高复合颗粒材料的压电相应水平,使之达到最大(如图2-b) 最后通过面投影3D打印方式实现纳米颗粒的粘接成型(如图2-c和图3),最终得到需求的压电材料结构,其显微镜结构(如图2-d)。基于此项技术,压电新型材料在很多领域得到应用P1多功能柔性可穿戴智能材料通过电压激活后能够设计和制造出一系列新型智能材料。该三维材料具有任意形状,任意内部结构复杂度,并且每一个节点、单元和材料本身任意部位均具有压电感应功能,无需任何附加传感器即可实现电压输出。根据该材料的特性,开发出了柔性压电材料(如图4),为将来可穿戴柔性器件开发做好基础准备。图4 打印的柔性材料薄片(弗吉尼亚理工大学)P2自感应吸能材料及护甲由于这种智能材料各个部位均具有压电感应,其打印支撑的三维结构将无需任何附加传感器,并探测出任意位置的压力或者震动。现有传感技术和结构损伤检测当中,需要在各个位置上布满大量的压电传感器,并且对于复杂结构,需要通过复杂算法优化计算,最终来确定传感器阵列的布置。然而,这种自感应三维材料,则可以通过任意位置的压电结构材料,首次解决了这项难题,并且通过智能桥梁结构得到验证(图5)。图5 智能桥梁检测实验P3矢量传感领域通过人工晶格设计制成的压电超材料,可以很灵巧的实现矢量探测传感功能,通过利用改型材料不同结构有不同压力静电相应的特性,设计如图(6-b)所示的结构,并对不同方向进行压力测试,可以实现三个方向的不同压电系数的压电材料制备。图6 力方向感知测试国内西安交通大学陈小明教授也在应用3D打印技术研究压电材料,其将压电聚合物或陶瓷与光敏树脂混合制备成复合材料,然后将复合材料利用深圳摩方(BMF)的3D打印设备S140进行打印成型,从而制成相应的压电器件。除此之外,利用3D打印技术可以制备具有多种微结构的器件(图7),相比于传统的微纳加工工艺具有成型快,成本低,可定制化等优点。打印的微结构复合压电器件相比于平模,极大的提高了压电输出,器件性能成倍增加。图7 3D打印的多种微结构压电器件图BMF的S140(图8)设备打印光学精度达到10um,打印层厚10~40um,打印幅面最大能够达到94mm(L)*52mm(W)*45mm(H),而且其支持多种树脂材料打印,例如韧性树脂、耐高温树脂、生物医用树脂、柔性树脂等等,能够最大限度的满足不同客户的科研需求。图8 S140设备简图通过3D打印来实现各向异性和定向效应的高响应性压电材料,有效促进了3D传感器材料方向的发展。通过这种材料,用户可以为目标应用进行设计、放大和抑制等操作模式。这种新型结构与功能的压电材料突破了传统传感器整列部署的模式,通过3D打印制造方式为未来智能材料设计提供了一种思路。官网:https://www.bmftec.cn/links/10
  • 国务院公布2019进出口税改方案 69项涉及进口仪器设备
    近日,国务院关税税则委员会向海关总署下达,并公布了《2019年进出口暂定税率等调整方案》,调整最惠国税率、关税配额税率、协定税率、特惠税率等四项进口关税税率,自2019年1月1日起对706项商品实施进口暂定税率,其中公布了6项与仪器相关的进口商品暂定税率,包含红外线人体测温仪、涡流探伤检测仪、跑道摩擦系数测试仪等。另外,方案还对《中华人民共和国加入世界贸易组织关税减让表修正案》附表所列信息技术产品最惠国税率从2019年7月1日开始,实施第四次降税。其中63项与仪器设备及相关零部件有关,包含试验机、显微镜、硬度计、质谱仪、质谱联用仪等。仪器信息网小编将与仪器相关的进口商品暂定税率表和部分信息技术产品最惠国税率表汇总如下:仪器相关进口商品暂定税率表:序号EX税则号列商品名称最惠国税率(%)2019年暂定税率(%)685ex90251990红外线人体测温仪4.2#2.81-6月:4%686ex90259000红外线测温仪传感器元件4#2.71-6月:3%68790318033涡流探伤检测仪5#43688ex90318090音频生命探测仪、音视频生命探测仪5#42689ex90318090集成电路测试分选设备5#42690ex90318090跑道摩擦系数测试仪5#43“仪器设备及相关零部件”信息技术产品最惠国税率表序号税则号列EX信息技术产品名称2019年1月1日至6月30日最惠国税率(%)2019年7月1日至12月31日最惠国税率(%)36990111000立体显微镜0037090118000其他显微镜3.52.337190119000复式光学显微镜的零附件37290121000其他非光学显微镜及衍射设备0037390129000非光学显微镜及衍射设备的零件0038590151000测距仪4.53.038690152000经纬仪及视距仪4.53.038790154000摄影测量用仪器及装置4.53.038890158000其他大地测量仪器及装置2.51.738990159000大地测量仪器及装置的零附件2.51.739090181100心电图记录仪1.3039190181210B型超声波诊断仪4.43.539290181291彩色超声波诊断仪3.12.539390181299其他超声扫描装置3.12.539490181310核磁共振成像成套装置4.03.239590181390其他核磁共振成象装置4.03.239691081930病员监护仪2.01.341390221200X射线断层检查仪3.32.741790221920X射线无损探伤检测仪2.01.342090222910γ射线无损探伤检测仪3.02.042690241010电子万能试验机3.52.342790241020硬度计3.52.343190251910非液体的工业用温度计及高温计4.22.843290251990非液体的其他温度计、高温计4.22.843390259000比重计、温度计等类似仪器的零件4.02.743490271000气体或烟雾分析仪4.43.543690278012质谱联用仪0043790278019其他质谱仪0043990278099其他理化分析仪器及装置0044190283011单相感应式电度表2.5044290283012三相感应式电度表2.5044390283013单相电子式(静止式)电度表2.5044490283014三相电子式(静止式)电度表2.5044590283019其他电度表2.5044690283090其他电量计2.5044790289010工业用计量仪表零附件2.1044890289090非工业用计量仪表零附件2.1044990301000离子射线的测量或检验仪器及装置2.51.745090302010测试频率<300兆赫的通用示波器2.0045190302090其他阴极射线示波器1.3045290303110量程≤五位半的数字万用表,不带记录装置3.8045390303190其他不带记录装置的万用表1.3045490303200带记录装置的万用表4.02.745590303310量程≤五位半的数字电流表、电压表,不带记录装置9.47.545690303390检测电压、电流及功率的其他仪器,不带记录装置5.64.545790303900检测电压、电流、电阻或功率的其他仪器,带记录装置4.02.745890308410电感及电容测试仪5.03.345990308490其他电量的测量或检验仪器及装置4.02.746090308910其他电感及电容测试仪7.04.746190308990其他电量的测量或检验仪器及装置4.02.746490311000机械零件平衡试验机3.52.346590314910轮廓投影仪5.03.346690314920光栅测量装置0046790314990其他光学测量或检验仪器和器具0046890318010光纤通信及光纤性能测试仪5.04.046990318020坐标测量仪5.04.047090318031超声波探伤检测仪5.04.047190318032磁粉探伤检测仪5.04.047290318033涡流探伤检测仪5.04.047390318039其他无损探伤检测仪器(射线探伤仪除外)5.04.047490318090未列名测量、检验仪器器具及机器5.04.047590319000税号90.31的仪器及器具的零件0047790328100液压或气压的其他仪器及装置3.52.3方案还对出口关税税率进行了规定,其中108项出口商品关税维持不变,另有94项出口暂定关税被取消。方案整体详情见附件:附:1.进口商品暂定税率表  2.部分信息技术产品最惠国税率表  3.关税配额商品税目税率表  4.出口商品税率表  5.进一步降税的进口商品协定税率表(另附)
  • 欧盟廉价快速食品毒素检测技术研制成功
    赭曲霉毒素A(Ochratoxin A)是食品和饮料中最常发生的毒素之一,主要抑制免疫系统,可对人体和动物引发多种形式的癌症,被欧盟列为&ldquo 健康风险&rdquo 毒素。欧盟第七研发框架计划(FP7)提供110万欧元资助,总研发投入140万欧元,由意大利Automation srl实验室领导的,欧盟5个成员国意大利、克罗地亚、德国、挪威和葡萄牙科研机构与创新型中小企业(SMEs)参与的欧洲OTASENS研发团队,经过2年时间的联合攻关,成功研制出一款廉价快速、环境友好型赭曲霉毒素A检测技术及装置。分别在餐馆、酒窖、啤酒厂、农场和超市的检测应用中,得到广泛验证。  OTASENS研发团队研制的食品毒素快速检测技术,关键突破点在于光电感应技术同微电子专家芯片技术的有机结合。同传统的过电流检测系统相比,具有不可比拟的优势:首先,装置几乎不使用化学溶剂,因此可赋予环境友好型标示 其次,装置小巧轻便,重量不超过1公斤,完整的检测装置系统成本低于2000欧元 第三,装置可直接连接笔记本电脑,操作简便,无需专业人员现场指导 最后,也是至关重要的,相对传统技术检测分析结果,至少可节省50%以上的时间。  OTASENS研发团队2年期间的研发创新活动,已申请5项发明和新颖性专利。目前,参与研发团队的创新型中小企业(SMEs)合作伙伴,正在进行预商业化的技术产品开发,希望将新产品尽快应用于食品、饮料和饲料相关行业。
  • 国家质检总局1045万元采购ICP-OES等多套仪器设备
    根据中国政府采购网消息,国家质检总局预算1045万元采购电感耦合等离子体发射光谱仪、全自动酶标仪、全自动酶免后处理分析系统、全波长全自动酶免分析系统、全自动酶免分析工作站、样品全自动处理工作站等共计13台仪器设备。  详情如下:  项目名称:国家质检总局2016年电感耦合等离子体发射光谱仪和酶标仪采购项目  项目编号:0702-1641CITC5M02包号 品目号 货物名称 数量 (台)用途 简要技术要求 用户 单位 是否允许进口产品投标 预算 金额 (万元) 11-1电感耦合等离子体发射光谱仪1检测等离子体观测方式:双向观测。山东局是55.51-2电感耦合等离子体发射光谱仪1检测等离子体观测方式: 双向观测,以扩展检测线性范围,并具有衰减模式山东局是55.51-3电感耦合等离子体发射光谱仪1检测带高效半导体制冷的固体检测器,在光谱仪波长范围内具有连续像素,能任意选择波长,且具有防溢出功能设计黑龙江局是7522-1全自动酶标仪1检测每块微板可同时运行12个项目,整机可升级以满足未来工作量增长需求海南局否642-2全自动酶免后处理分析系统1检测塔式结构孵育槽,温控范围:(室温+5) ℃ 至 70℃河南局否1152-3全自动酶标仪1检测双臂独立操作,实现加样、洗板、孵育同时进行江苏局否902-4全波长全自动酶免分析系统1检测连续载板功能:有,最多可载入并同时处理3块板,步骤相同的实验可组合,试剂管和标本管都可以连续载入山东局否492-5全自动酶免分析工作站1检测洗板机的洗板头具有 8个以上洗板通道。具有多3个以上洗液通道和3个以上洗液瓶位且洗液瓶有液面监测功能山东局否852-6全自动酶免系统1检测从标本加样、稀释到酶标板转移、孵育、洗板、加试剂、读数及结果打印等过程自动化的酶免一体机吉林局否1102-7样品全自动处理工作站1检测加样原理:基于管泵系统的气动置换加样原理,采用压力感应式加样泵技术,确保加样精度和准确度厦门局否992-8全自动酶免分析仪1检测控制方式:每个加样通道YZ方向均可独立控制运行,实现非等间距吸液、加样,同时在不等距离的试管和试剂容器取样;加样通道间距9mm~300mm;广东局否402-9全自动酶免分析仪1检测标本位≥ 192个,质控位≥ 32个,试剂位≥ 15个,可以放置的一次性TIP头数量≥ 288个,试剂槽容量≥ 50ml,同时加样板位≥ 12个,控温孵育位≥ 8个.以轨道或板架为单位,可灵活设置,具有良好的扩展性西藏局否1052-10全自动酶免分析系统1检测孵育槽配置:6个室温孵育槽,6个温控孵育槽,封闭孵育,上下层双层加热。室温至45℃可编程设定,控温精度:± 0.5℃广东局否102
  • 电子拉力试验机选购时候需要注意事项
    市面上有一些高档电子拉力试验机除以上项目外,因其传感器精度高(有的达到三十五万分之一)还可以测试摩擦系数。  丝杠,对拉力精度测量具有决定作用。一般的有滚珠丝杠,梯形丝杠,一般丝杠。其中,滚珠丝杠的精确度最高,但是其性能的发挥要靠电脑伺服系统操作才能发挥,整套价格也比较昂贵。采用一般丝杠和梯形丝杠就可以达到软包装所要求的精度,即0.1-1%精度。  传动,有齿轮传动和链条传动,前者昂贵,用于高精度;后者便宜,用于低精度,传感器,主要成本在于寿命,光电感应是其中比较先进的技术,一般可用十万次以上,进口和国内部分合资厂家可以达到更好技术,下面我们看看八点注意事项。    1.标准配置问题。  智能化的三种基本配置:主机、微电脑、还有打印机,如果微电脑功能强可以直接打印。另外也可配备普通电脑。有了电脑,就可以进行复杂的数据分析,如数据编辑,局部放大,可调整报告形式,进行成组式样的统计分析,如配用电脑,厂家应给加入相应控制系统。  2.产品机械主要配置:  传动,有丝杠传动和齿条传动,前者昂贵,用于高精度,测试重复性高;后者便宜,用于低精度,测试重复性低,与单臂式相对应结构的是门式结构,它是适应比较大的拉力,如一吨或以上。所以软包装厂家基本用不着。  3.测量精度。  精度问题,包括测力精度,速度精度,变形精度,位移精度。这些精度值最高都可达到正负0.5。但对于一般厂家,达到1%精度就足够了。另外,力值分辨率几乎都能达到40万分之一。  4.试验行程的问题。  根据自己公司需要试验的物品性质进行选型,如对弹性较大、长度较长的物品进行试验,订购拉力试验机时就要提前和厂家技术部门沟通好。以软包装薄膜为例,其需要测试的性能和要求,行程在600-1500mm就可以。材料伸长率超过1000%的可以选用行程1000或是1200mm。  5.在可做实验项目上。  软包装要求拉力机一机多用,即在配备不同夹具的基础上,可做拉伸、压缩、弯曲、撕裂、剪切、180度剥离、90度剥离试验。  6.首先应考虑需要测试材料拉力范围。  电子拉力试验机范围的不同,决定了所使用传感器的不同,也就决定了拉力机的结构,但此项对价格的影响不大(门式除外)。对于一般软包装生产厂家,拉力范围在100牛顿的了就已经足够。因此也决定了采用单臂式的就可以了。  7.输出结果。  电子拉力试验机试验结果输出结果可任意设置:最大力值、伸长率,抗拉强度、定力伸长、定伸长力值、屈服强度,弹性模量、最大试验力8项。这可以说是微电脑操作时,输出的最全面的结果。国外一些厂家的产品,一般可以输出这8项。国内有的厂家可以输出5-6项,有的厂家就只能输出最大力值,平均值,最小值六项。  8..试验速度。  市面设备有的在10~500mm/min,有的在0.001~500mm/min,前者一般使用普通调速系统,成本较低,影响精度;后者使用伺服系统,价格昂贵,精度高,对于软包装企业,选用伺服系统,调速范围1~500mm/min的就足够了,这样既不影响精度,价格又在合理范围之内。
  • 我国调整部分商品进口关税 涉及这些仪器仪表
    仪器信息网讯为贯彻落实党的十九届五中全会精神,坚持新发展理念,支持构建以国内大循环为主体、国内国际双循环相互促进的新发展格局,经国务院批准,国务院关税税则委员会近日印发通知,2021年将调整部分进口商品的最惠国税率、协定税率和暂定税率。  自2021年1月1日起,我国将对第二批抗癌药和罕见病药品原料等883项商品实施低于最惠国税率的进口暂定税率。2021年7月1日起,我国还将对176项信息技术产品的最惠国税率实施第六步降税。为适应产业发展和科技进步需要,便利贸易管理和统计,同时规范执行《商品名称及编码协调制度》,2021年还调整了部分税则税目。调整后税则税目总数为8580个。  上述调整措施有利于更好吸引全球资源要素,既满足国内需求,又提升我国产业技术发展水平,促进形成宏大顺畅的国内经济循环 有利于发挥我国超大规模市场优势,为世界各国提供更加广阔的市场机会,打造我国新的国际合作和竞争优势 有利于构建面向全球的高标准自由贸易区网络,更好联通国内市场和国际市场,更好促进中国经济与世界经济共同发展,推动合作共赢。  进口商品暂定税率表、部分信息技术产品最惠国税率表、进一步降税的相关协定进口商品协定税率表中涉及到立体显微镜、质谱联用仪、电子万能试验机、硬度计、坐标测量仪等百余项科学仪器、仪表及关键零部件。仪器信息网整理如下,供广大网友参考。  附件-2021年关税调整方案.pdf进口商品暂定税率表涉及的仪器仪表税则号列商品名称2021年最惠国税率(%)2021年暂定税率(%)84141000真空泵(专门或主要用于半导体晶圆或平板显示屏制造的除外)8584149011用于制冷设备的压缩机进、排气阀片8584149019其他用于制冷设备的压缩机零件8584224000半导体检测分选编带机8585094090食品研磨机及搅拌器7690229090射线发生器的零部件5190229090数字化X射线摄影系统平板探测器5390318090音频生命探测仪、音视频生命探测仪3#21-6月:2%90318090集成电路测试分选设备3#21-6月:2%90328990三坐标测量机用自动控制柜7390330000用于90章下列环境产品,包括太阳能定日镜、其他测量海洋、水文、气象或地球物理用仪器及设备,测量,检验液体流量或液位的仪器,测量、检验压力的仪器及装置,90.26其他税号未列名的液体或气体测量仪器及装置,气体或烟雾分析仪,色谱仪和电泳仪,使用光学射线(紫外线,可见光,红外线)的分光仪、分光光度计及摄谱仪以及其他理化分析仪器及装置,用于测量、记录、分析和评估环境样品或对环境的影响的理化分析仪器及装置,检镜切片机,轮廓投影仪,光栅测量装置,其他光学测量或检验仪器和器具,测振仪,手振动仪,具有可再生能源和智能电网应用的自动电压和电流调节器,自动调控流量、液位和湿度的仪器,且在其他税目未列名的零附件65部分信息技术产品最惠国税率表涉及的仪器仪表税则号列信息技术产品名称2021年11月11日至6月30日最惠国税率(%)2021年7月1日至12月31日最惠国税率(%)84798999用于从电子显微样品或样品基板上去除有机污染物的等离子清洗机器0.00.084861010利用温度变化处理单晶硅的机器及装置0.00.084861020制作单晶硅或晶圆的研磨设备0.00.084861030制作单晶硅或晶圆的切割设备0.00.084861040制作单晶硅或晶圆的化学机械抛光设备0.00.084861090制作单晶硅或晶圆的其他设备0.00.084862010制造半导体器件或集成电路用的热处理设备0.00.084862021制造半导体器件或集成电路用的化学气相沉积装置0.00.084862022制造半导体器件或集成电路用的物理气相沉积装置0.00.084862029制造半导体器件或集成电路用的其他薄膜沉积设备0.00.084862031制造半导体器件或集成电路用的分步重复光刻机0.00.084862039制造半导体器件或集成电路用的其他光刻设备0.00.084862041制造半导体器件或集成电路用的等离子体干法刻蚀机0.00.084862049制造半导体器件或集成电路用的其他刻蚀及剥离设备0.00.084862050制造半导体器件或集成电路用的离子注入机0.00.084862090制造半导体器件或集成电路用的其他机器及装置0.00.084863010制造平板显示器用的热处理设备0.00.084863021制造平板显示器用的化学气相沉积装置0.00.084863022制造平板显示器用的物理气相沉积装置0.00.084863029制造平板显示器用的其他薄膜沉积设备0.00.084863031制造平板显示器用的分步重复光刻机0.00.084863039制造平板显示器用的其他光刻设备0.00.084863041制造平板显示器用的超声波清洗装置1.70.084863049制造平板显示器用的其他湿法蚀刻、显影、剥离、清洗装置0.00.090022090其他光学仪器或装置滤光镜5.63.890029090其他光学仪器用未列名光学元件5.63.890111000立体显微镜0.00.090118000其他显微镜1.20.090119000复式光学显微镜的零附件0.00.090121000其他非光学显微镜及衍射设备0.00.090129000非光学显微镜及衍射设备的零件0.00.090131000设计用为本章或第十六类的机器、设备、仪器或器具部件的望远镜0.00.090132000激光器1.00.090151000测距仪1.50.090152000经纬仪及视距仪1.50.090154000摄影测量用仪器及装置1.50.090158000其他大地测量仪器及装置0.80.090159000大地测量仪器及装置的零附件0.80.090181100心电图记录仪0.00.090181210B型超声波诊断仪2.61.890181291彩色超声波诊断仪1.91.390181299其他超声扫描装置1.91.390181310核磁共振成像成套装置2.41.690181390其他核磁共振成象装置2.41.690221920X射线无损探伤检测仪0.70.090221990其他非医疗用X射线设备0.70.090222910γ射线无损探伤检测仪1.00.090222990其他非医疗用α、β、γ射线设备1.00.090223000X射线管0.30.090229010X射线影像增强器0.00.090241010电子万能试验机1.20.090241020硬度计1.20.090241090其他金属材料的试验用机器及器具1.20.090248000非金属材料的试验用机器及器具1.91.390249000各种材料的试验用机器零附件1.00.090251910非液体的工业用温度计及高温计1.40.090251990非液体的其他温度计、高温计1.40.090259000比重计、温度计等类似仪器的零件1.30.090271000气体或烟雾分析仪2.61.890278011集成电路生产用氦质谱捡漏台0.00.090278012质谱联用仪0.00.090278019其他质谱仪0.00.090278091曝光表2.30.090278099其他理化分析仪器及装置0.00.090279000检镜切片机;理化分析仪器零件0.00.090283011单相感应式电度表0.00.090283012三相感应式电度表0.00.090283013单相电子式(静止式)电度表0.00.090283014三相电子式(静止式)电度表0.00.090283019其他电度表0.00.090283090其他电量计0.00.090289010工业用计量仪表零附件0.00.090289090非工业用计量仪表零附件0.00.090301000离子射线的测量或检验仪器及装置0.80.090302010测试频率<300兆赫的通用示波器0.00.090302090其他阴极射线示波器0.00.090303110量程≤五位半的数字万用表,不带记录装置0.00.090303190其他不带记录装置的万用表0.00.090303200带记录装置的万用表1.30.090303310量程≤五位半的数字电流表、电压表,不带记录装置5.63.890303390检测电压、电流及功率的其他仪器,不带记录装置3.42.390303900检测电压、电流、电阻或功率的其他仪器,带记录装置1.30.090308410电感及电容测试仪1.70.090308490其他电量的测量或检验仪器及装置1.30.090308910其他电感及电容测试仪2.30.090308990其他电量的测量或检验仪器及装置1.30.090309000用于检测半导体晶片及器件的仪器的零件和附件 ITA产品用的印刷电路组件,包括外接组件,如符合PCMCIA标准的卡0.00.090309000税号90.30所属货品的其他零件及附件1.20.090311000机械零件平衡试验机1.20.090314910轮廓投影仪1.70.090314920光栅测量装置0.00.090314990其他光学测量或检验仪器和器具0.00.090318010光纤通信及光纤性能测试仪3.02.090318020坐标测量仪3.02.090318031超声波探伤检测仪3.02.090318032磁粉探伤检测仪3.02.090318033涡流探伤检测仪3.02.090318039其他无损探伤检测仪器(射线探伤仪除外)3.02.090318090未列名测量、检验仪器器具及机器3.02.090319000税号90.31的仪器及器具的零件0.00.090322000恒压器1.20.090328100液压或气压的其他仪器及装置1.20.0进一步降税的相关协定进口商品协定税率表涉及的仪器仪表
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 / 3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • 葛老师话说实验室第三十期-恒温恒湿试验箱使用注意事项及常见故障分析
    大家好,欢迎来到葛老师话说实验室。恒温恒湿试验箱,顾名思义,主要用于高温,低温,湿度试验,它适用于电子电工、食品、塑料橡胶、汽车制造、灯具、化工、建材、纺织服装、化学反应等的温湿度变化试验检测。本文就主要介绍下,恒温恒湿试验箱的使用注意事项及常见故障分析,以供读者参考借鉴。 一、恒温恒湿箱使用注意事项1、当恒温恒湿箱完成低温运转时,最好在60℃时实行干燥处理,约30min后再打开箱门,以防影响后续试验的测定时间或造成蒸发器结冰现象;2、在恒温恒湿箱运行时,除非万不得已,否则请不要随便打开箱门,以免造成不良后果:(1) 箱门内仍保持高温;(2) 高温空气可能触发火灾警报;(3) 高温湿气冲出箱外;(4) 对压缩机造成一定损坏, 除非实验要求,不建议客户在实验过程中频繁开关箱门。3、箱体运行时,请勿用手检查,以免触电或被风扇伤及;4、为量取正确的相对湿度,湿球纱布的安装位置一定要准确;5、电路断路器和超温保护器等安全保护设备,需定期详细检查;6、恒温恒湿试验箱一定要安全接地,以免产生静电感应;7、恒温恒湿试验箱需要专职人员进行维修和检查,并且在检查时,同时还需要专业的电工及电路检修人员在场,以防不知情人员通电合闸,造成触电危险。 二、常见故障及解答1、湿热试验过程中,湿度达不到指定要求,是哪里出现问题?分析:恒温恒湿试验箱在做湿热试验中,若出现(1) 实际湿度会达到100%A. 可能由湿球传感器上的纱布干燥引起,需要检查湿球传感器的水槽是否缺水。水槽中的水位由水位控制器自动控制,检查水位控制器供水系统是否供水正常、水位控制器工作是否正常。B. 可能是湿球纱布使用时间长,或供水水质纯净度的原因,会使纱布变硬,使纱布无法吸收水份而干燥,只要更换或清洗纱布即可排除以上现象。(2) 实际湿度与目标湿度相差很大,数值低得很多恒温恒湿试验箱的加湿系统不工作,查看加湿系统的供水,供水系统内是否有一定的水量,以及加湿锅炉水位控制是否正常。如以上一切都正常,那就要检查电器控制系统,这要请专业维修人员进行检修。 2、低温达不到指标,降温很慢,如何解决?分析:首先需要观察温度的变化,A.如果是温度降的很慢,需要检查以下几点,做低温试验前是否已将工作室烘干,试验前需将工作室干燥,然后再放入试验样品试验;工作室内的试验样品是否放置的过多,造成工作室内的风不能充分循环,在排除上述原因后,就要考虑是否是制冷系统的故障了,而制冷系统的检修需要厂家专业人员操作。B.如果温度达到一定数值后有回升的趋势,可先检查是否是恒温恒湿试验箱的使用环境所致,设备放置的环境温度以及放置的位置(箱体后与墙的距离)是否满足要求等 (在设备操作使用说明中都有规定)。 3、高温试验中,温度变化达不到试验温度值,如何解决?分析:可以检查电器系统,逐一排除故障。A.温度若升得很慢,需查看风循环系统,风循环的调节挡板是否正常开启B.温度若升得很快,需检查风循环的电机是否正常运转。如温度过冲厉害那么就需要整定PID的设置参数。如果温度直接上升,过温保护,那么控制器出故障,须更换控制仪表。 4、温度控制显示压力异常,如何处理?分析:首先需查看设备的摆放位置,是否距离墙壁30公分以上的位置,因为散热不良会造成压缩机高压侧压力过高,所以如果是摆放位置不当造成的,需及时正确调整;其次,查看仪器四周是否为密封空间,若四周为密闭空间,会造成环境产生温升,也会造成压缩机高压侧压力过高,所以请保持四周通风;若非以上故障,需请专业人员进行检修。 恒温恒湿试验箱,因有使用时限,所以运行时间超长的恒温恒湿试验箱,难免会出现些各种各样的故障,平时注意定期保养和维护,大部分一般都可以避免的。如果遇到较大技术难题,可以及时联系厂家,寻求解决。 以上就是本期人和科仪《葛老师话说实验室》的全部内容,我们将陆续为您推送各类精彩定评与文章,希望能给您的实验室生活带来些许帮助。 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 人民日报:中国量子通信领跑世界,潘建伟教授团队再创新辉煌
    日前,中国科学院在京召开新闻发布会,宣布"墨子号"量子科学实验卫星提前并圆满实现全部三大既定科学目标,在国际上次成功实现了从卫星到地面的量子密钥分发和从地面到卫星的量子隐形传态。这是继先前在国际上率先实现千公里星地双向量子纠缠分发和量子力学非定域性检验之后,我国科学家利用"墨子号"量子卫星实现的空间量子物理研究另外两项重大突破。图1 “墨子号”-兴隆地面站量子密钥分发实验现场图(图片来源:中国科学技术大学官网)量子是物理里小的基本个体。它具有神奇的特性:先有多个可能状态的叠加态,只有在被观测或测量时,才会随机地呈现出某种确定的状态。“这就好比孙悟空的分身术”,量子卫星席科学家、中科院院士潘建伟解释道。其次,量子具有纠缠态,意味着两个纠缠在一起的量子就像有心电感应的双胞胎,不管两个人的距离有多远,当哥哥的状态发生变化时,弟弟的状态也跟着发生一样的变化。根据量子的两种状态,量子通信分为两种,一种是量子保密通信,能实现无条件安全的通信方式,再也不会被窃听和破译;另一种是量子隐形传态,能将粒子的未知量子态传送到遥远地点而不用传送粒子本身。“就像筋斗云一样,实现瞬间传输。”这次量子卫星发射,就是主要开展星地高速量子密钥分发和地星量子隐形传态等实验。----图2“墨子号”-阿里地面站量子隐形传态实验现场图(图片来源:中国科学技术大学官网)此次实验的成功,是中国科学技术大学潘建伟教授带领的中国科学院联合研究团队取得的又一重大科研成就。潘建伟教授是Quantum Design中国子公司的长期客户,其中德国attocube公司的低温强磁场无液氦共聚焦显微镜设备一直在平稳运行,帮助潘教授科研团队实现更多的科研目标。中国科大量子存储实验室内,潘建伟教授在了解科研情况此次圆满完成的星地高速量子密钥分发实验和地星量子隐形传态实验,使安全通信速率比传统技术提升万亿亿倍,为构建覆盖全球的量子保密通信网络奠定了坚实的科学和技术基础,并向空间尺度的量子物理和量子引力的实验探索迈出了步。同时,也标志着我国量子通信领域的研究在国际上达到全面的优势地位。两项成果已于8月10日同时在线发表于国际权威学术期刊《自然》杂志上。 参考文献:1. Satellite-to-ground quantum key distribution. Nature (2017) doi:10.1038/nature23655.2. Ground-to-satellite quantum teleportation. Nature (2017) doi:10.1038/nature23675.相关产品链接:无液氦低温强磁场共聚焦显微镜 http://www.instrument.com.cn/netshow/SH100980/C159541.htm美国Montana无液氦超低振动低温光学恒温器 http://www.instrument.com.cn/netshow/SH100980/C122418.htm
  • 库尔特 细胞研究不可或缺的细胞体积分析
    生物、药物等许多的研究均需要通过观察细胞体积的变化或细胞数目增减的来判断和评估实验的效果。由于细胞所处环境的改变可促使其自身体积做出相应的变化,以便适应改变后的环境大致新的平衡。由于并不能清晰地知道该种细胞体积变化规律,因此必须检测其体积或细胞数目随条件、时间的变化。  细胞的发育与细胞分裂周期级数递增均需要连续不断的细胞增殖。  在培养液中正在增殖的细胞在其分裂前其体积将增大至原体积的两倍。然而对细胞发育与分裂的速度作如何调整才能保证细胞体积的不变并不明确。因此,测量细胞的体积的变化对了解与控制细胞的发育和周期非常重要。  细胞的死亡  细胞的增殖与细胞的死亡之间需要一个精细的平衡以保持足够的细胞数量。该种平衡容许细胞作最佳的状态调节以适应各样机能变化的需求。细胞死亡有两种清晰的机制,坏死与凋亡。坏死是一个病理生理的机制,包括细胞膨胀以及细胞膜破裂而释出内容物。凋亡则是一个程序式死亡的机制。凋亡的特征之一就是细胞收缩。细胞有缺陷的凋亡与过度凋亡,两者同样会导致严重疾病。  渗透压的补偿  任何种类的细胞都有可能因处于不利环境而死亡。细胞犹如多孔的网筛极易因渗入已溶解于周围环境的化学物而使渗透压受影响。细胞内外环境中该些溶解物颗粒数目的不平衡,将会导致水份透进细胞而使其体积涨大,或者是水份从细胞渗出使其体积收缩。  当细胞或微生物遭遇环境的变化,它们都会尝试通过自身调节来适应新的环境。  细胞平均体积(MCV)的变化  当细胞或微生物遭受环境变化时,它们将通过自身调整以图适应新的环境。一些例子中细胞需要改变自身体积以便达到适合的目标。  由贝克曼库尔特公司出品的Multisizer 3 库尔特细胞特性分析仪是目前最权威的细胞体积、细胞计数的分析仪器,应用文献多不胜数。无可逾越的领先技术更使Multisizer 3 成为分辨率最高的仪器。国外的用户统计表明,Multisizer 3 已成为细胞实验室必备的研究工具。  自华莱士• 库尔特先生发明 库尔特原理 以来,该原理已广泛应用于材料、生物、医学、制药等众多的领域。目前生物领域的细胞计数标准就是库尔特原理。美国材料实验协会ASTM将库尔特原理定为生物细胞计数的标准(ASTM-F2194)。国际血液学标准化委员会亦指定库尔特原理为计算红细胞与白细胞的标准实验室方法 (Clin. lab. Haemat. 1988. 10, 203-212.)。  作为库尔特原理及技术应用的鼻祖,美国贝克曼库尔特公司始终保持着技术领先的优势。† 库尔特计数仪(Coulter Counter)无论在研究还是在质量控制的应用均具有深远的影响力。在权威的研究机构及其发表的学术文献当中,库尔特计数仪均担当着不可或缺的角色。  多年来贝克曼库尔特公司在市场上推出了一系列的库尔特计数仪(Coulter Counter),如:ZM、TA II、Multisizer II等系列型号,为科研与产品控制的实验室颗粒/细胞的检测提供最可靠的分析手段。Multisizer 3 型库尔特颗粒/细胞计数及粒度分析仪为当今所有计数仪、粒度分析仪当中分辨率最高的仪器。  库尔特原理(Coulter Principle)  又称为电感应区技术。  悬浮于弱电解液中的细胞被抽吸而经过一个小孔,因产生外加电压而形成“感应区”。细胞经过小孔时,细胞的体积替代了电解液的相应体积。因相应体积的电解液被替代,小孔感应区产生电压脉冲而导致电阻的改变。脉冲的强度与细胞的体积成比例的关系 。  Multisizer 3 先进的DPP 数码脉冲处理器,使测量过程中的数以百万计的脉冲信号无须经压缩而保存。数据因无损失而能实现再分析功能。DPP的功能使得Multisizer 3 能够实时监测样品在分析过程中的原始变化。  DPP同样可用于检测细胞体积的改变。在许多的生化过程中细胞体积是一个重要的参考因素。如细胞发育、细胞周期、细胞死亡、渗透压的补偿、致病机理和吞噬作用等。Multisizer 3 可以观测细胞粒径与体积从几秒到几小时内的变化。  DPP技术在低温生物学中的应用  这是在冷冻过程中受渗透压影响的细胞,其平均体积(MCV)的分布曲线和20秒内连续的脉冲峰值平均值的变化。  择任意的脉冲群可以将一个粒度分布“分割”成多重的分布。因此,可获得在分析全程中的某一时段的粒度分布。如图示,可获得细胞的平均直径随时间的变化。  使用Beckman Coulter 的Multisizer™ 3 库尔特体积粒度分析仪将能方便而精确地测量细胞平均体积(MCV)的各种变化。
  • 【超级干货】氯碱行业“降本增效”的新型解决方案,就在这里!
    氯碱行业中在线 pH和ORP分析仪已经广泛地应用于盐水精制、膜法脱硝、电解槽、淡盐水脱氯等生产过程,帮助企业提高盐水纯度,促进生产效率,延长设备使用寿命。如今,另一种在线分析技术感应式电导率正越来越多地使用在氯碱生产工段,比如次氯酸钠生产监控烧碱残留浓度,氯气干燥检测浓硫酸浓度变化和盐酸合成检测盐酸浓度等工艺点。本文将着重介绍感应式电导率如何在次氯酸钠生产和氯气干燥过程中发挥作用,以及感应式电导率测量的基本原理。01次氯酸钠生产监控烧碱残留浓度氯气进入氯气吸收塔下部,与塔上部喷淋的循环冷却碱液逆流接触吸收,在吸收器部分发生化学反应生成次氯酸钠。吸收碱液由塔底流出至吸收碱液低位槽,再经吸收碱循环泵输送至吸收碱冷却器冷却后返回塔顶,进行下一轮吸收。反应过程如下:2NaOH + Cl2 = NaOCl + NaCl + H2O在该过程中需要了解烧碱的吸收能力,残留烧碱含量和次氯酸钠浓度。电导率测量值能够反映烧碱吸收溶液和副产物的离子总浓度。随着烧碱溶液消耗,电导率值通常会下降。同时,随着导电性产品的浓度提高,电导率下降速度放缓。但是,烧碱的导电能力比无机盐产品更强,因此随着化学反应继续进行,可以观察到电导率数值持续下降。在特定浓度下,烧碱溶液开始失效,无法吸收氯气。电导率测量能够判断该值,随后启动排放吸收液,同时添加新鲜溶液,也可以通过电导率计算得出残留的烧碱浓度。该点通常还会结合ORP参数测量,ORP数值上升,意味着次氯酸钠浓度上升。如果是连续型生产,往往只采用ORP测量,控制在稳定的ORP范围,确保产品浓度。 电导率与酸碱浓度对应关系氯气干燥检测浓硫酸浓度02电解产生的氯气含有大量水蒸气,对后续的输送管道和压缩机具有强烈的腐蚀作用。因此需要采用降温措施减小饱和水蒸汽分压,减少氯气中的含水量。随后氯气进入填料塔底部,由下至上地经过填料层与塔顶喷淋下来的98%硫酸,硫酸充分接触氯气吸收所残留的水分,如果硫酸浓度降至75%,将其泵至稀硫酸贮槽。在该工段必须监控硫酸浓度变化,否则硫酸浓度下降至75%后将不具备吸收水分的能力,造成干燥效果差,腐蚀昂贵的压缩机和管道。此时可以用感应式电导率来监控硫酸浓度变化。硫酸浓度与电导率对应曲线为3个分段式曲线,比如H2SO4-1(0-30 %), H2SO4-2(32-84 %), H2SO4-3(92-99 %),需要在变送器中选择相应的浓度曲线,然而大多数的仪表只能选择一条曲线。氯气干燥过程硫酸浓度变化范围跨越了H2SO4-2(32-84 %), H2SO4-3(92-99 %)曲线,变送器不能实现自动切换曲线。可以使用能够同时设置两条曲线的变送器,并且具有两路模拟输出,控制系统根据两路模拟信号输出变化,自动选择合适的测量曲线。梅特勒托利多解决方案感应式电导率测量系统包含感应式传感器InPro7250与变送器M400 IND。Inpro7250用以与溶液接触, M400 IND转换信号供控制系统使用。感应式传感器由两个环形线圈组成,封装在耐化学腐蚀的聚合物外壳中,无任何裸露的金属材料。传感器放入导电溶液中后,产生电流回路,电流值与溶液的电导率成正比(参见下图)。 感应式电导率传感器设计图Inpro 7250InPro7250 PFA感应式电导率传感器,无惧污垢,是强导电溶液的理想之选! 由耐化学腐蚀的PFA制造,完全消除传感器腐蚀问题! M400 INDM400 IND是一款有四路模拟输出的变送器,在配置时选择a路输出为H2SO4-3曲线,b路输出为H2SO4-2曲线。如果实际浓度范围落在曲线-3,a路模拟量输出大于3.8mA,b路输出固定为20.5mA,此时DCS判断接受a路输出信号。如果实际浓度范围落在曲线-2,a路模拟量输出固定为3.8mA,b通道模拟量输出小于20.5mA, 此时DCS判断接受b通道输出信号。这样通过一套测量系统就能跨越两个曲线段,监控硫酸浓度从98%下降至75%的过程。感应式电导率在线分析具备坚固、耐腐的特性,特别适合应用于恶劣、强腐蚀的环境中,在氯碱的游离氯,强酸,强碱的环境中尤为如此。感应式电导率可有效提高产品质量,加快生产效率,延长设备使用寿命。
  • 国产阵列感应测井仪柴达木盆地显神威
    12月16日,中油测井青海事业部顺利完成柴达木盆地狮中60井EILog阵列感应测井。这是青海事业部2010年完成的第151口井的阵列感应测井。这个事业部全年测井作业一次成功率达到94.5%,资料合格率达到100%。  EILog阵列感应测井仪是中油测井公司自主研发的具有自主知识产权的国产测井仪器,目前有4套服务于柴达木盆地的油气田。这套仪器在柴达木盆地油气开发中,凭借稳定性好、测井结果重复性好和一致性好的优势,成为青海油田探井和开发井测井的主要手段,投入生产的井次是去年同期的3倍。在涩北气田,EILog阵列感应测井仪能够准确识别和评价厚度在0.3米的薄储层。通过应用,涩北气田单井气层解释有效厚度增加6%以上。
  • 发明人库尔特的传奇人生——颗粒表征电阻法(上)
    史上曾经有 400 多种颗粒表征技术,其中有一种以发明者命名的颗粒计数与粒度测试技术至今尚在广泛使用,并且是全球血细胞计数的标准技术,那就是被冠以科学名称电阻法(或电感应区法)的库尔特原理。此项技术自20 世纪 50 年代初发明以来[i],被广泛应用于医学以及各个工业领域,包括超过 98%的自动细胞计数器[ii,iii]。除了测量各类血细胞外,此原理还可用于表征(计数和粒度测量)合适粒度范围内的任何可悬浮在电解质溶液中的颗粒材料[iv]。在过去 70 多年中,该方法已被用来表征数千种不同的医学与工业颗粒材料,2022 年的谷歌学者搜索发现有近 16 万篇有关库尔特计数器的各类文献。 在电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。 由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后),小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。 1 库尔特原理示意图 本文将分为两篇。第一篇介绍库尔特先生,第二篇介绍经典库尔特原理及其最新发展。库尔特先生&库尔特原理库尔特先生是与中美两国有密切关系的一位传奇性人物。2 华莱士• 库尔特(Wallace H. Coulter,1913-1998)他出生于阿肯色州,在乔治亚理工学院学习电子工程。1930 年代,他是美国通用电气公司在中国的销售代理,住在上海和平饭店。 正当他处于热恋之中,与一位白俄罗斯美女在和平饭店品着美酒咖啡,欣赏爵士音乐,漫步月光下的外滩时,太平洋战争爆发,日军侵入了上海的公共租界。他不得不离开恋人,随着日军的不断南侵,从华南经东南亚回到美国。中美 1979 年建交后,他成为最初一批前往中国访问的美商。他与随行人员回到和平饭店那间包房,抚摸着外滩的岸墙,勾起了深深的回忆。他期望在中国政府的帮助下,寻找那在战乱中失联的情人。30多年的动荡岁月,又是一位外籍女子,那是一个达不成的愿望。他钟情一生,终身未婚,也无子女,可是中国情结却挥之不去。 3 库尔特在 1990 年代与中国代表团,右一为作者。早在 1970 年代,库尔特公司就由其英国分公司在华销售血细胞计数仪。中美建交之后的 1980 年代,库尔特公司在蔡光天开办的改革开放早期最大的英语培训学校——上海前进业余进修学校的帮助下,成为最早一批在中国开展业务的美国企业。他办公室内,桌上地下放满了与中国有关的书籍物品,每次有来自中国的访客或员工,他都会亲切地与他们会面,亲自解释库尔特原理。1940 年代,美国在日本投了原子弹后,受辐射区人们需要进行大量的血液检验,但当时的医学界缺乏快速准确的血细胞检验方法。库尔特在自家车库内埋头研究了数年。最初的设计是在一张纸上打一个粗糙的洞,然后将纸浸在液体中。经过无数次的试验与设计改动,并据说他曾经割破自己的手指滴血,来验证他的发明。库尔特最终在 1953 年发明了被世人普遍认可的库尔特原理,并为之成立了库尔特电子公司(Coulter Electronics),量产血液计数仪,给全球血液检验带来了革命性的飞跃。库尔特公司在佛罗里达州全盛时有四五千员工。 库尔特并直接促成了颗粒表征业内另外两家公司的成立与发展。他的一个员工伯格 (Rebert H. Berg, 1921-1999)考虑到工业界颗粒大小的分布一般较宽,线性电子线路无法满足, 发明了对数安排的电子线路,可以测量粒径跨越几个数量级的样品。伯格后来在 1958 年成立了规模较小的颗粒数据实验室(Particle Data Laboratories),在工业界推广库尔特计数仪。而当库尔特母校乔治亚理工学院的奥尔教授(Clyde Orr,1921-2010)与他的博士生亨德里克斯(Warren P. Hendrix,1932-2005)在 1962 年下海生产全球首款商用表面吸附仪时,已在商业上小有成就的库尔特出资促成了麦克仪器公司(Micromeritics Instrument Company)的成立。而麦克仪器公司又在 1997 年收购了由于伯格陷入尼日利亚骗局而濒临破产的公司的库尔特计数仪产品。 4 收藏在美国历史国家博物馆中最早的库尔特计数仪:型号 A当库尔特自知来日不多时, 他想起了老朋友贝克曼(Arnold O. Beckman,1900-2004)。尽管贝克曼早已退休,可是贝克曼仪器公司的文化传承很使库尔特满意,他拒绝了数家更大公司的高价,在贝克曼仪器公司保证保留他姓的条件下,在 1997 年促成了贝克曼库尔特公司的诞生。 他将出售公司获得的款项,建立了有近 5 亿美金的华莱士·H·库尔特基金,专用于通过医学与工程研究而发展医疗保健。库尔特并被美国科学历史研究所列入了名人堂。参考文献【i】 Coulter, W.H., Means for Counting Particles Suspended in a Fluid, US Patent 2,656,508, 1953. 【ii】Graham, M.D., The Coulter Principle: Foundation of an Industry, J Assoc Lab Auto, 2003, 8(6), 72-81. 【iii】 Graham M.D., The Coulter Principle: Imaginary Origins, Cytometry A, 2013, 83(12), 1057-61. 【iv】 Lines, R.W., The Electrical Sensing Zone Method, in Liquid and Surface-Borne Particle Measurement Handbook, Eds. Knapp, J.Z., Barber, T.A., Lieberman, A., Marcel Dekker, New York, 1996, Chpt.4, pp113-154. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 北京恒奥德仪器仪表在中农业大学中标电子感应圈
    产品名称:电子感应圈/感应圈产品型号:GSX-J1206-1电子感应圈/感应圈 型号:GSX-J1206-1、概述  GSX-J1206-1型电子感应圈主要是为中学物理,化学实验提供小率可调压电源,在额定作电压下能产生80KV的压。可作低气压放电管,光谱管,阴射线管,伦琴射线管,等的压电源,也可演示空气中火花放电现象,以及液体、固体介质的电击穿现象,和在空气中取得臭氧等实验用。  仪器采用可控硅电路作开关电路以多层平排密绕线圈作升压线圈,且将整个压绕组浸在压缘油溶器内使仪器无论是压缘或压放电均有可靠的保证。二、主要术性能  2-1、线路率:≤120W。  2-2、线路电流:≤2.8A。  2-3、空气放电距离:40mm 火花条数2条以上(放电距离会受空气的相对湿度影响)。  2-4、压输出:10KV~80KV(连续无可调)。  2-5、作环境:温度:0~40℃。          相对湿度:85%。  2-6、作电源:220V±10%、50Hz。  2-7、连续作时间:15分钟。  2-8、外形尺寸:265×180×270mm3。
  • 莆田市第一医院116.50万元采购蠕动泵
    详细信息 莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告其他 福建省-莆田市-城厢区 状态:公告 更新时间: 2024-01-24 莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告其他 2024年01月24日 17:13 公告概要: 公告信息: 采购项目名称 莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告 品目 货物/设备/医疗设备/其他医疗设备 采购单位 莆田市第一医院 行政区域 莆田市 公告时间 2024年01月24日 17:13 开标时间 预算金额 ¥116.500000万元(人民币) 联系人及联系方式: 项目联系人 小姚 项目联系电话 13799630281 采购单位 莆田市第一医院 采购单位地址 莆田市城厢区龙德井389号 采购单位联系方式 陈先生/0594-6923273 代理机构名称 福建省博能招标代理有限公司 代理机构地址 莆田市荔城区拱辰街道东园东路1071号142室 代理机构联系方式 小姚/13799630281 附件: 附件1 技术参数征集公告.docx 福建省博能招标代理有限公司受莆田市第一医院 委托,根据《中华人民共和国政府采购法》等有关规定,现对莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告进行其他招标,欢迎合格的供应商前来投标。 项目名称:莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告 项目编号:闽博能字第20240101 项目联系方式: 项目联系人:小姚 项目联系电话:13799630281 采购单位联系方式: 采购单位:莆田市第一医院 采购单位地址:莆田市城厢区龙德井389号 采购单位联系方式:陈先生/0594-6923273 代理机构联系方式: 代理机构:福建省博能招标代理有限公司 代理机构联系人:小姚/13799630281 代理机构地址: 莆田市荔城区拱辰街道东园东路1071号142室 一、采购项目内容 根据相关规定,福建省博能招标代理有限公司受莆田市第一医院委托,将对体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及进行标前技术参数等材料征集活动,欢迎各符合法律法规规定条件的潜在供应商递交不同规格型号的产品技术参数及相关资料,现将有关事宜公告如下: 一、采购项目 合同包一:1-1体腔热灌注治疗系统,总价不超88万元; 1-2体腔热灌注治疗系统配套耗材 总价不超28.5万元。 二、会议内容:关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集 三、项目基本要求: 序号 货物名称 采购预算 (万元) 是否排除进口产品 用途描述 基本配置要求 其他需求 1 体腔热灌注治疗系统 88 是 本项目主要针对体腔内恶性肿瘤的设备,在预防与治疗恶性肿瘤的腹膜或体腔种植转移及其并发的恶性胸腹水等方面效果显著,能有效清除腔内癌细胞,解决癌性积液等系列问题,且无明显副作用及禁忌证。 1. 固定式触摸屏/活动式非触摸屏:各1台; 2. 三个蠕动泵独立控制系统:1套; 3. 微波感应式非接触加热模块:1套; 4. 环境/药液/灌注口/抽取口四路高精度测温接口:1套; 5. 单灌单抽+主动循环模块:1套; 6. 容积 5000mL加热药袋内循环搅拌管路:1套; 7. 药液温度报警上限模块/灌注温度报警上限模块/传感器故障保护模块/泵压力安全保护模块/感应式加热安全保护急停按纽/接地安全设置模块:各1套。 整机(含所有附件)保修期3年 2 体腔热灌注治疗系统配套耗材 28.5 是 配套体腔热灌注治疗系统使用,三年预估使用量:300套,单价 950 元/套,总额:28.5万。 每套含: 1. 超滤管; 2. 补充液管; 3.排出管; 4.转接头。 耗材按需供货,按实结算。 四、对供应商要求: 1、资质:提供年检合格的营业执照、税务登记证、医疗器械生产(或经营)许可证等相关资质证件(若已三证合一的提供三证合一后的营业执照,提供复印件,原件备查)。 2、近两年内未因不良行为被相关行政部门通报或在市招投标中心有不良行为记录的。 3、参加推介会的人员须提供身份证原件、复印件及法人授权委托书。如参加推介会人员是法定代表人,则应提供法定代表人资格证明书和身份证原件、复印件。 4、各潜在供应商需提供推介论证会所推介产品相关材料(供应商在推介产品时供采购人出席代表使用,请潜在供应商合理考虑相关材料份数,无需密封)。 注:第1、3点要求的证件各潜在供应商在 第五点1、纸质文件 中提供,还需随身携带一套(无需密封)至推介会现场,以便校验。 五、潜在供应商递交技术参数征集资料要求: 1、纸质文件:投递人根据采购清单中所述医疗设备的参考预算单价,按采购清单填写拟供产品相关信息,并与纸质版技术参数、厂家彩页、标配清单(含分项价格)、材料真实性声明函(格式详见附件2)一同密封提交。纸质文件应胶装装订成册,一式五份,需在密封袋骑缝密封处加盖递交单位公章,密封文件袋封面须注明产品名称,递交公司全称。 2、电子文档:根据采购清单填写拟供产品相关信息的电子表格、技术参数、标配清单。另请提供贰套电子版介质(U盘),电子版须是Word格式,用信封密封,并与纸质文件一同密封递交。 3、材料投递时间及方式: (1)材料递交时间:2024年 1月 25 日至2024年 2 月 2日。北京时间上午8:00--12:00,下午14:00--17:30时(节假日除外)。投递文件应在公告规定的截止时间前送达(时间以接收人签收为准),迟到的文件将被拒收。 (2)上门递交:潜在供应商将密封的纸质文件在材料递交规定的时间内,直接送达至福建省博能招标代理有限公司。 4、投递地址及联系方式: 福建省博能招标代理有限公司地址:福建省莆田市城厢区龙桥街道学园中街1950号(华莱士安福店二楼) 联系人: 姚女士 联系电话:13799630281 莆田市第一医院地址:莆田市城厢区龙德井389号 联系人:陈先生 联系电话:0594-6923273 附:采购清单 合同包 序号 产品名称 参考预算(万元) 品牌、规格、型号 制造商 生产场地 联系人 联系方式 供货价格(万元) 备注 1 1-1 体腔热灌注治疗系统 88 1-2 体腔热灌注治疗系统配套耗材 28.5 附2:材料真实性声明函格式 材料真实性声明函 致: 我公司郑重声明:本次参与_______________项目医疗设备招标采购过程中所提交的所有材料和所附的佐证资料真实、合法、有效。如有不实之处,愿负相应的法律责任,并承担由此产生的一切后果。 特此声明。 公司名称:(全称并加盖单位公章) 授权代表人签字: 日期: 年 月 日 二、开标时间: 三、其它补充事宜 无 四、预算金额: 预算金额:116.500000 万元(人民币) × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:蠕动泵 开标时间:null 预算金额:116.50万元 采购单位:莆田市第一医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:福建省博能招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告其他 福建省-莆田市-城厢区 状态:公告 更新时间: 2024-01-24 莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告其他 2024年01月24日 17:13 公告概要: 公告信息: 采购项目名称 莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告 品目 货物/设备/医疗设备/其他医疗设备 采购单位 莆田市第一医院 行政区域 莆田市 公告时间 2024年01月24日 17:13 开标时间 预算金额 ¥116.500000万元(人民币) 联系人及联系方式: 项目联系人 小姚 项目联系电话 13799630281 采购单位 莆田市第一医院 采购单位地址 莆田市城厢区龙德井389号 采购单位联系方式 陈先生/0594-6923273 代理机构名称 福建省博能招标代理有限公司 代理机构地址 莆田市荔城区拱辰街道东园东路1071号142室 代理机构联系方式 小姚/13799630281 附件: 附件1 技术参数征集公告.docx 福建省博能招标代理有限公司受莆田市第一医院 委托,根据《中华人民共和国政府采购法》等有关规定,现对莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告进行其他招标,欢迎合格的供应商前来投标。 项目名称:莆田市第一医院关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集公告 项目编号:闽博能字第20240101 项目联系方式: 项目联系人:小姚 项目联系电话:13799630281 采购单位联系方式: 采购单位:莆田市第一医院 采购单位地址:莆田市城厢区龙德井389号 采购单位联系方式:陈先生/0594-6923273 代理机构联系方式: 代理机构:福建省博能招标代理有限公司 代理机构联系人:小姚/13799630281 代理机构地址: 莆田市荔城区拱辰街道东园东路1071号142室 一、采购项目内容 根据相关规定,福建省博能招标代理有限公司受莆田市第一医院委托,将对体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及进行标前技术参数等材料征集活动,欢迎各符合法律法规规定条件的潜在供应商递交不同规格型号的产品技术参数及相关资料,现将有关事宜公告如下: 一、采购项目 合同包一:1-1体腔热灌注治疗系统,总价不超88万元; 1-2体腔热灌注治疗系统配套耗材 总价不超28.5万元。 二、会议内容:关于体腔热灌注治疗系统及配套耗材采购项目组织供应商推介论证会及标前技术参数征集 三、项目基本要求: 序号 货物名称 采购预算 (万元) 是否排除进口产品 用途描述 基本配置要求 其他需求 1 体腔热灌注治疗系统 88 是 本项目主要针对体腔内恶性肿瘤的设备,在预防与治疗恶性肿瘤的腹膜或体腔种植转移及其并发的恶性胸腹水等方面效果显著,能有效清除腔内癌细胞,解决癌性积液等系列问题,且无明显副作用及禁忌证。 1. 固定式触摸屏/活动式非触摸屏:各1台; 2. 三个蠕动泵独立控制系统:1套; 3. 微波感应式非接触加热模块:1套; 4. 环境/药液/灌注口/抽取口四路高精度测温接口:1套; 5. 单灌单抽+主动循环模块:1套; 6. 容积 5000mL加热药袋内循环搅拌管路:1套; 7. 药液温度报警上限模块/灌注温度报警上限模块/传感器故障保护模块/泵压力安全保护模块/感应式加热安全保护急停按纽/接地安全设置模块:各1套。 整机(含所有附件)保修期3年 2 体腔热灌注治疗系统配套耗材 28.5 是 配套体腔热灌注治疗系统使用,三年预估使用量:300套,单价 950 元/套,总额:28.5万。 每套含: 1. 超滤管; 2. 补充液管; 3.排出管; 4.转接头。 耗材按需供货,按实结算。 四、对供应商要求: 1、资质:提供年检合格的营业执照、税务登记证、医疗器械生产(或经营)许可证等相关资质证件(若已三证合一的提供三证合一后的营业执照,提供复印件,原件备查)。 2、近两年内未因不良行为被相关行政部门通报或在市招投标中心有不良行为记录的。 3、参加推介会的人员须提供身份证原件、复印件及法人授权委托书。如参加推介会人员是法定代表人,则应提供法定代表人资格证明书和身份证原件、复印件。 4、各潜在供应商需提供推介论证会所推介产品相关材料(供应商在推介产品时供采购人出席代表使用,请潜在供应商合理考虑相关材料份数,无需密封)。 注:第1、3点要求的证件各潜在供应商在 第五点1、纸质文件 中提供,还需随身携带一套(无需密封)至推介会现场,以便校验。 五、潜在供应商递交技术参数征集资料要求: 1、纸质文件:投递人根据采购清单中所述医疗设备的参考预算单价,按采购清单填写拟供产品相关信息,并与纸质版技术参数、厂家彩页、标配清单(含分项价格)、材料真实性声明函(格式详见附件2)一同密封提交。纸质文件应胶装装订成册,一式五份,需在密封袋骑缝密封处加盖递交单位公章,密封文件袋封面须注明产品名称,递交公司全称。 2、电子文档:根据采购清单填写拟供产品相关信息的电子表格、技术参数、标配清单。另请提供贰套电子版介质(U盘),电子版须是Word格式,用信封密封,并与纸质文件一同密封递交。 3、材料投递时间及方式: (1)材料递交时间:2024年 1月 25 日至2024年 2 月 2日。北京时间上午8:00--12:00,下午14:00--17:30时(节假日除外)。投递文件应在公告规定的截止时间前送达(时间以接收人签收为准),迟到的文件将被拒收。 (2)上门递交:潜在供应商将密封的纸质文件在材料递交规定的时间内,直接送达至福建省博能招标代理有限公司。 4、投递地址及联系方式: 福建省博能招标代理有限公司地址:福建省莆田市城厢区龙桥街道学园中街1950号(华莱士安福店二楼) 联系人: 姚女士 联系电话:13799630281 莆田市第一医院地址:莆田市城厢区龙德井389号 联系人:陈先生 联系电话:0594-6923273 附:采购清单 合同包 序号 产品名称 参考预算(万元) 品牌、规格、型号 制造商 生产场地 联系人 联系方式 供货价格(万元) 备注 1 1-1 体腔热灌注治疗系统 88 1-2 体腔热灌注治疗系统配套耗材 28.5 附2:材料真实性声明函格式 材料真实性声明函 致: 我公司郑重声明:本次参与_______________项目医疗设备招标采购过程中所提交的所有材料和所附的佐证资料真实、合法、有效。如有不实之处,愿负相应的法律责任,并承担由此产生的一切后果。 特此声明。 公司名称:(全称并加盖单位公章) 授权代表人签字: 日期: 年 月 日 二、开标时间: 三、其它补充事宜 无 四、预算金额: 预算金额:116.500000 万元(人民币)
  • 突破!我国新一代载人火箭完成多机并联静动联合试验
    记者28日从中国航天科技集团一院获悉,该院所属702所近日圆满完成我国新一代载人运载火箭多机并联静动联合试验,有力支撑了该型火箭研制顺利转入初样研制阶段。本次试验是验证新一代载人运载火箭多机并联、箱底传力关键技术的重要试验,是型号转入初样研制阶段的标志性工作。702所所长王晓晖表示,该试验的圆满完成标志着我国首次突破大载荷静动联合试验技术,是试验方法和试验能力的重要创新,为新一代载人运载火箭采用多台大推力发动机并联技术奠定了坚实基础。“这是我国力学试验领域迄今为止开展的规模最大、技术难度最高、试验过程最复杂的试验。”702所副总设计师朱曦全介绍,试验需要突破在实际飞行工况下多台发动机的静态推力和振动载荷联合加载,涉及振动弹性边界模拟、近千吨静载弹性加载、大静载下的多机联合多维振动控制和加载等关键试验技术。新一代载人运载火箭基础级模块直径为5米,安装多台120吨发动机。朱曦全说,大推力发动机多机并联技术是我国运载火箭首次采用,带来了复杂结构的静力和动态力耦合作用及在联合载荷作用下的非线性传递问题,是新一代载人运载火箭需要深化攻关的关键技术之一。为分析解决该问题,验证设计方案的有效性,技术团队设计实施了我国首次多机并联静动联合试验。自2019年起,702所同相关单位论证确定试验技术方案。团队依据方案,相继突破了试验所需各项关键技术,于今年研制出由28套50吨油气支撑系统、多套20吨感应式振动台和1套1000吨振动弹性边界系统组成的静动载荷联合加载试验系统。试验系统设计负责人侯京锋介绍,4个油气支撑系统和1个感应式振动台构成了一套静动联合激励系统,可以模拟一台发动机对火箭结构的激励。多套系统就能够模拟多台发动机对火箭的激励载荷。该试验系统构成复杂,涉及多个分系统。团队集智攻关,对方案及分系统原理设计层层迭代,攻克多项关键技术,将复杂的技术方案变成工程现实。针对静动联合加载试验技术难度大的问题,技术人员开展了虚实结合试验方法研究,通过数字流程仿真和虚拟试验确保了试验方案一次成功。试验负责人毕京丹介绍,数字化流程仿真技术有效指导了试验虚拟安装过程,并对试验产品和试验系统装备的装配和调试过程进行了优化、检查与验证。此外,多部段联合、复杂边界和环境下的结构承载能力,以及载荷传递规律和结构响应,均存在未知的科学机理问题。试验分系统负责人杨蓉介绍,试验团队创新采用实物试验与虚拟试验相结合的数字化试验验证思路,以实测试验数据修正仿真计算模型,以修正后的虚拟模型识别一体化结构设计的薄弱环节,进而获得真实工作条件的载荷和环境条件,再通过仿真验证尾舱结构承载能力,对复杂结构传力和响应规律作出评估。(许诺 记者付毅飞)
  • 浅谈仪器仪表雷电防护的必要性
    浅谈仪器仪表雷电防护的必要性 静电放电(ESD)和电快速瞬变脉冲群(EFT)X寸仪器仪表系统会产生不同程度的危害。静电放电在5 ~20tMHz的频率范围内产生强烈的射频辐射。 此辐射能量的峰值经常出现在35~45MHz之间发生自激振荡。许多信息传输电缆的谐振频率也通常在这个频率范围内,结果电缆中便串入了大量的静电放电辐射能量。电快速瞬变脉冲群也产生相当强的辐射发射,从而耦合到电缆和机壳线路。当电缆暴露在4 ~8kV静电放电环境中时,信息传输电缆终端负载上可以测量到的感应电压可达到600V这个电压远远超出了典型数字仪器仪表的门限电压值0~4V典型的感应脉冲持续时间大约为400ns仪器仪表在使用中经常会遇到意外的电压瞬变和浪涌,从而导致电子设备的损坏,损坏的原因是仪器仪表中的半导体器件(包括二极管、晶体管、可控硅和集成电路等)皮烧毁或击穿。据统计仪器仪表的故障有75%是由于瞬变和浪涌造成的。电压的瞬变和浪涌无处不在,电网、雷击、爆破,就连人在地毯上行走都会产生上万伏的静电感应电压,这些,都是仪器仪表的隐形致命杀手。因此,为了提高仪器仪表的可靠性和人体自身的安全性,必须对电压瞬变和浪涌采取防护措施。 防雷端口根据仪器仪表应用的工程实践,仪器仪表受雷击可大致分为直击雷、感应雷和传导雷。但不论以哪一种形式到达设备都可归纳为从以下4个部位侵入的雷电浪涌,在此把这些部位称为防雷端口,并以仪器仪表举例说明。 外壳端口比如说,我们可以把任何一个大的或小的仪器仪表或系统视为一个整体的外壳,如传感器、传输线、信号中断、现场仪表、DCS系统等,它们都有可能完全暴露在环境中受到直接雷击,造成设备损坏。 标准规定,当设备外壳受到4kV的雷电静电放电时,都会影响仪器仪表或系统的正常运行。例如放置于室外的传感器端子箱有可能受到雷电接触放电;位于机房内的DCS机柜有可能受到大楼立柱泄流时的空气放电。 信号线端口含天馈线、数据线、控制线等。 在控制系统中,为了实现信号或信息的传递总要有与外界连接的部位,如过程控制系统的信号交接端的总配线架、数据传输网的终端、微波设备到天线的馈线口等等,那么这些从外界接收信号或发射信号出去的接口都有可能受到雷电浪涌冲击。因为从楼外信号端口进来的浪涌往往通过长电缆,所以采用10/7(0Fs波形,标准规定线到线间浪涌电压为05kV,线到地间浪涌电压为1kV.而楼内仪器仪表之间传递信号的端口受到浪涌冲击相当于电源线上的浪涌冲击,采用1.2/50(8/20)Ms组合波,线到线、线到地浪涌电压限值不变。一旦超过限值,信号端口和端口后的设备有可能遭受损坏。 电源端口电源端口是分布最广泛也最容易感应或传导雷电浪的部位,从配电箱到电源插座这些电源端口可以处在任何位置。标准规定在L 2/50(8/20)Ms波形下线与线之间浪涌电压限值为Q 5kV线到地浪涌电压限制为1kV但这里的浪涌电压是指明工作电压为220V交流进入的,如果工作电压较低则不能以此为标准,电源线上受较小的浪涌冲击不一定立即损坏设备,但至少寿命有影响。 接地端口尽管在标准中没有专门提到接地端口的指标,实际上信息技术设备地端口是非常重要的。在雷电发生时接地端口有可能受到地电位反击、地电位升格地满□高影响,或者由于接地不良、接地不当使地阻过大达不到电位要求使设备损坏。接地端口不仅对接地电阻接地线极(长度、直径、材料)、接地方式、地网的设置等有要求,而且还与设备的电特性、工作频段、工作环境等有直接的关系。同时从接地端还有可能反击到直流电源端口损坏直流工作电压的设备。综上所述,信息技术设备的防雷可以考虑从四个关键的端口入手,如所示。 仪器仪表防雷的四个关键的端口,仪器仪表的端口保护外壳端口仪器仪表的外壳端口保护不仅仅是建筑物外壳,也应当包括某个设备的外壳或者某套系统的外壳,比如说机柜、计算机室等。按照EC 1312-1雷电电磁脉冲的防护第一部分(一般原则)的适用范围为:建筑物内或建筑物顶部仪器仪表系统有效的雷电防护系统的设计、安装、检查、维护。其保护方法主要有三种:接地、屏蔽及等电位连接。 接地EC1024-1已经阐述了建筑物防雷接地的方法,主要通过建筑物地下网状接地系统达到要求。仪器仪表系统防雷时还要求对相邻两建筑物之间通过的电力线,通信电缆均必须与建筑物接地系统连接起来(不能形成回路)以利用多条并行路径减少电缆中的电流。 仪器仪表系统的接地更应当注意系统的安全性和防止其它系统干扰。一般来说工作状态下仪器仪表系统接地不能直接和防雷地线相连,否则将有杂散电流进入仪器仪表系统引起信号干扰。正确的连接方式应当在地下将两个不同地网,通过放电器低压避雷器连接,使其在雷击状态下自动连通。 屏蔽从理论上考虑,屏蔽对仪器仪表外壳防雷是非常有效的。但从经济合理角度来看,还是应当从设备元器件抗扰度及对屏蔽效能的要求来选择不同的屏蔽方法。线路屏蔽,即在仪器仪表系统中采用屏蔽电缆已被广泛应用。但对于设备或系统的屏蔽需要视具体情况而定。EC提出了采用建筑物钢筋连到金属框架的措施举例。 表系统的主要电磁干扰源是由一次闪击时的几个雷击的瞬时电流造成的瞬态磁场。如果包含仪器仪表系统的建筑物或房间,用大空间屏蔽,通常在这样的措施下瞬时电场被减少到一个足够低的值。 等电位接连等电位连接的目的是减小仪器仪表之间和仪器仪表与金属部件之间的电位差。在防雷区的界面处的等电位连接要考虑建筑物内的仪器仪表系统,在那些对雷电电磁脉冲效应要求最小的地方,等电位连接带最好采用金属板,并多次与建筑物的钢筋连接或连接在其它屏蔽物的构件上。对于仪器仪表系统的外露导电物应建立等位连接网,原则上一个电位连接网不需要直接连在大地,但实际上所有等电位连接网都有通大地的连接。 信号线端口信号线端口保护现在已经有许多类型的较为成熟的保护器件,比如仪器仪表信号网络不同接口保护器、天馈线保护器、终端设备的保安单元等。在保护器选择时除了保护器本身的性能外,应该注意保护设备的传输速率、插入衰耗限值、驻波比、工作电压、工作电流等相关指标,如果在同一系统(或网络)使用多级保护还应该考虑相互配合问题。值得提出的是,当前由于商业因素,在同一网络中有过多使用保护器的倾向,其反而带来降低速率、增大衰耗、传输失真、信息丢失等问题。因此对某一网络的信号端口保护应在网络信号进出的交界面处安装合适的保护器即可。 在信号端口窜入的瞬态电流最容易损坏信号交换或转换单元及过程控制计算机,如主板、并行口、信号接口卡等。事实上瞬态电流或浪涌可能通过不同途径被引入到信号传输网络中,EEE 802-3以太网标准中列出了四种可能对网络造成威胁的情况。(1)局域网络元件和供电回路或受电影响的电路发生直接接触。(2)局域网电缆和元件上的静电效果。(3)高能量瞬态电流同局域网络系统耦合曲网络电缆附近的电缆引入)(4)彼此相连的网络元件的地线电压间有细小差别(例如两幢不同建筑的安全地线电压就有可能略有不同)。 以数据通信线为例,在R-232的串、并行口的标准中,用于泄放高能浪涌和故障电流的地线同数据信号的返回路径共享一条线路,而小至几十伏的瞬态电压都有可能通过这些串、并行口而毁坏计算机及打印机等设备,信号传输线也能直接将户外电源线上的瞬态浪涌传导进来,而信号接口能够传导由闪电和静电泄漏引起的浪涌电压。 用户应当对数据线保护器慎重选择有些保护器虽然起到了“分流”作用,但常常是将硅雪崩二极管(SAD)接在被保护线路和保护器外壳之间,测试表明SAD的钳位性能很好,但它电涌分流能力有限。同时压敏电阻(MOV池不能在数据线保护器上使用。先进的过程控制系统的信号接口防雷保护装置无论是R-232串等通信接口还是计算机同轴网络适配器接口)目前均采用瞬态过电压半导体放电管,其冲击残压参数指标很重要。有条件能够采取多级保护设计电路效果更佳。 天馈线保护器基本采用波导分流原理,其中发射功率400W,额定测试放电电流(8/20s)5kA传输频率25GH插入损耗08响应时间100ns 23电源端口原则上采用多级SPD做电源保护,但信息系统的电源保护由于其敏感性必须采用较低的残压值的保护器件,且此残压应当低于需要保护设备的耐压能力。同时还必须考虑到电磁干扰对仪器仪表系统的影响,因此带过滤波的分流设计应当更加理想。 所以对于仪器仪表系统电源保护特别注意的两点是:前两级采用通流容量大的保护器,在仪器仪表终端处则采用残压较低的保护器。最后一级的保护器中最好有滤波电路。对仪器仪表系统电源端口安装SPD时应注意以下问题。 多级SPD应当考虑能量配合、时间配合、距离配合。如果配合不当的话,效果将适得其反。 (2)连接防雷保护器的引线应当尽量粗和短。 (3)全保护时尽可能将所有连接线捆扎在一起。内容来自看仪器网
  • 世界首台兆瓦级高温超导感应加热装置!!!
    由我国研制的世界首台兆瓦级高温超导感应加热装置,日前在黑龙江正式投用。该装置可以利用加热新技术,对大尺寸金属工件快速高效加热,节能减排,带动企业高质量发展。这台兆瓦级高温超导感应加热装置正在处理一块重达500多公斤的铝锭。过去,温度从20℃加热到403℃,至少需要9个小时。现在,通过应用这个装置,只需十分钟就可以完成。据了解,高温超导感应加热装置是利用了超导体在低温下可实现稳定的零电阻超导态的特性,不仅可以用于铝、铜等非铁磁性有色金属型材挤压、锻压,还能用于熔炼、高端合金热处理等。与原来普遍采用的电阻炉相比,这套装置能将传统工频感应炉的能效转化率提升一倍,节能50%,碳排放减少一半以上。
  • 新型感应器有望取代内毒素检测试剂
    据美国物理学家组织网近日报道,美国普林斯顿大学研究人员通过研究非洲爪蛙的抗菌原理,开发出了一种可用于检测药品和医疗设备是否受到细菌污染的感应器。新感应器不仅可取代目前通用的内毒素检测试剂(LAL),还有望使两种濒危物种的数量不再下降。  非洲爪蛙的皮肤上会产生能够抵抗细菌的肽(两个或以上的氨基酸脱水缩合形成若干个肽键从而组成一个肽),使其免于感染,现在人们已能在实验室合成出这种肽。普林斯顿大学机械和航空航天技术副教授迈克尔麦卡尔平领导的研究团队则找到了一种新方法,可将这种肽“贴到”微小的电子芯片上,当这种电子芯片接触到大肠杆菌和沙门氏菌等有害细菌时,电子芯片就会发出电子信号。  麦卡尔平在10月18日出版的《美国国家科学院院刊》上表示,这是一个简单且功能强大的平台。这种电子芯片可取代目前用于测试医疗设备和药品是否受到感染的内毒素检测试剂。  目前通用的内毒素检测试剂的缺陷在于:它需要鲎(马蹄蟹)的血。这导致近年来鲎的数量大大减少,由此也致使以鲎为食的鸟类数量不断下降。  鲎是一种有着4.5亿年历史的古老生物,有“活化石”之称。因为其免疫系统已进化得很好,其血液中含有能抵抗细菌的细胞——变形细胞,使其免于细菌的攻击,如同肽保护非洲爪蛙的皮肤免于细菌攻击一样,所以,它非常适合用于测试细菌感染。  1965年,科学家使用从鲎的血液中提取出来的物质制成了LAL,用于测试药品和医疗设备是否受到污染。为了生产LAL,人们大肆捕捞鲎,在将其放回海洋之前,人们会抽取其30%的血液。美国地质调查局的报告显示,这种方法的致死率可能高达30%左右。生态研究和发展组织一份保守的调查显示,鲎和依靠其为生的红腹滨鹬的数量一直在减少。  麦卡尔平团队希望基于电子芯片的该种技术最终能够取代LAL,作为一种标准的污染测试手段,让人们从此“告别”鲎血,也让红腹滨鹬的数量得以回升。同时,制造这种新的感应器也不会给非洲爪蛙带来压力。麦卡尔平表示,制造这种感应器时,爪蛙不会受到伤害。  该研究得到了美国哮喘基金会和空军科学研究局的资助。
  • 第十八届中国专利奖评审结果公示 多个仪器相关项目入选
    p  日前,中国专利奖评审办公室发布关于第十八届中国专利奖评审结果公示的通知。/pp  据悉,根据《中国专利奖评奖办法》,第十八届中国专利奖共评选出中国专利金奖预获奖项目20项,中国外观设计金奖预获奖项目5项,中国专利优秀奖预获奖项目571项,中国外观设计优秀奖预获奖项目65项,公示期为2016年10月19日至25日。/pp  值得注意的是,同方威视技术股份有限公司、苏州苏试试验仪器股份有限公司、钢研纳克检测技术有限公司、博奥生物集团有限公司等多家仪器公司的相关专利项目入选。/pp  仪器信息网摘录部分供大家参考:/pp style="TEXT-ALIGN: center"table cellspacing="0" cellpadding="0" width="567" border="1" uetable="null"tbodytrtd width="567" colspan="3"p style="TEXT-ALIGN: center"strong第十八届中国专利优秀奖预获奖项目 /strong/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"strong专利号 /strong/p/tdtd width="227"p style="TEXT-ALIGN: center"strong专利名称 /strong/p/tdtd width="208"p style="TEXT-ALIGN: center"strong专利权人 /strong/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200510011971.7/p/tdtd width="227"p style="TEXT-ALIGN: center"基于等离子波的纳米光刻光学装置/p/tdtd width="208"p style="TEXT-ALIGN: center"中国科学院光电技术研究所/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200610003437.6/p/tdtd width="227"p style="TEXT-ALIGN: center"采用冲击弹性波测量护栏钢管立柱埋深的检测设备及检测方法/p/tdtd width="208"p style="TEXT-ALIGN: center"交通部公路科学研br/ 究院,四川升拓检测br/ 技术有限责任公司/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200610049599.3/p/tdtd width="227"p style="TEXT-ALIGN: center"一种流化床反应器的检测方法/p/tdtd width="208"p style="TEXT-ALIGN: center"中国石油化工股份有限公司,浙江大学/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200810015710.6/p/tdtd width="227"p style="TEXT-ALIGN: center"连续变焦的非制冷红外热成像仪/p/tdtd width="208"p style="TEXT-ALIGN: center"山东神戎电子股份有限公司/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200810116735.5/p/tdtd width="227"p style="TEXT-ALIGN: center"离子迁移谱仪/p/tdtd width="208"p style="TEXT-ALIGN: center"同方威视技术股份br/ 有限公司,清华大学/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200810124385.7/p/tdtd width="227"p style="TEXT-ALIGN: center"一种松材线虫检测试剂盒及其检测方法/p/tdtd width="208"p style="TEXT-ALIGN: center"南京林业大学/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200810177364.1/p/tdtd width="227"p style="TEXT-ALIGN: center"纳米粉末材料的射频辉光放电感应耦合等离子体制备方法/p/tdtd width="208"p style="TEXT-ALIGN: center"广东兴发铝业有限公司/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200910024507.X/p/tdtd width="227"p style="TEXT-ALIGN: center"三轴向振动复合试验装置/p/tdtd width="208"p style="TEXT-ALIGN: center"苏州苏试试验仪器股份有限公司/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200910045519.0/p/tdtd width="227"p style="TEXT-ALIGN: center"用于焦炉烘炉温度的自动监测系统/p/tdtd width="208"p style="TEXT-ALIGN: center"五冶集团上海有限公司/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200910133494.X/p/tdtd width="227"p style="TEXT-ALIGN: center"超声成像的方法和装置/p/tdtd width="208"p style="TEXT-ALIGN: center"深圳迈瑞生物医疗br/ 电子股份有限公司/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL200910147915.4/p/tdtd width="227"p style="TEXT-ALIGN: center"一种光电倍增管/p/tdtd width="208"p style="TEXT-ALIGN: center"中国科学院高能物理研究所/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL201010174581.2/p/tdtd width="227"p style="TEXT-ALIGN: center"一种大功率半导体激光器光纤耦合模块/p/tdtd width="208"p style="TEXT-ALIGN: center"中国科学院长春光学精密机械与物理研究所/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL201010568201.3/p/tdtd width="227"p style="TEXT-ALIGN: center"一种多车道机动车尾气检测系统/p/tdtd width="208"p style="TEXT-ALIGN: center"中国科学技术大学,安徽宝龙环保科技有限公司/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL201210214137.8/p/tdtd width="227"p style="TEXT-ALIGN: center"一种田间作物生长信息无损快速检测装置及检测方法/p/tdtd width="208"p style="TEXT-ALIGN: center"南京农业大学/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL201310041747.7/p/tdtd width="227"p style="TEXT-ALIGN: center"人静脉注射免疫球蛋白中活化凝血因子Ⅺ检测方法/p/tdtd width="208"p style="TEXT-ALIGN: center"中国医学科学院输血研究所,贵州泰邦生物制品有限公司/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL201410082166.2/p/tdtd width="227"p style="TEXT-ALIGN: center"一种多指标检测的微流控芯片/p/tdtd width="208"p style="TEXT-ALIGN: center"博奥生物集团有限公司,清华大学/p/td/trtrtd width="132"p style="TEXT-ALIGN: center"ZL201410083219.2/p/tdtd width="227"p style="TEXT-ALIGN: center"一种无损测定食品中重金属镉的快速分析仪及分析方法/p/tdtd width="208"p style="TEXT-ALIGN: center"钢研纳克检测技术有限公司/p/td/tr/tbody/table /pp  详细名录请查看附件:img src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201610/ueattachment/07e8f30c-6b35-44a5-9db5-169b897e85ab.pdf"第十八届中国专利奖预获奖项目.pdf/a/p
  • 日本研发出测癌感应器 呼气诊断癌症
    港媒称,日本研发出准确度高的诊疗感应器,只要呼一口气就可判断用户是否患癌或糖尿病等疾病。 据香港《明报》1月11日报道,这款感应器由日本国立物质与材料研究机构(NIMS)联同NEC、住友精化、大坂大学和瑞士精密仪器公司开发。感应器为一片数厘米见方的小晶片,装嵌特制薄膜。只要向薄膜呼气,感应器便会分析气体内的化学物质,确认有否患上癌症等疾病的特征,判断患病可能性,并将诊断结果传送至智能手机或电脑,供医护人员参考。 感应器已大致完成开发,将于2022年全面推出市场。专家期望感应器可与智能手机等装置结合,让普罗大众随时作自我诊断,及早发现健康问题以减轻医疗开支。
  • 万慕仪器发布石油产品机械杂质新品
    1、 执行国家标准GB/T511-2010。广泛适用于石油、化工、冶金、电力、交通、商检及科研等部门。2、 核心主机采用TI 公司AM3354处理器,Cortex-A8内核,1GHz主频;操作系统采用Windows Embedded Compact 7实时工控系统。彻底摈弃了无核无操裸奔的单片机,真正实现了仪器操控的现代化智能化。3、 显示器采用7.0英寸液晶显示屏,全中文操作界面,显示细腻直观大方。操作简单方便 ,学习成本低4、 键盘采用人体感应式触摸按键、无机械触点、防尘防水、抗射频干扰、使用寿命更长。5、 温度测控采用PT100铂电阻温度传感器,高精度AD转换器,优良的线性化数学模型,独特的控制算法,使得温度的测控更快速、准确、稳定。6、 真空吸滤,缩短实验时间。吸滤系统:内置真空泵,由单片机自动控制,无需人为操作。吸滤压力可手动调节,两组分别工作。7、 连续供样,阀门控制可调节压力大小。8、 吸滤漏斗金属浴保温 u 油样控温范围:室温~150℃u 吸滤漏斗金属浴保温:室温-100℃u 控温精度:0.1℃u 压力平衡:30 Kpa~100 Kpa;u 压力控制:程序控制压力平衡;u 吸滤膜滤片直径:47-50mmu 环境温度:室温~45℃u 环境湿度:≤85%u 电源电压:220±10% V.ACu 电源频率:50±10% Hzu 消耗功率:800Wu 仪器重量:30Kg创新点:该仪器简化操作步奏,全自动实时温控 气压大小可更具检测样品调节石油产品机械杂质
  • 无线科技 精彩无限—奥豪斯无线感应技术带来称量新体验!
    科技发展让我们的生活发生日新月异的变化,科技改变生活每时每刻都在发生,我们越来越依赖这样的舒适和便捷。广泛应用于现代科技领域的无线感应技术也已出现在称重行业,奥豪斯将这一技术加入称量产品中,只为带给您更为高效和轻松的称量体验。双手拿着试验品的您还需要亲手开天平风罩门和按键才能开始称量吗?就让带有红外无线感应装置的Explorer系列和NAVIGATOR™ 系列天平,让您即刻轻松享受 “解放双手,挥之即来”的称量体验吧!Explorer系列电子天平独有4个无线感应器提供非接触式去皮清零操作、自动开启风罩门、静电消除等功能,带给您轻松的操作体验。解放双手的同时也可有效减少样品的交叉污染。对于精度高达十万分位的准微量天平而言,自动开启和关闭防风罩门可有效减少人为操作的失误,确保更精确的测试结果。该系列产品除了无线感应技术还配备直观的操作界面,现代化用户体验 —— SmarText™ 2.0 全新图标界面软件,彩色触摸显示屏,使Explorer系列电子天平操作更加直观便捷。*EX124ZH/AD,EX224ZH/AD,EX324ZH/AD,EX225/AD,EX225D/AD,EX225DZH/AD,EX225ZH/AD具有自动门功能! Explorer客户案例闻霾色变的今天,大家越来越关注环境健康。江苏疾病防控中心选择奥豪斯Explorer准微量天平开展PM2.5专项研究。研究人员需要根据滤膜上采样前后的质量差和采样体积来获得PM2.5的数据,滤膜的平均重量仅为410mg左右。众所周知,当称量微小样品时,自动开关门能有效减少环境对样品的干扰。对于每天需要频繁取样、称量和比对的研究人员而言,自动开关门能减少称量的误差,满足实验需要精准到0.01mg的要求。NAVIGATOR™ 系列电子天平两个无线感应器,无需按键,在无线感应器上方轻松挥手即可控制去皮、打印、功能或置零操作,可提高操作效率,避免样品残留物腐蚀按键,延长产品使用寿命。 NAVIGATOR™ 客户案例英国伦敦日均人流量800人次的Federation 咖啡屋,选择奥豪斯Navigator系列天平,以确保每一杯咖啡粉的含量可以精确到0.01g。便捷的红外感应去皮功能可轻松解放咖啡师双手,无需接触秤体就可完成称量,从而降低对产品的损耗,提高称量效率!让每一位客户都能品尝到殿堂级咖啡。奥豪斯无线感应技术为您实现前所未有的轻松称量体验!是否已经让您心动了呢?欲了解更多产品及相关信息请与我们联系!
  • 我国深部探测关键仪器研发获重大突破
    记者从2月15日在京召开的“深部探测技术与实验研究专项”2011年度成果汇报交流会上获悉,我国深部探测关键仪器装备自主研发取得了重大突破。  该专项首席科学家、中国地质科学院副院长董树文介绍,我国自主研发的地震勘探系统和电磁探测系统实现了关键技术的重大突破,掌握了磁芯材料和低频微弱信号检测等磁传感器的关键技术,研制了感应式宽频带磁传感器原理样机,性能指标与国外同类产品相当。  由专项自主研发的无人机航磁探测系统,在低磁无人机制作、高可靠性自驾导航仪研制、氦光泵航空磁力仪与超导航空磁力仪配套的数据预处理系统开发方面均取得了重大阶段性成果。  该专项与企业合作研制生产的我国第一台万米大陆科学钻探钻机处于国际先进水平。本月底,该钻机将运抵大庆油田,联合国际大陆科学钻探计划(ICDP),实施中国地质调查局和国家深部探测技术与实验研究专项联合资助的松辽盆地科学钻探2井,计划钻进6600米。  专项还建成以三维地质目标模型为中心的综合研究一体化集成分析平台,通过“红蓝军”(引进和自主研发平台)两条路线同时推进,加速了跟进国外软件发展的步伐。  据记者了解,专项投入近3亿元用于深部探测关键仪器设备的自主研发,以期打破国外长期对高端设备的垄断格局,旨在为后续国家地壳探测工程的立项申报和全面实施提供支撑。
  • 首款速测人体重金属的芯片感应器诞生
    新型感应器有望解决人体内重金属水平的快速检测  由于人类处在食物链的高端,人体内的重金属含量积累相对其他动物较高。对此,美国辛辛那提大学(University of Cincinnati)的研究人员们研发了第一款可以快速检测人体内重金属锰含量的实验室芯片(lab-on-a-chip)感应器。  首个实验室芯片感应器,能够提供人体内重金属水平的快速检测,将在明年进行首次实地试验。来源:美国辛辛那提大学  这款感应芯片能够对人体内出现的重金属——尤其是锰——以及其含量做出迅速反馈,该芯片造价低廉,属于一次性弃用的环境友好型产品。研究人员们计划在2012年对该仪器展开首次测试,旨在研究重金属对于健康的潜在影响,他们期望这款产品能够大规模运用于临床测试和研究中,例如针对儿童的营养测试等。  这款感应器使用的技术称为阳极溶出伏安法(anodic stripping voltammetry),它将工作电极、参比电极和辅助电极合并为一体。研究人员们开发出一款铋制作的薄膜取代传统水银电极或者碳电极,避免了水解作用给感应器捕获负电金属造成的限制。  开发人员之一、辛辛那提大学的电子计算工程副教授伊恩帕博斯基(Ian Papautsky)介绍说,传统的血液重金属锰含量的测试需要5毫升的血样,而这款芯片只需1、2滴就足够,对儿童检验来说是个优势。另外,芯片的电极采用铋取代了传统的水银,降低了环境危害性。最重要的是,传统的重金属测试的结果往往需要等上48小时,而在某些偏远的高危地区,想要迅速检测人体内的重金属含量相当不易,这款轻便的检测芯片则便利的多——不仅便携、随处可用,测试过程只需10分钟,相当快捷。  因此,研究人员们十分看好这款芯片在即时医疗(point-of-care)方面的应用潜力。随着进一步的研发,这款芯片甚至有望转化用作自检机制。例如帮助糖尿病人进行血糖监控等。
  • 国内电工仪器仪表市场需求量6000万
    据中国机械工业联合会、机械工业景气监测中心的统计数据据表明,因全国城乡电网改造拉动,国内电工仪器仪表市场正发生一系列变化。国内市场需求分析电工仪器仪表产品应用面极其广泛,电力部门是电工仪器仪表产品的第一大用户。来自电力物资部门的分析报告指出:目前,在电能计量仪器仪表与系统方面,用户需求以86系列感应式电能表为主,电子式电能表(主要是单相)的需求预计会有大的上涨空间。   市场对精密电表的需求将趋于萎缩,便携式电表整个需求也将减少。对该产品的要求主要集中在仪表外观、结构设计、扩大应用领域、提高可靠性等方面。数字仪表发展的重点是提高可靠性。   需求量预测及价格走势目前国内的电工仪器仪表产品的生产能力已严重过剩,全行业处于微利状态。但一些高技术含量产品(如电子式电能表等)的性价比与老产品相比将有明显的竞争优势。   有数据表明,未来几年,国内市场对电工仪器仪表产品的年需求量将维持在6000万台(套)左右。其中,电力部门需求5400万台(套),其他部门需求600万台(套)。从产品结构上看,电能表产品需求4800万台,安装式电表产品需求700万台,便携式电表需求250万台,数字仪表需求150万台,其他仪表需求100万台。各类产品的需求结构亦在变化,电能表产品中的电子式电能表比重将逐步加大,从&ldquo 十五&rdquo 初期的200万台到末期预期可达1200万台。安装式电表、便携式电表、数字仪表的技术含量亦将增加,产品水平不断升级。因此,尽管近几年产品年需求总量不会有太大变化,但总销售量有不断增加的趋势,预计年增长幅度为8%。
  • “生态环境部卫星环境应用中心—西安遥感应用基地”揭牌
    3日,生态环境部卫星环境应用中心与陕西省西安市生态环境局合作协议签约暨“生态环境部卫星环境应用中心—西安遥感应用基地”揭牌仪式在西安举行。据了解,为进一步加强西安市生态环境遥感监测与应用,生态环境部卫星环境应用中心与西安市生态环境局进行合作协议签约,并设立“生态环境部卫星环境应用中心—西安遥感应用基地”,旨在加强在大气环境、水环境等方面的遥感监测、遥感影像处理与大数据综合应用合作,联合开展国家和地方重大科研项目的申请和实施,联合开展人才队伍的培训、交流和技术攻关等,全面提升西安市生态环境保护。“生态环境部卫星环境应用中心—西安遥感应用基地”主要依托西安市生态环境遥感监测管理系统,凭借卫星遥感监测范围大、无盲区、重访周期快的技术特点,实现技防代替人防,发现一批环境点源污染问题,并结合西安市生态环境指挥调度系统促进问题整改,有效履行生态环境部门的统一监督管理职责,实现对污染问题的精准“打击”。西安市生态环境遥感监测管理系统自2020年应用以来,对西安市建成区施工工地、农村垃圾露天堆放、黑臭水体、饮用水水源地风险源、颗粒物和臭氧污染重点关注区域等进行定期监测识别,发挥了“领航员”与“侦察机”作用,取得明显成效。该系统不仅填补了农村垃圾露天堆放监管的空白,还为“冬防期”“夏防期”空气质量管控提供了方向,锁定了重点关注范围等。下一步,生态环境部卫星环境应用中心与西安市生态环境局将密切配合、精诚合作,继续巩固和提升应用效果,突出精准治污、科学治污优势,为生态环境保护持续“护航”。
  • 663万!华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目
    项目编号:0773-2240SHHW0019项目名称:华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目预算金额:663.0789000 万元(人民币)最高限价(如有):663.0789000 万元(人民币)采购需求:项目名称:华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目包件1:反应离子束刻蚀系统;数量及单位:1台;简要技术参数:3、等离子体源3.1、射频发生器:最大功率300瓦,13.56MHz,带自动匹配单元;★3.2、ICP源发生器:最大功率3000瓦,2.0MHz,带自动匹配单元;包件2:感应耦合等离子体增强化学气相沉积系统;数量及单位:1台;简要技术参数:★1、SiO2的标准沉积速率:≥40 nm/min;高速沉积速率:≥500 nm/min2、SiO2薄膜沉积厚度:≥6um。其余详见本项目招标文件。合同履行期限:自合同签订之日起250天内;本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制