当前位置: 仪器信息网 > 行业主题 > >

空分塔内仪

仪器信息网空分塔内仪专题为您提供2024年最新空分塔内仪价格报价、厂家品牌的相关信息, 包括空分塔内仪参数、型号等,不管是国产,还是进口品牌的空分塔内仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合空分塔内仪相关的耗材配件、试剂标物,还有空分塔内仪相关的最新资讯、资料,以及空分塔内仪相关的解决方案。

空分塔内仪相关的论坛

  • 水塔在高低温冲击试验箱中所起到的作用

    众所周知,高低温冲击试验箱由于冲击迅速,温度变化快,所以制冷功率会比普通的高低温试验箱功率大很多,而风冷的制冷方式可能满足不了,所以一般厂家会配置为水冷式的制冷系统。而水冷式的制冷系统就一定要匹配水塔的安装才能运行了。 所以水塔是水冷式的制冷设备必不可少的配置。它的工作原理是当循环水系统安装冷却水塔后,高温水流经冷却水塔内腔时,冷却水塔通过将高温水流以喷雾的方式,喷淋到内腔耐高温的填料上(填料的作用为是增大了与高温水的接触面积,在空气和水的不断接触循环下,以达到散热降温制冷的效果。再有塔顶风机快速带动塔内气流的快速循环,将囤积在冷却塔内部,与水换热后的热气流不断带出,从而增强冷却效果。) 高低温冲击试验箱的水塔主要用于水冷型设备在制冷时散热用,大家都知道高低温冲击试验箱要制冷肯定就会有散热问题要处理,有些小功率的设备散热量不大的话就匹配风冷式的散热方式(即是以风机即类似风扇型的配置以风带走热量)。而水冷式的设备主要是以水作为载体把热量带走达到制冷效果。 水塔的单位为冷吨,通常匹配的规格有:10吨,15吨,20吨,25吨,30吨,40吨,50吨。 一般标准的100L或者150L,250L的试验箱最好匹配15吨以上的水塔,如果不知道定制的设备应该匹配多大的水塔建议加价让厂家配套安装,或者问清楚生产设备的厂家对应设备应该匹配对应多少吨的水塔再做采购比较保险些。

  • 热处理炉气监控系统如何让炉内气氛可控?

    热处理炉气监控系统如何让炉内气氛可控?

    热处理工艺中零件脱碳会缩短其使用寿命,采用可控气氛可以改善零件的变形,开裂,还可以准确控制表面渗入元素的浓度,提高渗件质量。而热处理炉气监控系统可以让炉内气氛活动清晰起来,让理论和实际保持一致。 碳势是气体渗碳、脱碳等工艺过程中需要精确控制的主要参数。炉气的碳势未得到有效控制时,往往造成钢铁组件的渗层表面含碳量或渗层碳浓度达不到工艺要求。在一定的渗碳温度下,炉气碳势主要取决于炉气的成分及在其高温下相互结合反应的结果。 热处理炉气监控系统可以实时测量炉内真实气氛、氧电势、温度,让碳势控制不再依靠理论上的化学平衡,而是直接反应炉内生成的气氛情况。[align=center][img=,690,492]https://ng1.17img.cn/bbsfiles/images/2019/01/201901031325052180_6133_2567402_3.png!w690x492.jpg[/img][/align] 如图所示,热处理炉气监控系统不仅可以实时连续的在线测量炉内气氛,还设置了报警功能,随时提示工艺员炉内情况,工艺员还可现在一键校准标定数值,操作非常的简单方便。 目前热处理炉气监控系统是渗碳工艺中值得推荐的碳势控制产品,作为工艺操作工程师们的第三双眼睛,实时守护您的“调皮”炉内气氛。

  • 【分享】冷却塔的落水噪声及其防治措施

    摘要:根据冷却塔噪声的实测结果,就冷却塔噪声的成困、性质及其治理方法进行了分析。冷却塔的噪声可视为点声源,其治理方法可分为塔内和塔外两条途径。塔内治理可采用冷却塔落水消能降噪装置,塔外治理可采用声屏障方法。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=104557] 冷却塔的落水噪声及其防治措施[/url]

  • 【原创大赛】验室酸雾及活性碳净化塔处理流程

    本实验室主要为企业内部实验室,主要做工厂生产的电子,玩具消费品的原材料及产品测试,测试项目主要是重金属及邻苯,使用的试剂主要是硝酸,盐酸,二氯甲烷,丙酮,正己烷等,前处理主要在通风橱里面操作,产生废气通过酸雾净化处理塔及活性碳净化处理塔处理。为规范实验室酸雾及活性碳净化处理塔运作,符合环保等要求,特做要求,具体内容如下:1.0酸雾净化处理塔,其原理是用水淋洗将酸气冷凝后用碱中和,达到排放标准后排放1.1定期检查水泵运转是否正常,贮存液箱中的液位是否在正常范围内(正常浮动小球下面)1.2定期检查调节液下水泵的出口阀大小,确保净化塔内喷头成雾状满布,以便确保处理效果。1.3定期投入碱性化合物如碳酸钠等作为吸收液并测试其PH值(至少每个星期一次)。当PH值小于5时,再按照上次比例投入碱性化合物等,再次运行一段时间,当PH值在6.5-8.5时符合自来水,可将塔内液体全部排出,重新加入清水和新碱性化合物等。酸碱中和产生的盐类超过一定的浓度易发生晶体,堵塞喷头。加入新碱性化合物等可继续使用,根据使用情况,定期跟换碱性物质更换换碱性物质时,首先关掉水泵,排掉饱和溶液,再将清水放入贮存箱,在用水泵打循环30分钟清洗喷头,1.4水泵运转前必须先加水,不得无液空转,造成水泵得损坏。1.5根据使用情况定期检查塔体底部水箱内液体的酸碱性溶液及排风口气体的净化程度,超过标准时,应根换水池中的吸收液。2.0活性碳净化处理塔原理是气体经过活性碳吸附后再排放活性碳吸收箱为直接向厂家采购,当发现排风口气味大,活性碳吸收箱失效等情况需要及时更换,更换频率为1年1次, 检测人员需要定期检查各净化塔的配套设施及其风机运转是否正常,如发现问题需要及时反应并解决END[b] [/b]

  • 冷却塔工作原理

    冷却塔工作原理是通风的空气从正确的角度吹向滴下来的水,当空气通过这些水滴的时候,一部分水就蒸发了,由于用于蒸发水滴的热量降低了水的温度,剩余的水就被冷却了。这种方法的冷却效果依赖于空气的相对湿度以及压力。 当水滴和空气接触时,一方面由于空气与不的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。冷却塔的工作过程:圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。

  • 【求助】液中易挥发的组分回收率0.96

    在连续精馏塔中分离某种物质在连续精馏塔中分离某种组成为0.5(易挥发组分的摩尔分率,下同)的两组分理想溶液。原料液于泡点下进入塔内,塔顶采用分凝器和全凝器,分凝器向塔内提供回流液,其组成为0.88,全凝器提供组成为0.95的合格产品,塔顶馏出液中易挥发的组分回收率0.96,若测得塔顶第一层板的液相组成为0.79,试求;1。操作回流比和最小回流比?2,若馏出液量为100Kmol/h .则原料液流量为多少?

  • 喷雾干燥袋滤器中粉的颜色问题

    喷雾干燥袋滤器中粉的颜色问题

    http://ng1.17img.cn/bbsfiles/images/2016/11/201611111026_616286_0_3.jpg喷雾干燥过程中,无论生产何种粉,袋滤器中粉的颜色与塔内粉的颜色都有差别,如奶粉生产塔中粉为淡黄色,袋滤器中的粉呈现灰白色。而生产茶粉对绿茶来说塔中粉为棕黄色,袋滤器中为淡黄绿色(黄中带有绿色)要比塔中粉的颜色淡。其主要原因是,料液在雾化干燥过程中体现的是湿球温度,随着料液中水分的不断蒸发实现粉与水分的分离,粉在塔中沉降水分则由排风机经过旋风分离器、袋滤器排至大气中,而排风携带一少部分细粉,这部分细粉由于颗粒太小来不及沉降即进排风过滤系统,生产速溶茶粉排风温度一般不超过75℃,而细粉实际温度40℃左右,由于细粉被排风携带至过滤器中始终从较低湿空气中分离,分离后粉的温度应不超过40℃,因此粉的颜色呈淡黄色较淡。

  • 抗生素发酵工艺所用冷却塔的性能分析及处理

    核心提示:1 逆流式玻璃钢冷却塔的概要 水是人们生产生活中不可缺少的重要资源,水的循环利用越来越显得重要。 冷却塔在水的循环利用中发挥1 逆流式玻璃钢冷却塔的概要 水是人们生产生活中不可缺少的重要资源,水的循环利用越来越显得重要。 冷却塔在水的循环利用中发挥着降低水温、保证工艺要求的至关重要的作用。常见的冷却塔有逆流式、横流式、喷射式、蒸发式4种。逆流式冷却塔主要由风机、收水器、喷淋装置、填料、钢结构、百叶窗、集水池、外壳、风筒等部件组成。 填料是冷却塔的重要组成部分,其质量和作用在很大程度上决定着冷却塔的冷却能力,据相关数据显示,填料产生的降温达到整个塔降温的60%~70%。它一般由凸凹不平的聚氯乙烯波纹板制成,亲水性能良好,保证水在填料上形成水膜和水滴,而不是水流,增强水气交换面积,延长水气交换时间,保证冷却效果。 逆流式冷却塔的工作原理:水在塔内与空气进行热质交换而得到降温。工作时,热水从塔顶向下喷淋,在填料之间形成新的水滴及表面形成水膜,空气在风机的作用下,由下向上与水滴和水膜逆向运动,水气进行蒸发传热和接触传热的交换,使水降温。 逆流式冷却塔的热工性能与气候条件尤其与湿球温度有密切关系,主要有以下3个技术指标。 1.1 进、出水温差△t △t=t1-t2(其中,t1为进水温度,t2为出水温度)。这是最重要的技术指标,随冷却塔的不同用途而不同。 1.2 冷幅Δt’ Δt=t2-ξ(℃),即出水温度t2与湿球温度ξ之差。它的大小反映出水温度和与湿球的接近程度,冷幅越小,冷却塔的热工性能越高,反之越低。一般情况下,Δt’=4~6℃。 1.3 冷效Ε E=△t/Δt’,即进、出水温差与冷幅的比值。是冷却塔热工性能的综合指针,数值越高,冷却塔的热工性能越好。 2 问题的提出 某制药公司有4台标准型的逆流式玻璃钢,型号为DBNL3—500,为抗生素发酵提供26℃左右循环冷却水。2006年曾对冷却塔进行了大修,更换了全部的填料,填料为斜交错填料。循环水质未进行任何处理。 2009年3月份以来,该制药公司抗生素生产车间提出循环冷却水温较高且不稳定,影响了抗生素的生产。多年来,对循环冷却水水温提出异议多在环境温度最高的6、7、8三个月,在3月份提出水温高还是第一次。 3 情况分析 3.1 原因分析 随机抽查3-4月份的运行记录,并对一组运行数据进行了分析。 当日湿球平均温度20℃,冷却塔的3个技术指标分别为: △t=1.13℃,冷幅Δt’=7.56℃,冷效Ε=0.149。 将以上数字与标准型冷却塔设计参数(表1)相比较,可以看出冷却塔运行效果不佳,丧失了大部分冷却能力,性能劣化。 因为在2006年对冷却塔进行了的大修,更新了全部的填料,短短的3年时间就出现了这么严重的问题,原因究竟是什么? 经检查得知:抗生素生产工艺和产量没有变化,环境温度与以往变化不大,冷却塔风机、上塔泵运行参数也正常,分析认为问题可能出在填料上。 冷却塔内共填充了约32m3斜交错填料。检查时发现单层填料间充满了约40mm厚的污垢,在污垢中间有两排交错的直径约10mm的不规则水流孔,填料和污垢黏合在一起,需用洋镐才能将填料和污垢挖出来,造成填料彻底报废。每一个塔清理的污垢约8m3。 因此可以得出结论:冷却塔性能劣化是因为填料间充满了大量的污垢,使得填料上根本不能形成水膜,而是形成一股股水流,严重影响了水气的热质交换,造成冷却塔冷却性能的大部分丧失,致使出水温度上升。由于冷却塔功能的丧失,环境温度变化成了决定出水温度的最主要的决定因素,出水温度随环境温度上下变化,这就是抗生素车间反应的出水温度不稳定的原因所在。 3.1 污垢的来源 由于冷却塔水系统与大气相同,空气中的尘土、杂物、细菌等都会进入水系统,微生物大量繁殖,形成生物粘泥。同时,循环水中的溶解盐不断浓缩,使水的硬度不断增加。以上是水垢形成的一般原因。但是与以往不同的是,此冷却塔运行不足三年却形成了罕见的污垢,初步判定可能是抗生素车间在2007年发生跑料而造成循环水污染形成的污垢。 4 处理办法 更换填料,是解决问题的根本办法。为了解决和防止下一次填料时的更换困难,同时探索采用更新的填料,提高冷却塔性能,我们使用了一种新型S型淋水填料。 该填料具有表面积大、亲水性好、风阻小、散热系数大、热力综合性能好、使用寿命长等特点,可根据冷却塔的实际尺寸,将单片组装成不同尺寸长方体的填料组装单元。 S型淋水填料单片板面上下成S型有凸台梯形波,以凹凸粘接点粘接组装,单片长度500~5000mm,宽度500~1000mm,片厚0.40±0.05mm。 但是,这种填料在使用中需要注意以下点:(1)单片与单片之间的波形一定要呈斜交错形式,这样才具有良好的热力阻力;(2)长方体的填料组装单元,最适合与方形塔相匹配,与圆形冷却塔圆周会形成缝隙,需根据间隙的大小用不同数量的单片填料填充;(3)一旦填料堵塞,不易清理。堵塞严重时,需要整体更换,会增加成本。 5 处理后的效果 随机抽取更换填料后的运行记录,在并对一组运行数据进行分析。 当日湿球平均温度为24℃,冷却塔的技术指标分别为:△t=3.37℃,Δt’=2.51℃,Ε=1.34。 可以看出,经过处理后的冷却塔性能已经恢复;热工性能达到设计参数,在实际生产中可以满足抗生素发酵工艺要求。 6 结论 (1)循环冷却水价格低廉。玻璃钢冷却塔结构简单,操作简单。因此,往往不为人们所重视,其实在生产中,它对保证工艺要求有着重要意义,而且也是产品成本控制的一个重要方面,同时在节约水资源,保护环境方面发挥着越来越重要的作用。 (2)冷却塔管理的重点应放在及时对运行数据进行分析,特别是对3个技术指标进行分析,发现异常应及时分析查造原因,并进行针对性处理。 (3)填料是冷却塔热交换的主要部件,与冷效高低相关密切,应加强对填料的管理,定期进行检查、清理、更换。 (4)循环水的水质管理同样是一个不容忽视的问题。

  • 【转帖】吉内兹:把地球变暖控制在2度内是很大挑战

    TAG: 地球变暖 气候变化 吉内兹 http://img.antpedia.com/attachments/2010/11/33393_201011291740161.jpg  11月29日,由商务部国际商报社主办的“第一届《国际商报》国际经贸合作项目洽谈会暨中德低碳环保高端论坛”活动在北京举行。德国驻华大使馆环境与气候变化参赞考杜拉?吉内兹在会上发表讲话时表示,目前要把地球变暖的温度控制在2度之内的目标是一个非常大的挑战。  考杜拉?吉内兹在谈到中德环境合作框架时表示,中德对今天在墨西哥坎昆举行的国际气候变化谈判都有很高的期望,希望把哥本哈根会议遗留的问题在这里解决,并达成协定。她表示,坎昆会议可能对国际金融合作,发达国家采取适应气候变化的措施,对发展中国家提供财政资助,气候保护活动的一些标准、报告体制和评估体制,以及2050年之前全球气候变化工作的基本安排等问题达成一致,这对今后国际机构的合作会起到很大的影响。  她说,目前要把地球变暖的温度控制在2度之内是一个非常大的挑战,只有所有的国家在紧密合作的前提下才能实现,而且这个目标只有进一步加大对绿色工业的投入才能实现。她表示,提升能源效益、节能,包括能源结构的改变是未来达到低碳社会的基本要求。德国和中国有不同的出发点,但是两国做了同样的决定,对能源结构做出了改变。  考杜拉?吉内兹表示,两国需要企业和一系列创新的工作来充分发挥潜力,从煤炭领域、钢铁生产领域、垃圾处理领域、污水处理领域,包括物流和房屋节能领域,还有到风能和太阳能的使用都是涉及到节能环保的领域。她表示,中国是德国在亚洲最重要的贸易合作伙伴,包括开放市场、开放环保和能源方面的工作都是贸易合作的重点。德国和中国在能源和环境方面的合作具有重大意义,这些意义将在今后的具体合作当中得到体现。

  • 盐雾试验机喷雾控制系统介绍

    盐雾试验机喷雾控制系统介绍

    在使用[b]盐雾试验机[/b]的时候用户通常都有对盐雾试验机都有些了解了,下面小编来介绍下盐雾试验机的喷雾控制系统吧,希望可以帮助用户更加了解并使用这款设备。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/06/202106171600320102_136_1037_3.jpg!w348x348.jpg[/img][/align]  1、气动式喷雾方式:气压调节为两级调压式,其中一级为进气压力一般调节为0.2~0.3MPa,二级为喷雾压力同时为满足喷雾压力的要求(精度2kpa),本盐雾试验机选用定制高精度压力表。  2、采用内藏式玻璃喷嘴放置于圆形的塑管内。  3、喷雾前的盐水是经过盐水存储箱桶注入喷雾塔内。  4、特制石英玻璃喷嘴确保无盐结晶。  5、喷雾气体先经过油水分离器予以油水过滤稳压调节后,进入饱和筒预热湿化后,经电磁阀和调压阀到达喷嘴。  6、盐雾试验机为内置隐藏式且储存容量大。  7、盐水雾化前经过沙芯过滤器过滤,避免杂物堵塞喷嘴。  8、试验机内放置两个标准集雾漏斗可通过管道连接箱外量筒以便监测沉降量。  盐雾试验机在使用完毕后用户要注意清洁保养并进行定期的检修,这样才能在使用盐雾试验机的时候更加的得心应手。

  • 操作15分钟内完成

    国标中说在平皿中加入样液的时间到倾注培养基的时间不要超过15分钟,那平时的检测都是几个样一起检测,做常规的菌落总数、大肠菌群、霉菌酵母菌三项。我在检测过程中一般一次性检测7个样的这三项指标,样品制备耗时半小时,加样后倾注平板整个过程会耗时2h,那就不符合“15分钟内”的要求,但是实际操作也不可能一个样一个样的单独去检测。所以,我想知道这个时间各位是如何控制的呢?

  • 仪器仪表与靶式流量计已形成独立学科

    仪器仪表与靶式流量计已经发展形成一门独立完整的学科。综观科学技术发展史,当一门新兴学科形成和不断发展时,教育体系,非凡是高等教育就会应运而生出现新的学科教育,培养新的学科人才。我国教育部多年来已经围绕着仪器仪表与测量控制学科设立了一级学科教育体系,现在定名为“仪器科学与技术”学科,全国近250所高校设置了相应的专业,3万多名本科生和1万多名研究生在校学习。我国高校为“仪器科学与技术”学科制定了专业培养目标和规范,已经为仪器仪表与测量控制领域培养了几十万学科技术人才;  仪器仪表与测量控制学科是一门工程应用学科,与之相适应的产业的形成和发展是学科发展的物质基础和技术支撑。我国仪器仪表产业已经具备相当规模,这在下面还会具体谈到,因此,仪器仪表与测量控制学科不是在象牙塔内,而有着强大的生命力和发展空间; 仪器仪表与测量控制学科有一个全国性的国家一级的学术团体——中国仪器仪表学会。学会在推动学科进展方面作了大量工作,取得了显着的业绩。

  • 【求助】请帮忙翻译下

    汽提塔是石油炼治中不可缺少的设备。对石油精馏塔,提馏段的底部常常不设再沸器,因为塔底温度较高,一般在350℃左右,在这样的高温下,很难找到合适的再沸器热源,因此,通常向底部吹入少量过热水蒸汽,以降低塔内的油汽分压,使混入塔底重油中的轻组分汽化。本次设计说明书首先介绍了板式塔的工作原理及结构特点。接着进行了设备的选型,工艺设计计算和机械设计计算。最后对塔设备的制造和安装作了相应的说明。本次设计的塔处理量为60万吨/年,每年工作时间为8760小时。进料状态为饱和汽相进料,产品质量指标(均为摩尔分率)为塔顶馏分: 0.5%,塔底馏分: 0.5%。本次设计选用浮阀塔盘,分块式塔盘,单溢流弓形降液管,标准椭圆形封头,塔体材料选用16MnR,裙座材料为Q235-A。中间还对风载荷以及地震载荷进行了强度校核。制作完成进行了水压试验。本设计主要依据GB150-1998《钢制压力容器》、JB4710《刚制塔式容器》、化工部CD130A4-85《塔设备设计规定》、以及劳动部《压力容器安全技术监察规程》进行制造、安装和验收。关键词: 汽提塔,浮阀塔,水压试验,工艺计算,机械设计计算

  • 空分气体分析仪新手上路之2——样品的制取

    前言:随着空分行业的的不断发展,气体分析仪(以下简称分析仪)由于其实时监测、快速准确,已逐步取代了手工分析在空分行业中的应用,从而变得越加普及。对于空分制氧机面言,所分析的样品绝大多数为气体,其测量的组分无非是氧、氮、氩、二氧化碳、水份、碳氢化合物、氮氧化合物、油脂等。即环境空气中所含有的常量或微量的元素及设备运行过程中所添加的物质。无论是何种样品,对于分析仪而言都是从工艺管道或容器中用取样器制取出样品后经管道输送到分析仪进行检测。分析仪作为一种产品质量检测及过程控制的仪器,即有同于一般热工仪表的特点,又有其自身的独特性。且无论何种分析仪,就其单独性而言就是一个完整的检测体系,有些甚至还配有一此复杂的样品预处理系统,这些都为分析仪的精确性提供了强有力的保证。但是如果所分析到的样品不能够及时的、有效的、具有代表性的反应实际工况的情况与变化;就算分析仪精度再高、准确性再强,也不能发挥其应有的作用,甚至会产生误导的作用。而这些往往也是检测人员及仪器维护人员经常所忽视的一个问题。本文就这个问题提出一点看法与同行们进行探讨。一、样品分析的及时性问题。样品分析的及时性是指所分析的样品能够以最快的速度进行分析。而影响样品分析的及时性主要是滞后,滞后一般而言由两种原因所引起,一是样品传送滞后时间,二是分析仪的响应滞后时间。对于现代分析仪而言,响应时间都比较迅速;一般都保持在T90<15S,因此相对较小。而气体分析仪一般都集中在分析小屋内以便维护与管理,距离工艺管道或容器的位置相对较远,被分析的气体传送至分析仪进行检测所花费的时间较长,由此产生的滞后时间占主导因素。滞后时间的运算一般有两种方式。一是体积流速计算法、二是压差流速计算法,而一般采用体积流速计算法较为便利。体积流速计算法如下式所示: Tt:总的样品传送时间,min; d:样品传送管线内径,m; L:样品管线传送长度,mVi:样品部件处理容积,m3; F:样品流速m3/min由上式我们可以得知,当管线越短,管径越小,处理部件越少,样品流速越大时,传送的时间则越少。但管径不能过小,否则样品的流速无法提高,甚至堵塞,造成样品无法分析。因此一般情况下样气分析管宜采用直径为6mm的管道即可。对于样品处理部件在能满足样气处理的前提下,越少越好。且处理部件不能有死体积。对于深冷法空分而言,气体相对较洁净,只须要在样气进分析仪之前加一直通型筛网除尘过滤器即可,筛网要多层,孔径要适中,过滤器的容积要小。对于样品流速,一般希望越大越好,而大部份分析仪对样气的要求都有一个明确的规定。不可过大或过小。因此要想加大样气流速就必须设置旁通流路及旁通阀。旁通阀应尽可能设置在靠近分析仪的位置。在能满足分析仪测量需求的前提下,一般旁通流量应越大越好,但也有些特殊情况除外(例如液态气体样品的取样)。二、样品分析的有效性问题样品的有效性又称准确性,是指样气中的各个组分和含量在从工艺管道或容器内传送到分析仪时未发生任何的改变,从而能够有效的、准确的提供给分析仪进行测量,对于样气的准确性影响有多种方面。1、管道材质对样气的吸附与解吸作用,此点对于常量分析影响较小,但对于微量分析则影响较大(例如气体中的微量氮、氧、水份、碳氢化合物、二氧化碳等检测)。2、死体积置换问题,如果在传输或样品预处理过程当中存在有较大的死体积,当样品组分变化时,由于死体积的作用,使变化的组分与死体积之间发生混匀作用,死体积越大,混匀时间就越长,样品失真的过程也就越长。此点无论是常量还是微量组分分析均有影响,特别是微量分析,可能造成长期的失真,甚至根本无法测量准确。3、管道的泄漏与渗透问题,1)当取样管道安装不到位或材质有缺陷时,样气则极易发生泄漏。虽然从表面上来看,由于取样管内样气压力一般均会高于环境气压,样气发生泄漏时,气体会从管道内向外流动,只会消耗掉部分样气,而样气中的各组成成分并不受影响。其实不然,由于环境空气中存在有大量的氧、氮、水分等气体;当发生泄漏时,由于外部气体的分压与样气管道内的气体组分的分压相差可能会有数万倍,环境空气中的氧、氮等气体分子将会沿着泄漏的部位逆着压力梯度渗透进入样气管道,从而改变了样气中的组分含量。2)当管道材质气密闭和抗渗透性不强时,环境大气中的一些气体分子将可能直接通过管道参透到样气当中。特别是水分,其渗透性较强,特别是当采用一些四氟乙烯管、乳胶管、白胶管之类管材时,水分极易发生渗透现象。当水分渗透时,不仅会改变样气中的水分含量,而且由于水分对氧分子具有溶解与解析作用,将会破坏了样气中氧气的成分,从而造成更深远的影响。由于一般情况下样气管道较长且绝大部分都是暴露在环境大气当中。因此,该类影响将非常严重。特别是对微量分析,将造成较大的偏差。4、鉴于以上几点可知,为了保证样气的有效性,应注意以下几点问题:1)在取样管道材质上应首选不锈钢管(304、316无缝不锈钢管)或盘式铜管,以防止吸附与渗透问题。2)布管时最好采用盘管(即一卷整管),从现场取样点到分析仪组柜接口处无接头连接。即使要使用接头,也必须是使用双卡套接头进行压接(密闭性好,死体积较小),且管件材质、规格应与管子相匹配,不可使用大管套小管的焊接方式连接(死体积大)。3)管道应预先进行退火处理,以便于弯曲施工及连接。但弯曲的角度不宜过大(弯曲夹角不应小于90度),管径要适中,一般选用管径为6mm,壁厚在1mm的管道。4、管道内壁应预先进行过抛光处理(对微量组分分析影响较大),且内、外壁均应洁净、干燥、无油脂类物质,否则必须进行清洗、脱脂。三、样品分析的代表性问题样品的代表性是指从工艺管道或容器当中所取出的样品应能实际反应工艺流体的性质、组成及含量。要想做到此点,取样的位置至关重要,应满足以下几点:1、取样点应位于能反映工艺介质性质和组成变化的灵敏点上。2、取样点应位于对过程控制最适宜的位置,以避免不必要的工艺滞后。3、取样点最好能位于工艺压差构成快速循环回路的位置上。4、取样点应选择在不影响样品组成、性质、含量的情况下,样品的温度、压力、清洁度及干燥度和其他条件尽可能满足分析仪要求的位置,以便使样品的预处理部件降至最少。一般认为,在大多数气体或液体管线当中,只有当介质产生湍流时才能够完全混合。因此取样点最好布置在被测介质产生湍流的位置,才能保证样品具有真正的代表性。取样点可布置在一个或多个90°的弯头之后,紧接最后一个弯头的顺流位置上,或选在节流元件下游一个相对平静的位置上(不要紧靠节流元件)。应尽可能避免在一个相当长而直的管道下游取样,因为这个位置流体的流动往往处于层流状态,管道的横截面上易产生一个浓度梯度。而且不要在管壁或容器壁上直接钻孔取样,因为在这个位置上的样品,长期处于层流状态,样品得不到混合。即使处于湍流状态。由于管道或容器内壁对样品的吸附与解吸作用,使样品容易发生异常的变化,与实际工况不符(特别是微量分析影响较大)。应采用专用的取样探头组件进行取样。一般样品取样可采用剖口呈45°的杆式取样探头,插入管道或容器内30mm左右(或管内径的三分之一)。当管道为水平时,如是气体取样探头应从管顶部插入,以避开可能的凝液或液滴;如是液态气体取样应从管道侧壁插入,以避开管道上部可能存在的蒸气和气泡,以及管道底部可能存在的残渣和沉淀物。如若是垂直管道,从管道侧壁插入,且应从下至上流动的管段中取出,以避免下流液体流动不正常时的气体混入。5、低温液态气体的取样问题在空分制氧机的运行当中,经常需要对低温液态气体中的组分及含量进行分析,例如下塔富氧液空中的氧含量、下塔液氮、污液氮的纯度及主冷液氧中碳氢化合物。这些组分在工艺流程当中都是以低温液态的形式存在。而分析仪所分析的样品必须是常温气态形式。因此这些低温液态气体必须转换成常温气态形式后经管道输送至分析仪进行分析,这就导致样品在取样的过程中发生了相变。由于样品中各组成成分的沸点不同,当样品发生相变时,单位体积中各组分蒸发的程度各不相同,因此当样品从液态转变成气态时单位体积中的各组分含量就容易发生改变。现以下塔富氧液空为例,进行简单的一个分析与同行们进行探讨。下塔的富氧液空,在正常工况时其温度一般均在-170~-195℃之间(受下塔压力及其自身组份的变化影响),而其含氧量因受进塔空气的氧浓度(20.9%O2)的限制总要比它的平衡浓度低一些(例:下塔压力为0.55Mpa与氧含量20.9%的蒸汽相平衡的液体中氧浓度为40.8%,而实际液空中氧含量应更低)。液空的取样一般是直接从下塔底部或是在下塔去上塔的液空管道中取出,以5%的斜度向上倾斜,并在靠近冷箱约800mm处做一向上的弯管,高度为6—10的管道直径,有的在引管的向上捌点处加还设一个加热器,以避免液体在5%的倾斜处存在气、液两相的现象,从而能使液体完全气化,此种设计在液位计正相管是完全适用的,因液位计在正常使用时,其引压管内部的气体是股“死气”,它只是作为压力传送的媒介而已,并不存在流通性,而气体成份分析则不同,低温液态气体气化后生成的气体在源源不断的流出,始终保持流通性,且为了防止分析结果的滞后,往往将取样管路的旁通阀调至较大,这样就加速了气体的流通,管道内就很可能存在气液夹带的现象,下表1是笔者在保证液空进样流量不变,改变旁通流量时,进行的一个重复性试验所得的一组数据。(在工况相对稳定,使用仕富梅4100系列氧分析仪进行测量)表1进样流量(L/h) 1.2 1.2 1.2 1.2 1.2 1.2旁通流量(L/h) 0

  • 简述蒸馏测定器测馏程的实际意义

    蒸馏测定器适用于对天然汽油、车用汽油、航空汽油、喷汽燃料、特殊沸点的溶剂、石脑油、柴油、馏分燃料和相似的石油产品的蒸馏测定。  馏程是评定液体燃料蒸发性的重要的质量指标。它既能说明液体燃料的沸点范围,又能判断油品组成中轻重组分的大体含量,对生产、使用、贮存等各方面都有着重要的意义。  1.在决定一种原油的用途相加工方案时,必须先知道其中所含轻、重馏分的数量,测定馏程可大致看出原油中含有汽油、煤油、轻柴油等馏分数量的多少。  2.石油炼制过程中,控制炼油装置操作条件,如温度、压力、塔内液面、蒸汽用量等,是以馏出物的馏程结果为基础的。  3.测定燃料的馏程,可以根据不同的沸点范围,初步确定燃料的种类。  4.测定发动机的燃料馏程,可以鉴定其蒸发性,从而判断油品在使用中的适用程度

  • 水池水位信号远传器

    水池水位信号远传器一、 概述 DTD110FA/B/C型无线PLC,主要是为中短距离的水塔、山顶水池水位监测而设计的无线遥测遥控终端模块,它不但可监视水位的变化,同时还可以自动控制水泵的启停。DTD110F系列模块提供点对点无线遥测遥控功能,由发射模块和接收模块组成。DTD110FA/B/C发射模块安装在水塔内,能够提供1~4路4~20mA电流信号输入,可以直接连接传感器输出。DTD110FA/B/C接收模块安装在控制室,能够提供1~4路4~20mA电流信号输出,可以直接连接显示仪表、PLC或DCS电流输入采集端, 接收端也可以采用DTD433MX模块,直接输出RS232,RS485或者USB信号。二、主要技术指标①输入电源:24VDC(可以采用电池供电);②通讯距离1米~3000米(可以加中继); ③外形及安装尺寸:115*74*60mm(L*W*H[col

  • 喷雾干燥技术和旋转蒸发技术特点区别

    [b]喷雾干燥技术[/b][font=&]是使液态物料经过喷嘴雾化成细微的雾状液滴,以获得大的比表面积,在进入干燥塔内流动的热力场后,雾状液滴立即被干燥并分离为粉料的势力过程。得到粉末状或细颗粒状成品或半成品的干燥技术。[/font][b]旋转蒸发技术是[/b][font=&]通过电子控制,使烧瓶在最适合速度下,恒速旋转以增大蒸发面积。通过真空泵使蒸发烧瓶处于负压状态。蒸发烧瓶在旋转同时置于水浴锅中恒温加热,瓶内溶液在负压下在旋转烧瓶内进行加热扩散蒸发。旋转蒸发器系统可以密封减压至 400~600毫米汞柱 用加热浴加热蒸馏瓶中的溶剂,加热温度可接近该溶剂的沸点 同时还可进行旋转,速度为50~160转/分,使溶剂形成薄膜,增大蒸发面积。此外,在高效冷却器作用下,可将热蒸气迅速液化,加快蒸发速率。[/font][font=&]样品干燥前,如果样品含量过少,干燥速率将降低,增加各方面的消耗。[/font][font=&]如果在干燥前,通过旋转蒸发仪真空浓缩后,样品浓度增高。会加快干燥效率。[/font][font=&]比如市面的牛奶,直接喷雾干燥,收集不到多少样品,如果浓缩一下,效果就不一样了。[/font]

  • 【转帖】介绍上海松江方塔

    方塔即“兴圣教寺塔”,因塔边的兴圣教寺而得名。它耸立在公园的中心,园湖的北岸,建于北宋熙宁元祐年间(1068~1094年),距今900多年。塔高42.65米,共9层,因袭唐代砖塔形制成四方形,故俗称方塔。方塔为砖木结构,楼阁式,砖身底层外壁每面宽6米,四周筑有围廊,以上逐层收缩,砖身外壁由砖柱划分为三间,正间设壶门,内为方室,设木梯连接各层。塔顶部是由覆盆、相轮、宝瓶组成的高达八米的塔刹,有4根铁索,从尖顶拖向第九层的檐角,称为风浪索。塔檐四角系有铜铃,名曰“警鸟”,风吹铃响,悦耳动听,是防止鸟儿落塔做窝而置的。登上方塔俯览四周,古城松江全貌尽收眼底。方塔能屹立千年而不倒,与其科学而巧妙的构造是分不开的。首先,在方塔塔体中,木材的料极多,除外部的楼梯、平座、塔檐、斗拱外,塔体内每层还设有木箍三道。这种做法在建筑中是被禁止的,因为建筑结构中(砖、石等材料间)不准夹有木质,因为木质易腐会造成建筑松垮。但方塔所有的留存木材(指宋代原物),都没有虫蛀、腐朽,连白蚁也没有,这是一个奇迹。(在方塔修缮中,有一日本教授,看到木材的耐腐情况深为惊讶,说这是你们祖先留下来的无价之宝。)抗日战争时,日军的炸弹在方塔旁爆炸,却没有把方塔炸毁,这又是一个奇迹。据同济大学陈从周、鲁宾杰两位教授分析,木材肯定经过了防腐柔韧处理,千年不腐,炮轰不倒,肯定与之有关。 其次,在1974年方塔修缮时发现方塔塔基是用木桩打成的,先人利用木材特性“干千年,湿千年,干干湿湿两三年“(木工谚语)的道理,成功地筑就了方塔,使方塔千年不倒,而且倾斜也很小(向西北倾斜53公分)。再次,方塔的塔基与众不同,他向东南倾斜,西北角地最高处为40公分,而东南角却只有20公分,人站在塔中,会明显感到地面的倾斜。这难道是祖先们在建塔时地疏忽吗?其实这体现出了古代工匠的智慧。因为松江东临大海,夏季东南风、台风比较多,因此塔基有意识地往东南方向倾斜。北宋的沈括在他的《梦溪笔谈》一书中,写过一个故事,说曾经有一个造塔老工匠,暮年时他造了这样一座斜塔,大家看不懂,问他为什么要造这样一座塔呢?他说:“我们这些人是看不到了,这座塔在两百年以后就会变成一座直的塔,而且永远不再倾斜了。”由此可见方塔与老木匠所建之塔如出一辙,是在研究了当地的气象、地质,以及塔形、材料、制作等等一系列成果的基础上建立起来的,也因此可知这座塔的价值的重大。 方塔以“秀美”誉冠东南,艺术性极强。方塔的特点是塔身瘦长,塔檐宽大,形体犹似一位身着长裙,婷婷玉立的少女。清代松江诗人黄霆的一首“竹枝词”是这样盛赞方塔的:“近海浮图三十六,怎如方塔最玲珑”。两句话就把方塔的艺术特色形象而生动地描绘了出来。 方塔的建造还有着一个美丽地传说。(参见传说故事) 方塔的艺术处理还不仅限于塔身、塔檐,它还有许多特殊的处理,譬如:为了塔体的修美,塔体外除去繁冗,把楼梯都设计在塔身中。塔檐的二层到九层每一个檐角的连线都呈抛物线的弧度,名叫“卷刹”。它的塔刹也与众不同,和塔身一样,比别的塔更显修长。方塔的历史价值不可估量。同济大学教授陈从周在他所写的《江苏之塔》一书中说:“松江方塔是自唐代到北宋,同类塔中嬗嫡的代表。”意思是说它沿用了唐代的形制于北宋时期建成的塔,而这座塔不管造形、用料、技术和施工,都是一个典型的唐代楼阁式砖木结构塔。鉴于这种主要的历史价值,1996年兴圣教寺塔被国务院颁布为全国重点文物保护单位。几百年间,方塔进行过多次大修。元至元二十一年(1284年),僧人行高募捐修葺。大德六年(1302年),飓风吹落塔刹相轮,毁栏杆,僧清裕募款修理。元末,寺遭兵燹,殿宇全毁,仅塔与钟楼独存。明洪武三年(1370年),寺僧在塔旁边建忏堂,额曰“兴圣塔院”。明正统十二年(1447年)巡抚周忱捐款重建。万历年间(1573~1619年)为募款修塔,僧大振断臂以示虔诚。清顺治十七年(1660年)、乾隆三十五年(1770年)和道光年间(1821~1850年)多次修葺。清咸丰十年(1860年)钟楼及塔院俱毁。民国二十六年(1937年),城隍庙殿宇大部分遭日军轰炸焚烧,仅塔与庙前照壁幸免于难。 解放前,塔的砖身出现裂缝,塔内各层木结构全部损坏。1963年,上海市文物管理委员会全面勘查方塔的结构和损坏情况,1973年,拟订《松江兴圣教寺塔修缮方案》,1975年开工修缮,1977年竣工。此次大修,换去了塔心木,卸装塔刹,补换相轮,修复各层楼梯、楼板、平座、腰檐和北宋建筑物常采用的“寻杖式”栏杆,重建了围廊。期间,发现第三层西壁檐下两组斗拱之间,称做拱眼的三角形壁面上,有2幅宋代彩色佛像壁画。同时在对保留下来的177朵斗拱整理鉴定中,发现其111朵为宋代原物。有关专家坦言,江南砖木结构的宝塔众多,但能保留这么多宋代斗拱是极为少见的。更可贵的是,在这次修复中,考古人员在塔底层地面正中部分揭开了1.5平方米的砖面,挖掘出一座砖砌地宫,出土了一只刻着龙纹图案,两端镌刻着双虎的汉白玉石函,函盖上放着一尊铜菩萨向北跏趺而坐,四周散置着42枚宋代钱币。打开石函,里面又出现一个漆匣,匣内用帛包裹铜佛像一尊,银盒两只,内藏舍利一对。这些珍贵文物现由上海博物馆收藏。

  • 喷雾干燥技术和旋转蒸发技术的关系

    喷雾干燥技术和旋转蒸发技术的关系

    [b]喷雾干燥技术[/b]是使液态物料经过喷嘴雾化成细微的雾状液滴,以获得大的比表面积,在进入干燥塔内流动的热力场后,雾状液滴立即被干燥并分离为粉料的势力过程。得到粉末状或细颗粒状成品或半成品的干燥技术。[b]旋转蒸发技术是[/b]通过电子控制,使烧瓶在最适合速度下,恒速旋转以增大蒸发面积。通过真空泵使蒸发烧瓶处于负压状态。蒸发烧瓶在旋转同时置于水浴锅中恒温加热,瓶内溶液在负压下在旋转烧瓶内进行加热扩散蒸发。旋转蒸发器系统可以密封减压至 400~600毫米汞柱 用加热浴加热蒸馏瓶中的溶剂,加热温度可接近该溶剂的沸点 同时还可进行旋转,速度为50~160转/分,使溶剂形成薄膜,增大蒸发面积。此外,在高效冷却器作用下,可将热蒸气迅速液化,加快蒸发速率。样品干燥前,如果样品含量过少,干燥速率将降低,增加各方面的消耗。如果在干燥前,通过旋转蒸发仪真空浓缩后,样品浓度增高。会加快干燥效率。比如市面的牛奶,直接喷雾干燥,收集不到多少样品,如果浓缩一下,效果就不一样了。

  • 喷雾干燥技术和旋转蒸发技术特点

    [b]喷雾干燥技术[/b][font=&]是使液态物料经过喷嘴雾化成细微的雾状液滴,以获得大的比表面积,在进入干燥塔内流动的热力场后,雾状液滴立即被干燥并分离为粉料的势力过程。得到粉末状或细颗粒状成品或半成品的干燥技术。[/font][b]旋转蒸发技术是[/b][font=&]通过电子控制,使烧瓶在最适合速度下,恒速旋转以增大蒸发面积。通过真空泵使蒸发烧瓶处于负压状态。蒸发烧瓶在旋转同时置于水浴锅中恒温加热,瓶内溶液在负压下在旋转烧瓶内进行加热扩散蒸发。旋转蒸发器系统可以密封减压至 400~600毫米汞柱 用加热浴加热蒸馏瓶中的溶剂,加热温度可接近该溶剂的沸点 同时还可进行旋转,速度为50~160转/分,使溶剂形成薄膜,增大蒸发面积。此外,在高效冷却器作用下,可将热蒸气迅速液化,加快蒸发速率。[/font][font=&]样品干燥前,如果样品含量过少,干燥速率将降低,增加各方面的消耗。[/font][font=&]如果在干燥前,通过旋转蒸发仪真空浓缩后,样品浓度增高。会加快干燥效率。[/font][font=&]比如市面的牛奶,直接喷雾干燥,收集不到多少样品,如果浓缩一下,效果就不一样了。[/font]

  • 石油产品的基本生产方法

    由于石油产品的大类是燃料和润滑油,因此这里仅简要介绍燃料和润滑油的基本生产方法。1.常减压蒸馏  常压蒸馏是根据组成原油的各类烃分子沸点的不同,利用加热炉、分馏塔等设备将原油进行多次的部分汽化和部分冷凝,使汽液两相进行充分的热量交换和质量交换,以达到分离的目的,从而制得汽油、煤油、柴油等馏分。减压蒸馏是利用降低压力从而降低液体沸点的原理,将常压渣油在减压塔内进行分馏。从减压塔侧线可以引出各种润滑油馏分或催化裂化的原料。塔底重油叫减压渣油,可作为焦化和制取沥青的原料或作为锅炉燃料。2.催化裂化  在催化剂存在下进行的石油裂化过程叫催化裂化。催化裂化通常用重质馏分如减压馏分、焦化柴油及蜡油等为原料,也有用预先脱沥青的常压重油为原料的。催化裂化汽油性质稳定、辛烷值高,故用作航空汽油和高辛烷值汽油的基本组分。3.加氢裂化  在有催化剂和氢气存在的条件下,使重质油受热后通过裂化反应转化为轻质油的加工工艺叫加氢裂化。加氢裂化是增产航空喷气燃料和轻柴油采用zui广泛的方法。4.延迟焦化  原料油受热后的生焦现象不在加热炉管内而延迟到焦炭塔内出现的过程叫延迟焦化。焦化的原料主要是减压渣油,也可用热裂化渣油。延迟焦化的产物主要是汽油、柴油、焦化蜡油、石油焦、焦化气等。5.催化重整  在有催化剂作用的条件下,对汽油馏分中的烃类分子结构进行重新排列成新的分子结构的过程叫催化重整。催化重整按所用催化剂种类的不同,分为铂重整、铂铼重整和多金属重整。将汽油馏分进行催化重整可以得到高辛烷值汽油、轻芳烃和氢气三大产品。6.烷基化  烯烃在异构烷烃或芳烃上的热反应或催化反应过程叫烷基化。烷基化的原料是异丁烷—丁烯气体馏分,产物是异辛烷和其它烃类组成的混合物,叫烷基化油。将烷基化油进行分馏,切割50—180℃的主要成分可得到工业异辛烷,是航空汽油和车用汽油的高辛烷值组分。7.调合  调合是生产润滑油或为了改善某种油品组分和质量而常用的一种生产工序。调合的方法分为罐式调合和管道调合两种,我国目前大都采用罐式调合,调合的工序是按计算出的数量用泵将各种组分油从原料油储罐中抽入调合罐,然后再加入各种添加剂进行调合

  • 求助,请在()内填空,参照17025

    求助,请在()内填空,参照17025:1、实验室应配置()和人员健康保护所需的安全保护设施;2、校准物质的使用要()并能溯源到国家(国际)基准的标准物质;3、样品的接收,应检查样品标记,()与合同规定相符。

  • 喷雾干燥技术和旋转蒸发技术工作原理

    [b]喷雾干燥技术[/b]是使液态物料经过喷嘴雾化成细微的雾状液滴,以获得大的比表面积,在进入干燥塔内流动的热力场后,雾状液滴立即被干燥并分离为粉料的势力过程。得到粉末状或细颗粒状成品或半成品的干燥技术。[b]旋转蒸发技术是[/b]通过电子控制,使烧瓶在最适合速度下,恒速旋转以增大蒸发面积。通过真空泵使蒸发烧瓶处于负压状态。蒸发烧瓶在旋转同时置于水浴锅中恒温加热,瓶内溶液在负压下在旋转烧瓶内进行加热扩散蒸发。旋转蒸发器系统可以密封减压至 400~600毫米汞柱 用加热浴加热蒸馏瓶中的溶剂,加热温度可接近该溶剂的沸点 同时还可进行旋转,速度为50~160转/分,使溶剂形成薄膜,增大蒸发面积。此外,在高效冷却器作用下,可将热蒸气迅速液化,加快蒸发速率。样品干燥前,如果样品含量过少,干燥速率将降低,增加各方面的消耗。如果在干燥前,通过旋转蒸发仪真空浓缩后,样品浓度增高。会加快干燥效率。比如市面的牛奶,直接喷雾干燥,收集不到多少样品,如果浓缩一下,效果就不一样了。

  • 【已应助】间歇精馏的论文(请转换成悬赏帖)

    恒全回流动态累积间歇精馏的研究赵旭 【摘要】:间歇精馏是化工生产中常用的分离技术,设备简单,操作灵活,广泛应用于精细化工及制药工业。间歇精馏全回流的分离能力最大,无须考虑回流比,操作方便。为了更好的利用全回流间歇精馏这一特点,本文提出了一种新操作方式——恒全回流动态累积间歇精馏,其特征是每隔一段时间将中间罐内液体转移到上一级储罐内,塔内始终保持全回流操作。 本文首先建立了恒全回流动态累积间歇精馏过程的数学模型,用模拟的方法验证该操作方式,并在同等条件下对比部分回流操作。模拟结果表明,由塔顶浓度随时间变化趋势看出该方式能够较长时间的保持较高的塔顶浓度,与部分回流操作比较,新方式节省了约15%的操作时间。 在实验研究中,建立了具有三个储罐恒全回流动态累积间歇精馏的实验装置,以水/乙酸为实验物系,对新方法进行了研究。实验结果表明,与部分回流间歇精馏操作过程比较,恒全回流实验操作节省了约10%的时间,而得到的产品纯度最高,为85.6%(R=4时81.0%,R=8时84.7%)。模拟和实验验证表明,恒全回流动态累积间歇精馏操作得到的产品浓度更高,所需的操作时间更短。【关键词】:间歇精馏 恒全回流 动态累积 【学位授予单位】:天津大学【学位级别】:硕士【学位授予年份】:2010【分类号】:TQ028.31【DOI】:CNKI:CDMD:2.1011.262586【目录】: 摘要3-4ABSTRACT4-7第一章 文献综述7-171.1 间歇精馏操作方式概述7-81.1.1 间歇精馏操作方式的优点71.1.2 间歇精馏的发展概况71.1.3 间歇精馏过程7-81.1.4 间歇精馏操作特点81.1.5 间歇精馏应用特点81.2 间歇精馏的研究内容8-91.3 间歇精馏操作方式的研究9-141.3.1 回流比恒定的操作方式91.3.2 中间罐间歇精馏塔操作和多罐间歇精馏塔操作9-111.3.3 全回流累积操作和动态累积操作11-141.4 间歇精馏模拟的研究进展14-151.5 简捷模型15-161.5.1 FUG 模型15-161.5.2 ISC 模型161.6 本文的研究内容16-17第二章 恒全回流动态累积操作概述17-212.1 提出恒全回流操作方式的背景17-192.1.1 传统间歇精馏部分回流操作172.1.2 全回流操作17-182.1.3 循环全回流回流罐填充的无回流阶段18-192.2 恒全回流动态累积间歇精馏的提出19-202.3 本章小结20-21第三章 恒全回流动态累积间歇精馏的模拟21-303.1 数学模型假设213.2 恒全回流操作方式的模型及条件21-223.3 恒全回流操作方式的数学模型建立22-243.4 恒全回流操作的数学模型计算24-273.5 模拟结果27-293.6 本章小节29-30第四章 恒全回流动态累积间歇精馏实验30-494.1 实验准备30-324.1.1 实验试剂30-314.1.2 分析条件31-324.2 实验前相关数据的测定32-344.2.1 校正因子32-334.2.2 理论板数33-344.3 部分回流间歇精馏实验34-364.3.1 实验设备及流程图34-364.3.2 实验操作364.4 恒全回流动态累积操作实验36-414.4.1 实验设备及流程图37-394.4.2 实验操作流程39-414.4.3 实验步骤414.5 实验结果和数据处理与分析41-434.6 恒全回流塔内状态43-474.6.1 恒全回流动态累积的塔内稳定性43-454.6.2 恒全回流塔顶浓度45-464.6.3 恒全回流中间罐液体浓度46-474.6.4 恒全回流中间罐液体转换时间474.7 本章小节47-49第五章 结论与展望49-505.1 结论495.2 展望49-50参考文献50-54发表论文和参加科研情况说明54-55致谢55

  • 分析仪表的配置及选型

    介绍分析仪器仪表在空分流程中的重要作用,在分析仪器仪表的配置及选型上应遵循和注意的问题,特别是仪器仪表的可靠性和使用寿命以及标准物质的定标问题,配置和选型是系统工程中的一环节要慎重和全面考虑。 1 分析仪表在空分流程中的作用   分析仪器仪表在空分设备以及气体纯化过程中占有极重要的地位,它对空分流程的调整和产品质量的检测是必不可少的。由于在空分流程的各个阶段配置有不同类型的监测不同气体介质对象的在线分析仪表,因而,可通过分析仪表的输出信号了解分馏塔内的运行工况,并能控制流程在最佳工况下生产出纯度合格的02、N2、Ar及低温液体和产量要求,也可保证高纯气体是否达到纯化后的质量标准。   因此,在空分设备的气体及低温液体产品的生产过程中,需对流程中各个阶段的气体成分的组成进行准确地定量和严格控制与此同时使用在线色谱仪对空分塔内主冷凝器等部位进行自动连续地检测碳氢化合物(饱和烃及非饱和烃)的含量,是空分设备中防爆及安全生产中必不可少的一环。   为此,在选择和分析仪器仪表,必须达到和执行如下几方面的任务:   1.监测流程中工艺气体的纯度,满足各工序段对气体纯度要求;   2.通过在线分析仪器仪表的输出数据,可以及时反映和掌握各工序工况的变化状况;   3. 可以调整流程工况在最佳状态下工作;   4.保证和控制耷安全工况下生产的气体产品及低温液体产品纯度达到质量要求符合国家标准;   5.对纯化后高纯气体杂质组分的分析能达到国家标准要求。 2 分析仪的配置与选型   综上所述,配置和选用空分设备配套的在线分析仪器仪表及高纯气体检测的仪器仪表应遵循下面几个原则:   1.商业价格上要价廉物美或质优价廉,能满足流程及纯化气的检测需要,完成对流程气的监控目的;   2.在质量上要求在线分析仪器仪表及高纯气体检测仪器仪表,在其量程、灵敏度、噪音、稳定性、可靠性、使用寿命有质量要求和保证;   3.易于操作及维护保养。   上面谈到分析仪器仪表在空分设备运行 中及高纯气体纯化中检测的重要性,它不但 能执行产品气的质量检测而且能保证气体生 产运行中的安全。因此就提出了对分析仪器 仪表的可靠性、准确性、使用寿命、易操作 易维修等的要求。分析仪表的质量问题,一 直是使用者最为关切的问题,因它直接涉及 到产品质量和经济效益。笔者多年来从事气 体的检测分析及分析仪器仪表的安装调试工 作,从以往的情况来看,可以说大都不尽人 意,如某钢厂两套1000m3/h制氧机所配置 的热磁式氧分析器都由于质量问题而不能较 长时间使用,即使用寿命短,给用户带来极 大的不便并使经济上受到损失。空分设备中 常用的分析仪表,有一部份是采用热导式分 析器,有时由于传送器里电桥元件性能不稳 或某个插件上的元件不稳定,就造成了分析 仪表不能使用或指示值不正确,有时由于元 件的性能差造成热漂移,使量程零点很大变 动。元件性能不稳定和部件上出现的故障, 在其它类型的分析仪表上·电时有发生。由于 出现分析仪表量程零点漂移,造成用户对检 测数据正确性的不信任感,从而怀疑分析仪 表如同虚设,因此引进国外可靠的先进分析 技术及仪器仪表是势在必行,特别是灵敏 度、可靠性,使用寿命都高于国内产品,要 用户接受,在其价格上要有所调整。 3 分析仪的标定   众所周知,分析仪器仪表属于量值的二 次传递仪表,本身的准确性要依靠标准物质 来调校刻度,同样色谱仪也是通过标准物质 来定标,对高纯气体的定标是技术性很强的 工作,也是十分复杂的工作,气体纯度的准 确性在于标准物质的准确性,首先标准物质 的配制工作是相当精确的,然后是如何正确 地使用标准物质。无论是纯气还是高纯气的 检测分析仪器仪表,必须带有标准物质,为 此各地应当设立经常可以提供标准物质和高 灵敏度色谱所用的高纯载气,先进的分析仪器仪表必须有准确的标准物质来定标,否则 体现不出其仪表的作用,也难以保证仪器仪 表的日常运转。笔者认为先进的高纯气体杂 质组分分析仪器仪表的引入,也必须考虑标 准物质的提供,才可保证仪器仪表的正常分 析工作的开展。 4 提高空分流程中分析仪的投表率 及展望    空分流程中分析仪表的配置是一门技术 性很强的工作,既要合理满足流程需要又不 繁杂,既要少化投资又达到检测分析目的。 因此,要提高分析仪器仪表的利用率和投表率。   深冷法空分技术近年来有了极大的提 高,监控流程的在线分析仪表及最终产品气 体和液体的检测技术也有了很大的提高,特 别对控制分析技术要求也更高,随着工业对 气体纯度要求越来越严格,待分析杂质组分 的数目不断增加,检测极限需要大大降低, 因此在技术上设法提高灵敏度、稳定性、可 靠性、增加使用寿命并合理使用色谱技术, 为降低分析仪表的投资费用,采用多色谱 柱、多鉴定器技术,对分析仪器仪表的调 校,除应用标准物质外,还采用动态校正 法,如,指数稀释法、渗透法或计量泵联用 技术,由于国外新技术的引入,计算机与在 线分析仪表联用,一方面可对分析信息的数 据处理;另一方面监督分析仪表的性能及控 制它们的动作和各项操作参数,如自动校正 基线漂移、降低噪音、自动校准刻度并能自 动控制本身的工作状态、发现故障、指标故 障源和发出报警信号等, “智能”型分析仪 表当今已成为生产工艺流程中自动控制的最 有效工具。适应日益发展的深冷法空气分离 工艺,满足高纯气体纯化工艺的检测,促进 我国的分析技术走向世界。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制