当前位置: 仪器信息网 > 行业主题 > >

颗粒碰撞仪

仪器信息网颗粒碰撞仪专题为您提供2024年最新颗粒碰撞仪价格报价、厂家品牌的相关信息, 包括颗粒碰撞仪参数、型号等,不管是国产,还是进口品牌的颗粒碰撞仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合颗粒碰撞仪相关的耗材配件、试剂标物,还有颗粒碰撞仪相关的最新资讯、资料,以及颗粒碰撞仪相关的解决方案。

颗粒碰撞仪相关的资讯

  • 解决方案|贺利氏碳红外系统与高品质巧克力的碰撞
    贺利氏碳红外系统与巧克力,这两个看似完全不是一个“次元”的事物,如果碰撞在一起,会产生怎样的火花?现在就让我们一探究竟。背 景来自英国的k公司、o公司以及m公司都是世界知名的巧克力制造商。其中,k公司是历史悠久的大制造商,产品种类多、范围广;o公司是巧克力块的行业制造专家;而m公司则特别擅长填充巧克力产品,如填充巧克力棒和巧克力蛋。虽然三家公司涉及的具体产品略有不同,但他们的模制巧克力生产线都与加热有密切的联系。挑 战模制巧克力的生产过程中非常关键的一步是将液态巧克力沉积到聚碳酸酯模具中。在巧克力倒入之前,先将模具预热到一个特定的具体温度是很重要的。因为如果模具的温度过高,巧克力的特性和质感就会发生改变,而如果温度过低,倒入的巧克力就不能成形并可能发生断裂。此前大家对模具的预热的解决方案,通常是使用红外陶瓷加热器来进行的,o、m公司也是采用此法。然而,陶瓷系统并不稳定,其易碎性也会导致很大的安全隐患。k公司并没有使用陶瓷加热器,他们使用的是金属加热器和暖风加热系统,但这个方式也存在占地面积大、控制难度大以及加热不均匀的问题。贺利氏解决方案为了解决这些问题,三家巧克力制造大亨都不约而同地联系了贺利氏特种光源以寻求帮助。虽然是三家不同的公司、不同的产品、不同的现有生产线,但贺利氏的碳中波红外系统都很好地分别帮助他们解决了问题,并为他们的高品质巧克力的生产提供了高品质的保障。根据不同生产线的特点和需求,在每个碳红外系统的内部,辐射器的规格和数量都是根据客户的具体情况定制匹配的,以此来实现生产效率的最大化。另外,根据巧克力生产线对温度的特殊要求(大部分生产线所需温度为30°c),用于该产线的碳中波红外系统大都配备了高温计来实现准确的温度控制,提高了产品质量。客户收益k公司:最大化程度利用占地面积,大大降低产品不合格率并提高了产品质量。m公司:精确加热实现了巧克力半球的完美融合(塑形)。o公司:缩小了系统的占地空间(新系统的大小是旧系统的三分之一)。系统响应速度快(若生产线发生意外停工,可最大程度减少产品损失)对于三家公司来说,除了其巧克力产品的品质得到保障外,贺利氏特种光源的方案还为他们大大节省了空间和成本。您的工厂生产线是否也遇到了空间不够?效率太低?方案不好各种问题?贺利氏特种光源的技术专家能够为您定制化符合您需求的解决方案。
  • 单颗粒ICP-MS应用 | 通用池技术消除铁纳米颗粒质谱干扰
    随着纳米颗粒在工业上的广泛应用,采用单颗粒模式电感耦合等离子体质谱法(SP-ICP-MS)分析金属纳米颗粒成为最有前途的技术之一。由于其高灵敏度、易用性和分析速度快等特点,ICP-MS是一种理想的技术,用于检测纳米颗粒的特性:无机成分、浓度、尺寸大小、粒度分布和聚集等。除了金和银纳米颗粒以外,零价铁纳米颗粒具有独特的化学特性和相对大的比表面积,更广泛应用于环境修复项目中,用于取出有机溶剂中氯、转化废料中有害化合物、降解杀虫剂和固定金属等。但不同于金和银纳米颗粒未受到基体干扰或常规质谱干扰问题,等离子体产生的信号ArO+对同样质量数(56)铁的最高丰度同位素(56Fe+丰度91.72%)形成严重干扰。消除这种干扰的最有效方式是采用氨气作为反应气的反应模式ICP-MS。已有的大多数SP-ICP-MS报道聚焦于无干扰的纳米颗粒,而这种反应模式SP-ICP-MS还未被广泛使用。本文将证明在反应模式SP-ICP-MS下,NexION通用池技术应用于测定纳米颗粒。实验所有分析采用NexION 350D型 ICP-MS (珀金埃尔默公司,谢尔顿,CT),操作条件见表1。用去离子水稀释金和铁纳米颗粒标准,分别在质量数197和56处测定。实验结果实验首先在标准模式下运行。接下来,为评价加入反应气对SP-ICP-MS分析的影响,相同溶液在反应模式下运行。图1显示了标准和反应模式SP-ICP-MS测定100nm金颗粒谱图。两个图相似结果表明,反应模式并未改善纳米颗粒测定能力,因为金可能与氨气不发生反应。图1.反应(a)和碰撞(b)模式下SP-ICP-MS测定100nm金粒子两种模式下实际金颗粒检测数量比较列于表2。该数据表明,两种模式下颗粒具有同样数量,表明使用反应模式对测量颗粒并不偏差。存在的高背景掩盖了铁纳米颗粒中56Fe+,标准模式下铁测量不能完成。反应模式下测定60nm氧化铁纳米颗粒溶液,结果列于图2。与图1a中反应模式下金谱图相比,二者相似。尽管碰撞模式同样具有去除干扰能力,但在不严重损失仪器灵敏度前提下,不能完全消除ArO+对56Fe+干扰,意味着纳米颗粒检测限将大大降低。碰撞模式下使用其它低丰度铁同位素是有可能的,但低丰度意味着纳米颗粒将不能被检测到。因此,高信噪比的氨气反应模式测定m/z56是铁纳米颗粒最佳选择。图2.SP-ICP-MS反应模式下测定60nm的铁氧化物颗粒谱图结论本工作证实了珀金埃尔默NexION系列ICP-MS反应模式具有测定铁纳米颗粒能力。因为,铁受到来源于等离子体的干扰,必须采用反应模式测定铁纳米颗粒,具有远超碰撞模式的优势。该工作可以扩展为其它受干扰的金属纳米颗粒,如钛、铬、锌或硅。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 比亚迪在深圳建碰撞实验室 投资上亿
    上周,记者从比亚迪获悉,比亚迪正在深圳建设第二个碰撞实验室,目前部分工程已经完成并可使用,预计到明年8月份整个碰撞实验室可完全投入使用。  据了解,比亚迪深圳碰撞实验室占地面积达2.2万平方米,总投入上亿元资金,包括整车碰撞实验室、模拟碰撞实验室、行人保护实验室,是完全按照欧美的碰撞标准建设的实验室。  深圳第二个碰撞实验室建成后,比亚迪就将拥有深圳和比亚迪两个碰撞实验室,这在国内车企中并不多见。据比亚迪相关人士表示,上海的碰撞实验室已可以实现几乎所有国内所需的相关测试,之所以斥资上亿元建设深圳碰撞实验室,是出于长远发展的考虑,希望凭借自主力量在安全技术领域不断提高,能更好地对新车型进行研发测试。
  • 粒形医学新报:刺状颗粒或可增强免疫反应
    p style="text-indent: 2em "众所周知,疫苗和癌症免疫疗法是通过生物化学信号激活免疫系统来起到治疗作用的。而一项新的研究表明,免疫系统也能对物理线索做出反应,例如,刺状的纳米颗粒。这项研究结果,有望为癌症及其他疾病的治疗方法开辟崭新的设计途径。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201811/uepic/7f8d41ef-d6fe-462c-ab07-512e2d9bace7.jpg" title="文章内图片.jpg" alt="文章内图片.jpg"//pp style="text-indent: 2em "包括流感病毒在内的许多病原体表面都有刺状结构,为了测试物理线索是否有助于激活免疫反应,来自麻省综合医院的Wu Mei X. Wu教授团队和中山大学的Xi Xie教授团队设计了一个实验,分离出了病原体的形状线索和生化线索。/pp style="text-indent: 2em "首先,他们用二氧化钛制造了两组纳米颗粒,这种化合物通常不会触发免疫系统。其中一部分颗粒的外形是尖锐的刺状,另一部分颗粒的表面则比较粗糙。他们在一些细菌细胞表面涂上脂质,作为免疫刺激物。然后,给老鼠注射了刺状纳米颗粒,同时还进行了癌症免疫治疗或注射了流感疫苗。实验结果表明,脂质包裹的刺状颗粒确实增强了小鼠的免疫反应,提高了癌症免疫治疗和流感疫苗的疗效,而注射粗糙颗粒的对照组则没有显著影响。/pp style="text-indent: 2em "有证据表明,注射了刺状颗粒的细胞,其细胞膜受到了机械压力,这些细胞中同时也激活了一种已知的在免疫治疗中可起到关键作用的信号通路。研究人员猜测,这两者之间是有因果关联的。Wu教授说,设计免疫疗法的研究人员应该利用这一效应。在治疗手段中结合物理和生化线索双管齐下,以得到更好的疗效。据南澳大利亚大学的John Hayball透露,目前,这项研究中所使用的材料已经用于医疗领域,因此它们可能很快就将得到官方的正式批准。/pp style="text-indent: 2em "北卡罗莱纳大学教堂山分校的Brandon M. Johnson也撰写文章发表了对这一研究的看法。他表示继续延展这项研究是一件很有趣的事,科学家们可以继续探究刺状颗粒与免疫反应之间的深度关联性,同时还可尝试用聚合物等质地更柔软的材料作为替换,看是否能达到类似的效果。/p
  • 聂宗秀研究员:生物颗粒质谱研究
    中科院化学所聂宗秀研究员  聂宗秀研究员在报告中提到,常规质谱的测量的分子量上限是100道尔顿,主要是因为随着粒子质量的增大,其传输速率迅速下降,而传统的检测器依赖于离子的碰撞速度。通常的ESI源是一个非常软性的电离方法,而MALDI在一定程度上会破坏生物颗粒,所以这两种方法都不太适用于研究生物颗粒样品。如果能够把一单个的粒子放入一个装置中,使其长时间的囚禁,那么其灵敏度将大大提高。聂宗秀研究员在实验中使用离子阱作为质量分析器,采用激光诱导软电离作为离子源,得到了正常人的红血球和病人的红血球的质量,还获得了白血病癌细胞的质量、牛痘病毒的质量等。通过采用圆柱型粒子阱,结合现代光学技术,使实验结果大大改进。
  • PM2.5单颗粒检测的新希望
    尽管在上世纪40年代末就出现了与飞行时间质谱相关的第一篇文献,但将该技术应用于ICP-MS却花费了超过50年的时间。而且自ICP-TOF-MS问世以来,市场的反应一直很平淡。尽管它有着更加出色的分辨率,但远不像带有反应、碰撞池的ICP-Q-MS那样已得到了广泛的应用。然而,随着近年来ICP-MS被越来越多地应用于单颗粒或者单细胞检测,ICP-TOF-MS的市场前景可能会迎来转机。目前,大部分单颗粒或单细胞检测工作都是基于ICP-Q-MS的单同位素检测。由于四极杆质量分析器在完成测量上一个同位素到开始测量下一个同位素之间,需要一个50-200微秒的稳定时间(settling time)以稳定质量过滤器。而这个时间通常要长于一个单颗粒在ICP中所形成的离子云的持续时间,因此扫描型分析器实际上是无法在这个瞬时区间完成对多个同位素测量的。而对于具有全谱直读能力的ICP-TOF-MS而言,在这一领域则拥有得天独厚的优势。据东西分析公司内部人士透露,目前该公司正在与核工业研究院某课题组进行合作,尝试利用东西分析的OptiMass 9500 ICP-TOFMS进行PM2.5单颗粒中锂到铀的重金属分析。对于该研究的进展情况,本网将会在未来进行专门的报道。(主编当班)
  • 大咖云集!商用车测试领域的思想碰撞!
    近日,由英斯特朗、奇石乐、IAMT三家商用车行业领先的试验设备供应商联合举办的首届商用车台架及道路测试方法和发展技术研讨会在北京成功召开,共吸引了来自包括北京福田戴姆勒汽车有限公司,北汽福田商用车有限公司、福建奔驰汽车有限公司、宇通客车、中国重汽集团、陕西重型汽车有限公司、中国第一汽车股份有限公司、陕西汉德车桥有限公司、浙江吉利新能源商用车集团有限公司、江铃重型汽车有限公司、南京汽车集团等众多知名车企在内的近70位业内专家,技术精英到场交流探讨。英斯特朗中国区总经理王志勇先生为大会致欢迎辞商用车相比于普通车辆而言,往往承载量更大,一旦发生安全事故,造成的后果往往是巨大的,因而在投用前的测试环节至关重要。模拟的试验情景越接近可能遇到的极端情况,那实际使用中面临的风险就越小。据统计,造成部件故障的诸多原因中,因使用不当或意外事故的比例共占36%,而由设计、材料或者生产过程所导致的情形同样高达30%。由此可见,为了有效抵御这些非小概率的风险,使用可靠及适合的测试设备对于车企而言尤其明智和必要。英斯特朗在商用车结构测试领域拥有非凡的丰富经验,为众多国内外企业依照他们的试验需求提供过各类个性化的测试解决方案。不论是研发验证阶段的零部件、总成测试,还是产品验证阶段的整车测试,英斯特朗都有能力提供令人信服的结果。例如以下便是经英斯特朗Hydropuls作动器测试转向臂后,所得到的转向杆裂纹以及轴头疲劳损害。■ ■■■■对于车桥方面,其设计要求随着技术的发展和用户需求的升级正与日俱增,轻量化,高刚度及动态强度,减少故障率,提高碰撞安全度,耐腐蚀、低成本等是摆在车企研发设计者面前的诸多课题。轴耦合试验台对于车桥道路数据的模拟试验使设计人员能够在台架试验中重现实际路况条件下的载荷。通常而言,车轴的耐久性测试有两种方式:一种是在汽车制造商指定的试车场进行的道路试验,另外一种是轴耦合试验台进行的车桥道路模拟试验,使用的道路谱是被试车辆在指定测试路段上所采集的实际数据。轴耦合试验台由两个对称的加载单元组成,分别布置在静压支撑旋转平台上,这样的设计使得车桥在试验中可以将纵向、横向、垂直作用力以及制动、转向、外倾和动力输入等力矩导入到车桥结构中。方向盘的旋转由伺服控制液压马达完成,同时试验台也可以进行不带转向的试验。英斯特朗轴耦合测试系统实际上,将车辆的道路模拟测试从试车场移至实验室内,还将大大节省车企的时间成本。通常而言,如需完成一辆车的测试要求,若是让用户正常驾驶使用,需要完成50万公里的测试里程,耗时5年;而在拥有多种复杂路谱的试车场进行试跑,需完成2万公里,耗时3~4月;实验室的道路模拟系统却只需200~300小时,且能保证其合计的疲劳损伤与前两者等效,因为其过滤掉了不会造成损伤的测试路段,以缩短测试时间。当然,相较于室外测试,试验台测试还不受天气和日夜变化的影响,并提高了载荷试验的可重复性精度。其显著的测试加速效果帮助车企缩短了研发周期。本次会议期间,英斯特朗的专家们还与会者分享探讨了由新能源汽车行业的发展所带来的相关检测技术的新需求。作为由电池而非燃油提供动力的新能源车,电池可以说是其非常昂贵的主要部件,各地的规范法规严格要求车企对于电池的出厂标准予以保障。在设计层面,越来越多的车型选择将电池直接搭载在车架上,这种结构要求着车辆在经历碰撞时必须保证电池完好无损,而且碰撞测试过程中也面临爆炸的风险。英斯特朗针对此需求设计的解决方案是利用自动快夹系统将被试物载荷固定在台车碰撞系统上,一旦电池因碰撞发生起火、漏电、爆炸等危险情况,测试人员可远程操作快速移除负载,将起火的电池移到安全区域,同时保障台车系统不受损坏。英斯特朗车辆碰撞模拟系统会议另外两家联办企业奇石乐以及IAMT分别展示了他们引以为傲的六分力传感器、实车耐久测试以及负载数据获取方面的经验。此次会议是一次创新的尝试,旨在将商用车测试领域的优质供应商整合在一起,向商用车行业客户展示涵盖多个方面的一站式解决方案。对于与会者而言,他们的收获也是丰厚的,参加一次会议就像看了一场小型的展会,并且深度更深,针对性更强。除了企业本身的介绍内容,本次会议还邀请了多个实际用户现身说法,交流使用体验和心得,实实在在地做到尊重事实,以用户为本。值得一提的是,中国北方车辆研究所作为会议的合作单位提供了大力支持,邀请了所有与会者进行其实验室的实地参观,亲眼观摩难得一见的大型道路模拟系统让人不由得叹为观止。随着商用车行业技术研发和市场需求的日益提高,对商用车结构测试方法和技巧提出了新的挑战和需求。本次会议提供了一个全新且良好的平台,不仅有国内外专家带来的结构测试的前沿技术,也兼顾了来自全国各商用车企业作为用户视角的分享讨论,获得了与会者的一致好评。
  • 对话:“老一辈”及“新生代”科技人的思想碰撞
    《了不起的科技匠人》系列短片的最终章,我们一改往日短视频风格,来一期“对话节目”:仪器信息网特邀请中科院生物物理所原副所长张仲伦张老师,以及滨松光子学商贸(中国)有限公司技术工程师王梓王博士,展开一场关于“老一辈”及“新生代”科技从业者的思想碰撞。他们话理想与愿景,也聊迷茫与焦虑。但他们始终追逐"光",追逐匠心精神,这让他们无论在过去及当下的时代浪潮中,都绽放出别样的光彩。就如张仲论老师所述“科研更像是一场接力赛”,需要不断的奋力奔跑,也需要持续新鲜的血液涌入。最后希望我们科学仪器行业的从业者,无论何时,都是那个秉持初心的“追光少年”。点击下方查看视频《了不起的科技匠人》系列短片介绍:2021年是滨松中国成立10周年,而这10年也恰逢中国光产业蓬勃发展,光子学技术的应用已无处不在。而推动这一发展的,则是许许多多的科技的从业者们。技术的研发和推动得有“匠人”一般的精神,需吃得了苦、耐得住寂寞、并抱有自己的骄傲和信念。正是有一群人秉承了这样的精神,我们的社会才能得以发展。滨松携手仪器信息网推出了“了不起的科技匠人”系列短片,旨在聚焦光产业下的“科技匠人”们,分享心声,共畅理想与未来。往期回顾科技创新的“幕后匠人”:鼎力而行,迎接高光时刻!看仪器人的“细节控”——《了不起的科技匠人》vol.3《了不起的科技匠人》Vol.2,让我们向技术圈的女王致敬!以“光”为名 因光而兴——访滨松光子学商贸(中国)有限公司总经理章劲松
  • 科学家在重离子碰撞实验中首次观测到超核集体运动
    近期,中国科学院近代物理研究所等机构的科研人员参与RHIC-STAR国际合作实验研究,首次在重离子碰撞实验中观测到超核的集体运动。该成果为研究致密核物质环境中的超核-核子相互作用开启了一个新的方向,相关成果于5月24日发表在《物理评论快报》(Physical Review Letters)杂志上。 超子是包含有奇异夸克(s)的重子,核子(质子和中子的统称)中只包含有上夸克(u)和下夸克(d)。超子和核子可以形成束缚态,人们称之为“超核”。理论预言宇宙中的致密天体——中子星的内部存在超子。然而,超子的出现将软化核物质状态方程,这给理论上构建大质量的中子星带来了挑战,被称为中子星研究中的 “超子谜题”。 实验上测量致密核介质中的超子-核子相互作用强度,是解决“超子谜题”的关键步骤,同时对于理解强相互作用的理论——量子色动力学具有重要意义。超核集体运动实验测量数据可用于提取致密核介质中的超子-核子相互作用,有可能解决“超子谜题”。 据研究人员介绍,高能重离子碰撞是在实验室产生和研究致密核物质性质的独特工具。重离子碰撞过程中,粒子由于致密核物质内部压强梯度会产生集体运动(集体流),如直接流、椭圆流等。在实验中,科学家们已经观测到介子、重子、轻核的集体流。由于实验上产生的超核非常稀有,此前超核集体流测量研究尚属空白。 研究人员基于美国布鲁克海文国家实验室的相对论重离子对撞机(RHIC)装置上的STAR实验3GeV金-金碰撞数据,重建得到约8400个超氚(由一个Λ超子、一个质子和一个中子构成)和约5200个超氢-4(由一个Λ超子、一个质子和两个中子构成)。这是目前实验上观测到的最大统计量的超氚和超氢-4数据样本。 研究团队首次在实验上观测到了这些超核具有显著的直接流。同时,他们还提取了超核和轻核直接流在中心快度区域的斜率。经过比较发现,轻核与超核的直接流斜率都存在一个相似的质量标度律,这意味着超核和轻核在重离子碰撞中的产生都可以用“并和过程”来解释。 这项工作为研究有限压力下的超子-核子相互作用开辟了一个新方向,对于建立核核碰撞和决定致密星体内部结构的状态方程之间的联系具有重要意义。 中子星是大质量恒星生命尽头塌缩形成的致密天体。近代物理所供图。
  • 第八届中英国际颗粒技术论坛 (PTF8) 在大理隆重开幕
    2021年7月10日晚,第八届中英国际颗粒技术论坛(PTF8)在云南大理希尔顿酒店隆重开幕。会议由中国颗粒学会、英国化学工程师协会颗粒技术专委会、中国颗粒学会能源颗粒材料专委会、清华大学、格林威治大学联合主办,中国科学院过程工程研究所(中国)与伯明翰大学(英国)共同承办,北京海岸鸿蒙标准物质技术有限责任公司与中国科学院过程工程研究所公共技术服务中心协办。会议主题为“颗粒技术造福人类,低碳制造塑造未来”,吸引中外颗粒界400余名代表出席。中英国际颗粒技术论坛由中国颗粒学会原理事长李静海院士和英国工程院丁玉龙院士创办的系列会议,自2007年至今已成功举办了7届,为国际学术交流、技术洽谈和智慧碰撞提供了一个高效的平台。开幕式现场开幕式由本届会议主席、清华大学魏飞教授主持,本系列会议发起人、英国工程院院士丁玉龙,中国颗粒学会理事长、中国科学院过程工程研究所党委书记、副所长朱庆山,英国工程院院士、赫瑞-瓦特大学教授Raffaella Ocone相继致辞。 魏飞教授主持开幕式丁玉龙院士致辞 朱庆山理事长致辞 Raffaella Ocone院士致辞开幕式结束后,进入大会报告环节,由中国科学院过程工程研究所葛蔚研究员主持。北京大学胡敏教授与赫瑞-瓦特大学Raffaella Ocon教授作大会特邀报告。 葛蔚研究员主持大会报告 北京大学教授 胡敏报告题目:《雾霾形成中的气溶胶化学》赫瑞-瓦特大学教授Raffaella Ocone报告题目:《从应用到基础-多尺度建模的力量》由于时差的原因,大会报告将于7月11日-12日晚间继续进行,会议日程如下,未莅临现场的同仁可扫描下方二维码,观看同步直播。日期时间报告主题报告人7月11日19:00-19:35用于疫苗构建的生物激发颗粒马光辉(中科院过程工程研究所)19:35-20:10沸石在水中酸碱和双官能反应中的吸附和催化作用Johannes Lercher(慕尼黑工业大学)20:10-20:45快速多极边界元方法模拟摩擦和粘附对颗粒间断裂模式的影响Mike Adams(伯明翰大学)7月12日18:30-19:05粒径对锰基富锂正极材料结构和性能的影响研究夏定国(北京大学)19:05-19:40颗粒表征趋势许人良(麦克仪器)19:40-20:15喷雾干燥颗粒结构Andrew Bayly(利兹大学) 扫码线上参会除大会报告外,本次会议特设置《碳基能源化学与工程》、《能量转换材料与工程》、《电化学和物理储能》、《气溶胶与环境》、《颗粒在医疗保健中的应用》、《纳米材料与技术》、《多尺度和多相流》、《颗粒设计,表征与测量》8个分会场,与会代表将围绕颗粒技术的前瞻性思想、创新性方法、革命性技术、全新解决方案和基础理论展开深入探讨和交流,以期为能源、环境、医疗健康和可持续发展等存在的诸多挑战提供解决方案,创造美好未来。7月10日下午,主办方特别安排了沉浸式颗粒前沿讲习班。中国科学院院士、北京大学材料科学与工程学院院长张锦带来《纳米碳材料——主导未来高科技产业的战略新兴材料》主题报告,中国科学院物理研究所研究员李泓带来《先进电池颗粒》主题报告,清华大学理论化学中心主任李隽带来《实验,理论与计算在现代化学中的相互作用》主题报告。3位资深专家通过精彩分享,为与会人员带来一次思维的交汇和智慧的碰撞。 讲习班现场本届会议还吸引了多家颗粒制备、标物及测试仪器厂商参展,马尔文帕纳科、珠海欧美克、飞纳电镜、上海奥法美嘉、上海岩征实验、天津德尚科技等仪器企业纷纷携重磅产品和最新解决方案亮相。朱庆山理事长为优秀团体会员颁发证书参会代表合影
  • 长城汽车自主建设一流汽车碰撞实验室
    伴随着中国汽车工业井喷式增长,国内自主品牌无论是在汽车安全理念,还是汽车安全技术方面,都取得了很大发展,且逐渐与国际接轨。记者从长城汽车了解到,长城汽车作为中国汽车企业代表,率先在业内发起并倡导“三维安全论”,即“车辆的安全来自于对车辆本身、车内乘员,以及路边行人的全方位保护”。  据介绍,2007年,长城汽车开始自主建设汽车碰撞实验室,长城全系车型在生产过程中、出厂前,都可在这里做实景安全模拟碰撞试验,并根据碰撞后产生的真实数据对各款车型进行相应的安全技术调校,保证所有出厂的产品都能达到一个最好的安全状态。
  • 【新品推介】ZR-3922型环境空气颗粒物综合采样器
    ZR-3922ZR-3922型环境空气颗粒物综合采样器,采用滤膜称重法捕集环境空气中的颗粒物(TSP、PM10、PM.2.5),采用溶液吸收法采集环境大气、室内空气中各种有害气体成份。可供环保、卫生、劳动、安监、军事、科研、教育等部门用于气溶胶常规监测。执行标准HJ 618-2011 环境空气PM10和PM2.5的测定 重量法HJ/T 374-2007 总悬浮颗粒物采样器技术要求及检测方法HJ/T 375-2007 环境空气采样器技术要求及检测方法HJ 93-2013 环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法HJ 656-2013 环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范◆采用4.3寸彩色高清液晶触摸屏,且带有按键功能,同时支持按键和触控操作; ◆内置锂电池,在无外接电源情况下连续工作不低于3小时,并可实现快速充电; ◆可配置GPRS模块,进行远程数据传输; ◆体积小,主机重量4kg,方便携带; ◆整机防雨、防尘、防静电及防碰撞性能优异,可保证在雨、雪、扬尘、重度霾天气条件下正常工作; ◆具有三路同时采样功能,可同时采集空气中的颗粒物和气态污染物;◆保温箱具有加热功能,可保证在低温状态下实现正常采样; ◆采用大流量、高负压无刷采样泵采集颗粒物,流量100L/min时,负载能力>9kPa,额定80%负载时,可不间断运行时间>2万小时;
  • 玛莎拉蒂撞宝马,富二代血案引发对汽车碰撞测试关注
    p  strong仪器信息网讯/strong 近日,玛莎拉蒂撞宝马事故引起社会高度关注。据报道,7月3日晚,河南省永城市一玛莎拉蒂汽车与8车发生剐蹭后逃逸,逃逸中又追尾一辆宝马车致其燃烧,事故共导致2死4伤。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 300px height: 201px " src="https://img1.17img.cn/17img/images/201907/uepic/6590b45c-238c-4f88-990a-99d4a444f7b0.jpg" title="1562732412063.jpg" alt="1562732412063.jpg" width="300" height="201" border="0" vspace="0"/img style="max-width: 100% max-height: 100% width: 300px height: 201px " src="https://img1.17img.cn/17img/images/201907/uepic/382c584e-315f-4878-82d4-4c63a8ee109c.jpg" title="1562736025099.jpg" alt="1562736025099.jpg" width="300" height="201" border="0" vspace="0"//pp  在本次事故中,除了“豪车”、“富二代”、“醉驾”、“强行逃逸”这些容易引发舆论焦点的关键词之外,“宝马被撞后瞬间燃烧”也引起了公众的高度关注。价值近300万的宝马760轿车,在已经刹车的情况下,被超过120公里时速的玛莎拉蒂撞击后,瞬间燃烧成火球并导致宝马车内后排两人不幸身亡,驾驶员深度烧伤。/ppspan style="color: rgb(255, 0, 0) "strong  全球四大汽车碰撞测试机构/strong/span/pp  据官方数据显示,全世界每年因交通事故死亡人数高达约125万。为了减轻因交通事故而引起的伤亡,部分国家或地区建立了汽车碰撞机构,以检测汽车的碰撞系数,尽可能的防止安全不达标的车辆流入市场,从源头上杜绝“劣质”产品。目前全球比较权威的汽车碰撞测试机构主要有以下几家:/pp  strong1、中国C-NCAP/strongbr//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/9a7dda16-ea1f-45f1-ba26-4dd79c6b5fdf.jpg" title="logo_c-ncap.png" alt="logo_c-ncap.png"//strong/span/pp /pp  strong2、欧洲E-NCAP/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 250px height: 160px " src="https://img1.17img.cn/17img/images/201907/uepic/1305a1ee-db1e-45ab-a04e-c701b4d01ea5.jpg" title="u=1183268844,3570561062& fm=173& app=25& f=JPEG.jpeg" alt="u=1183268844,3570561062& fm=173& app=25& f=JPEG.jpeg" width="250" height="160" border="0" vspace="0"//strong/pp  /pp  strong3、美国IIHS/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 250px height: 155px " src="https://img1.17img.cn/17img/images/201907/uepic/a009ed4f-013c-4241-92bb-91208d632228.jpg" title="u=4118967668,1510880071& fm=173& app=25& f=JPEG.jpeg" alt="u=4118967668,1510880071& fm=173& app=25& f=JPEG.jpeg" width="250" height="155" border="0" vspace="0"//strong/pp  /pp  strong4、美国NHTSA-NCAP/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 250px height: 142px " src="https://img1.17img.cn/17img/images/201907/uepic/2fb157dc-61b9-4a20-a969-bb2328bd6b66.jpg" title="u=698911361,2565562998& fm=173& app=25& f=JPEG.jpeg" alt="u=698911361,2565562998& fm=173& app=25& f=JPEG.jpeg" width="250" height="142" border="0" vspace="0"//strong/pp  这几家评级机构就像风景名胜一样各具各特色,各个机构都有别于其他机构的“特色”碰撞试验项目,这些项目我们称之为“镇家之宝”也不为过。/pp  span style="color: rgb(255, 0, 0) "strong碰撞测试最高时速只有64公里?/strong/span/pp style="text-align: left "  目前,无论是美国的IIHS,还是欧洲的E-NCAP,以及中国的C-NCAP,在汽车正面碰撞测试时,最高时速设定到40英里(64公里)。因为以现在汽车主流的安全技术,碰撞速度再提高,成绩就很难看了,比如碰撞时速提高到60英里(96公里)之后,再牛、再昂贵的“五星安全”量产车,成绩也会瞬间跌落到“无星”。现实中的致命车祸,多数是在比较低的车速下发生的。据美国NHTSA(道路交通安全管理局)的一个统计,在驾乘人员系安全带的情况下,美国发生的正面碰撞致命车祸,时速50公里以下的超过一半。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 329px " src="https://img1.17img.cn/17img/images/201907/uepic/c100a37e-7745-4b25-bd80-a84976e824af.jpg" title="f31e9a6f65114a62bcecc8e4b60a06b0.jpeg" alt="f31e9a6f65114a62bcecc8e4b60a06b0.jpeg" width="450" height="329" border="0" vspace="0"//pp  /ppspan style="color: rgb(255, 0, 0) "strong  碰撞时速超过64公里会怎样?/strong/span/pp  德国的ADAC(全德汽车俱乐部)曾在2008年8月份做过一次对比测试。测试选用了两辆雷诺拉古娜三厢轿车,这款车在当时欧洲E-NCAP碰撞测试中获得最高等级评价。一辆灰色轿车以时速40英里(64公里)碰撞,另一辆橙色轿车以时速50英里(80公里)碰撞,结果是,时速仅提高了10英里(16公里),但后果要严重多了。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 324px " src="https://img1.17img.cn/17img/images/201907/uepic/1b0d77bd-035d-4efd-b582-cef76cd471bd.jpg" title="9ec203cdfdbc4346840c718dc91fcfe2.jpeg" alt="9ec203cdfdbc4346840c718dc91fcfe2.jpeg" width="450" height="324" border="0" vspace="0"//pp style="text-align: center "时速80公里撞击之下(上图),A柱溃缩,车门明显变形/pp  撞击后的灰色轿车,A柱没有明显变形,驾驶位车门可以正常打开,驾驶位的测试假人没有明显损伤。而时速提高到50英里(80公里)的橙色轿车,A柱明显溃缩,驾驶位车门变形后移,无法正常打开;尽管有安全带和气囊的约束,驾驶位的测试假人的胸部还是撞到了方向盘上,仪表台也明显后移,撞到了假人的腿部。这种情况下,驾驶者受伤严重到什么程度、能不能活着出来,很大程度上就看运气如何了。/pp  strong据悉,玛莎拉蒂撞宝马事件当中,玛莎拉蒂当时时速超过120km/h,妥妥的死亡速度!/strong/pp  因此,即便是安全等级再高的车型提高的只能是车辆本身的安全系数,减少的也只是理论上的人身伤害,并不会保证你安全无虞,而安全行车、改变对汽车安全的态度才是安全性的根本所在。/p
  • 弗尔德仪器助力颗粒表征国际标准化会议黄浦江游轮之旅
    想领略大上海的车水马龙、日新月异、华灯璀璨,黄浦江畔无疑是见证上海百年变迁的不二之选。不管是万国建筑华灯初上的外滩,还是摩登高楼鳞次栉比的陆家嘴,踏上弗尔德仪器赞助的黄浦江游轮之旅,让您在会议思想碰撞之余体验上海的繁华昌盛。? 华灯初上的陆家嘴VS万国建筑的外滩会议介绍随着我国医疗、新能源、增材制造、食品、化妆品和化工等领域的飞速发展,颗粒调整得到广泛应用,特别是微米、纳米材料研发等应用领域,颗粒表征逐渐成为不可或缺的技术手段。2018年10月15-16日,全国颗粒表征与分析及筛网标准化技术委员会在上海组织召开了颗粒表征国际标准会议,来自ISO/TC24/SC4成员国代表、ISO/TC281(精细气泡)专家、ISO/TC229(纳米)专家、欧盟联合研究中心专家、国家标准化管理委员会、中国颗粒表征技术专家等60多位中外来宾济济一堂、共同商讨与制定颗粒表征标准。会议围绕颗粒表征术语、沉降与分级、孔径分布和孔隙度、激光衍射法、动态光散射、图像分析法、液体中分散颗粒表征等主要议题,展开了深入而又激烈地讨论。?作为15日颗粒表征国际标准会议黄浦江游轮晚宴的东道主,弗尔德(上海)仪器设备有限公司科学仪器事业部总经理董亮先生发表了会议开幕致辞,热烈欢迎了到场的中外嘉宾,并对弗尔德仪器旗下的子品牌和产品做出了简要的介绍。?在经历了一天紧锣密鼓的会议之余,弗尔德仪器精心为参会代表们策划了一场美轮美奂的黄浦江游览之旅,洗涤舟车劳顿的疲惫,游览华灯初上的黄浦江畔。莱驰科技Retsch Technology(莱驰科技)作为Retsch的姊妹公司,专业致力于粒度及粒形分析仪仪器的研发和生产,基于ISO13322-2标准设计,Camsizer P4i/Camsizer X2可以一次进样,测量粒度大小、粒度分布、球形度、纵横比、对称性、凹凸度,并可进行颗粒计数、密度及比表面积测量,Camsizer系列已经逐渐成为催化剂、玻璃珠、金属粉末等行业粒度分析的新宠。?Camsizer X2/Camsizer P4
  • 基于高光谱成像技术的青香蕉碰撞损伤检测
    香蕉是中国岭南特色水果之一,香蕉在采收和运送过程中往往处于绿硬期(青香蕉),在此过程中易受到各种碰撞损伤。不同类型碰伤均可加速香蕉果皮活性氧的积累进而导致香蕉果实的衰老腐败 青香蕉受到碰撞损伤后,微生物容易侵染损伤部位,经过催熟过程中的乙烯释放和果实软化后,造成於伤腐烂或黑斑花脸,严重影响其色泽品质和销售价格。因此,亟待寻找一种快速无损检测青香蕉碰撞损伤的方法。为探究有效检测青香蕉早期轻微碰撞损伤的方法,本文结合青香蕉的结构特点利用高光谱技术找出青香蕉关于碰撞损伤特性的特征波长段,实现碰伤程度的区分与可视化。研究为开发青香蕉表面碰伤快速无损检测系统,提高香蕉经济效益具有重要意义。1.材料与方法1.1青香蕉碰撞损伤程度分类青香蕉的品质分级标准14中,果身表面的机械类损伤面积是一个重要指标。标准规定,果身表面无碰压伤的青香蕉属于优等品;碰压伤面积小于1cm² 的属于一等品;碰压伤面积为1~2 cm² 的属于二等品;碰压伤面积大于2cm² ,属于劣等品将不进入市场。将碰伤的香蕉置于温度15℃、相对湿度88%的恒温恒湿环境中保存48 h取出切开,损伤面积如表所示。1.2 高光谱图像采集系统试验可采用彩谱科技有限公司的高光谱成像仪,主要包括高光谱相机、光源、载物台、滑轨、计算机控制硬件和软件系统。光源采用仪器自带的卤素灯,光谱仪的光谱范围为400~1000 nm,采样间隔为2.39 nm,将光谱范围分为256个频带范围。仪器扫描的具体参数设置:曝光时间20 ms,移动台前进速度1.4 cm/s,回退速度2cm/s,镜头与样本距离42 cm。本研究使用的光谱数据由256维图像组成。区别于三维的RGB图像,高光谱图像的数据信息高维且冗余,如果对每份样品的所有图像进行处理,不仅工作量庞大且后续的建模效果不佳。如图所示是同一份样品在不同波段下(500、600、700、800nm)的图像,对比可知:不同波段下的图像其呈现出的碰伤情况存在差异。因此探究青香蕉关于碰撞损伤的特征波段,利用特征波段下的图像提取碰伤部位的光谱数据,可为后续的检测模型提供可靠且精准的数据集。2结果与分析2.1 原始光谱数据预处理结果使用软件进行预处理,首先对原始光谱进行多项式平滑法处理,再采用多元散射校正法对光谱进行预处理,以降低极限漂移和散射效应。对原始样本数据集如图a先进行SG处理,将处理后的光谱曲线再进行多元散射校正法处理。处理后的效果如图b所示。可以看出,预处理后的光谱曲线修正了部分反射率为1的数据,总体曲线更加归一且平滑,噪音点减少,曲线的凹凸处变少。说明该预处理方法效果较好,后续研究所用的光谱数据皆为经过SG和MSC方法预处理后的数据。2.2基于BP神经网络的检测模型和可视化碰伤等级图像通过图像分割流程,将918张灰度图像进图像分割,提取香蕉碰伤部位的轮廓区域,同时利用图像全像素点下的反射率数据,用光谱反射率数据去表示碰伤轮廓区域的每个像素点所代表的信息。对健康样品、轻度碰撞伤样品、中度碰撞伤样品、重度碰撞伤样品的测试集的识别准确率分别为97.53%、92.59%、93.82%和96.29%,平均碰伤程度的判断准确率为95.06%。为了更好地展示分类结果,同时考虑检测的可视化,对每一个像素点用“00”代表健康,标记为黄色RGB(255,255,0) “01”代表轻度碰撞伤,标记为蓝色RGB(67,142,219) “10”代表中度碰撞伤,标记为紫色RGB(128,0,128) “11”代表重度碰撞伤,标记为红色RGB(255,0,0)的方式进行最后的输出显示。其中区域的总体识别结果若有85%以上的相同数值和颜色,那么本区域都用此数值和颜色进行归一显示,最后的可视化图像如图所示。3.结 论本文以青香蕉为研究对象,利用高光谱成像仪采集青香蕉健康表面和不同碰伤程度香蕉的光谱反射率数据和不同波段下的图像信息,结合特征变量筛选对青香蕉的碰撞损伤程度进行了研究,主要结论如下:1)采用3种类型的支持向量机算法,验证了青香蕉碰撞损伤的识别机理以及采用光谱数据和图像信息结合进行无损检测的合理性。2)对通过预处理和异常样本剔除后的数据进行特征波长提取和验证,得到9段特征波长。3)通过获取特征波长段下的图像,提取碰撞损伤区域的轮廓分布边界数据以及该区域的每个像素点对应的光谱反射率数据。将此数据作为BP神经网络的输入层进行训练,最后得到的模型对健康样品、轻度碰撞伤样品、中度碰撞伤样品、重度碰撞伤样品的测试集识别准确率为97.53%、92.59%、93.82%和96.29%。
  • 汽车碰撞标准门槛加高 提升车辆安全配置迫在眉睫
    7月17日,中国汽车技术研究中心(以下简称中汽中心)按《C-NCAP管理规则(2012年版)》进行新规则实施后的第一次正式评价试验,为此,7月6日,中汽中心发布了2012年C-NCAP第二批车型评价结果,这是按照2009年版管理规则进行评价试验的最后一批车型。  据了解,参加此次碰撞的15个车型的试验自4月17日开始,至6月28日结束,每台车均严格按照规则,在进行排放、燃料消耗量试验后,进行3项实车碰撞试验及评分。15款车型中,除4款为C-NCAP管理中心预定计划评价的车型,其他均为自愿申请评价的车型,最终,有10款车获五星评级,4款车为四星评级,1款车为3星评级。  自主品牌取得长足进步  根据公布的测试评价结果,有5款自主品牌车型获五星评级,表明自主品牌汽车的安全技术水平有了显著提升。  C-NCAP测评2009年启动之际,本土车型测试得分常在三星以下。经过持续几年安全改进,这一状况已根本扭转。本次接受碰撞测试的吉利全球鹰GX7以总分50.3分摘得五星+的成绩 奇瑞G3、广汽传祺GS5、东风风神A60和众泰Z300也获五星评级。  合资车型中,马自达3星骋获五星+评级 新骐达、标致308、新福克斯、广汽丰田逸致获五星。  新规则提升获五星门槛  由于之前厂家瞄准现行碰撞标准有针对性地研发设计,使国产汽车五星车型极为普遍。为此,7月17日,中汽中心将实施新的碰撞规则,以提升新车测评获五星的技术门槛 同时对于自愿申请评价车型提出了最低销量要求,以尽可能体现市场上主流车型的安全技术水平。目前,中汽中心已购置好试验车辆。  全新改版的C-NCAP,将具有中国特色的后排假人评分纳入评价结果 正面40%偏置碰撞试验时速从56公里提高到64±1公里 增加低速后碰撞颈部保护试验,即“鞭打试验”项目 将主动安全项目引入C-NCAP,即增加汽车电子稳定控制装置的加分。上述改进将敦促车企进一步提升车辆安全配置。  新标准试验项目增多、速度提高、评分更严格。由于上述变化,新规则的评价总分由51分修改为62分,星级划分也作出了相应调整。
  • 中国科学院大连化学物理研究所开发新型多重碎片化碰撞诱导解离技术
    近日,中国科学院大连化学物理研究所所仪器分析化学研究室质谱与快速检测研究中心(102组)李海洋研究员团队在现场检测微型质谱及应用方面取得新进展,基于自主研发的现场快速检测微型质谱(Anal. Chem.,2022),开发了简单易控、高碎片化效率的新型多重碎片化碰撞诱导解离技术,可实现单次进样条件下获得丰富碎片离子信息,对于化学战剂、D品的准确识别,以及新型合成D品的结构解析具有重要意义。  新型D品层出不穷、种类繁多,成为当前D品犯罪案件的突出特点。此外,D品的种类不断翻新,更具伪装性、隐蔽性和迷惑性,使得检测难度大。因此,开发便携式仪器用于新型D品的及早发现,以及传统D品的现场快速准确识别对禁D工作具有重要意义。李海洋团队前期基于微型质谱关键技术,实现了传统D品和新型芬太尼类D品的定性检测(Anal. Chem.,2021;Anal. Chem.,2021;Anal. Chem.,2019;Anal. Chem.,2019),并在云南边境多个检查站开展了推广应用。  传统共振碰撞解离技术需要多次进样才可以获得多重碎片离子信息。本工作中,基于此前构建的现场检测微型质谱,该团队开发了一种简单易控的新型碰撞诱导解离方式技术,可实现单次进样条件下获取多重离子碎片信息。基于对离子阱内微区电场分布的研究,团队还揭示了该技术的微观本质,即增大离子阱质量分析器的直流偏置电压有利于增强径向电场强度,从而驱动离子进入强射频场获得能量、发生碰撞诱导解离。通过调控电场、离子的初始动能和气压等,该碰撞诱导解离技术可实现100%的碎片化率。该技术还可同时获得多个碎片离子,有利于提升识别准确性,实现痕量D品同分异构体的区分、化学战剂的准确识别等。此外,该技术通过分析母离子以及不同碎片离子之间的质量数差异,可实现对D品的结构解析与分类,适用于新型合成D品早期发现预警,在D品稽查、公共安全等领域具有广阔应用前景。  相关研究以“Radial Electric Field Driven Collision-Induced Dissociation in a Miniature Continuous Atmospheric Pressure Interfaced Ion Trap Mass Spectrometer”为题,于近日发表在《美国质谱学会杂志》(Journal of the American Society for Mass Spectrometry)上,并被选为封面文章。该工作的第一作者是我所102组博士研究生阮慧文。上述工作得到国家自然科学基金、我所创新基金等项目的支持。(文/图 王卫国、阮慧文)  文章链接:https://pubs.acs.org/doi/full/10.1021/jasms.3c00324
  • 冷冻电镜单颗粒技术的发展、现状与未来
    p  作者:黄岚青,刘海广(北京计算科学研究中心 复杂系统研究部)/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong1 引言/strong/span/pp  在低温下使用透射电子显微镜观察样品的显微技术,就叫做冷冻电子显微镜技术,简称冷冻电镜(cryo-electron microscopy, cryo-EM)。冷冻电镜是重要的结构生物学研究方法,它与另外两种技术:X射线晶体学(X-ray crystallography)和核磁共振(nuclear magnetic resonance,NMR)一起构成了高分辨率结构生物学研究的基础,在获得生物大分子的结构并揭示其功能方面极为重要。/pp  电子显微三维重构技术起源于1968 年,D.J. De Rosier 和Aaron Klug 在Nature 上发表了一篇关于利用电子显微镜照片重构T4 噬菌体尾部三维结构的著名论文,提出并建立了电子显微三维重构的一般概念和方法。Aaron Klug 本人也因为这个开创性的工作获得了1982 年的诺贝尔化学奖。/pp  为了降低高能电子对分子结构的损伤,Kenneth A. Taylor 和Robert M. Glaeser 于1974 年提出了冷冻电镜技术,并且用于实验研究。经过三十多年的发展,冷冻电镜技术已经成为研究生物大分子结构与功能的强有力手段。冷冻电镜本质上是电子散射机制,基本原理就是把样品冻起来然后保持低温放进显微镜里面,利用相干的电子作为光源对分子样品进行测量,透过样品和附近的冰层,透镜系统把散射信号转换为放大的图像在探测器上记录下来,最后进行信号处理,得到样品的三维结构。/pp  在超低温的条件下,电子带来的辐射损伤被有效控制。即便如此,分子样品所能承受的辐射剂量也是非常低的,导致信噪比非常低。另外,随着观测的进行,额外的电子会累积而造成分子的移动,导致获得的图像变得模糊。这就好比用一个简单的傻瓜相机拍摄在雨中飞驰的子弹,得到的影像必然是模糊的并且充满噪音。因此,冷冻电镜的方法技术在很长时间内只能确定个头比较大的样品的结构,比如病毒颗粒的结构,而且通常分辨率都不高。然而随着工程技术和算法的不断发展,能够确定的分辨率也越来越高(图1(a)),2016 年发布的谷氨酸脱氢酶结构的分辨率甚至已经达到了1.8 Å 。与此同时,也有越来越多的通过冷冻电镜技术得到的研究成果发表在高水平的期刊上(图1(b)),冷冻电镜正备受科学界的关注。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/5b2ef847-cad0-4d88-b1ad-ebf14bd21e9c.jpg" title="1.jpg"//pp  图1 冷冻电镜技术和单颗粒重构技术越来越备受关注(统计数据来源于EMDataBank )(a)不同年份中利用冷冻电镜单颗粒重构技术能够达到的最高分辨率 (b)通过冷冻电镜技术进行的研究成果在不同杂志上发表的论文数/pp  在最近几年,冷冻电镜技术有了革命性的进步,主要得益于三个方面的突破。首先是样品制备,通过利用薄膜碳层甚至石墨烯可以用更薄的冰层包裹分子样品来提高信噪比。第二个突破是电子的探测技术,也就是电子探测器的发明。在300 keV 电子的轰击下,传统的器件都会被高能量打坏,因此在电子探测器出现之前,冷冻电镜中使用的CCD相机需要将电子打在探测器上变成光信号,再通过CCD 把光信号转成电信号后得到图像,“电光—光电”转换的过程降低了信噪比。而现在电子探测器能够直接探测电子数量,同时,互补型金属氧化物半导体(CMOS)感光元件的应用使得探测器支持电影模式(movie mode),可以在一秒钟之内获得几十张投影图片。通过后期对样品进行漂移修正,再把这几十张图片叠加起来,从而大幅提高成像的信噪比。模糊的子弹一下子变得清晰,冷冻电镜的分辨率不断上升。第三个突破是计算能力的提高和软件算法的进步。冷冻电镜的模型重构通常需要对几万甚至几十万张投影图片进行分析、组装和优化。这需要先进的计算资源配合有效的算法才能实现。基于贝叶斯理论的模型重构框架解决了这个问题,我们在下文中详细介绍。综上所述,冷冻电镜技术不仅提高了空间分辨率,而且可以应用于很多以前不能解决的生物大分子的结构研究。/pp  具有里程碑意义的成果是,2013 年加州大学旧金山分校(UCSF) 程亦凡和David Julius 的研究组首次得到膜蛋白TRPV1 的3.4 Å 近原子级别高分辨率三维结构,结果发表在Nature 上。我国在冷冻电镜的应用领域也有很大突破,代表性工作包括清华大学的施一公研究组和剑桥大学MRC 实验室Sjors H.W. Scheres 研究组合作在2015 年获得的γ 分泌酶复合物结构( 图2(c)), 以及2015 年清华大学高宁研究组和香港科技大学戴碧瓘研究组合作得到的3.8 Å 的真核生物MCM2-7 复合物结构 2015 年北京大学毛有东研究组、欧阳颀研究组与哈佛医学院吴皓研究组合作得到炎症复合体的高分辨率三维结构(图2(a)) 2014 年中国科学院生物物理研究所朱平研究组和李国红研究组合作得到的30 nm 染色质左手双螺旋高级结构(图2(b))以及2016 年中国科学院生物物理研究所柳振峰、李梅、章新政三个研究组合作得到3.2 Å 的捕光复合物II 型膜蛋白超级复合体结构。这些成果在结构生物领域得到巨大的反响,这也使得冷冻电镜高分辨率成像技术获得空前的关注。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/44d05be3-281b-4507-b0fc-9d200025422f.jpg" title="2.jpg"//pp  图2 我国在冷冻电镜领域中获得高质量的研究成果(a)近原子分辨率的炎症复合体结构(图中NBD为核酸结合结构域,HD1 为螺旋结构域-1,WHD为翼螺旋结构域,HD2 为螺旋结构域-2,LRR为亮氨酸重复序列) (b)30 nm 染色质左手双螺旋高级结构 (c)3.4 Å 的人源γ 分泌酶复合物结构(图中NCT是一种I 型单次跨膜糖蛋白,APH-1 为前咽缺陷蛋白-1,PS1为早老素-1,PEN-2 为早老素增强子-2)/pp strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 2 图像处理技术/span/strong/pp  经过多年的发展,目前冷冻电镜的数据处理部分主要包含了以下的流程(图3):/pp  (1) 衬度传递函数的修正(CTF correction)/pp  (2) 样品分子投影数据的筛选(particle selection)/pp  (3) 二维投影数据的分类和降噪(2D analysis)/pp  (4) 三维模型的重构和优化(3D reconstruction and refinement)/pp  (5) 多重构象的结构分析(heterogeneity analysis)/pp  (6) 对重建结构分辨率的分析(structure resolution assessment)/pp  (7) 结合生物化学原理和实验数据对三维结构的解读(model interpretation and validation)/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ef81cf1e-580c-4eda-9e77-e2edc542f953.jpg" title="3.jpg"//pp style="text-align: center "  图3 冷冻电镜数据分析处理流程/pp  图像处理软件的发展对冷冻电镜单颗粒重构技术极其重要,当前广泛使用的电镜分析软件系统主要包括SPIDER,EMAN2, FREALIGN,SPARX,RELION等。对于刚刚接触单颗粒重构技术的人来说,更偏好集成的软件套装来完成整个分析流程。我们在表1 中列出了大部分主流的综合冷冻电镜图像处理软件,以供参考。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/f4fafde5-da41-422a-acc4-bcd118be0c8e.jpg" title="4.jpg"//pp style="text-align: center "  表1 冷冻电镜中流行的图像处理软件/pp  strong2.1 衬度传递函数估计与修正/strong/pp  衬度传递函数(contrast transfer function,CTF)是在数学上描述通过透射电子显微镜得到样品图像上的像差变化。准确地判断衬度传递函数对于确认显微图像的质量以及后续的三维结构重建极为重要。常用的估算衬度传递函数的参数软件是CTFFIND4。确定了CTF 的参数以后,就可以对采集到的冷冻电镜图像进行修正。这个修正过程其实就是图像处理中的图像复原技术。/pp  strong2.2 颗粒挑选/strong/pp  接下来需要从原始数据中筛选出颗粒投影,也被称为“颗粒挑选”,颗粒挑选的好坏也将影响所有后续的分析和处理过程,是一个重要并且繁琐的步骤。颗粒挑选方式可以分为手动挑选、半自动挑选和完全自动挑选这几种。/pp  在早期的分析中,对于结构的了解还非常少,优先考虑的都是人工挑选。但是自动的颗粒图像获取方法的出现使得在很短时间内可以收集数十万张颗粒图像,人工挑选大量的颗粒图像不太现实,并且人工的挑选通常会过于集中于某一类颗粒图像,导致遗漏和偏差。/pp  strong半自动和全自动的方法主要有以下三类:/strong/pp  (1)通过例如降噪、反衬增强、边缘算子等图像形态学方法搜索区域,基于数字图像处理学的原理,将颗粒图像与背景分离开来。/pp  (2)基于模板的方法,通过扫描数据图像和已知的模板比较来挑选出潜在的颗粒图像,模板的来源通常为手动选出的数据图像中较为清晰的颗粒图像,或者是已知结构的投影。/pp  (3)结合无模板和有模板的方法,通过一些有监督的机器学习算法进行颗粒挑选。/pp  随着图像识别领域中深度学习方法的流行,各类基于深度学习的颗粒识别框架也被引入到颗粒挑选的过程中。随着深度学习方法的发展,相信如何把深度学习方法应用到单颗粒冷冻电镜图像分析领域的研究将会越来越多。/pp  strong2.3 二维图像分析——颗粒图像的匹配与分类/strong/pp  二维颗粒图像的分类是获取三维结构过程的第一步。对二维图像的分析包括两部分:颗粒图像的匹配和颗粒图像的分类。/pp  匹配的过程通常会对颗粒图像应用一些变换操作,通过关联函数去判断不同颗粒图像之间的相似程度。图像匹配的算法主要分为两种,即不依赖模型的方法和基于模型的方法,取决于是否存在利用样本先验信息得到的模板。/pp  随着图像匹配的完成,颗粒图像需要进行分类。主要利用多元统计分析和主成分分析方法等算法,其他流行的二维颗粒分类技术还有神经网络分类,将图像在二维空间自组织映射(self-organising mapping,SOM)再进行分类和排序。/pp  二维图像分析的目的是,首先通过图像匹配消除旋转和平移的误差,利用类内紧致、类间离散的原则进行图像分类,最终可以对类内颗粒图像进行平均,提高信噪比,从而实现对高分辨率三维结构的构建。/pp  strong2.4 模型重构和优化/strong/pp  模型三维重构的基础是中心截面定理,重构过程中的关键问题是如何确定每个颗粒图像的空间角(orientation determination)。大多数模型重构和优化算法都是基于投影匹配(projection matching)的迭代方法。简单说就是,先利用粗糙的三维结构模型,进行投影得到参考的图像,和实验颗粒图像进行比对,根据结果来更新空间方位参数,继而构造新的三维结构,对实验图像的空间方位修正,形成迭代的过程,直至收敛就获得了最终的三维模型。/pp  strong2.5 分辨率的确定及二级结构的确定/strong/pp  在模型优化的过程中,通常有很多指标给出结构的分辨率信息。目前一个较为广泛使用的分辨率信息参数是被称为傅里叶壳层关联函数(Fourier shell correlation,FSC)曲线,并通过在曲线上选取一个合适的阈值来判定分辨率。/pp  在模型优化中经常伴随着过拟合的问题。过拟合的出现通常由于在优化过程时无法分辨“噪声”与“信号”。为了避免过拟合对分辨率的误判,最近一种被称为“黄金标准”(gold standard)的优化过程开始被广泛使用。/pp  根据不同的分辨率,可以从结构中得到不同的信息量。按照分辨率数值大致分为三个范围:/pp  (1)结构分辨率大于10 Å 的生物大分子结构被视为低分辨率的结构,在低分辨率的结构范围内只观察得到一个大致的整体形状,以及有可能分辨出主要成分的相互位置关系。/pp  (2)一个中等分辨率的生物大分子结构精度大约在4—10 Å 之间,在这个分辨率范围内的生物大分子结构已经可以得到一些二级结构的信息和分辨出大部分组成结构的相对位置关系。分子结构之间如果存在构象变化也可以分辨出来。/pp  (3)高精度甚至是近原子级别的分子结构分辨率可以达到4 Å 以下。在高分辨率的三维结构中,可以准确地看见如α肽链等的二级蛋白质结构以及部分单独的残基,多肽链的结构变得清晰起来。同时高分辨率的分子结构可以描述精确的构象变化。/pp  总之,FSC 曲线等标准提供的分辨率是一个有指导意义的数字,不可作为绝对参考来评价所获得的模型质量,需要批判地对待,尤其是要与生物分子系统的生物化学知识相结合。/pp  strong2.6 三维结构的多构象性和动态分析/strong/pp  生物大分子通常具有内禀的柔性,所以生物分子的动态结构变化以及结构的不均一性一直是结构生物学的研究重点之一。在晶体状态下,生物分子的结构变化被晶格约束,一般只提供一个静态的结构和有限的动力学参数。冷冻电镜相比晶体学方法的优势在于可以捕捉生物分子在溶液中的形态,并记录下不同构象下的投影。因此针对冷冻电镜的数据可以进行多构象的重构,现有的一些算法是通过聚类分析、最大似然法分析等对多构象进行分析,得到的生物大分子结构形态和构象差异还需要结合分子功能来检验分子结构的合理性。/pp  strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "3 最新进展和突破/span/strong/pp  strong3.1 最大似然估计理论/strong/pp  近年来在单颗粒分析中取得重大突破的应当是最大似然估计(maximum likelihood)理论。最大似然估计的理论可以贯彻整个单颗粒技术图像分析的过程,在图像匹配,2D、3D分类 和模型优化上均可以应用,是一个强有力的理论工具。最大似然估计的算法已经在RELION、FREALIGN 等软件中实现,方便普通用户使用,这对于推动冷冻电镜成像技术的应用有重大意义,近三四年来有许多突破性的近原子级别分辨率的分子结构大多是由基于最大似然估计理论的分析软件得到。/pp  3.1.1 减少计算需求/pp  最大似然估计算法的计算量很大,如何降低计算量是一个重要问题。过多的计算资源消耗曾经阻碍这个方法在冷冻电镜单颗粒重构中的广泛应用。在减少最大似然算法在冷冻电镜应用中的计算需求方面,有两个重要的贡献是空间降维(domain reduction)算法和网格插值(grid interpolation)算法。/pp  我们最近在研究一个新的方法来对旋转参数进行分步处理,初步的结果显示这种方法可以把计算复杂度降低一个维度,这个方法可很好地应用于高信噪比的数据处理,但对于低信噪比的数据分析还需要对该方法进行改进。/pp  3.1.2 对最大似然方法的未来展望/pp  在未来的研究中,关注点是减少计算的耗时和增加准确度。通用图形处理器(GPU)的应用和CUDA 编程框架已经显示出了在高性能计算领域的威力,研究表明GPU 技术可以显著减少计算时间,而RELION 也将发布支持GPU 计算的2.0 版本。/pp  在加快计算速度的同时,提高模型的重构的准确性则更为重要。如何提高颗粒图像的准确性以及最大似然方法在这些方面的应用还有待深入探索。总而言之,最大似然方法独特的、可扩展的统计理论框架可以适用在冷冻电镜的各种问题上,如多构象、低噪声、信息缺失中均有很好的应用。/pp  strong3.2 流形嵌入方法(Manifold Embedding)/strong/pp  自然界的分子过程通常是连续的,比如三磷酸腺苷(ATP)合成酶等分子结构的状态变化通常都是连续的。现有的方法只能得到有限的、若干个离散的构象变化,限制了我们对于分子结构的进一步观察。而流形嵌入法则是通过将颗粒图像映射到具有特定拓扑结构的参数空间(manifold space),可以分辨出更为细致的动力学变化,进而实现对生物分子连续的结构变化过程的研究。Ali Dashti 等人已经利用这种方法成功刻画出核糖体的结构变化路径。/pp  strong3.3 揭开表面看实质/strong/pp  冷冻电镜对更为复杂的结构并没有很好的处理方式,在一些分子量比较大,包含多层的病毒结构研究中,一直没有高分辨率的三维模型,这也是由于病毒普遍具有对称失配的特性,基因结构被壳体完全覆盖,无法通过二维图形处理的方式对内部结构直接进行重构。刘红荣教授通过改进衬度分离方法展示出了解决该类问题的途径,其发展的新方法已经成功应用在一个多面体衣壳NCPV的病毒颗粒(图4)上,通过该重构方法,使得外部的衣壳结构(图4(a))和内部的基因组结构(图4(b))分离,成功得到包含在内部的dsRNA 近原子级高分辨率结构和分布。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/7ab0c5f3-c403-4231-924f-9900a3758eb7.jpg" title="5.jpg"//pp  图4 利用衬度分离方法得到对称失配情形下的病毒颗粒结构(a)外部的衣壳结构 (b)内部的基因组结构/pp  strong3.4 罗马不是一天建成的(Building Protein in One Day)/strong/pp  最近的研究成果显示,最大似然估计算法能够更好更快地完成三维重构,多伦多大学的Marcus A. Brubaker 教授针对最大似然估计算法提出了优化,有效地缩短了三维重构所需的时间。对传统迭代算法极度依赖于初始模型结构的缺点进行改进,同时通过采样优化的方式降低了计算量,减少计算时间,据称这些优化可以达到100000倍的加速,利用一台计算机工作站在一天内就能完成模型重构。/pp strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 4 展望与总结/span/strong/pp  冷冻电子显微镜技术已经发展成为一个成熟的方法,应用于各种复杂的生物分子体系的高分辨结构研究。按照目前的发展势头,解决生物分子结构组(structural proteome)的问题已经不是遥不可及的了。在解决单一静态结构的基础上,冷冻电镜也展示了其研究多构象体系的潜力。下面对冷冻电镜在结构生物学研究领域的应用做一些大胆的展望,希望能抛砖引玉。/pp  strong4.1 解决膜蛋白的结构/strong/pp  由于膜蛋白是镶嵌在磷脂分子构成的细胞膜内,目前在冷冻电镜领域的样品制备还没有很好的处理方法,因此还很少见到对膜蛋白的结构解析。随着技术的发展,新的试剂分子或者纳米尺度的容器可以用来制备单一性很高的稳定的细胞膜以及镶嵌在内的膜蛋白。这样就可以利用冷冻电镜的方法对膜蛋白进行结构研究。目前在纳米盘(nanodiscs)的研究领域已经取得了一定的进展,对/pp  冷冻电镜解析高精度的膜蛋白结构,我们拭目以待。/pp strong 4.2 细胞内分子结构测定:从溶液内(in vitro)到细胞内(in situ)/strong/pp  当前的高分辨分子结构基本都是在溶液中提纯出来的分子样品,也就是通常所说的in vitro 实验。现在可以利用快速冷冻的方法把细胞固定,再用高能粒子枪对细胞进行高精度切片。在细胞的某些部位,常常有大量同类分子聚集,比如在内质网(endoplasmic reticulum,ER)部分有很多核糖体,在细胞骨架上会有大量的肌动蛋白(actin)分子。对这些切片进行成像研究可以获取这些分子在细胞环境的结构信息。/pp strong 4.3 细胞结构和分子在细胞内的分布:从部分到整体/strong/pp  电镜可以用来做断层成像(cryogenic computed tomography,cryo-CT),应用于亚细胞层面的研究,比如细胞器的结构,蛋白质分子的分布,以及一些细胞骨架的构成。与超低温样品操作结合,cryo-CT 可以提供更高分辨率的信息,衔接分子层面和细胞层面的知识,对于了解细胞功能至关重要。在电镜成像研究领域,这将是一个有广阔前景的课题。/pp strong 4.4 多构象的识别和自由能景观确定/strong/pp  人们开始不满足于近原子级别分辨率能够提供的信息,想要进一步刻画分子结构连续变化的状态。得益于冷冻电镜的成像特性,相对其他技术而言,冷冻电镜技术在时间尺度的系综上具有优势。在冷冻电镜下分子结构的动力学研究中,有两个值得关注的趋势,分别是能够获取分子结构“ 慢” 反应过程(10—1000 ms) 时间分辨(time-resolved)的冷冻电镜技术,以及能够分析出连续构象变化的分类算法。获取短期反应过程(10—1000 ms)分子结构的基础是在准备样本过程中分子反应的速度慢于冷冻样本的时间,目前混合喷雾(mixing-spraying)等快速冷冻技术的实现使得一些较慢的反应过程可以看到动力学变化。而流形嵌入算法在分类过程中取得突破,在更好地利用冷冻电镜观察分子的平衡态结构动力学变化和展现自由能景观上取得了令人鼓舞的成果。/pp strong 4.5 从静态结构到动态分子电影/strong/pp  生物分子在室温下是活跃的,而且大多数的分子功能是通过结构的变化来实现的。基于X射线, 尤其是最近发展的X 射线自由电子激光(XFEL)的结构生物学的研究重点之一便是实现时间分辨的结构生物学研究(time-resolved structure determination)。到目前为止,基于X 射线的研究取得了很大的进展,但主要还是局限在对晶体的衍射方面,比如对光合作用过程中水分子分解的研究和光敏黄蛋白的光吸收过程的研究。三维冷冻电镜的单颗粒成像技术最有希望在单分子水平上实现对时间分辨的结构变化研究,同时,这对于样品制备和实验操作提出了非常高的要求。/pp strong 5 结束语/strong/pp  冷冻电镜的技术突破及其在生物分子结构领域的应用把我们对分子生物学的研究推进了一大步,开始探索未知的区域。立足于解决单一构象的基础,对多构象以及动力学过程和热力学的研究也需要展开,这需要对现有技术进行提升并与其他方法进行结合,计算建模和模拟的方法也需要紧密结合起来,实现对生物分子系统的集成研究。/pp  致谢 感谢北京大学欧阳颀教授对文章写作提出的宝贵意见。/p
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • 双碳目标下,科学仪器行业发展机遇在哪里?——访中国颗粒学会秘书长王体壮
    颗粒是物质存在的普遍形态,涉及固、液、气三相。颗粒学是研究颗粒的形成、形态、性能、运动和变化规律及其工程应用的科学,由大量的基础科学和许多相关的应用技术组成。颗粒学研究领域有哪些?颗粒测试与表征技术有哪些?碳达峰目标、碳中和愿景将为颗粒测试仪器厂商带来哪些机遇?近期,仪器信息网在ACCSI2021现场采访了中国颗粒学会秘书长、中国科学院过程工程研究所副研究员王体壮,请他就上述问题进行了分享。王体壮秘书长介绍到,颗粒学是一门交叉学科,不同于物理、化学等独立的一级学科,主要针对具体问题进行研究和开发,并以高级武器超高声速飞行器为例,绘声绘色讲述其表面材料研究与颗粒学之间的关系。超高声速飞行器因应用环境极端,对表面材料性能要求极高。其表面材料在设计、开发、应用过程中涉及物理、化学、力学、热力学、流体力学等多学科,是单一学科所无法完成的,此时,颗粒学跨学科研究的优势就凸显出来了,可综合运用多学科知识解决这一问题。目前颗粒学已经成为一门跨理、工、农、医等多领域的交叉性很强的技术科学,涉及材料、能源、环境、医药、化工、矿产等行业。可以说,与人民生活息息相关的重要领域,都与颗粒学密切相关。谈及颗粒表征技术及相关仪器厂商最关注的发展机遇,王体壮秘书长表示,任何科学研究和生产实践都离不开测量技术,在社会发展的大潮中,科学仪器是不可或缺的表征手段。随着“十四五”规划利好政策和双碳目标的推进,科学仪器行业将迎来巨大发展空间,仪器企业要有高瞻远瞩的战略布局,及时把握新机遇。当前实现双碳目标的最有效方法就是减少二氧化碳的排放,二氧化碳减排有多种途径,仪器企业应沿着这些途径去拆解与科学仪器的关系。如能源生产过程中,国家将重点优化能源产业配置,大力发展新能源产业,同时我国是能源消耗大国,建材、水泥、钢铁、化工等传统行业均属于高耗能产业。仪器厂商应深入思考,这些行业在工业化生产中,为提高产能、降低能耗,需要表征哪些数据,需要用到哪些表征手段… … 更多精彩内容,请观看本次采访视频。
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.
  • 新标准:颗粒 微生物气溶胶采样和分析(GB/T38517-2020)
    由我司(青岛众瑞智能仪器有限公司)参与起草的《颗粒 微生物气溶胶采样和分析通则(GB/T38517-2020)》已于2020年3月6日正式发布,并将于6月1日正式实施。 本标准为环境空气中细菌、病毒、真菌和毒素等不同特性的生物气溶胶(也称之为空气微生物)的采样提供了采样方法和生物气溶胶的分析,其中,采样方法包括采样原理、采样器的选择和采样过程中应关注的问题;分析方法包括分析方法的类型、方法的适用性、分析结果的表达方式。 一 生物气溶胶采样方法及采样器 众瑞仪器相关产品 ZR-2000型智能空气微生物采样器是经精心研制的新型智能空气微生物采样器,主机配备不同的采样终端可以实现安德森采样、冲击式采样、过滤式采样等功能,做到一机多用,具有极高的性价比。该仪器可广泛应用于环保、医疗卫生、食品工业、发酵工业、制药工业、农牧业、工矿企业、劳动卫生以及其它相关研究部门。 1 撞击式采样原理:利用惯性作用,通过喷嘴、喷口或裂隙的加速作用把生物气溶胶粒子采集到固体介质表面的气溶胶采集方式。 众瑞仪器相关配件 ZR-A01型二级安德森采样头是微生物采样专用器皿,采用惯性撞击原理,既能测定空气中微生物的总数,又能区分可吸入微粒和不可吸入微粒的数量。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:?标准撞击法筛孔式工作方式。?标准二级分层生物气溶胶采样。 ZR-A02型六级安德森采样头是符合国际标准的多级采样装置,用于监测细菌和真菌的浓度和粒径分布,它可以真实模拟人类肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度,都具有较高的准确度和可靠性。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:?标准撞击法筛孔式工作方式;?标准六级分层生物气溶胶采样; ZR-A05型八级安德森采样头是一个多孔、层叠碰撞(空气)取样器,通常用于环境中的需氧细菌和真菌浓度和颗粒大小分布的测量。该采样器可以根据人体肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度。采样器的每级中可放置一个装有琼脂培养基的培养皿,用于收集采样空气中的微生物粒子,微生物粒子会随气流的撞 击留在培养基上。随后培养皿可以取出,进行培养后,用菌落计算公式计算。技术特点:?标准撞击法筛孔式工作方式;?标准八级分层生物气溶胶采样; 2 冲击式采样能够使具有足够大惯性的生物气溶胶粒子撞击液体并进入液体介质中的气溶胶采集方式。 众瑞仪器相关配件 ZR-A03型冲击式采样头是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B01型空气微生物吸收瓶(AGI-30)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子就冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B02型空气微生物吸收瓶(AGI)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 二 生物气溶胶采样方法的选择 新标准中,生物气溶胶细分为细菌、真菌、病毒及毒素四钟,采样方法主要分为定量、定性两种,以细菌为例(其他种类可点击“阅读原文”下载原文件查看):
  • 实例解析:如何防止混合溶剂“碰撞”导致的样品损失?
    之前聊过关于不同沸点的单一溶剂在蒸发过程可能产生的暴沸以及浓缩过程中可能产生的暴沸都可以用Dri-Pure技术解决。最糟糕的混合溶剂“碰撞”问题是否也能解决呢?1、“容易碰撞”的溶剂类型下面列举的一些“容易碰撞”的溶剂类型,看看是否你也遇到过:● 极易挥发的溶剂;● 含有可溶性气体的溶液(e.g.一水合氨);● 两种溶剂混合,容易蒸发的溶剂密度更大(倒置);● 两种溶剂的密度非常接近,但溶液可能不能很好地混合;● 溶剂或溶剂混合物中有导致碰撞的溶质(e.g.HPLC馏分);● 干燥后的化合物会在溶液表层形成覆盖物的溶液。 典型例子一个典型的例子是二氯甲烷(又称DCM)和甲醇。由于DCM的密度更大但比甲醇更容易蒸发,这意味着DCM会下沉到底部但理论上应该先沸腾,我们称之为倒置。这种混合溶液特别容易发生碰撞,底部溶剂暴沸会导致样品飞溅。(即使是完全混溶的溶剂,在高离心力下也能发生一些分离)2、如何解决溶剂暴沸?通过使用GeneVac系统,你完全不需要担心这些,只需要选择相应的溶剂类型,一键开启。 GeneVac S3 HT GeneVac 4.0 EZ-2实例说明——DCM和甲醇例如:有一个混合溶液(离心后)在1cm DCM的顶部分离出1cm甲醇,在500g离心力作用下,管中1cm深的甲醇受到压力比表面高出近400mbar(比重为0.79)。 我们设定从25℃开始,压力先下降到550mbar,而DCM的沸点是25℃,如果不是因为上面的甲醇,DCM现在就可以蒸发了。但因为有Dri-Pure技术存在,即使腔体内的气压是550mbar,DCM实际上受到的压强是950mbar,所以还无法沸腾。因此,压力继续下降到160mbar时,甲醇的沸点是25℃,所以甲醇开始在表面沸腾。当下降到150mbar时,DCM将受到总压力为550mbar开始沸腾。此时甲醇层可能已经变浅了,所以实际上400mbar的压力差会由于甲醇的蒸发一直在减少,但是蒸发会带走热量,所以整个溶液也会冷却一点,降低温度从而进一步延迟DCM沸腾的时间。 未采用Dri-Pure 防暴沸技术 Dri-Pure 防暴沸的效果确切的数字在不同的情况下会有所不同,但需要注意的是,仍然存在一个节点会有大量的甲醇层,但它下面的DCM想要开始沸腾。另外,机器内置Sample Guard功能会通过红外探温器来探测支架和样品温度,防止温度过高引起溶剂沸腾,并且不直接接触样品,避免样品的污染与损坏。 3、GeneVac助力加速研发效率 GeneVac 4.0 EZ-2系列以及S3 HT系列真空离心浓缩仪搭载特有的Dri-Pure技术,能够轻松解决高低沸点溶剂,不管是单一溶剂还是混合溶剂都有出色的表现。并且提供高通量的溶剂处理能力,同时处理上百个到上千个样品,缩短研发周期。 同时,有上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等。一台好的溶剂蒸发工作站可以帮助您加速前期研发的效率,很大程度上保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,并且,该系列还具备更多高端功能,详细可拨打热线400-006-9696或者点击填写表单进行咨询。
  • 质谱创新,精准识霾 | 基于ICP-MS的大气颗粒物无机元素在线监测系统 新品上市
    谱育科技成立5周年 诚意之作始终以客户为中心重磅打造一系列新品,敬请期待!谱育出品,必属精品SUPEC 7030 大气颗粒物无机元素在线监测系统基于ICP-MS技术在线实时捕集、在线微波消解达到实验室级数据质控水平根据国务院《打赢蓝天保卫战三年行动计划》和生态环境部《2019年国家大气颗粒物组分监测方案》对大气颗粒物组分监测的要求。谱育科技推出了基于ICP-MS技术的SUPEC 7030 大气颗粒物无机元素在线监测系统和相应的颗粒物源解析方案,通过快速、实时、精准地测定环境空气颗粒物中无机元素组成,结合PMF(CPF)等模型开展颗粒物污染来源解析,为国家颗粒物污染防控提供助力。系统核心特点01数据精准采用在线颗粒物全采集、在线微波消解和ICP-MS分析技术,实时质控使现场分析达到实验室级数据质量水平。02方法先进采用完全符合HJ 657-2013标准方法的ICP-MS在线监测技术,灵敏度高、检出限低、动态范围宽、时间分辨率高,让在线监测数据更加可靠。03适应性强历经考验的ICP-MS技术具有超强可靠性、质量轴稳定性和环境适应性,满足复杂环境使用需求。04扩展性优系统全面覆盖《2019年国家大气颗粒物组分监测方案》规定的元素检测需求,还能够扩展至更多元素。系统核心组成01在线实时捕集 智能采样系统基于成熟的大气颗粒物蒸汽喷射采样(SIPS),可准确切割 PM2.5/PM10, 实现大气颗粒物无损失、在线、实时捕集,满足多种应用场合,采样周期可灵活设置,在重污染天气低至5min。02在线微波消解基于在线微波消解,可彻底消解大气颗粒物,消解体系采用HNO3、HF,能确保硅酸盐完全转化,准确测量所有元素。03确保分析稳健抗温湿度交变的质谱、自激式全固态ICP源和耐复杂基质的第二代分布式碰撞反应池相结合,可确保ICP-MS对复杂的颗粒物样品进行稳健分析。04确保数据质量系统能够在每次分析的同时进行自动校准,实现零点、量程漂移校正和质控样品分析,在线实时质控确保数据质量。数据深度应用(*点击查看大图)①可捕捉重污染过程,准确识别主要污染因子,实现无机元素污染画像;②通过Spearman、PMF、CPM等模型分析,精准溯源,提供靶向防治依据。
  • 《2011中国环境状况公报》发布 细颗粒物污染逐步凸显
    中新网6月5日电 6月5日是世界环境日,国务院新闻办召开新闻发布会,通报《2011中国环境状况公报》。环境保护部副部长吴晓青在会上表示,2011年的监测结果表明,全国环境质量状况总体保持平稳,但形势依然严峻,面临许多困难和挑战。  吴晓青介绍说,据统计,2011年全国废水排放量为652.1亿吨,其中化学需氧量排放量为2499.9万吨,氨氮排放量为260.4万吨 废气中二氧化硫排放量为2217.9万吨,氮氧化物排放量为2404.3万吨 工业固体废物产生量为32.5亿吨。2011年的监测结果表明,全国环境质量状况总体保持平稳,但形势依然严峻,面临许多困难和挑战。  首先是全国地表水水质总体为轻度污染,湖泊(水库)富营养化问题突出。长江、黄河、珠江、松花江、淮河、海河、辽河、浙闽片河流、西南诸河和内陆诸河等十大水系469个国控断面中,~类、~类和劣类水质的断面比例分别为61.0%、25.3%和13.7%。西南诸河水质为优,长江、珠江、浙闽片河流和内陆诸河水质总体良好,黄河、松花江、淮河、辽河总体为轻度污染,海河总体为中度污染。在监测的26个湖泊(水库)中,富营养化状态的湖泊(水库)占53.8%,其中,轻度富营养状态和中度富营养状态的湖泊(水库)比例分别为46.1%和7.7%。在监测的200个城市4727个地下水监测点位中,优良-良好-较好水质的监测点比例为45.0%,较差-极差水质的监测点比例为55.0%。  二是我国管辖的海域海水水质状况总体较好,但近岸海域水质总体一般。四大海区中,黄海近岸海域水质良好,南海近岸海域水质一般,渤海和东海近岸海域水质差。9个重要海湾中,黄河口和北部湾水质良好,胶州湾和辽东湾水质差,渤海湾、长江口、杭州湾、闽江口和珠江口水质极差。  三是全国城市空气质量总体稳定,但细颗粒物污染逐步显现,酸雨分布区域保持稳定。2011年,325个地级及以上城市(含部分地、州、盟所在地和省辖市)中,按老标准评价,环境空气质量达标城市比例为89.0%,超标城市比例为11.0%。但执行新的空气质量标准后,我国城市空气中的细颗粒物(PM2.5)污染将逐步显现,从2011年部分试点监测城市的监测结果来看,按新的环境空气质量标准进行评价(PM2.5年均值的二级标准为35微克/立方米),多数城市细颗粒物超标,年均值为58微克/立方米。酸雨分布区域主要集中在长江沿线及以南-青藏高原以东地区。酸雨区面积约占国土面积的12.9%。  四是全国城市声环境质量总体较好。全国77.9%的城市区域噪声总体水平为一级和二级,环境保护重点城市区域噪声总体水平为一级和二级的占76.1%。  五是全国辐射环境质量总体良好。环境电离辐射水平保持稳定,核设施、核技术利用项目周围环境电离辐射水平总体未见明显变化 环境电磁辐射水平总体情况较好,电磁辐射发射设施周围环境电磁辐射水平总体未见明显变化。  六是生态建设进展较好。截至2011年底,全国已建立各种类型、不同级别的自然保护区2640个,总面积约14971万公顷,其中陆域面积14333万公顷,占国土面积的14.9%。  七是农村环境问题日益显现。随着农村经济社会的快速发展,农业产业化、城乡一体化进程的不断加快,农村和农业污染物排放量大,农村环境形势严峻。2011年,环境保护部组织对全国364个村庄开展了农村监测试点工作,结果表明,环境空气质量达标的村庄占81.9% 农村地表水为轻度污染 农村土壤样品超标率为21.5%,垃圾场周边、农田、菜地和企业周边土壤污染较重。
  • 英国肖氏露点仪祝贺杭州亚运会顺利举办-激情与文化的碰撞亚洲新时代的新篇章
    2023年杭州亚运会:激情与文化的碰撞,亚洲新时代的新篇章 2023年,杭州,这座被誉为“人间天堂”的城市,迎来了一场举世瞩目的体育盛事——第19届亚洲运动会(简称杭州亚运会)。这是亚洲最高规格的国际综合性体育赛事,也是杭州首次承办的规模最大、级别最高的体育盛事。英国肖氏露点仪祝贺杭州亚运会顺利举办-激情与文化的碰撞亚洲新时代的新篇章 美国Edgetech|英国肖氏露点仪|残氧仪|ATEQ密封性泄漏仪|冷镜露点仪|PID传感器 本届亚运会的成功申办,不仅体现了中国和杭州的体育实力,更是对亚洲体育事业发展的积极推动。作为亚洲的体育盛事,杭州亚运会设置了丰富多彩的竞赛项目,包括40个大项、61个分项和481个小项。这些项目不仅包括31个奥运项目,还有9个非奥运项目,如电子竞技和霹雳舞等新兴领域。 杭州亚运会的定位是“中国新时代杭州新亚运”,以“中国特色、亚洲风采、精彩纷呈”为目标。这是中国新时代与杭州新亚运的完美结合,也是对亚洲体育事业发展的积极推动。杭州亚运会秉持“绿色、智能、节俭、文明”的办会理念,坚持“杭州为主、全省共享”的办赛原则,充分利用现有场馆和设施,力求为参赛国和观众带来最佳的比赛体验。 英国肖氏露点仪祝贺杭州亚运会顺利举办-激情与文化的碰撞亚洲新时代的新篇章 美国Edgetech|英国肖氏露点仪|残氧仪|ATEQ密封性泄漏仪|冷镜露点仪|PID传感器 杭州亚运会代表团团长大会在杭州举行,来自亚洲45个国家和地区的奥委会代表出席。这是杭州亚运会筹备工作进入最后阶段的重要标志,各国代表团正齐心协力,期待在杭州的赛场上展现出亚洲运动员的卓越风采。 作为中国的重要城市,杭州拥有丰富的历史文化和现代化建设的成果。杭州亚运会将是一次展示中国和亚洲文化的机会,也是一次推动亚洲体育事业发展的机会。它将加强亚洲各国之间的交流与合作,增进相互理解和友谊,同时还将促进文化、教育、旅游等多个领域的繁荣发展。 英国肖氏露点仪祝贺杭州亚运会顺利举办-激情与文化的碰撞亚洲新时代的新篇章 美国Edgetech|英国肖氏露点仪|残氧仪|ATEQ密封性泄漏仪|冷镜露点仪|PID传感器 杭州亚运会将是一次提升中国在全球体育舞台上的影响力的机会。杭州亚运会的成功举办,不仅将提升中国和亚洲的国际形象,也将进一步巩固杭州作为世界著名城市的地位。 2023年杭州亚运会是一场充满激情和期待的体育盛事。它不仅将促进亚洲各国之间的交流与合作,还将推动中国和亚洲体育事业的发展。作为东道主,中国将向世界展示其先进的科技实力、深厚的文化底蕴和广泛的国际影响力。 英国肖氏露点仪祝贺杭州亚运会顺利举办-激情与文化的碰撞亚洲新时代的新篇章,与你分享进口露点仪英国肖氏露点仪变送器Acudew英国肖氏露点仪祝贺杭州亚运会顺利举办-激情与文化的碰撞亚洲新时代的新篇章 美国Edgetech|英国肖氏露点仪|残氧仪|ATEQ密封性泄漏仪|冷镜露点仪|PID传感器 英国肖氏SHAW露点仪变送器AcuDew 型肖氏水分计是一种 2 线 4-20 mA 回路供电变送器,用于连续测量工艺气体或压缩空气中的水分。AcuDew 型变送器可在工厂配置为输出以下任何湿度单位的 4-20 mA 线性信号:-摄氏度或华氏度露点、ppm(v)、ppb(v)、g/m3 和 lb/MMSCF。超高电容 SHAW 传感元件经久耐用,具有卓越的灵敏度、重复性和响应速度。每个装置都经过校准,可追溯到国际湿度标准,并附有校准证书,保证精度达到±2°C 露点。 露点仪变送器还具有自动校准(AutoCal)功能,允许用户执行现场校准/量程检查。自动校准功能通过内置在变送器体内的小电位计进行操作。为避免意外损坏,正常使用时,电位计由防风雨密封件覆盖。更多英国肖氏露点仪祝贺杭州亚运会顺利举办-激情与文化的碰撞亚洲新时代的新篇章 美国Edgetech|英国肖氏露点仪|残氧仪|ATEQ密封性泄漏仪|冷镜露点仪|PID传感器资料请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取露点仪更详细资料。
  • 赛默飞世尔推出ICP-MS与最新碰撞池技术结合的方法
    不来梅,德国,2008年7月28日,赛默飞世尔科技公司公布了一份技术报告,使用基于碰撞反应池技术的电感耦合等离子体质谱(ICP-MS)完成环境和地质样品中所有多元素的分析。此海报可以从www.thermo.com/cct-poster免费下载。 由于具有元素覆盖范围广,高灵敏度和快速样品分析,ICP-MS已成为常规环境实验室的首选分析方法。功能强大的碰撞池技术与ICP-MS配合使用,使得质谱的干扰降到了最低,并提高了样品分析速度。Thermo Scientific XSERIES 2是基于碰撞反应池技术的ICP-MS,对所有样品均采用通用的混合气,在分析各种常规环境和地质的样品时,可以提供最佳的灵活性和无与伦比的性能。 技术海报论证了向雾化气中加入甲烷如何显著地提高了具有高电离能分析元素(如铍,砷和硒)的灵敏度,这些元素在环境样品中的浓度通常很低。此外,利用一种可加速提升和清洗时间的分流进样系统(FAST,Elemental Scientific Inc.),在增加样品分析速度的同时,显著降低了基体在ICP-MS接口的沉积。这样可以提高在质量控制分析时的一次通过率,并并保证了仪器长时间连续操作的实用能力。 赛默飞世尔科技在最近的一次网络会议中也介绍了这方面的内容,证明了利用ICP-MS与最新的碰撞池技术结合的方法,可以解决在多元素分析环境和地质样品时所遇到的主要问题。这次网络会议由Thermo Fisher Scientific XSERIES 2, ELEMENT 2 和 ELEMENT XR的资深应用专家Julian Wills和Elemental Scientific Inc. (ESI) 欧洲应用支持专家Paul Watson发起。限期版网络讲座请访问www.spectroscopynow.com/thermowebinars。 若需要关于Thermo Scientific XSERIES 2基于碰撞池技术的ICP-MS的详细资料,请致电+1 800-532-4752,发电子邮件至analyze@thermofisher.com,或访问www.thermo.com/cct-poster。 Thermo Scientific是Thermo Fisher Scientific旗下品牌之一。 关于Thermo Fisher Scientific(赛默飞世尔科技) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • 济南微纳颗粒参加2018印度国际粉体工业及散装技术展
    2018年10月11-13日,印度国际粉体工业及散装技术展在印度孟买会展中心拉开帷幕,济南微纳颗粒仪器股份有限公司应邀参展. 三天的展会时间里,微纳展台前的客户始终络绎不绝,大家争相参观此次展会微纳带去的Winner2000系列湿法激光粒度分析仪,作为经济普及型产品,Winner2000系列湿法激光粒度仪的性价比极高,历经十八年的考验,经过数次技术改进,量程精确,性能成熟,使用寿命长达十几年,正好符合印度等新兴市场不同企业的粒度测试需求。 在颗粒粒度测试领域,参加此次展会除了济南微纳外,还有新帕泰克跟马尔文,新帕泰克有限公司的Ulrich Kesten博士跟马尔文的印度大区负责人都到微纳展台参观并与微纳颗粒国际贸易部冯经理跟刘经理合影留念。 微纳颗粒将再接再厉,为全球客户提供更贴心的服务。
  • 为光电领域专家提供学术交流和思想碰撞的平台——卓立汉光应用专家覃冰访
    2023年8月25日,由北京卓立汉光仪器有限公司主办的第四届“逐梦光电”国产光电分析仪器研制与应用研讨会成功召开。来自全国各大知名高校及研究院的“政、用、产、学、研”不同领域的近百名专家学者出席了本次会议。会议期间,仪器信息网特别采访了卓立汉光应用专家覃冰。覃冰在采访中表示,卓立汉光公司作为一家国产科学仪器制造商,愿景是登上世界的舞台,成为国际知名的光电科学仪器的制造商。正是基于这样的初心,卓立汉光在2020年的时候召开了第一届“逐梦光电”用户研讨会,到2023年南京这一届已经是第四届。本届会议,卓立汉光邀请到来自全国各大高校的24位嘉宾老师分享报告,涵盖了材料科学、清洁能源、生物医药、环境科学等诸多领域,涉及的技术包括荧光光谱、拉曼光谱、光电测试技术,高光谱影像、等离子体探测、超快光谱等6大类分析测试技术。据覃冰介绍,“逐梦光电”用户研讨会旨在通过这样的会议来把全国各地光电领域的专家们聚集在一起,为大家提供一个学术交流和思想碰撞的一个平台。本次研讨会卓立汉光设置了两个成果展示区,即仪器展示区和学术展示区。更多内容请查看采访视频以下为现场采访视频:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制