当前位置: 仪器信息网 > 行业主题 > >

电动推进器

仪器信息网电动推进器专题为您提供2024年最新电动推进器价格报价、厂家品牌的相关信息, 包括电动推进器参数、型号等,不管是国产,还是进口品牌的电动推进器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电动推进器相关的耗材配件、试剂标物,还有电动推进器相关的最新资讯、资料,以及电动推进器相关的解决方案。

电动推进器相关的论坛

  • 低气压精确控制技术在微纳卫星电热等离子体微推进器羽流特性测试中的应用

    低气压精确控制技术在微纳卫星电热等离子体微推进器羽流特性测试中的应用

    [color=#990000]摘要:针对各种微纳卫星电热等离子体微推进器,以口袋火箭这种工作在0.1~10torr低气压范围内的微推进器为例,分析了不同工质气体和不同低气压对羽流特征所产生的影响,说明了低气压精确控制的重要性。关于推进器低气压精确控制这一技术问题,本文详细介绍了具体实施方法,进行了考核试验,试验结果证明低气压控制波动度可以达到±1%以内。最终本文对测试方法进行了优化,提出了更实用化的全量程低气压精确控制技术方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000] 一、问题的提出[/color][/size]近年来,随着微纳卫星(NanoSat)的快速发展,对小体积、轻质量、低成本和高效率的微推进器提出了迫切需求,由此需要开展推进器的等离子体羽流特征等物理性能的测试评价研究。等离子羽流特征会受到工质气体和环境气压的明显影响,以国外口袋火箭羽流性能测试为例分析低气压精确控制的必要性和重要性。口袋火箭(Pocket Rocket)作为一种微纳卫星应用中的典型代表,是一种电热式射频等离子体推进器,可实现μN~mN 量级的推力。口袋火箭因其体积小且采用电容性射频放电,可在小功率条件下获得高密度等离子体射流,且重量轻、成本低、推力小、比冲大,能以阵列形式工作,特别适合配备微纳卫星和长期提供动力。如图1所示,卧式真空仓为口袋火箭等离子体羽流特征的测试提供低气压环境。该真空仓是一个多功能低气压环境模拟试验腔体,可集成多种试验设备用于各种等离子推进器的性能测试评价。[align=center][color=#990000][img=低气压控制,690,517]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957211181_7104_3384_3.jpg!w690x517.jpg[/img][/color][/align][align=center][color=#990000]图1 WOMBAT推进器试验装置[/color][/align][align=left][/align][align=left]如图2所示,为了形成低气压环境,真空仓配备有分子泵、机械泵、电离真空计和电容压力计,真空仓能够达到0.93mPa 的基准真空度。测试中的气体工质通常采用氮气和氩气。[/align][align=right][/align][align=center][color=#990000][img=低气压控制,690,295]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957469237_3688_3384_3.jpg!w690x295.jpg[/img][/color][/align][align=center][color=#990000]图2 WOMBAT推进器试验装置结构示意图[/color][/align]在射频电源功率和频率分别为20W和13.56MHz条件下,并在不同低气压下对口袋火箭的羽流特性进行了测试,图3是不同工质气体在不同气压下出射等离子体羽流的实验照片。其中图a为约1.5torr低压氩,图b为约4.0torr高压氩,图c为约1.0torr低压氮,图d为约7.0torr高压氮。从图中可以看出,在高气压下氮气和氩气的羽流均呈一定的锥角扩散,而低气压下均为准直射光束,但这些特征对于产生推力的影响尚不清楚,还需要进一步研究。[align=center][color=#990000][img=低气压控制,690,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957590245_7203_3384_3.jpg!w690x500.jpg[/img][/color][/align][align=center][color=#990000]图3 不同工质气体和不同气压下电热等离子体微推进器膨胀羽流的数字图像[/color][/align]综上所述,不同工质气体和不同低气压会对羽流特征产生明显影响,口袋火箭这种微推进器工作在0.1~10torr的低气压范围内,在此范围内测试评价羽流特性就需要对低气压进行精确控制。本文将针对低气压控制,详细介绍具体实施方法,并对实施方法进行试验考核,最终对实施方法进行优化,提出了低气压全量程的精确控制技术方案。[size=18px][color=#990000]二、低气压精确控制方法和试验考核[/color][/size]所谓低气压,一般是指低于1个标准大气压的绝对压力,范围为0.1~760torr,准确测量低气压目前普遍采用的是电容压力计,通常会采用10torr和1000torr两个不同量程的电容压力计来覆盖整个低气压范围的测量。通常,模拟试验装置真空仓需要通过进气和排气方式进行低气压控制,根据气流方向,一般将进气端定义为上游,真空泵排气端定义为下游。依据控制精度一般采用上游和下游两种控制模式,由此来实现不同量程(10torr和1000torr)的低气压准确控制。如图4所示,上游模式是维持上游压力和出气口流量,通过调节进气口流量控制仓室压力。[align=center][color=#990000][img=低气压控制,400,421]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958123451_6159_3384_3.jpg!w400x421.jpg[/img][/color][/align][align=center][color=#990000]图4 低气压上游控制模式[/color][/align]如图5所示,下游模式是维持上游压力和进气口流量,通过调节排气口流量控制仓室压力。[align=center][color=#990000][img=低气压控制,450,393]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958232096_7296_3384_3.jpg!w450x393.jpg[/img][/color][/align][align=center][color=#990000]图5 低气压下游控制模式[/color][/align]针对上述两种控制模式,分别采用1torr和1000torr两只电容压力计和24位高精度压力控制器进行了考核试验,试验装置如图6和图7所示。[align=center][color=#990000][img=低气压控制,690,464]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958322992_8227_3384_3.jpg!w690x464.jpg[/img][/color][/align][align=center][color=#990000]图6 低气压上游控制模式考核试验装置[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=低气压控制,690,426]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958424109_3718_3384_3.jpg!w690x426.jpg[/img][/color][/align][align=center][color=#990000]图7 低气压下游控制模式考核试验装置[/color][/align]在上游模式试验过程中,首先开启真空泵后使其全速抽气,然后在 68Pa 左右对控制器进行 PID参数自整定。自整定完成后,分别对 12、27、40、53、67、80、93 和 107Pa共8个设定点进行了控制,整个控制过程中的气压变化如图8所示。[align=center][color=#990000][img=低气压控制,600,363]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958580425_7569_3384_3.jpg!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图8 上游模式低气压定点控制考核试验曲线[/color][/align]在下游模式试验过程中,首先开启真空泵后使其全速抽气,并将进气阀调节到微量进气的位置,然后在300torr左右对控制器进行PID参数自整定。自整定完成后,分别对 70、 200、 300、450 和 600Torr 共5个设定点进行了控制,整个控制过程中的气压变化如图9 所示。[align=center][color=#990000][img=低气压控制,600,357]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959162394_4124_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图9 下游模式低气压定点控制考核试验曲线[/color][/align]将上述不同低气压恒定点处的控制效果以波动率来表示,则得到图10和图11所示的整个范围内的波动率分布。从波动率分布图可以看出,在整个低气压的全量程范围内,波动率可以精确控制在±1%范围,在12Pa处出现的较大波动,是因为采用 68Pa处自整定获得的PID参数并不合理,需进行单独的PID参数自整定。[align=center][color=#990000][img=低气压控制,600,337]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959335886_7215_3384_3.jpg!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图10 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=低气压控制,600,371]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959557611_9052_3384_3.jpg!w690x427.jpg[/img][/color][/align][align=center][color=#990000]图11 下游模式低气压定点控制考核试验曲线[/color][/align][size=18px][color=#990000]三、全量程低气压精确控制实施方案[/color][/size]从上述气压精确控制方法可以看出,可以根据实际需要选择不同的控制模式,如10torr以下的低气压控制可以选择采用上游模式,10~1000torr范围的高气压控制可以选择采用下游模式。在大多低气压环境模拟试验设备中,特别是针对推进器性能测试需要,需要在整个低气压范围内能实现气压的精确控制,并能实现自动化,因此单独使用或切换上游和下游控制模式并不是最佳选择。为实现低气压全量程范围内的自动化精确控制,我们对上游和下游两种模式进行了集成,提出了双向控制模式的技术方案,整体方案布局如图12所示。[align=center][color=#990000][img=低气压控制,500,407]https://ng1.17img.cn/bbsfiles/images/2021/12/202112301000121162_7843_3384_3.jpg!w500x407.jpg[/img][/color][/align][align=center][color=#990000]图12 低气压全量程双向控制模式技术方案真空系统布局图[/color][/align]在低气压全量程控制过程中,需要采用两只不同测量范围的电容式真空计来进行全量程覆盖,也可以材料一直电容式真空计和一直电离式真空计覆盖更宽的低气压范围。在双向控制模式的技术方案中,对控制器和电动阀门提出了更高要求,主要体现在以下几个方面:(1)要求具有可同时连接两个真空传感器的能力,并可根据低气压测量值在两个真空传感器之间进行切换,实时准确的进行低气压测量和控制。(2)控制器需要具有很高的测量精度,如24位A/D采样精度,以适应不同真空计测量精度的要求,并充分发挥真空计的测量能力。(3)在双向控制模式中,还要求真空压力控制器具有正反向控制功能,即对上游电动针阀用反向控制,对下游电动球阀用反向控制。(4)在双向控制模式中,负责上下游气体流量调节的电动针阀和电动球阀需要交替工作,因此这些电动阀需要具有尽可能快的响应速度,真空仓室越小,气压惰性越小,响应速度要求越快,一般要求是阀门从全闭到全开的时间为2秒以内甚至更低。总之,通过采用上述双向模式的低气压控制方案,特别是采用了新型高性能真空压力控制器和高速电动阀门之后,可以实现低气压全量程的精确控制。[size=18px][color=#990000]四、参考文献[/color][/size][1] Corr C S, Boswell R W. Nonlinear instability dynamics in a high-density, high-beta plasma[J]. Physics of Plasmas, 2009, 16(2): 022308.[2] Greig A, Charles C, Boswell R. Plume characteristics of an electrothermal plasma microthruster[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2728-2729.[3] Petkovic M, Pollara R. Dual-purpose space simulation facility for plasma thruster and satellite testing[C]//28th Space Simulation Conference. 2014.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 阀门电动执行器怎么选择?安全吗?

    阀门电动执行器怎么选择?安全吗?

    [font=微软雅黑][font=微软雅黑]对于[/font][/font][b][font=微软雅黑][font=微软雅黑]电动执行器[/font][/font][/b][font=微软雅黑][font=微软雅黑]的机构,这种最广义的定义就是通过直线或者旋转的驱动方式,将驱动的能源,并且在信号的控制作用下,能够直观的进行使用,这种执行器能够对于液体气体,甚至是电力或者其他能源作出一定的规划,这样才能够保证其装置的驱动作用,不会出现任何的麻烦。基本的原理就是,通过回转功能或者多回转的方式,进行驱动相信在现在电动执行机构以及特殊的机构选购当中,整体的使用以及执行器的操作方式将会变得更加便捷,现在基本的[/font][/font][b][font=微软雅黑][font=微软雅黑]电动执行器[/font][/font][/b][font=微软雅黑][font=微软雅黑]首先执行就是要通过阀门的驱动,让全开或者全关的方式更加方便,在控制阀的执行过程。[/font][/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]必须要通过精确的控制阀门的位置,避免因为控制不足,或者需要自动化采用控制的技术。在人工的操作,逐渐的被机械或者自动化的设备逐渐代替这种对于电动控制器的使用也将变得更加的突破。[/font][/font][font=微软雅黑][/font][url=http://www.bellaut.com/][font=微软雅黑][color=#000000][font=微软雅黑]电动执行器[/font][/color][/font][/url][font=微软雅黑][font=微软雅黑]的优点,就是高度的稳定,现在很多用户在高度的稳定以及推进力方面有很好的使用效果,能够达到这么大的推进力,必须要使用电动类型才能够做到。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2022/03/202203301126033625_5179_5379467_3.jpg!w690x690.jpg[/img][/font][/font][font=微软雅黑][/font]

  • 新能源汽车电机以及电动汽车电机测试发展趋势

    在新能源汽车发展的现阶段,新能源汽车电机以及电动汽车电机测试系统也随着新能源汽车的发展而大火,那么,新能源汽车电机以及电动汽车电机测试为什么会推出市场呢?  当前市场条件下,压缩成本是整车企业的必然选择,由此导致驱动电机等核心零部件厂商面临较大的降价压力,尤其在新能源商用车领域及低速电动车领域,该领域的电机的技术门槛相对较低,吸引了众多企业一窝蜂涌入抢食,导致市场竞争激烈,2016年各厂商已经纷纷降低产品售价来争夺市场份额,所以,电动汽车电机测试的推出,能够很好的提高新能源汽车电机的运行效率,降低运行成本。  那么,新能源汽车的企业大致可以分为三类,一种是具有传统整车及其零部件生产经验的汽车企业具有丰富的传统整车或零部件研发设计生产经验,具有雄厚的经济实力和人才储备,由于电机跟整车开发设计关系密切,在整车开发初期就要同步进行配合,这类企业具有先天的开发优势。其次是具有其它领域电机生产经验的企业具有多年传统电机研发设计生产经验,具有较雄厚的经济实力和研发储备。该类企业一般选择与高校、科研院所合作,同时绑定一家整车企业共同推进汽车用电机驱动系统的产业化,其在电机本体的批量化生产方面具有独特优势。还有一种是专门针对电动车成立的电机企业成立时间较晚,经济实力相对薄弱、融资渠道较为单一,但其具有整体设计研发上的优势,技术人才储备较为充足。  随着新能源汽车产业规模化进程的加深,电机企业在电机驱动领域的优势正逐步彰显,可以与冠亚的电动汽车电机测试设备强强联合,进而重塑产业竞争格局。  新能源汽车电机以及电动汽车电机测试在新能源汽车发展的推动下必然也有着不可预期的发展趋势。

  • 上海市关于做好电动汽车充电桩强制检定工作的通知

    上海市关于做好电动汽车充电桩强制检定工作的通知

    [img=,690,297]https://ng1.17img.cn/bbsfiles/images/2023/01/202301232128372521_7603_1626275_3.png!w690x297.jpg[/img][align=center][b][color=#d92142]上海市市场监督管理局 上海市交通委员会[/color][/b][/align][align=center][b][color=#d92142]关于做好电动汽车充电桩强制检定工作的通知[/color][/b][/align][size=15px]各区市场监管局,临港新片区市场监管局,各区交通委,各相关计量检定机构,上海充换电设施公共数据采集与监测市级平台,各充电桩运营企业,各相关单位:[/size][size=15px]电动汽车充电桩(以下简称“充电桩”)是车主与充电运营企业间进行贸易结算的计量器具,根据《市场监管总局关于调整实施强制管理的计量器具目录的公告》(2020年第42号),充电桩将于2023年1月1日起实施强制检定。2022年6月市场监管总局修订发布的国家计量检定规程《电动汽车交流充电桩(试行)》(JJG1148—2022)和《电动汽车非车载充电机(试行)》(JJG1149—2022)于2022年12月28日起实施。为做好本市充电桩强制检定工作,现将有关事项通知如下。[/size][size=16px][b]一、工作原则[/b][/size][size=15px]以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,坚持以人民为中心的发展思想,有序推进本市充电桩强制检定工作,全力保护消费者合法权益,服务本市充电设施高质量发展。结合本市实际情况,充电桩强制检定工作按照“分批实施、科学有序、不断不乱”的原则于2023年1月1日起正式开展。按照国家相关规定,强制检定经费由财政保障。[/size][size=15px]本市用于贸易结算的公用、专用及共享充电桩(不包括私人共享充电桩)纳入强制检定范围。市市场监管局将根据各充电站点充电桩利用率,通过抽样方式合理安排每年的检定工作,对于2023—2025年新增的充电桩将在下一年度列入抽样计划。2026年1月1日起,新增的强制检定范围内的充电桩应在强制检定合格后方可投入使用;所有纳入强制检定范围的在用充电桩应按照检定规程要求在到期前实施周期检定。[/size][size=16px][b]二、工作要求[/b][/size][size=15px]1.各充电桩运营企业要落实主体责任,建立充电桩计量管理制度,确保在用充电桩量值准确可靠。一是要做好强制检定工作,根据全市年度抽样计划,及时通过本市计量器具强制检定公共服务平台(https://exp.scjgj.sh.gov.cn/)提出检定申请,加强与计量检定机构的沟通,配合做好现场检定工作;二是要合规运营,加强充电桩国家计量检定规程的学习,将检定规程相关要求纳入充电桩采购要求,对检定不合格或超过检定周期的充电桩应立即暂停使用;三是要主动担责,切实保护消费者权益,对当年度未列入抽样计划的充电桩要通过加强运维、开展比对等方式保证电能计量准确。[/size][size=15px]2.各计量检定机构要加强自身能力建设,严格按照检定规程实施强制检定,加大本市计量器具强制检定公共服务平台的宣传,及时受理检定申请。相关计量检定机构要提前做好承担强制检定工作相应的招投标准备,根据全市抽样计划,提前做好人员、设备的保障,制定检定工作实施方案,加强与充电桩运营企业的沟通协调,确保强制检定按计划顺利实施。[/size][size=15px]3.各区市场监管局、临港新片区市场监管局要根据所在区域充电桩信息及全市抽样计划制定监管方案,督促充电桩运营企业“应检尽检”,对使用未经强制检定或检定不合格继续使用的,要依法查处;对未列入当年度抽样计划的充电桩,推动运营企业通过各种溯源方式确保充电桩的量值准确可靠;及时处理因充电桩计量准确度纠纷引起的计量仲裁检定。各区交通委应督促相关运营企业按照市场监管部门计划落实充电桩强制检定工作。[/size][size=15px]4.上海充换电设施公共数据采集与监测市级平台应定期向市市场监管局报送全市充电桩相关信息,推进与本市计量器具强制检定公共服务平台互联互通,为实施充电桩强制检定提供服务和支撑。对充电站点及运营企业开展接入考核时,将充电桩“应检尽检”情况纳入考核标准统筹考虑。[/size][size=16px][b]三、保障措施[/b][/size][size=15px]1.高度重视。充电桩量值准确可靠与消费者切身利益密切相关,各单位要充分认识做好本市充电桩强制检定工作的重要性,加强组织领导,强化责任落实,扎实推进强制检定工作,促进电动汽车产业健康发展,助力本市绿色低碳转型。[/size][size=15px]2.精心组织。市市场监管局会同市交通委加强充电桩分布和使用数据分析,科学合理编制年度抽样计划,统筹检定任务安排。各单位要加强对充电桩强制检定工作的宣传。[/size][size=15px]3.合力推进。市市场监管局将及时向市交通委通报全市充电桩强制检定信息。各区市场监管局、交通委要建立信息沟通机制,推动充电桩强制检定工作有序开展。各相关区市场监管局要督促本区法定计量检定机构加强充电桩社会公用计量标准建设,积极做好检定人员和经费保障。鼓励各计量检定机构开展充电桩在线监测技术研究,为创新监管方式提供支撑。[/size][size=14px][/size][align=center][color=#888888]END[/color][/align]

  • 电动汽车电动水冷却系统中油冷器怎么清洗?

    电动汽车电动水冷却系统在使用之后油冷器需要我们定期进行清洗以避免故障,那么,如何清洗比较好呢?  电动汽车电动水冷却系统长期的运行会让变压器的翅管后部产生严重的积污、灰尘等杂物,形成一层絮状物质,导致风扇出风口风速降低,油冷却器的冷却效率降低。气道堵塞是冷却器无法避免的问题,当气道堵塞时冷却效率也会随之降低,所以在使用结束后要进行及时的清理工作。  定期对电动汽车电动水冷却系统冷却器进行清理可以使机组始终工作在理想的工作温度下,对机器的性能、寿命有好处,电动汽车电动水冷却系统冷却器可以通过采用清洗液清除污垢,否则当污垢较厚时,清理工作相当麻烦,需要拆卸冷却器,借助于机械方法才能完成清理工作。  电动汽车电动水冷却系统油冷却的后期清洗工作可以采用水侧清洗:拆下两侧封头,用高压软管引洁净的水高速冲洗前盖,后盖内壁和换热管内表面,同时用清洗通涤进行冲洗,洗毕后用压缩空气吹干。  可以采用油侧清洗,用三氯乙烯溶液进行冲洗,使清洗液在冷却器内循环流动,溶液压力不大于0.6Mpa,溶液的流向与冷却器油流方向相反,清洗时间视污垢情况而定,然后再将清水灌入冷却器内清洗,直至流出的水清洁为止。还可以用浸泡法将溶液灌入冷却器。历时15-20分钟后查看溶液颜色,若混浊不堪,则更换新溶液,重新浸泡,直至清洁为止,然后用清水冲净。应根据环境情况定期对冷却器进行清理,使压缩机在正常的温度下工作,保证机器有较长的使用寿命,当冷却器脏堵时,压缩机排气温度会升高。一般每1500小时应清理风冷型冷却器外部,每1500小时应清理水冷型冷却器水侧。风冷式油冷却器积污程度是根据使用环境来决定的,不同的环境导致的积污程度不同,以此来清理的周期也就不能一概而论,要根据实际来制定合理的清理时间,确保运行的平稳。  电动汽车电动水冷却系统的油冷器如果清洗不了的话,建议还是更换新的。

  • 解析未来宇航动力:离子发动机技术最新突破

    2013年02月21日 来源: 腾讯科学 腾讯科学讯(Everett/编译)据国外媒体报道,传统的火箭发动机以化学能燃烧为动力,科学家预计未来行星际航行的宇宙飞船需要配备跨时代的火箭引擎,一种被称为电火箭发动机的技术进入了人们的视野,采用电能加速工质产生高速喷射流驱动飞船前进。应用这种技术打造的动力系统也被称为霍尔推进器,其通过轴向电场产生喷射离子推进,与化学能火箭发动机最大的不同之处是利用电能来形成离子化的推进动力,在现有的空间探测器中,离子驱动技术已经成功用于姿态控制等操作。http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130221/2c27d71a3b3d128fb9d106.jpg美国宇航局JPL实验室测试“深空一号”离子推进器 电推发动机技术之所以没有普及,是因为放电通道壁存在“侵蚀”问题,位于加州理工学院的JPL实验室小组已经找到了一个方法可以有效地控制通道壁被离子轰击导致的“侵蚀”现象。当放电室中的电子与推进器原子发生碰撞时,就会在霍尔推进器中产生离子,在外加电磁场作用下形成向前的推力。磁场大多是垂直于放电通道的边壁上,而电场则平行于边壁,叠加之后可将离子加速至非常高的速度,即大于每小时7.2万千米,最后由尾喷口喷射出形成推力。 然而,放电室的一些离子对通道边壁可产生“侵蚀”效应,根据理论和数值模拟,研究小组设计了沿着边壁的磁场线分布,使之对等离子体的影响降至最小,将电场方向进行了修改,大大降低了加速离子过程对边壁的“侵蚀”。研究人员将其称为新的磁场屏蔽法,对真空状态的推力驱动装置进行部分修改,综合模拟和实验结果显示,可将加速离子的侵蚀程度减少100至1000倍,本项研究成果刊登在美国物理研究所《应用物理快报》上。

  • 电动执行器的优缺点

    电动执行器电动执行器,又称为电动执行机构。它是一种能提供直线或旋转运动的驱动装置,它利用某种驱动能源并在某种控制信号作用下工作。  电动执行器的优点是能源取用方便,信号传输速度快,传输距离远,便于集中控制,灵敏度和精度较高,与电动调节仪表配合方便,安装接线简单。缺点是结构复杂,推力小,平均故障率高于气动执行机构,适用于防爆要求不高,气源缺乏的场所。 电动执行机构的缺点主要有:   结构较复杂,更容易发生故障,且由于它的复杂性,对现场维护人员的技术要求就相对要高一些;电机运行要产生热,如果调节太频繁,容易造成电机过热,产生热保护,同时也会加大对减速齿轮的磨损;另外就是运行较慢,从调节器输出一个信号,到调节阀响应而运动到那个相应的位置,需要较长的时间,这是它不如气动、液动执行器的地方。

  • 电动汽车并不环保

    电动汽车并不环保

    各国政要,影视歌明星,环保人士鼓吹和支持电动汽车或混合动力汽车的一个理由是环保,但一位汽车行业资深专家在IEEE Spectrum杂志上发表文章指出,电动汽车只是用一组环境问题交换另一组环境问题,许许多多的研究显示电动汽车并不环保。去年美国国会预算局的研究发现,电动汽车几乎不会减少总汽油消耗和温室气体排放。从使用石油燃料的汽车转变到电动汽车,相当于从一个牌子的香烟转到另一个牌子。电动汽车制造商可能会说,他们的汽车可用可更新能源如太阳能产生的电力充电,但太阳能电池板包含重金属,制造过程会释放出温室气体六氟化硫,六氟化硫的温室效应是二氧化碳的2.3万倍。而为了制造太阳能电池,又需要燃烧更多的化石燃料。http://ng1.17img.cn/bbsfiles/images/2013/07/201307022057_449000_1611705_3.jpg

  • 电动汽车电池测试驱动器如何接地?

    电动汽车电池测试驱动器如何接地?

    电动汽车电池测试在运行状态中,对于配件的运行需要了解清楚,特别是无锡冠亚的电动汽车电池测试由于不常见,所以其中的驱动器以及其他配件在运行的时候,需要注意下注意点的。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051612282694_1400_3445897_3.jpg!w690x690.jpg[/img]  如果电动汽车电池测试在交流电源和驱动器直流总线(如变压器)之间没有隔离的话,不要将直流总线的非隔离端口或非隔离信号的地接大地,这可能会导致设备损坏和人员伤害。因为交流的公共电压并不是对大地的,在直流总线地和大地之间可能会有很高的电压。  在多数电动汽车电池测试系统中,所有的公共地和大地在信号端是接在一起的。多种连接大地方式产生的地回路很容易受噪音影响而在不同的参考点上产生流。  为了保持命令参考电压的恒定,无锡冠亚恒温制冷技术有限公司要将驱动器的信号地接到控制器的信号地,它也会接到外部电源的地,这将影响到控制器和驱动器的工作。  电动汽车电池测试运行屏蔽层接地是比较困难的,有几种方法,正确的屏蔽接地处是在其电路内部的参考电位点上,这个点取决于噪声源和接收是否同时接地,或者浮空,要确保屏蔽层在同一个点接地使得地电流不会流过屏蔽层。  电动汽车电池测试要想保持稳定的运行状态,对于以上配件的运行还是要了解清楚的。

  • 正确选择阀门电动执行器需要考虑哪些因素?

    阀门电动执行器也称之为阀门电动装置,是用于操作阀门并且与阀门相连接的装置之一。该装置由电力来驱动,其运动过程可由行程、转矩或轴向推力的大小来控制。由于阀门电动执行器应有的工作特性和利用率取决于阀门的种类、装置的工作规范及阀门在管线或设备上的位置。因此掌握阀门电动执行器的正确选择;考虑防止超负荷(工作转矩高于控制转矩)的发生就成为至关重要的一环。阀门电动执行器的正确选择应依据:1.操作力矩:操作力矩是选择阀门电动执行器的最主要的参数。电动执行器的输出力矩应为阀门操作最大力矩的1.2~1.5倍。2.操作推力:阀门电动执行器的主机结构有两种,一种是不配置推力盘的,此时直接输出力矩;另一种是配置有推力盘的,此时输出力矩通过推力盘中的阀杆螺母转换为输出推力。3.输出轴转动圈数:阀门电动执行器输出轴转动圈数的多少与阀门的公称通径、阀杆螺距、螺纹头数有关,按M=H/ZS计算(式中:M为电动执行器应满足的总转动圈数;H为阀门的开启高度,mm;S为阀杆传动螺纹的螺距,mm;Z为阀杆螺纹头数。)4.阀杆直径:对于多回转类的明杆阀门来说,如果电动执行器允许通过的最大阀杆直径不能通过所配阀门的阀杆,便不能组装成电动阀门。因此,电动执行器空心输出轴的内径必须大于明杆阀门的阀杆外径。对于部分回转阀门以及多回转阀门中的暗杆阀门,虽不用考虑阀杆直径的通过问题,但在选配时亦应充分考虑阀杆直径与键槽的尺寸,使组装后能正常工作。5.输出转速:阀门的启、闭速度快,易产生水击现象。因此,应根据不同的使用条件,选择恰当的启、闭速度。6.安装、连接方式:电动执行器的安装方式有垂直安装、水平安装、落地安装;连接方式为:推力盘;阀杆通过(明杆多回转阀门);暗杆多回转;无推力盘;阀杆不通过;部分回转电动装置的用途很广,是实现阀门程控、自控和遥控不可缺少的设备,其主要用在闭路阀门上。但不能忽视阀门电动装置的特殊要求——必须能够限定转矩或轴向力。通常阀门电动执行器采用限制转矩的连轴器。当电动执行器的规格确定之后,其控制转矩也确定了。当其在预先确定的时间内运行时,电机一般不会超负荷。但如出现下列情况便可使其超负荷:1.电源电压低,得不到所需的转矩,使电机停止转动。2.错误地调定了转矩限制机构,使其大于停止的转矩,而造成连续产生过大的转矩,使电机停止转动。3.如点动那样断续使用,产生的热量积蓄起来,超过了电机的容许温升值。4.因某种原因转矩限制机构电路发生故障,使转矩过大。5.使用环境温度过高,相对地使电机的热容量下降。以上是出现超负荷的一些原因,对于这些原因产生的电机过热现象应预先考虑到,并采取措施,防止过热。过去对电机进行保护的办法是使用熔断器、过流继电器、热继电器等,但这些办法也都各有利弊,对于电动装置这种变负荷的设备,绝对可靠的保护办法是没有的。因此必须采取各种方法组合的方式。但由于每台电动装置的负荷情况不同,难以提出一个统一的办法。但概括多数情况,也可以从中找到共同点。采取的过负荷保护方式,归纳为两种:1.对电机输入电流的增减进行判断;2.对电机本身发热进行判断。上述两种方式,无论那种都要考虑电机热容量给定的时间余量。如果用单一方式使之与电机的热容量特性一致是困难的。所以应选择根据过负荷的原因能可靠的动作的方法——组合复合方式,以实现全面的过负荷保护作用。罗托克电动装置的电机,因其在绕组中埋入了与电机绝缘等级一致的恒温器,当到达额定温度时,电机控制回路便会切断。恒温器本身热容量是较小的,而且其限时特性是由电机的热容量特性决定的,因此这是一个可靠的方法。过负荷的基本保护方法是:1.对电机连续运转或点动操作的过负荷保护采用恒温器;2.对电机堵转的保护采用热继电器;3.对短路事故采用熔断器或过流继电器。阀门电动执行器的正确选择和超负荷的防止是戚戚相关的,应引起重视。

  • ARD2智能电动机保护器

    摘 要:介绍一款经济型智能电动机保护器-ARD2型的设计与应用,该保护器将众多保护功能集于一体,针对电动机在实际使用中会遇到的多种故障进行保护,使电机在各种故障条件下不会产生损坏,提高电动机运行的可靠性,减少由于电动机的故障问题带来的生产损失。关键字:电动机保护器,ARD2型,保护功能,经济型0  引言  由于生产自动化及各种自动控制、顺序控制设备的出现,要求电机经常运行在频繁的起动、制动、正反转、间歇以及变负荷等方式,电机的运行要求越来越高,运行环境也越来越苛刻,同时,由于电机与配套机械连在一起,当电机发生故障时,经常波及生产系统。因此,对电机实行有效的保护是保证生产系统正常工作的一项重要任务。  本文将要介绍的是ARD2型电动机保护器的经济、简洁的设计方法和应用。该型保护器主要用于对电动机运行状态的监测,并针对电动机在生产运行过程中出现的启动超时、欠压、过压、欠载、过载、短路、堵转/阻塞、断相、不平衡、剩余电流(接地/漏电)等故障进行保护,使电动机不至于因为以上原因而导致损坏,从而使生产遭受损失,采用ARD2电动机保护器能有效提高电动机运行的安全性,降低生产损失,是传统热继电器的理想替代品。1  技术指标  ARD2型智能电动机保护器的技术指标见表1。2  设计方法  目前市场上综合型的智能电动机保护器的设计主要采用交流采样方式+高性能单片机的方案,采用该设计方法的电动机保护器测量参数多、测量精度高、能够提供更完善的保护功能,但是采用此设计方法的成本较高,销售价格也高,在只需要对电动机提供过载、断相等基本常见故障保护的场合没有性价比可言。因此采用一种设计简单、功能能够满足基本保护要求、主要用于替代热继电器的智能电动机保护器将会有很大的市场。ARD2型保护器就是一款设计简洁,保护功能较多,能够满足大多数电动机保护要求的经济型的智能电动机保护器。  ARD2型智能电动机保护器采用低成本的设计方案,整体系统由信号处理单元、中央处理单元、电源模块、人机交互单元、人机界面、控制模块、通讯接口模块等构成,装置硬件结构如图1所示。  信号处理单元采用整流放大滤波电路,见图2,该电路能将采样得到的交流信号整流成直流信号,由CPU片内AD进行转换计算。  图中IC1为运算放大器LM324,采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。IC1将采样得到的信号进行两级放大处理,提高了信号的采样精度,保证了信号的线性度。2.2 中央处理单元  中央处理单元选用MOTOROLA公司的第一款基于高度节能型S08核的器件MC9S08AW32高性能单片机,该单片机片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2K的RAM,支持BDM片上调试功能,片内集成看门狗电路,片上集成8通道10位AD。外部扩展了铁电存储器,用于存储一些重要的参数,即使以后升级程序也不会丢失先前的重要数据。  CPU对采样信号进行处理计算,根据测量得到的电流、电压值与预先设定的各种保护数值进行对比,由此来判断电动机的运行状态是否正常,是否需要进行保护。中央处理单元电路见图3。  采用AC380V电源模块。该电源模块输入电压为AC220V~450V,输入频率45Hz~60Hz,输出电压稳定、故障率小,输出纹波 1%,转换效率≥75%。具有过压、过流保护。该模块经实际现场使用,具有很高的稳定性、可靠性和抗干扰能力。2.4 人机交互单元  人机交互单元采用LED显示和按键输入,系统采用单排四位LED数码管显示各种信息。用户可根据实际需要进行设置。在编程状态下显示菜单及参数。数码管显示采用动态扫描方式,其驱动电路使用一片74HC595加三极管构成。2.5 控制模块  控制模块主要由开关量输入、输出组成,见图4。开关量输入用于监测外部开关状态,也可根据客户要求用于电动机的起动、停止控制;开关量输出主要用于输出报警信号、脱扣信号和远程起动信号。2.6 通讯接口模块  通讯接口模块采用通用的RS-485、Modbus RTU通讯规约,能实现遥测、遥控、遥信等功能,见图5。2.7 整体设计  保护器采用主体模块和电流互感器模块分离的结构如图6。该结构非常适合安装于抽屉式开关柜。安装时将带显示的保护主体部分嵌入式的安装在开关抽屉的活动面板内,这样既简化了柜内接线、又方便了系统随时调整、设定参数和显示、监控,同时数字化的显示面板也增添了柜面的统一性和美观性,使得配电室内的设备运行情况及故障状态一目了然,极大的方便了系统巡视和检修维护。互感器部分采用DIN35导轨式安装方式,方能够按照用户的测量需求,更换不同量程的电流互感器。2.8 软件设计  本产品的主软件流程图如图7所示,主程序包括A/D子程序、保护子程序、计算显示子程序、按键处理子程序、通讯子程序等子程序,由于程序内容较多,现只给出主程序流程和保护子程序流程图,见图8。3  功能简介  ARD2智能电动机保护器按额定工作电压可分为AC380V、AC220V;按工作电流范围来分可分为6.3A(1.6A~6.3A)、25A(25A~100A)、100A(25A~100A)、250A(63A~250A)、800A(250A~800A)五个测量档位。实现对电动机运行中出现的启动超时、欠压、过压、欠载、过载、短路、堵转/阻塞、断相、不平衡、剩余电流(接地/漏电)等故障进行保护。并能在此基础上增加各种附加功能,主要有:  1)远程起动功能:由上位机通过通讯控制保护器的起动继电器,来实现远程起动电动机。  2)报警功能:当电动机运行状态出现故障时,在还未达到预先设定的脱扣时间前进行报警提示。  3)通讯功能:RS-485通讯功能,能够通过通讯接口将保护器检测得到的电动机运行的各种参数实时传送给后台主控设备,方便工作人员及时了解电动机的工作状态。  4)漏电保护:开放漏电保护监测功能,当电动机的运行环境出现漏电情况时,及时切断电动机的供电电源。  5)开关量输入:用于监测外部开关的分合状态,也可按客户要求进行起、停控制。  6)事件记录:记录保护器的最近8次脱扣动作产生的时间和原因,方便维护人员查看和检修。  7)4~20mA模拟量输出:提供直流4~20mA电流信号。4  典型应用  图9为采用直接启动接线方式的ARD2智能电动机保护器典型应用图。用户可通过按动外部启动按钮SB2或通过上位机远程控制保护器的启动继电器来启动电机。其控制方式为:当启动按钮SB2按下或远程启动继电器7、8闭合,则接触器KM的吸引线圈处于通电状态,使接触器KM的主触头和自锁触头KM闭合,启动电动机。此时,松开SB2或启动继电器7、8断开后接触器KM的吸引线圈还是处于通电状态,主触头和自锁触头KM仍旧处于闭合状态,电动机处于通电状态。一旦电动机正常启动后,保护器就对电动机的运行状态进行监测,当电动机出现故障状态后,ARD2保护器的脱扣继电器动作,常闭触点95、96断开,使接触器KM的吸引线圈断电,使接触器KM的主触头和自锁触头的状态由合变为分,切断电动机的供电,使电动机停车。  图10为电动机采用Y—∆转换启动接线方式的ARD2智能电动机保护器典型应用图。在图5中,时间继电器KT的触头状态为吸引线圈失电时的状态,即“常态”。当启动按钮SB2或远程启动继电器7、8闭合,则接触器KM1线圈通电,使KM1的主触头和自锁触头KM1闭合,同时,时间继电器KT吸引线圈通电,由于延时作用,它的触头不立即动作,于是接触器KM3线圈通电,接于主回路中的KM3的主触头闭合,电动机进行星型连接降压启动状态,同时KM3的互锁触头断开,使接触器KM2的吸引线圈不能通电,电动机运行于Y型供电方式。当时间继电器KT的延时时间到,时间继电器KT的延时断开常闭触头断开,使接触器KM3吸引线圈断电,主触头KM3断开,同时时间继电器KT的延时闭合常开触头闭合,接触器KM2的吸引线圈通电,主触头KM2闭合,电动机供电方式改为∆型连接,进入正常运行状态。与此同时,KM2的互锁触头断开,使接触器KM3吸引线圈不会通电。一旦电动机正常启动后,保护器就对电动机的运行状态进行监测,当电动机出现故障状态后,ARD2保护器的脱扣继电器动作,常闭触点95、96断开,使接触器KM的吸引线圈断电,使接触器KM的主触头和自锁触头的状态由合变为分,切断电动机的供电,使电动机停车。  在实际使用过程中,应注意严格按照电动机的额定电流来选择保护器,防止人为放大和缩小保护范围;避免由于量程太大或太小而造成的测量误差,从而使保护器无法正常对电动机进行保护。  由于ARD2保护器采用主体模块和电流互感器模块分离的结构,所以在现场使用时应注意按出厂编号将保护器主体与互感器配对使用。但考虑到会有维修更换保护器或互感器的情况发生,因此只要保护器主体和互感器的产品型号一样,可以任意配和使用,不会对测量保护产生影响。  保护器的设计定位为替代热继电器,故保护器本身不提供对电动机的起动、停止控制及各种起动控制方式。对电动机各种起动控制方式的实现需要外部电路的支持。6  结语  ARD2智能电动机保护器的功能较多,能够对电动机运行中遇到的各种类型的故障进行准确的报警显示和脱扣动作,能有效的防止电机意外烧毁的发生,能为用户节约大量的资金,是热继电器的理想替代产品。因此,广泛采用

  • 电动汽车之我讨论

    ◎丰田放弃大规模销售电动车2012年巴黎车展宣告了电动车"失宠"。车展前夕,丰田副总裁内山田武(Takeshi Uchiyamada)宣布,丰田将放弃大规模销售第二款纯电动车EQ,仅会在美国及日本销售大约100辆,并承认对纯电动汽车市场和电池技术满足市场需求的能力存在误读。"无论是行驶距离,相关成本以及充电时间而言都还没有达到最佳的水平。"丰田下一步工作重心将加大投入油电混合车型,三年内将这一产品阵容扩充至21款。◎大众明确路线 专注于插电式混动大众集团董事长文德恩在车展现场也明确了将混合动力作为主攻方向。"大众将专注于插电式混合动力汽车,因为它既能够节约能源,又能为市场接受。我们一直持有务实的眼光,很长的时间内燃机都没有可行的替代方案。"其实早在2010年文德恩就表示,大众未来十年内把重点转移到混合动力车型的开发上。◎喧嚣退去 车企技术路线逐渐务实考虑到通用主推的增程式电动车Volt更应该称作插电式混合动力,汽车界三大巨头均已经表明了态度,插电式混合动力大有取代电动车成为新宠的势头。其他车企也有类似的转变,在新能源路线的选择上更为务实。奥迪A3、沃尔沃V40、三菱新款欧蓝德、宝马Active Tourer概念车展出了插电式混合动力版本。我想电动汽车要是想大规模发展,首先需要将电池模块化,然后国家统一建立充电站,车主凭借车上的电池,付一定费用后用充电站里充满电的电池。电池厂商负责汽车电池的统一维修和更换,这样电动汽车才能蓬勃发展。快速充电技术发展还是太慢了,恐怕跟不上规模化生产呀。

  • 为什么要选择阀门电动执行器?看完你就明白了

    [b][font=微软雅黑][color=#333333][font=微软雅黑]阀门电动执行器[/font][/color][/font][/b][font=微软雅黑][color=#333333][font=微软雅黑]是实现阀门程控、自控和遥控不可缺少的驱动设备,其运动过程可由行程、转矩或轴向推力的大小来控制。工作特性和利用率取决于阀门的种类、装置工作规范及阀门在管线或设备上的位置。[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  阀门电动执行器工作原理:[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  该执行器由电动机驱动,通过蜗轮蜗杆减速,带动空心输出轴转动。在该减速箱中,具有手动[/font]/自动机构(手动机构可独立进行操作)。当切换手柄处于手动位置时,操作手轮,带动空心输出轴转动。当电动操作执行机构时,手动机构处于断开状态,由电动机驱动空心输出轴。阀门电动执行器基本上是一个减速电机。电机可以具有各种电压,并且是主要的转矩产生部件。为防止因过度劳动或过度耗电而造成的热损伤,电机通常配有嵌入电机绕组的热过载传感器。该传感器与电源串联,并在电机过热时打开电路,然后在电机达到安全工作温度时关闭电路。电动机由电枢,电气绕组和齿轮组组成。当向绕组供电时,产生磁场,引起电枢旋转。只要有绕组通电,电枢就会转动 当电源切断时,电机停止。行程限位开关的标准末端,这是电动执行器所必需的,可以处理这个任务。[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  阀门电动执行器依靠直接连接到电动机的齿轮系来增强电动机转矩并决定致动器的输出速度。改变输出速度的一个方法是安装周期长度控制模块。该模块只允许增加周期时间。如果需要减少循环时间,则必须使用具有所需循环时间和适当输出扭矩的备用执行机构。[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  阀门电动执行器的优势:[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]1.功能强劲:智能调节型、开关型、各类信号输出型应有尽有;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]2.体小量轻:[/color][/font][b][font=微软雅黑][color=#333333][font=微软雅黑]阀门电动执行器[/font][/color][/font][/b][font=微软雅黑][color=#333333][font=微软雅黑]体积和重量仅相关于传统产品的[/font]35%左右;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]3.美观大方:铝合金压铸外壳、精美流畅、且可减少电磁干扰;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]4.性能可靠:轴承和电气元件竺关键零部件采用进口品牌平品;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]5.高标防护:IP68高标准防护等级;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]6.精密耐磨:蜗轮部件采用特殊合金材料锻造;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]7.回差极小:结构无间隙联结、传动精度高;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]8.安全保证:通过1500V耐压检测、F级绝缘电机,安全有保障;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]9.配套简单:采用单相电源、外接线路简单、也可做380V和直流电源;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]10.使用方便:免加油、免点检、防水防锈、任意角度安装;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]11.多种速度:全程时间9秒、13秒、15秒、30秒、50秒、100秒、150秒(出厂前已设定);[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]12.智能数控:智能数控模块集成于[/color][/font][b][font=微软雅黑][color=#333333][font=微软雅黑]阀门电动执行器[/font][/color][/font][/b][font=微软雅黑][color=#333333][font=微软雅黑]本体内,无需外接定位器,数字设定,数字整定,高定,自我诊断,一机多能。[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font]

  • 【分享】美科学家欲研制接近光速纳米飞船

    据国外媒体报道,庞大的粒子加速器正在探索非常微小的世界,但是类似的技术或许有一天可以促进缝衣针大小的飞船进行远距离飞行,甚至是在恒星系间来往穿梭。通过研究纳米推进器(作用相当于便携式粒子加速器),或许可以在我们的有生之年把微型飞船的速度加速到接近光速,并用它们探索附近的恒星。 欧洲粒子物理研究所耗资100亿美元建造的大型强子对撞机,其目的是确定宇宙是由什么构成的。这个周长达17英里的机器可以把带电质子的速度加速到接近光速。一旦带电质子达到最高速度,它们就会与目标相撞,发生爆炸,生成奇异物质供科学家研究。有一天这种原子撞击的方法可能会给我们展示更多有关其他宇宙区域是由什么构成的信息。它们或许将引领我们到达那里。 从20世纪50年代开始,人类发射大量飞船,前去探索我们的太阳系。我们向每一颗行星(其中包括身份可疑的星体,例如冥王星和冥卫一)、太阳、众多卫星、小行星和彗星发射探测器。最近火星车在这颗红色行星上艰难跋涉,人造卫星围绕地球、月球、火星、金星和土星轨道进行科学研究。但是仅有为数不多的几个探测器走出了我们的太阳系,慢吞吞地飞往更加遥远的区域。例如,“旅行者”号探测器的运行速度大约是每小时40000英里,仅相当于光速的0.00006%。 我们还从没走出庞大的星际空间,探测距离我们最近的恒星——比邻星(Proxima Centauri)。星际空间大的令人难以置信。航天飞机围绕距离地球大约250英里的轨道运行,月球在距离地球大约250000英里的上空飞行。火星距离太阳大约1.4亿英里。而最近的恒星距离地球大约有4.2光年。这意味着从地球发射一束光,它需要用4年多,行进24万亿英里,才能到达距离我们最近的恒星。如果飞船的速度不能达到光速,在一个人的有生之年探索另一颗恒星的目标似乎是不可能实现的。然而事实证明,这个目标实现的可能性显然比听起来更大一些。 进行星际空间探索的办法是利用可以达到令人难以置信的速度的微型飞船,或称纳米飞船。粒子加速器里的质子之所以能达到接近光速的速度,是因为它们非常小,而且非常轻。与此同理,非常小的无人太空探测器也将非常轻,可以达到接近光速的速度,可以进行星际空间探索。密歇根大学(University of Michigan)的研究人员正在制造纳米发动机,有一天这种发动机将能掀起一场迷你飞船新潮流。 布莱恩吉尔斯特(Brian Gilchrist)和他的同事们正在研发利用纳米粒子作为推进材料的推进器。这项研究工作由美国空军资助。这种发动机大部分都是利用微机电系统技术(MEMS),直接在极薄的硅片上雕刻的。这种技术在半导体工业领域应用非常广泛。该发动机的厚度不超过半英寸(1厘米,其中包括燃料),拥有好几万个加速器,可以安装在一个不比邮票大的地方。这些“粘贴”上的推进器可以给微型飞船提供能量,让它们飞到很远的地方。 这种工艺被称作“纳米粒子场提取推进器(nano-particle field extraction thruster)”。微小的推进器的工作原理跟庞大的粒子加速器的迷你版本非常类似。这种装置利用堆叠在一起的很多微米厚度的“门”,在导电层和绝缘层之间交替运行,产生电场。这些小但强大的电场给一个导电纳米粒子团充电,并给这些粒子加速,把它们发射到太空,生成快速运行的粒子流。 吉尔斯特说:“在这种情况下,粒子加速器利用电场给带电粒子加速,这些正是现在我们在进行的工作。”由于太空中没有摩擦力,微型飞船经过一次加速,就可以在数年里继续加速。最终达到接近光速的速度,携带着科学仪器飞往其他恒星。然而目前这种纳米粒子推进器还将继续呆在我们的太阳系里。据吉尔斯特说:“这种技术在距离地球更近的地方有很多实际应用途径。”作者:孝文 来源:新浪科技 发布时间:2009-7-13 13:27:04

  • ARD2智能电动机保护器

    ARD2智能电动机保护器蔡昀羲 ( 上海安科瑞电气有限公司 上海嘉定 201801) 摘 要:介绍一款经济型智能电动机保护器-ARD2型的设计与应用,该保护器将众多保护功能集于一体,针对电动机在实际使用中会遇到的多种故障进行保护,使电机在各种故障条件下不会产生损坏,提高电动机运行的可靠性,减少由于电动机的故障问题带来的生产损失。关键字:电动机保护器,ARD2型,保护功能,经济型0  引言  由于生产自动化及各种自动控制、顺序控制设备的出现,要求电机经常运行在频繁的起动、制动、正反转、间歇以及变负荷等方式,电机的运行要求越来越高,运行环境也越来越苛刻,同时,由于电机与配套机械连在一起,当电机发生故障时,经常波及生产系统。因此,对电机实行有效的保护是保证生产系统正常工作的一项重要任务。  本文将要介绍的是ARD2型电动机保护器的经济、简洁的设计方法和应用。该型保护器主要用于对电动机运行状态的监测,并针对电动机在生产运行过程中出现的启动超时、欠压、过压、欠载、过载、短路、堵转/阻塞、断相、不平衡、剩余电流(接地/漏电)等故障进行保护,使电动机不至于因为以上原因而导致损坏,从而使生产遭受损失,采用ARD2电动机保护器能有效提高电动机运行的安全性,降低生产损失,是传统热继电器的理想替代品。1  技术指标  ARD2型智能电动机保护器的技术指标见表1。 表 1http://www.acrel.cn/cn/download/common/upload/2011/02/21/105532g5.jpg2  设计方法  目前市场上综合型的智能电动机保护器的设计主要采用交流采样方式+高性能单片机的方案,采用该设计方法的电动机保护器测量参数多、测量精度高、能够提供更完善的保护功能,但是采用此设计方法的成本较高,销售价格也高,在只需要对电动机提供过载、断相等基本常见故障保护的场合没有性价比可言。因此采用一种设计简单、功能能够满足基本保护要求、主要用于替代热继电器的智能电动机保护器将会有很大的市场。ARD2型保护器就是一款设计简洁,保护功能较多,能够满足大多数电动机保护要求的经济型的智能电动机保护器。  ARD2型智能电动机保护器采用低成本的设计方案,整体系统由信号处理单元、中央处理单元、电源模块、人机交互单元、人机界面、控制模块、通讯接口模块等构成,装置硬件结构如图1所示。http://www.acrel.cn/cn/download/common/upload/2011/02/21/11137kf.jpg图 12.1 信号处理单元  信号处理单元采用整流放大滤波电路,见图2,该电路能将采样得到的交流信号整流成直流信号,由CPU片内AD进行转换计算。http://www.acrel.cn/cn/download/common/upload/2011/02/25/175202r.jpg 图 2  图中IC1为运算放大器LM324,采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。IC1将采样得到的信号进行两级放大处理,提高了信号的采样精度,保证了信号的线性度。2.2 中央处理单元  中央处理单元选用MOTOROLA公司的第一款基于高度节能型S08核的器件MC9S08AW32高性能单片机,该单片机片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2K的RAM,支持BDM片上调试功能,片内集成看门狗电路,片上集成8通道10位AD。外部扩展了铁电存储器,用于存储一些重要的参数,即使以后升级程序也不会丢失先前的重要数据。  CPU对采样信号进行处理计算,根据测量得到的电流、电压值与预先设定的各种保护数值进行对比,由此来判断电动机的运行状态是否正常,是否需要进行保护。中央处理单元电路见图3。http://www.acrel.cn/cn/download/common/upload/2011/02/25/175442k.jpg图 32.3 电源模块  采用AC380V电源模块。该电源模块输入电压为AC220V~450V,输入频率45Hz~60Hz,输出电压稳定、故障率小,输出纹波 1%,转换效率≥75%。具有过压、过流保护。该模块经实际现场使用,具有很高的稳定性、可靠性和抗干扰能力。2.4 人机交互单元  人机交互单元采用LED显示和按键输入,系统采用单排四位LED数码管显示各种信息。用户可根据实际需要进行设置。在编程状态下显示菜单及参数。数码管显示采用动态扫描方式,其驱动电路使用一片74HC595加三极管构成。2.5 控制模块  控制模块主要由开关量输入、输出组成,见图4。开关量输入用于监测外部开关状态,也可根据客户要求用于电动机的起动、停止控制;开关量输出主要用于输出报警信号、脱扣信号和远程起动信号。http://www.acrel.cn/cn/download/common/upload/2011/02/25/17610tx.jpg图 42.6 通讯接口模块  通讯接口模块采用通用的RS-485、Modbus RTU通讯规约,能实现遥测、遥控、遥信等功能,见图5。http://www.acrel.cn/cn/download/common/upload/2011/02/25/17631hz.jpg 图 52.7 整体设计  保护器采用主体模块和电流互感器模块分离的结构如图6。该结构非常适合安装于抽屉式开关柜。安装时将带显示的保护主体部分嵌入式的安装在开关抽屉的活动面板内,这样既简化了柜内接线、又方便了系统随时调整、设定参数和显示、监控,同时数字化的显示面板也增添了柜面的统一性和美观性,使得配电室内的设备运行情况及故障状态一目了然,极大的方便了系统巡视和检修维护。互感器部分采用DIN35导轨式安装方式,方能够按照用户的测量需求,更换不同量程的电流互感器。http://www.acrel.cn/cn/download/common/upload/2011/02/25/17640cd.jpg图 62.8 软件设计  本产品的主软件流程图如图7所示,主程序包括A/D子程序、保护子程序、计算显示子程序、按键处理子程序、通讯子程序等子程序,由于程序内容较多,现只给出主程序流程和保护子程序流程图,见图8。http://www.acrel.cn/cn/download/common/upload/2011/02/25/17815ar.jpg图 7http://www.acrel.cn/cn/download/common/upload/2011/02/21/115832xd.jpg图 83  功能简介  ARD2智能电动机保护器按额定工作电压可分为AC380V、AC220V;按工作电流范围来分可分为6.3A(1.6A~6.3A)、25A(25A~100A)、100A(25A~100A)、250A(63A~250A)、800A(250A~800A)五个测量档位。实现对电动机运行中出现的启动超时、欠压、过压、欠载、过载、短路、堵转/阻塞、断相、不平衡、剩余电流(接地/漏电)等故障进行保护。并能在此基础上增加各种附加功能,主要有:  1)远程起动功能:由上位机通过通讯控制保护器的起动继电器,来实现远程起动电动机。  2)报警功能:当电动机运行状态出现故障时,在还未达到预先设定的脱扣时间前进行报警提示。  3)通讯功能:RS-485通讯功能,能够通过通讯接口将保护器检测得到的电动机运行的各种参数实时传送给后台主控设备,方便工作人员及时了解电动机的工作状态。  4)漏电保护:开放漏电保护监测功能,当电动机的运行环境出现漏电情况时,及时切断电动机的供电电源。  5)开关量输入:用于监测外部开关的分合状态,也可按客户要求进行起、停控制。  6)事件记录:记录保护器的最近8次脱扣动作产生的时间和原因,方便维护人员查看和检修。  7)4~20mA模拟量输出:提供直流4~20mA电流信号。 4  典型应用  图9为采用直接启动接线方式的ARD2智能电动机保护器典型应用图。用户可通过按动外部启动按钮SB2或通过上位机远程控制保护器的启动继电器来启动电机。其控制方式为:当启动按钮SB2按下或远程启动继电器7、8闭合,则接触器KM的吸引线圈处于通电状态,使接触器KM的主触头和自锁触头KM闭合,启动电动机。此时,松开SB2或启动继电器7、8断开后接触器KM的吸引线圈还是处于通电状态,主触头和自锁触头KM仍旧处于闭合状态,电动机处于通电状态。一旦电动机正常启动后,保护器就对电动机的运行状态进行监测,当电动机出现故障状态后,ARD2保护器的脱扣继电器动作,常闭触点95、96断开,使接触器KM的吸引线圈断电,使接触器KM的主触头和自锁触头的状态由合变为分,切断电动机的供电,使电动机停车。http://www.a

  • 电动汽车电机测试分析说明

    电动汽车电机测试分析说明

    电动汽车电机测试在电动需求不断高涨的局面下研发生产的,无锡冠亚恒温制冷技术研发的电动汽车电机测试受到不少电动汽车电池厂家的青睐,那么对于电动汽车电机测试,大家都了解多少呢?  电动汽车系统中核心设备是用电机以及控制器。用电机和控制器的性能直接影响着电动的整体性能。传统能源日益紧张,新型能源方兴未艾。加强对新型能源汽车用电机以及控制器的电磁兼容性测试有助于保证电动的质量,提升电动的性能。  当前我国电动动力系统主要采用的是驱动电机系统,这种系统与传统的内燃机系统相比优势很大,在平常工作中电动动力系统由于电流在极短时间内的跳动以及大功率半导体开关的快速移动会发出强烈的辐射以及电磁干扰。动力系统电磁干扰会严重影响到电动的性能,对电动用电系统造成严重影响,因而为了减小电磁干扰,就必须要加强电磁兼容性测试。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051518069584_6503_3445897_3.jpg!w690x690.jpg[/img]  针对电动动力系统电磁兼容性测试需要对两个方面的措施:一是骚扰测试;二是抗扰测试。实现科学测试,就必须要精确把握这两方面测试含义,要严格按照相关规范来进行测试。无锡冠亚的电动汽车电机测试也是结合自身在制冷加热控温方面的技术研发生产的电动汽车电机测试,为了就是保证更加高效的电动汽车电机测试运行。  电动用电系统用电机电磁兼容性测试的主要对象就是驱动电机整体,传统的测试方法是把用电系统各个主要的元件以及逆变器分开来,进行独立测试,这种分层测试方法测试效果不佳,测试成本较高。因而无锡冠亚建议采用整体测量的方法来对驱动电机系统进行兼容性测试,在系统兼容性测试过程中一般需要对驱动电机系统进行加载。对驱动机电系统进行加载,可以有效提高运行水平。  电动汽车电机测试选择厂家是比较关键的,无锡冠亚作为制冷加热控温行业比较受认可的厂家之一,也是大家不错的选择之一。

  • 增力电动搅拌器的小问题

    昨天我在使用增力电动搅拌器时,突然发出了“呲呲”声,有没有同学知道这是怎么回事!我给厂家打电话了,他们建议我送回厂家修理,但我的实验怎么办!!!急!

  • 电动闸阀怎么选择执行器?有哪些依据

    电动闸阀怎么选择执行器?有哪些依据

    [font=微软雅黑][color=#333333][font=微软雅黑]电动闸阀正确选择电动执行器是有依据可循的,如下几点大家可以参考:[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]1.[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]操作力矩:操作力矩是选择闸阀电动装置的最主要参数,电动执行器输出力矩应为闸阀操作最大力矩的[/font][font=微软雅黑]1.2~1.5倍。  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]2.[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]操作推力闸阀电动装置的主机结构有两种:一种是不配置推力盘,直接输出力矩;另一种是配置推力盘,输出力矩通过推力盘中的阀杆螺母转换为输出推力。  [/font][font=微软雅黑]3.输出轴转动圈数:电动装置输出轴转动圈数的多少与闸阀的公称通径、阀杆螺距、螺纹头数有关,要按M=H/ZS计算(M为电动装置应满足的总转动圈数,H为闸阀开启高度,S为阀杆传动螺纹螺距,Z为阀杆螺纹头数)。  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]4.[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]阀杆直径对多回转类明杆闸阀,如果电动装置允许通过的最大阀杆直径不能通过所配闸阀的阀杆,便不能组装成电动闸阀。因此,电动装置空心输出轴的内径必须大于明杆闸阀的阀杆外径。对部分回转闸阀以及多回转闸阀中的暗杆闸阀,虽不用考虑阀杆直径的通过问题,但在选配时亦应充分考虑阀杆直径与键槽的尺寸,使组装后能正常工作。[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]5.[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]输出转速:闸阀的启闭速度若过快,易产生水击现象。因此,应根据不同使用条件,选择恰当的启闭速度。  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]6.[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]闸阀电动执行器有其特殊要求,即必须能够限定转矩或轴向力。通常闸阀电动装置采用限制转矩的连轴器。当电动装置规格确定之后,其控制转矩也就确定了。[/font][/color][/font][font=微软雅黑][color=#333333] [/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]一般在预先确定的时间内运行,电机不会超负荷。但如出现下列情况便可能导致超负荷:[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]一、[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]是电源电压低,得不到所需的转矩,使电机停止转动;  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]二、[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]是错误地调定转矩限制机构,使其大于停止的转矩,造成连续产生过大转矩,使电机停止转动;  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]三、[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]是断续使用,产生的热量积蓄,超过了电机的允许温升值;  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]四、[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]是因某种原因转矩限制机构电路发生故障,使转矩过大;  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]五、[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]是使用环境温度过高,相对使电机热容量下降。  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]六、[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]过负荷的基本保护方法是:  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]1.[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]对电机连续运转或点动操作的过负荷保护,采用恒温器;  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]2.[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]对电机堵转的保护,采用热继电器;  [/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]3[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑].[/font][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]对短路事故,采用熔断器或过流继电器[/font][font=微软雅黑].[/font][/color][/font][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2022/06/202206111708539908_9161_5379467_3.jpg!w690x690.jpg[/img]

  • 电动立体定位微量注射器规格特点

    [url=http://www.f-lab.cn/microinjectors/ims-20.html][b]电动立体定位微量注射器[/b]IMS-20[/url]是一款具有立体定位功能的[b]电动微量注射器,电动立体定位微量注射器[/b]是全球领先的全[b]自动微量注射[/b]的仪器,能够兼容所有的Hamilton注射器。电动立体定位微量注射器Motorized Stereotaxic Microinjector使得微量注射工作非常方便简单,只需要在控制器中输入注射时间和溶液注射量,选择合适的Hamilton注射筒,系统可自行自动完成微量注射,而且电动立体定位微量注射器还带有实时过程监测功能显示注射时间和量,注射完成后使用简单的闩锁机械轻易锁住注射器。Hamilton注射器参考表[table=990][tr][td][b]Hamilton的[b]系列注射筒型号[/b][/b][/td][td]5, 701, 702, 705, 710, 725, 1701, 1702, 1705, 1710, 1725, 7000.5, 7001, 7101, 7002, 7102, 7105[/td][td] [/td][/tr][/table]* 上述的Hamilton系列注射器内置于参考表。* 当直接输入内径和量时,用户可以使用参考表上的内置注射器之外的注射器。[img=电动立体定位微量注射器]http://www.f-lab.cn/Upload/IMS-20-L_.jpg[/img][url=http://www.f-lab.cn/microinjectors/ims-20.html]电动立体定位微量注射器[/url]规格[table=750][tr][td=2,1][b]配件[/b][/td][td]电源线(1.5m)连接电缆 (2.0m)[/td][/tr][tr][td=2,1][b]驱动源[/b][/td][td]5相步进马达[/td][/tr][tr][td=2,1]移动范围[/td][td]60mm[/td][/tr][tr][td=2,1]额度电压[/td][td]AC100V ~ 240V, 50/60Hz[/td][/tr][tr][td=2,1][b]消耗功率[/b][/td][td]10W[/td][/tr][tr][td=1,2]尺寸大小/重量[/td][td][b]驱动单元[/b][/td][td]W30 x D167 x H84mm, 426g[/td][/tr][tr][/tr][tr][td][b]控制单元[/b]W180 x D95 x H260mm, 2.45kg[/td][/tr][/table][b][url=http://www.f-lab.cn/microinjectors/ims-20.html]电动立体定位微量注射器[/url]特点[/b]*装载的注射器外径必须从6.5mm到9mm(少于9mm),Tritech研究公司的注射器不可用.* 与SM-15连接时,需要附加装置SM-15A.* 脚踏IMS-20F可以用于进行额外控制. (单独售卖)

  • 【讨论】五角大楼研制出蜂鸟侦察机

    http://image.xinmin.cn/2011/02/18/20110218105104073850.jpg  蜂鸟侦察机的翼展仅为16厘米,并且不需要推进器,像真正的鸟一样煽动小小的翅膀来获得动力。  中新网2月18日电据外媒报道,美国五角大楼近日研制出了一种可以放入口袋的蜂鸟侦察机,长度仅16厘米,重量还赶不上一只AA电池,且不需要推进器,像真正的鸟儿一样扇动小小的翅膀来获得动力,这种无人驾驶飞机每小时可飞行11英里。 军方希望利用在飞机中的微型摄像机在战区中侦查敌人的位置,而且不会被发现。这种无人侦查飞机费时5年,耗资400万美元才研制成功。 它的研制成功为新一代具有小鸟一样灵活性和外观的飞行器铺平了道路,并且挑战了空气动力学极限。讨论:用类似鸟翼取代桨翼真的有研发的价值吗?

  • 电动汽车电机试验测试系统有哪些?

    电动汽车电机试验是针对新能源汽车驱动电机部分的测试系统,随着新能源汽车的大力推广,电动汽车电机试验也为大多电机生产厂家提供了比较靠谱的测试设备。  新能源汽车在出厂是需要具备动力系统、驱动系统、控制系统集成测试能力、电子电控测试系统功能测试能力,对于零部件厂商来说,这一块的测试开发能力也是重中之重,电动汽车电机试验试验项目包括一般性能、环境试验、温升试验、电机转矩特性及效率等测试。  新能源汽车常见的电机测试系统有测功机系统,冠亚的电动汽车电机试验系统包括前段供电测试直流电源(电池模拟器),测功机,变频器,测试所需仪器仪表等,电动汽车电机试验还有一块是电机对拖测试系统,系统包括前段供电测试直流电源(电池模拟器),测试所需仪器仪表等。  测试装置中电机控制器电源部分可采用双象限直流电源或直流电源加直流负载的形式。测试用电源部分的性能及可靠性直接决定了系统的实验能力,因此对电源有一定的要求,比如:电源输出具有快速的动态响应特性(突加载,突减载,充放电转换等),可以满足各种工况要求;电源的高可靠性和稳定性及转换效率,在产品稳定性及可靠性方面有着明显优势;电源应具有较高的输出精度,可以轻松满足测试系统的精度要求;电源应具有双象限特性,能够吸收电机反馈的电能,有效避免电压或电流过冲;满足标准中对电机及其控制器试验中对电源的要求,符合车辆用电池的电压电流特性。  KRY电动汽车电机试验由于使用在新能源汽车电机测试中,其配件均采用品牌配件,运行性能更靠谱。

  • 电动搅拌器和电磁搅拌器的区别

    电动搅拌器  适用于生物、理化、化妆品、保健品、食品、试剂等实验领域。是液体混和搅拌的实验设备。产品理念设计新颖、制造工艺先进,低速运行转矩输出大,连续使用性能好。驱动电机采用功率大、结构紧凑的串激式微型电机,运行安全可靠;运行状态控制采用数控触摸式无级调速器,调速方便;数字显示运行转速状态,采集数据正确;输出增力机构采用多级非金属齿轮传递增力,转矩成倍增加,运行状态稳定,噪声低;搅拌棒专用轧头,卸装简便灵活等特性。  电磁搅拌器(Electromagnetic stirring: EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。  区别:  电动搅拌器 是以电机连接搅拌棒在容器中进行搅拌工作,而电磁力搅拌器是以电机带动机体内部磁铁,在由磁铁带动容器内的磁力搅拌子 进行搅拌动作。

  • 【分享】电动汽车上路 还要踌躇多久?

    被寄予厚望的电动汽车正成为各大车企的竞争目标,也是近年来国内外各大车展的主角。虽然发展迅速,但电动汽车要真正走进千家万户,还有不小的距离。毕竟,造出一两款汽车并不是电动汽车商业化的成功,还包括配套设施建设、标准制订等很多方面。  在日前《WTO经济导刊》举办的“能源创新与可持续发展城市论坛”上,科技部电动汽车重大项目管理办公室副主任甄子健表示,“我们越来越感觉到,新能源汽车在由科研成果向产业化转化的过程当中,我们面临的技术难题不是少了,而是越来越多了”。这其中,不仅包括技术创新,也要进行各个行业和领域资源的整合,同时还要进行市场配套解决方案研究等。

  • 电动汽车冷却水系统中配件说明

    冠亚电动汽车冷却水系统中的配件比较多,比较常用的无非就是压缩机、冷凝器、蒸发器、膨胀阀等,那么,这些配件都是怎么运行的呢?  电动汽车冷却水系统的电子膨胀阀是一种可按预设程序调节进入制冷装置的制冷剂流量的节流元件。在一些负荷变化较剧烈或运行工况范围较宽的场合,传统的节流元件(如毛细管、热力膨胀阀等)已不能满足舒适性及节能方面的要求,电子膨胀阀结合压缩机变容量技术已得到越来越广泛的应用。  电动汽车冷却水系统的蒸发器有好几种,翅片式蒸发器中制冷剂常下进上出,空气和制冷剂2常呈逆流,效率较低(与卧式壳管式比较),广泛应用于中小机组。壳管式蒸发器中制冷剂走壳程,即制冷剂在管外气化,下部进液,从上部排气;液体充满筒体空间的70~80%。制冷剂一直在蒸发器内沸腾,传热面与液态制冷剂接触,所以沸腾放热系数较大;结构紧凑。电动汽车冷却水系统制冷剂充灌量大,因为制冷剂充灌量大,所以制冷剂与润滑油相溶时,润滑油难以返回压缩机,容易冻结。电动汽车冷却水系统中的板式蒸发器,板片由不锈钢薄片冲压成型,片间采用焊接方式连接,制冷剂和冷却水在薄片间隔流动,接触充分,换热效率高,制造工艺比较复杂,价格高。水流速低,易堵塞、易冻结。  蒸发式冷凝器制冷利用盘管外的喷淋水部分蒸发时,吸收盘管内高温气态制冷剂的热量,使管内的制冷剂逐渐由气态被冷却为液态的一种设备,蒸发式冷凝器冷凝效果好,节水,节能,但结垢对其传热性能影响相当大,易于腐蚀,对风机叶片要求较高,噪声较大。  电动汽车冷却水系统的性能对于新能源汽车电池的测试很重要,所以在采购电动汽车冷却水系统的时候,需要注意其性能方面。

  • [资料] FCHⅠ经济型电动阀门手操器

    FCHⅠ经济型电动阀门手操器概述FCHⅠ经济型电动阀门手操器是与电动阀门配合使用的产品,用以控制电动阀门的开启和关闭。主要特点:1.控制电路采用直流低压控制,调试、操作安全,控制可靠,4位数码管开度指示准确直观。2.机壳采用标准的仪表机箱,体积小重量轻,便于安装在控制屏上。3.指示灯指示开阀、关阀、阀全开、阀全关、事故、保护、现场、远控等状态。4.提供现场控制可能。5.电动阀门发生过力矩(事故)或过热(保护)时声光报警,便于及时排除故障。6.智能校准:对阀位开度的“调零”和“调满”校准时,无需标定电位器、无需用基准测量仪表进行复杂的调试,只要在阀门实际的“全关”和“全开”位置各按一次标定按键,便以新设定的区间自动准确的修正为000.0和100.0。7.相位保护:以前,在现场接线,必须保证提供给执行器的交流电的相序正确,因为一旦相序错误,就会造成电机不正确的转动,进而损伤阀门和执行器。现在用户完全可以省去这一烦恼,接线时不再需要考虑相序的问题。当现场接线相位颠倒时,相同步器会自动地改正相位,以确保阀门按指令的方向来执行。即执行器接到开命令时总是按预先设置的开方向转动,不会因为相序调换而向相反方向运行。8.电机为AC220V的执行机构直接控制,电机为AC380V的执行机构需加AC380V的功率驱动装置。技术数据1.工作电压:220V/50Hz2.控制电压:220V/50Hz3.控制功率:继电器输出。容量:10A4.工作环境:l环境温度:-20~40℃l相对湿度:不大于80%(20±5℃)l周围不含有强腐蚀型、易燃易爆介质。l外形及安装尺寸:160mm*80mm*125mm(W*H*L)l屏装开孔尺寸:152ˉ¹ mm*76ˉ¹ mm(W*H)前面板功能部件说明l开度显示—指示阀门开度0~100%l标定—阀门全开时“开”(红色)指示灯常亮,按下“标定”键1秒,以此时的检测数据作为一个开度初值(最大值),同时开度表指示为100.0,阀门全关时“关”(绿色)指示灯常亮,按下“标定”1秒,以此时的检测数据作为另一个开度初值(最小值),同时开度表指示为000.0,其它状态下此按键不起作用,标定后的开度初值断电保持l“现场”(红色)指示灯点亮,表示现场控制工作方式,此时,控制器面板上的“开”键、“关”键、“停”键均不起作用,可由“选择”键切换至“远程”控制工作方式l“远程”(绿色)指示灯点亮,表示远程(控制器面版)控制工作方式,可由“选择”键切换至“现场”控制工作方式l“开”(红色)指示灯闪动,表示正在开阀;亮起时表示阀全开l“关”(绿色)指示灯闪动,表示正在关阀;亮起时表示阀全关l“事故”(红色)指示灯点亮,表示事故—电动装置过力矩,灯亮同时控制器内蜂鸣器发声l“保护”(红色)指示灯点亮,表示保护—过电流,灯亮同时控制器内蜂鸣器发声l“选择”—“现场”或“远程”控制工作方式选择按键,持续按下1秒,“现场”“远程”工作方式进行切换,“远程”或“现场”状态断电保持l“开”—在“远程”控制方式中,按下“开”键,可控制电动阀门由停止向全开方向运行直至按下“停”键或到阀全开位l“关”—在“远程”控制方式中,按下“关”键,可控制电动阀门由停止向全关方向运行直至按下“停”键或到阀全关位后面板功能部件说明l1~3端为二组现场控制输入连接端,其中1端为控制输入公共端,2端(常开)为现场开阀控制输入端,3端(常开)为现场关阀控制输入端,在“现场”控制方式下,分别控制开阀和关阀操作l4~8端为五组检测输入连接端,其中4端为检测输入公共端,5端(常开)为开到位检测输入端,6端(常开)为关到位检测输入端,7端(常开)为事故检测输入端,8端(常闭)为保护检测输入端l10~12端为开度检测连接端,其中12端为最大开度运行方向,10端为最小开度运行方向,11端为开度检测抽头端l13~14端为4-20mA阀位输入连接端,其中13端为4-20mA阀位正端,14端为4-20mA阀位负端l19~24端为电动阀门电机控制输出和电源连接端,其中22端为电源的保护接地端,23端、24端分别为AC220V电源中性线和火线输入端,21端为开阀和关阀控制的公共端,19端、20端分别为用于开阀和关阀控制的火线输出端特别说明如果没有外加热继电器(常闭)输出,请将4和8短接。否则蜂鸣器误报警,仪表不工作。单相AC220V 应注意区分零线和火线,三相AV380V接触器应与仪表供电同相。仪表背后端子接线FCH端子电动装置端子名称1现场控制开关公共端2现场控制开阀常开端3现场控制关阀常开端4微动开关组公共端5开限位微动开关常开端6关限位微动开关常开端7力矩微动开关常开端8为保护检测常闭端10阀位电位器最小开度运行方向端11阀位电位器中心端12阀位电位器最大开度运行方向端134-20mA阀位正端144-20mA阀位负端19开阀控制的常开输出端20关阀控制的常开输出端21开阀和关阀控制的公共端22电源的保护接地端23AC220V电源中性线N端24AC220V电源火线输入L端电机为AC220V的执行机构直接控制接线图电机为AC380V的执行机构需加AC380V的功率驱动装置接线图注:开限位微动开关、关限位微动开关通过内部跳线可选常开、常闭。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=20262]FCHⅠ经济型电动阀门手操器[/url]

  • 电动汽车电池测试压缩机故障说明

    电动汽车电池测试压缩机是其装置的组件之一,其性能问题影响着电动汽车电池测试在新能源电池测试中的运行,所以,对于电动汽车电池测试压缩机的故障,我们需要了解清楚,理智应对。  电动汽车电池测试压缩机卸载装置如果失灵的话,如果是油压不够,就需要调节油压,使油压比吸气压力高0.12~0.2MPa,如果是油管堵塞、油缸内有污物卡死就拆开清洗,如果是油分配阀装配不当,拉杆或转动环装配不正确、转动环卡住的话,建议拆开检修。  压缩机吸气过热度过大的话,如果是制冷系统内制冷剂不足建议补充制冷剂,如果是蒸发器内制冷剂不足建议开大节流阀、增加供液,如果是制冷系统吸气管路保温隔热不好建议检查修理,如果是制冷剂中含水量超标建议检查制冷剂含水量,如果是节流阀开度小,供液量小建议开大节流阀、加大供液量。  压缩机排气温度偏高的话,如果是吸入气体温度过高,建议调整吸气过热度,如果是排气阀片破裂建议打开气缸盖、检查和更换排气阀片,如果是安全阀漏气建议检查安全阀、调节修理,如果是活塞环漏气建议检查活塞环、调节修理,如果是汽缸套垫片破裂、漏气建议检查更换,如果是活塞上死点间隙过大建议检查、调整上死点间隙,如果是汽缸盖冷却能力不足建议检查水量和水温、进行调节,如果是压缩机压缩比过大建议检测蒸发压力和冷凝压力。  压缩机吸入压力太低的话,如果是供液节流阀或吸气过滤网阻塞(脏堵或冰堵)建议拆卸检查并清洗,如果是系统内制冷剂不足建议补充制冷剂,如果是蒸发器内制冷剂不足建议开大节流阀、增加供液,如果是系统内、蒸发器中冷冻机油太多建议找出系统中积油的部位、排放出积油,如果是热负荷小建议调节压缩机能级、适当地进行卸载。  电动汽车电池测试的压缩机在运行中,也需要定期进行保养,保证其压缩机在电动汽车电池测试中的运行状态,使得电动汽车电池测试平稳运行。

  • 浅谈ARD3电动机保护器设计原理

    浅谈ARD3电动机保护器设计原理 安科瑞 蔡昀羲摘 要:本文着重介绍ARD3电动机保护器的具体设计方法,给出硬件原理图和软件流程图。文章按照产品的各硬件功能模块进行展开说明,介绍硬件功能模块时,对硬件功能模块原理图进行详细分析,结合各种实际应用的情况说明此处硬件是怎样设计的,为什么这样设计以及这样设计的优缺点。通常电动机保护器工作的条件比较恶劣,为使产品性能方面更加稳定可靠,需要使用一些抗干扰措施,文中介绍的这些抗干扰措施在实际使用中被证明是成功的。关键词:电动机保护器;ARD3;保护功能;ModBus0  引言  随着电子技术的发展,电动机保护器正向基于现场总线的智能型方向发展。我公司设计的ARD3电动机保护器立足于国内先进水平,是具有智能保护和可通信功能的电动机保护器。产品系列电流范围齐全,产品系列额定电流范围1.6~800A;可测量的电流范围宽,可以达到10倍电机额定电流;采用先进的软件算法和可靠的硬件设计,对电动机的过载、断相、三相不平衡、堵转、阻塞、过压、欠压等故障进行有效判断和可靠保护,过载保护采用计算分析当前电动机的热容量的方法,根据热容情况判断电动机的过载状态,此种方法可以最大发挥电动机的过载能力;配有可编程开关量输入、继电器输出,用于实现远程主站对电动机运行状态的遥信监视和直接起动、自耦降压、星-三角等起动方式;带有标准RS-485接口ModBus通讯协议实现计算机联网。1  硬件设计   ARD3电动机保护器用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、漏电流采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。1.1 信号采集单元  ARD3电动机保护器采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。  信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。ARD3电动机保护器中处理三相电流信号、剩余电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。   信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。  图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从P1.0输出大信号从P1.1输出。这样处理是因为:电动机保护器要处理的电流范围很宽(要从电动机1倍额定电流到10倍额定电流),分档处理可以提高测量精度。1.2 I/O单元  开关量输入处理电路如图2所示。电路开关量由IN1~IN7输入,通过光藕后产生IS1~IS7,并行信号IS1~IS7输入到74HC165,通过74HC165将并行信号转换为串行信号传送给CPU。电阻R11~R18起到限流作用保护光耦中的二极管不被损坏。RS1~RS8是上拉电阻与电容CS~CS8配合使用既可以稳定光耦输出电平又可以在上电时对光耦起到保护作用。Fig.2 Switching input circuit  继电器控制电路如图3所示。JDQ1~JDQ4与CPU连接,三极管QJ11~QJ14的供电电压是+5V,三极管QJ1~QJ4的供电电压是+24V。现以QJ11,QJ1这路控制电路来说明电路工作原理,当CPU输出高电平时三极管QJ11不导通,OUT11不会输出电流光藕不会导通,JT1也输出高电平,QJ1不会导通继电器不会动作。当CPU输出低电平时三极管QJ11导通,OUT1输出高电平使光耦导通, JT1变为低电平,三极管QJ1导通OUT1输出低电平使继电器发生动作。图3中二极管DJ1~DJ4作为继电器续流二极管。Fig.3 Relay control circuit  控制输出部分可采用机电式继电器或固体继电器。前者价格便宜,市场产品丰富,驱动线路也比较简单,但可靠性和使用寿命有限,且在触点动作时会产生“火花”,严重时可影响系统的正常工作。因此,在PCB板布局时应将继电器尽量远离单片机并靠近仪表的输出端口。另外,在继电器线圈两端应并联续流二极管,否则在继电器线圈断电瞬间会产生较高的感应电压,从而破坏电路。固态继电器具有寿命长、性能稳定,无火花等特点,本产品中考虑到产品的可靠性要求采用固态继电器。1.3 通讯单元  通讯电路如图4所示。通讯电路实现将CPU串口输出电平转换到RS485电平。本电路的巧妙之处在于数据收发直接由硬件来控制,不用CPU参与控制,这样可以节省CPU资源简化程序设计。Fig.4 Communications circuit1.4 CPU单元  CPU单元是电机保护器的核心单元。信号采集,各种报警处理,通信功能,显示功能……都是由它来完成的。本产品采用的CPU芯片是瑞萨公司的H8/3687芯片,该芯片功能如下:62条基本指令; RTC(片上实时时钟,可作为自由运算计数器使用),SCI(异步或者时钟同步串行通信接口)2路,1路IIC接口,8路10位A/D,8位定时器2个(Timer B1,TimerV),16位定时器1个(TimerZ),看门狗定时器,14位PWM,45个I/O引脚(H8/3687N有43个I/O引脚),包括8个可直接驱动LED的大电流引脚(IOL=20mA,@VOL=1.5V),片上复位电源POR电路,片上低电压检测电路(LVD)。该芯片有两种封装形式:LQFP-64(10mm×10mm)FP-64(14mm×14mm) 。CPU单元电路如图5所示。  因为A/D功能,IIC功能,RTC,定时器,看门狗等功能都已经集成到芯片内部,所以CPU单元的外围电路十分简洁,各引脚只需外接增加端口驱动能力的上拉电阻和稳定信号的滤波电容即可。2  软件设计  系统软件要完成三相电流、1路剩余电流、三路电压A/D,各种保护量计算,保护功能判断处理,显示电压、电流,故障记录,按键处理,通讯,变送等功能。只有合理安排程序流程来完成这些功能,保护器才能可靠工作。程序流程图如图6所示:3  抗干扰措施  电动机保护器作为保护电动机装置要具有很强的抗干扰性。在本产品软硬件设计过程中采取如下措施提高产品的抗干扰性:1硬件方面:电源部分加EMC滤波器,高频变压器次级与初级加高压电容,输出部分加滤波电路;信号采集部分增加滤波电路;在作信号处理的各芯片输入口处加端口保护电路;在各芯片电源输入处加去藕电容;继电器两端并联续流二极管,加光耦与CPU端口隔离;不使用的CPU端口定义为输出状态;PCB板布局时模拟部分与数字部分作分区处理,模拟信号在模拟区域内布线,数字信号数字区域内布线,二者不进入彼此区域内;布线时尽量加粗电源线与地线,信号线走线时走145º线,不走直角线;使用CPU内部看门狗监控程序运行。2软件方面:各路信号采集都使用软件滤波,增加采样值的准确性。通过采取一系列的措施,产品的抗干扰性能大幅提高,本产品一次性顺利通过3C安全认证型式试验。4  结论  ARD3电动机保护器采用先进的设计方案,集测量、保护、控制、通讯于一身,产品性能安全可靠,可以对电动机实施可靠有效的保护。ARD3电动机保护器在实际使用中完全可以替热继电器、温度继电器等传统的电动机保护产品,替代各种指针式电量表、信号灯、电量变送器等常规元件,简化电动机控制电路,减少柜内电缆连接及现场施工量。

  • 【讨论】实验室常用辅助设备系列讨论——电动振荡器(2分)

    活动第十二期:实验室常用辅助设备系列讨论之——电动振荡器~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~一、简介:电动振荡器又称“摇床”,一般简称振荡器。在试验中,常用于试样的溶解、待测成分的浸取、化学反应或吸附作用的加速等。在物相分析、泡沫塑料吸附和萃取分离等操作中应用也较多。电动振荡器有加热和不加热两类,按其震荡方式还可分为往复振荡器和回旋振荡器。二、问题讨论:电动振荡器使用时有哪些注意事项?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~其它系列讨论详见汇总贴: http://bbs.instrument.com.cn/shtml/20101112/2921750/

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制