当前位置: 仪器信息网 > 行业主题 > >

电磁控制器

仪器信息网电磁控制器专题为您提供2024年最新电磁控制器价格报价、厂家品牌的相关信息, 包括电磁控制器参数、型号等,不管是国产,还是进口品牌的电磁控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电磁控制器相关的耗材配件、试剂标物,还有电磁控制器相关的最新资讯、资料,以及电磁控制器相关的解决方案。

电磁控制器相关的论坛

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的比例电磁阀

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的比例电磁阀

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]电子流量控制器[/font][/font][font=宋体]中的比例电磁阀[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],执行流量控制时的常用核心部件是比例电磁阀,其原理类似于气体流路中的可调节阻尼。工作过程中,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统通过改变比例电磁阀的开度来调节其阻尼,进而控制气体流量。[/font][font='Times New Roman'] [/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量的调控方式[/font][/align][font='Times New Roman'] [/font][font=宋体]一、机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制方式[/font][align=center][img=,388,253]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647096104_6103_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制方式[/font][/font][/align][font=宋体][font=宋体]传统的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]调控气体流量的方法主要有三种,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]a[/font][font=宋体],气体流路中按顺序安装稳压阀和针型阀,稳压阀提供恒定压力,通过调节针型阀的阀针,改变其阻尼,实现流量的调节。实际情况下,由于针型阀本身阻尼范围有限,针型阀并不单独使用,一般需要在针型阀之后再串联阻尼器,使流量调节更加容易。[/font][/font][font=宋体]此种方式仪器硬件结构较为简单,针型阀惯性小,流量调节速度快。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]b[/font][font=宋体],气体流路中按顺序安装稳压阀和稳流阀,稳压阀提供恒定压力,通过调节恒流阀的阀针,改变其输出流量。[/font][/font][font=宋体]此种方式仪器硬件成本略高,由于恒流阀一般具有较大的惯性,流量调节速度相对较慢,一般常见于填充柱进样口的流量控制器,实现色谱柱的恒流量控制。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]c[/font][font=宋体],气体通道中安装稳压阀和阻尼器,通过调节稳压阀的不同输出压力实现流量的调节。[/font][/font][font=宋体]此种方式结构更加简单,硬件成本低,调节速度快,对稳压阀要求较高。[/font][font=宋体] [/font][font=宋体]二、[/font][font=宋体]电子流量控制器流量控制方式[/font][font=宋体][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],一般采用比例电磁阀为核心的流量控制系统来控制气体流量和压力,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。控制系统的输入端气源压力需要保持恒定。[/font][/font][font=宋体] [/font][align=center][img=,392,75]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647174276_6168_1604036_3.jpg!w690x132.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]比例电磁阀控制系统原理[/font][font='Times New Roman'][font=宋体]图[/font][/font][/align][font=宋体][font=宋体]比例电磁阀与普通电磁阀不同,可以通过调节其输入电压或者电流,获得阀不同的开度,改变电磁阀阻尼[/font][font=宋体]——类似图[/font][font=Times New Roman]1-a[/font][font=宋体]中的针型阀,从而实现气体流量的调节。[/font][/font][font=宋体]流量控制系统在负反馈方式下工作,如果输出气体流量(或压力)小于设定值,流量计(或压力计)检测到此异常反馈给控制器,系统发出命令增大阀的开度,使气体流量重新稳定于设定值。反之,如果输出气体流量(或压力)大于设定值,系统发出命令较小阀开度,使气体流量稳定。[/font][font=宋体][font=宋体]三、阀开度的控制[/font][font=宋体]——占空比[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统一般通过调节比例电磁阀的供电方波电压的占空比来调节阀开度,方波电压占空比的意义如图[/font][font=Times New Roman]3[/font][font=宋体]所示,。[/font][/font][align=center][img=,260,135]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647241020_6000_1604036_3.jpg!w500x260.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]占空比原理图示[/font][/font][/align][font=宋体]一般情况下色谱系统采用较高的恒频率方波电压控制比例阀,方波的高电平状态下电磁阀开启,低电平状态下电磁阀关闭。[/font][font=宋体][font=宋体]高电平工作的时间与方波周期的比例为方波电压的占空比([/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]/T[/font][font=宋体]),方波电压的占空比越高,电磁阀在工作过程中开启的比例越高——即开度越大,比例电磁阀的阻尼越小。[/font][/font][font=宋体][font=宋体]当系统输出气体流量大于设定值时,色谱系统减小比例电磁阀供电方波电压的占空比,此时比例电磁阀开度减小,阀阻尼增大,系统输出气体流量降低恢复到设定值。如图[/font][font=Times New Roman]4[/font][font=宋体]所示:[/font][/font][align=center][img=,313,64]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647306013_696_1604036_3.jpg!w690x141.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]占空比减小[/font][/font][/align][font=宋体][font=宋体]当系统输出气体流量小于设定值时,色谱系统增大比例电磁阀供电方波电压的占空比,此时比例电磁阀开度增大,阀阻尼减小,系统输出气体流量升高恢复到设定值。如图[/font][font=Times New Roman]5[/font][font=宋体]所示:[/font][/font][align=center][img=,319,76]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647379254_2500_1604036_3.jpg!w690x164.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]5 [/font][font=宋体]占空比增加[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][font=宋体]附:[/font][font='Times New Roman'][color=#666666]KOFLOC[/color][/font][font=宋体][font=宋体]公司的电磁阀外观照片,可以在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][font=宋体]EPC/AFC/EFC部件中看到。[/font][/font][font=宋体] [/font][align=center][img=,114,114]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647431813_8832_1604036_3.jpg!w420x420.jpg[/img][font='Times New Roman'] [/font][/align][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体]介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制器中比例电磁阀的基本原理[/font][font='Times New Roman'][font=宋体]。[/font][/font]

  • 美国MKS公司上游流量控制阀及其控制器的国产化替代

    美国MKS公司上游流量控制阀及其控制器的国产化替代

    [color=#990000]摘要:对标美国MKS公司的148J、248A和154A 系列上游流量控制阀以及244、250、946和651系列控制器,介绍了相应的国产化替代产品电子针阀和多功能高精度控制器,并介绍了国产化替代产品的相应特点和技术指标 。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、MKS公司上游流量控制阀[/color][/size] MKS上游流量控制阀是一类真空型电磁比例阀,如图1所示,主要有以下三个系列产品: (1)148J全金属流量控制阀:金属密封,流量范围0.01~20L/mim。 (2)154B大流量控制阀:橡胶密封,流量范围20~200L/mim。 (3)248D通用型流量控制阀:橡胶密封,流量范围0.01~50L/mim。[align=center][color=#990000][img=MKS上游气体流量控制阀,690,259]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251024178_4191_3384_3.png!w690x259.jpg[/img][/color][/align][align=center][color=#990000]图1 MKS公司上游流量控制阀[/color][/align][size=18px][color=#990000]二、MKS公司流量/压力控制器[/color][/size] MKS公司的流量/压力控制器是一类PID控制器,如图2所示,主要有以下4个系列产品: (1)244系列:手动PID控制,单通道控制,适配多种传感器,0~10VDC输入信号,手动/自动/外部控制模式,精度为满量程的0.25%,多个设定点(3或4),控制偏差指针显示。此型号系列控制器现已停产。 (2)250系列:手动PID控制,单通道控制,适配多种真空传感器,0~10VDC输入信号 ,手动/自动/外部控制模式,精度为满量程的0.25%,最多4个设定点,外部编程设定,数码显示测量值和控制偏差值。此型号系列控制器现已停产。[align=center][color=#990000][img=MKS流量压力控制器,690,102]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251398451_7424_3384_3.png!w690x102.jpg[/img][/color][/align][align=center][color=#990000]图2 MKS公司流量/压力控制器[/color][/align] (3)946系列:自动PID控制,16位A/D采集,6通道控制,适配多种真空传感器,最多可同时监测6路传感器信号,0~10VDC输入/输出信号 , 手动/自动/外部控制模式,内部编程设定,数字显示测量值和控制偏差值,12路继电器输出,RS232/485通讯。 (4)651系列:自调节快速PID控制,16位A/D采集,单通道控制,适配多种真空传感器,0~10VDC输入/ 输出信号 , 手动/自动/外部控制模式,重复性为满量程的±0.1%,外部编程设定,数字显示测量值, 多路I/O接口,RS232/485通讯。[size=18px][color=#990000]三、国产化电子针阀替代MKS电磁控制阀[/color][/size] MKS公司的上游流量控制阀是一种传统的电磁阀,电磁阀最大的问题是磁滞比较大,会明显的影响线性度和控制精度。这些控制阀的整体价格较高,也没有相应的国产品牌。 为了实现上游流量控制阀的国产化替代并提高性价比,我们在针阀技术上采用数控步进电机来代替电磁阀,开发了一些列不同流量的电子针阀,如图3和图4所示,完全实现了国产化替代。[align=center][color=#990000][img=电子针阀,500,428]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252026101_430_3384_3.gif!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][img=电子针型阀技术指标,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252322209_7636_3384_3.png!w690x452.jpg[/img][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术参数[/color][/align][align=left][size=18px][color=#990000]四、国产化高精度PID控制器替代MKS控制器[/color][/size][/align] MKS公司的气体流量/压力控制属于专用控制器,只能满足真空领域内的气体流量和压力控制,尽管功能十分强大,但价格较贵。国产化替代的PID控制器,采用了更高精度的24位A/D采集器,控制器更趋于通用性,可实现温度和真空压力的同时控制,如图5所示。[align=center][color=#990000][img=VPC-2021系列控制器,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252599268_5639_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图5 国产VPC-2021系列温度/压力控制器[/color][/align] 国产高精度多功能PID控制器主要特点如下: (1)高精度:±0.05%满量程,24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID,分组输出限幅功能。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:支持20条工艺曲线,每条50段,支持段内循环和曲线循环。[hr/]

  • 水塔自动供水控制器原理是什么

    水塔自动供水控制器原理是什么

    [font=宋体][color=#1E1F24]水塔自动供水控制器是一种用于控制供水系统,保持水塔水位在一定范围内的装置。其基本原理是利用水位传感器来检测水塔中的水位高度,并将检测结果与设定值进行比较,从而控制水泵的运行状态,以达到自动供水的目的。[/color][/font][font=宋体][color=#1E1F24]当水位低于设定值时,控制器会启动水泵,将水从水源输送到水塔中,直到水位达到设定值。当水位高于设定值时,控制器会关闭水泵,停止供水。同时,控制器还会控制电磁阀的开启和关闭,以控制水塔的出水量,从而保持水塔水位的稳定。[/color][/font][align=center][img=自动补水器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181648219012_8230_4008598_3.jpg!w673x582.jpg[/img][/align][font=宋体][color=#1E1F24]此外,[url=https://www.eptsz.com]水塔自动供水控制器[/url]还可以通过设置不同的参数来实现不同的控制功能,例如定时开关机、水位报警等功能。这些功能可以根据实际需求进行设置和调整,以达到更好的使用效果。[/color][/font]

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 水塔自动抽水控制器

    水塔自动抽水控制器

    [font='微软雅黑',sans-serif][color=#333333][back=white]水塔自动抽水控制是通过光电液位传感器实现的。这种控制器采用了光电液位传感器来检测水塔的水位,主要用于检测缺水和满水状态,并控制水泵、电磁阀或其他需要控制的仪器,实现自动补水功能。根据客户的要求,逻辑功能可以进行相应的更改。[/back][/color][/font][font='微软雅黑',sans-serif][color=#333333][back=white]光电液位传感器内置了红外发光二极管和光敏接收器,其头部采用了棱镜结构。在无水状态下,发光二极管所发出的光经过透明透镜后会折射到接收管中;而在有水状态下,光会折射到液体中,从而使接收器无法接收到光线或只能接收到少量光线。[/back][/color][/font][align=center][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308101529242403_1142_4008598_3.jpg!w690x690.jpg[/img][/align][font='微软雅黑',sans-serif][color=#333333][back=white]通过光电液位传感器的检测,控制器可以准确地判断水塔的水位情况。当水塔缺水时,传感器会感知到光线的变化,从而触发控制器进行补水操作;当水塔满水时,传感器也会感知到光线的变化,从而停止补水操作,以避免水塔溢出。[/back][/color][/font][font='微软雅黑',sans-serif][color=#333333][back=white]水塔自动抽水控制通过[url=https://www.eptsz.com]光电液位传感器[/url]的精准检测,实现了对水位的自动监控和控制。这种控制方式不仅方便了用户的使用,还能够有效地避免水塔的溢出或缺水情况,提高了水资源的利用效率。同时,光电液位传感器的棱镜结构设计使得传感器更易于清洁,避免了细菌滋生的问题,保证了水的卫生安全。[/back][/color][/font]

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电气比例阀采用外置传感器和PID控制器实现化学机械抛光超高精度压力控制的解决方案

    电气比例阀采用外置传感器和PID控制器实现化学机械抛光超高精度压力控制的解决方案

    [color=#990000]摘要:为大幅度提高现有CMP工艺设备中压力控制的稳定性,在现有电气比例阀这种单回路PID压力调节技术的基础上,本文提出了升级改造方案,即采用串级控制法(双回路PID控制,也称级联控制),通过在现有电气比例阀回路中增加更高精度的压力传感器和PID控制器,可以将研磨抛光压力的稳定性提高一个数量级,从1~2%的稳定性提升到0.1~0.2%。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]在半导体制造过程中,化学机械抛光(CMP)是在半导体晶片上产生光滑、平坦表面的关键工艺。CMP工艺中的压力控制是决定最终产品质量的关键因素。如果压力过高,会损坏半导体材料;如果压力太低,会导致表面不平整。CMP系统中需要配置专用的压力调节装置,以确保压力保持在安全范围内。通过将压力保持在安全范围内,压力调节装置有助于确保半导体晶片在CMP过程中不被损坏。目前的CMP系统中普遍采用电气比例阀作为压力调节器,其典型结构如图1所示。在CMP中采用比例阀来控制抛光过程中施加在晶圆上的压力。由于比例阀是电子控制和压力值的模拟信号输出,因此可以通过控制系统(如PLC)对其进行动态编程和压力监控,这意味可以根据被抛光的特定晶片准确改变施加的压力。此外,由于电气比例阀作为压力调节器是一个闭环控制,即使在下游压力发生变化期间,施加在抛光垫上的压力也会保持不变,由此实现压力的自动调节。[align=center][img=常规研磨机电气比例阀压力控制系统结构,600,280]https://ng1.17img.cn/bbsfiles/images/2022/09/202209150917534790_1434_3221506_3.png!w690x322.jpg[/img][/align][align=center]图1 常规CMP系统中电气比例阀压力控制装置结构示意图[/align]在一些CMP工艺的实际应用中,要求抛光压力具有很高的稳定性,图1所示的常规压力调节装置则无法满足使用要求,这主要体现在以下几方面的不足:(1)电气比例阀的整体控制精度明显不足,其整体精度(包含线性度、迟滞和重复性)往往在1~2%范围内。这种精度水平主要受集成在比例阀内的压力传感器、高速电磁阀和PID控制器性能和体积等因素制约,而且进一步提高的空间非常有限。(2)电气比例阀安装位置与气缸有一定的距离,由此造成比例阀所检测到的压力值并不是气缸的真实压力,而且比例阀处压力与气缸压力之间有一定的时间滞后。为解决上述存在的问题,进一步提高现有CMP工艺设备中压力控制的稳定性,在现有电气比例阀这种单回路PID压力调节技术的基础上,本文将提出升级改造方案,即采用串级控制法(双回路PID控制,也称级联控制),通过在电气比例阀回路中增加更高精度的压力传感器和PID控制器,可以将研磨抛光压力的稳定性提高一个数量级,从1~2%的稳定性提升到0.1~0.2%。[size=18px][color=#990000][b]二、CMP设备压力控制的串级PID控制方案[/b][/color][/size]在传统的CMP设备压力调节过程中,采用电气比例阀进行压力调节的稳定性完全受集成在比例阀内的压力传感器、高速电磁阀和PID控制器性能和体积等因素制约。为了提高压力控制的稳定性,并充分发挥电气比例阀的自身优势,我们采用了一种串级控制技术,即在作为第一回路的电气比例阀中增加第二控制回路,其中第二控制回路由更高精度的压力传感器和PID控制器构成。串级PID控制方案的整体结构如图2所示。[align=center][img=03.超高精密研磨机电气比例阀压力串级控制系统结构,600,333]https://ng1.17img.cn/bbsfiles/images/2022/09/202209150918245058_1534_3221506_3.png!w690x384.jpg[/img][/align][align=center]图2 串级控制法CMP系统压力控制装置结构示意图[/align]在图2所示的串级控制法压力调节装置中,安装了一个外置压力传感器用于直接监测气缸内的气压,压力传感器检测到的气缸压力信号传输给外置的PID控制器,外置PID控制器根据设定值或设定程序将控制信号传送给电气比例阀,比例阀根据此控制信号再经其内部PID控制器来调节高速电磁阀的动作,使得电气比例阀输出到气缸的气体气压与设定值始终保持一致。从上述串级控制过程可以看出,串级控制是一个双控制回路,是两个独立的PID控制回路,电气比例阀起到的是一个执行器的作用。串级控制法(也称级联控制法)是一种有效提升控制精度的传统方法,但在具体实施过程中,需要满足的条件是:[color=#990000]第二回路的传感器和PID控制器(这里是外置压力传感器和PID控制器)精度一般要比第一回路的传感器(这里是电气比例阀内置的压力传感器和PID控制器)要高。[/color]为了实现更高稳定性的CMP系统压力控制,我们推荐的实施方案是采用0.05%精度的外置压力传感器和超高精度PID控制器(技术指标为24位ADC、16位DAC和双浮点运算的0.01%最小输出百分比)。此实施方案我们已经进行过大量考核试验,压力稳定性可以轻松达到0.1%。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 控制器作用

    液相控制器的作用是什么就是连接机器和显示器吗,如果关掉控制器的话机器还能进行检测吗?只看到岛津的机器有单独的控制器,那安捷伦和WATERS是安在内部了还是不是所有的机器都需要控制器啊

  • 【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流不分流进样口 手工流量控制器的结构原理 [align=center]概述[/align][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口手工流量控制原理简介,各部件介绍和控制方式的特点。[align=center]简介[/align]分流/不分流进样口是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的重要部件,其气流控制的稳定性、精确度会显著影响[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的结果的重复性、样品的真实性。随着电子技术的发展、手工流量控制器再现性较差,调整不方便等原因,进样口配备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]逐渐成为实验室仪器的主流配置。但是手工流量控制因其安装和维护成本低廉、性能可靠等优点,目前仍然在较多的实验室具有一定的存量。尤其是对于色谱行业的初学者,有机会使用手工流量控制类型的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],将会有助于较快的学习和领会到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的基本结构和原理。[align=center]手工流量控制模式[/align]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口的手工流量控制模式大致有两种,压力控制模式和流量控制模式。1.1压力控制模式其结构原理如图1所示,色谱仪通过恒压阀的调节,提供进样口的柱前压力(即控制柱流量);通过分流流路和隔垫吹扫流路针型阀的调节,实现分流流量和隔垫吹扫流量的控制。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903058201_1362_1604036_3.jpg[/img][/align][align=center]图1 压力控制模式基本原理图[/align]下面以较为经典的Shimadzu的GC-2014为例予以说明,其调节阀结构如图2所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059080_3480_1604036_3.jpg[/img][/align][align=center]图2 进样口压力控制模式阀结构图[/align]载气首先经由两级稳压阀的一级减压和二级减压,输送进入进样口,提供稳定的柱前压力,根据色谱柱尺寸、载气种类和操作温度,调节合适的压力。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中分流流量和隔垫吹扫流量的具体调节都通过针型阀来实现。隔垫吹扫流路和分流流路均存在捕集阱,一般填充活性炭、硅胶之类的吸附剂,用以吸附流经气体中的高沸点杂质,用以保护针型阀和分流电磁阀,避免过多的杂质凝结在阀中造成堵塞和开关失效。在分流流路中设计有电磁阀,当进样口需要工作在不分流状态之下时,通过电磁阀的通断操作,实现分流流路的切断和恢复。1.2 压力控制模式的优点和缺点采用控制柱前压力的方法来实现色谱柱流量的控制,执行部件使用了恒压阀,恒压阀的调节速度较快。色谱进样时,由于液体样品的受热迅速膨胀或者进样阀造成的流路瞬间切断,会导致进样口压力变化。采用压力控制方案(即使用恒压阀控制),进样口的压力会快速恢复。恒压阀和针型阀各自独立工作,互相不存在干扰和反馈的问题。其缺陷是结构较为复杂,分析方法开发时,调节不太方便。例如更换不同色谱柱之后,进样口压力、分流流量和隔垫吹扫流量均需要进行调节。此外如果进样口存在一定程度泄漏时,系统并不会有明显的异常。在色谱柱安装之后,一定要仔细检查泄漏。2.1流量控制模式其结构原理如图3所示,色谱仪通过总流量控制器(恒流阀)的调节,向进样口提供正确的进样口载气流量,由分流控制器(背压阀)提供正确的柱前压,同时提供正确的分流比。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059959_5598_1604036_3.jpg[/img][/align][align=center]图3 流量控制模式原理[/align]其阀结构如图4所示,[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903060554_1498_1604036_3.jpg[/img][/align][align=center]图4 进样口流量控制模式阀结构图[/align]载气首先经由稳压阀进行减压,输送给恒流阀,向进样口提供稳定的载气流量。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中隔垫吹扫流量的调节通过针型阀来实现。分流流量通过背压阀来调节,背压阀的工作特性是可以使阀输入的压力保持稳定不变。利用这个特点背压阀可以同时调节进样口压力。通过三通电磁阀的状态切换,实现进样口分流和不分流状态的调整,如图5所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903062977_9863_1604036_3.jpg[/img][/align][align=center]图5 分流和不分流状态阀结构图[/align]流量控制模式结构简单,背压阀的调节较为重要,调节速度和进样口压力扰动的恢复速度比压力模式要低。另外还有一类采用混合控制模式的手工流量控制器,将进样口入口侧的恒流阀改换成恒压阀,进样口压力控制速度得到改善。但是进行方法开发时,稳压阀和背压阀会互相影响,流量调节就会比较耗费时间。

  • 微流控控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html]微流控控制器[/url][/b]是[b]控制微流体器件[/b]如微型泵,微型阀的功能强大的[b]流控控制器[/b],[b]微流控控制器[/b]简化了实验室科研的复杂设计。微流控控制器OEM版本操作简单,更加有效,更适合微流体和微流控产业化使用,可以广泛用于医疗设备,生物处理系统,实验室仪器,化学仪器和科学设备和许多其它使用流体控制装置(泵,阀等)的领域,方便用户集成和制造工具。[img=微流控控制器]http://www.f-lab.cn/Upload/flowtest_.jpg[/img][b][/b]微流控控制器:[url]http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html[/url][b]微流控控制器[/b]FlowTest™ OEM版本结合:[list][*]现代化和高品质的控制板,不仅是设计和流体控制子系统开发的关键工具,也是在工业化和制造阶段新直接整合成新的先进仪器的关键工具。[/list][list][*]开发和集成成套套件是一个灵活的,有效的和用户友好的软件套件,用于快速开发,高效编程和易于集成。这些软件大大简化了新先进仪器的流体功能。也降低了集成的成本和时间,同时在工业化工作期间促进在仪器内的操作控制器。[/list]

  • 自动上料控制器 自动打磨控制器

    自动上料控制器 自动打磨控制器

    自动上料控制器 / 自动打磨控制器产品外形小巧,功能简单实用,参数设置少,无需繁琐操作。该表由杭州双星普天 开发设计,功能支持 定制!一、基本工作原理:监控主电机的电流,当主电机负载电流过大时,控制器输出断开信号,停止副电机工作,随着主电机处理物料的减少,主电机电流降低,控制器开启副电机工作,以此循环。二、基本参数1、供电:220V AC / 24V DC 可选2、输出:单继电器输出,触点容量 250V 3A3、采样方式:采用电流互感器 隔离采样4、量程: 10A / 50A /100A5、安装方式:面板安装 / 导轨安装 可选三、操作方式常规设置内容:报警下限电流值报警下限输出延时报警上限电流值报警上限输出延时设置方法:1、对于已知动作电流的用户,可以进入设置模式后修改设置内容2、该电流表支持快速设置模式,无需进入设置状态,通过简单的按键即可完成动作电流的设置。对于不知道电流大小 或者 需要频繁快速修改设定值的用户特别方便。四、互感器(销售时含)与该表配合使用的互感器有多种,出厂时根据用户测量电流范围选配,无需用户关注。用户只需关注 被检测线的直径,线鼻子是否顺利穿线等问题。与该表配合的常规互感器 穿心孔直径有 26mm / 11mm / 6mm 供选择。如有特别要求,比如钳形口互感器等,采购时需咨询。五、质保自采购之日起,在正常使用情况下,一年内出现质量问题,免费更换。无限期保修http://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507480_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507481_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpg

  • 国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    [color=#990000]摘要:本文主要介绍了国产化替代方面所做的工作,替代产品为艾默生TESCOM ER5000系列电子压力控制器及其背压阀。本文介绍了进口产品的性能特点和不足,提出了国产化替代技术路线,描述了国产化替代产品的性能指标,介绍了国产化替代产品的功能扩展和技术创新,使国产化替代产品具有了更高的性价比和使用灵活性。[/color][align=center][img=国产化替代,690,408]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182018432207_7188_3384_3.jpg!w690x408.jpg[/img][/align][size=18px][color=#990000]1. 艾默生ER5000系列压力控制器[/color][/size][size=16px][color=#990000]1.1. 压力控制器结构和原理[/color][/size]艾默生最新一代TESCOM ER5000系列电子压力控制器,是一种多功能集成式的压力控制器,集成了压力传感器、PID(比例-积分-微分)控制器和电动比例阀三个部件,集传感器、控制器和电子阀门于一体构成一个完整的控制机构。TESCOM ER5000电子压力控制器及其基本结构如图1-1所示。[align=center][color=#990000][img=国产化替代,690,249]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025069214_3530_3384_3.png!w690x249.jpg[/img][/color][/align][align=center][color=#990000]图1-1 TESCOM ER5000电子压力控制器结构示意图[/color][/align]从图1-1可以看出,ER5000电子压力控制器的功能就是控制底部出口处的压力,将进气压力降低并控制在设定压力上,使底部出口处的压力始终与设定压力一致。ER5000电子压力控制器实际上是一款电子式的减压阀,其工作原理如图1-2所示。外部气源向ER5000供给压力,供给压力通过打开的进气阀成为出口处的输出压力,同时此输出压力通过压力传感器反馈至PID控制器。如果反馈值低于压力设定值,控制器继续控制进气阀处于开启状态直到反馈值与设定值相等。等到上述两个值相等,进气阀将关闭,此时出口处持续输出恒定的设定值压力。如果反馈值高于设定值,则控制器将启动排气阀,从而排放过量的出口压力直到反馈信号等于设定值。等到上述两个值相等,排气阀将关闭,此时出口处同样持续输出恒定的设定值压力。[align=center][img=国产化替代,690,284]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025348584_2251_3384_3.png!w690x284.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图1-2 TESCOM ER5000电子压力控制器原理图[/color][/align][size=16px][color=#990000]1.2. 典型应用[/color][/size]ER5000压力控制器主要有两类应用方向,一是单机应用,二是与其他特殊阀门的配合应用,以达到不同范围内的压力调节和控制。(1)单机应用:从上述结构和原理可知,TESCOM ER5000电子压力控制器是一款非常典型的电子式减压阀,在单机使用情况下,控制器本身可对压力8.2bar以下的气源进行减压并准确控制,甚至可以实现对粗真空的控制。另外,在单机应用中,可分别采用内部和外部反馈两种控制模式,如图1-3和图1-4所示。[align=center][img=国产化替代,690,244]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025483237_8169_3384_3.png!w690x244.jpg[/img][/align][align=center][color=#990000]图1-3 艾默生ER5000电子压力控制器内部反馈控制模式单机应用[/color][/align][color=#990000][/color][align=center][img=国产化替代,690,266]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025582943_2239_3384_3.png!w690x266.jpg[/img][/align][align=center][color=#990000]图1-4 艾默生ER5000电子压力控制器外部反馈控制模式单机应用[/color][/align](2)配合使用:ER5000电子压力控制器的一个重要应用是作为先导阀与其他调节阀配合使用,以调控更大的压力范围。更大压力减压应用如图1-5所示,与背压阀配合应用如图1-6所示[align=center][color=#990000][img=ER5000国产化替代,690,301]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026370215_476_3384_3.png!w690x301.jpg[/img][/color][/align][align=center][color=#990000]图1-5 艾默生ER5000电子压力控制器典型减压应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,450]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026463023_179_3384_3.png!w690x450.jpg[/img][/align][align=center][color=#990000]图1-6 艾默生ER5000电子压力控制器典型背压应用[/color][/align][size=16px][color=#990000]1.3. 性能指标[/color][/size]由于TESCOM ER5000系列电子压力控制器是由压力传感器、PID控制器和双阀结构压力调节器三部分的集成,每部分的技术指标则代表了控制器的整体性能,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大8.2bar(820kPa)(4) 出气口压力(绝对压力):最小0.07bar(7kPa),最大8.2bar(820kPa)(5) 输入信号:USB、RS485、4~20mA、1~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、1~5V或0~10V。(7) 内部压力传感器测量精度:±0.10%(FSO),其中包括了±0.05%(FSO)线性度和±0.05%(FSO)迟滞。(8) 控制器A/D转换:16位。(9) 控制器重复性:±0.05%(FSO)。(10) 控制器分辨率灵敏度:±0.03%(FSO)。(11) 控制方式:PID(需结合专用软件ERTune进行PID参数调试和优化)。(12) 控制模式:内部反馈、外部反馈和双环三种模式。这里特别介绍ER5000压力控制器的三种控制模式,这是此控制器的一个技术亮点:(1)内部反馈模式:该模式仅使用内部传感器。内部反馈模式使用ER5000内部压力传感器以监控控制器内部1~100psig/0.07~6.9bar范围内的绝对压力。(2)外部反馈模式:该模式仅使用外部传感器。外部反馈模式利用用户提供的外部传感器以监控系统压力,该传感器安装于过程管线中并向ER5000提供直接反馈。(3)双环模式:该模式是在“循环内循环”配置中同时使用内部和外部传感器。双环模式在一个PID循环中执行另一个PID循环。内部回路使用控制器的内部传感器,外部回路使用外部传感器。[size=16px][color=#990000]1.4. 功能和特点[/color][/size]从上述介绍,可归纳出ER5000压力控制器的以下几方面功能和特点:(1) ER5000压力控制器最主要功能是可进行气体压力(不是流量)控制,即可实现密闭型容器和管道内压力的准确控制。(2) 整体集成式结构,集成了压力传感器、PID控制器和双阀调节器执行结构,使得整体结构小巧,并便于安装使用和多台并行使用。(3) 作为一种典型的压力控制器,即可直接对最大8.2bar的气源压力进行减压并准确恒压控制(进气口为正压),也可用来控制低压(粗真空,进气口为真空),最低压力可达0.07bar(7kPa)。(4) ER5000压力控制器可作为先导阀来驱动各种大量程的减压阀和背压阀,控制器的出口与其他背压阀的先导口连接,可实现更大量程范围内压力调节和控制。(5) 压力传感器±0.1%的测量精度和16位的A/D转换,属于中高端技术指标,可满足大多数应用场合。(6) 数字PID控制方式可实现压力的快速和准确控制。(7) 内部反馈、外部反馈和双环三种控制模式,使ER5000压力控制器具有较大的使用灵活性,可根据实际使用要求选择最佳控制模式。[size=16px][color=#990000]1.5. 压力控制器存在的不足[/color][/size]尽管ER5000压力控制器有上述诸多功能和特点,但在实际应用中还存在以下多方面的限制和不足。(1) ER5000压力控制器集成了真空压力控制领域中三种最常用部件,但由于是集成式结构而不是模块化积木式结构,这反而限制了ER5000压力控制器应用。如ER5000压力控制器中集成了两个电磁阀,但仅能进行气体压力控制,而无法进行只需单电磁阀的气体流量控制。(2) ER5000压力控制器更侧重于正压控制,也可进行部分的负压控制,这主要是由于所用阀门的漏率太高造成,从而并未发挥传感器(特别是外置传感器)和PID控制的强大功能。如果能降低控制器内部阀门的气体漏率,则控制器完全可覆盖整个真空度范围的控制,将目前的7kPa的真空度扩展到1Pa左右。(3) 在驱动各种大量程减压阀和背压阀应用方面,使用价格较高的ER5000压力控制器作为先导阀其性价比非常低,完全可以使用高性价比的国产替代产品。(4) ER5000压力控制器16位的A/D转换,属于中高端技术指标,如果采用外置高精度的压力传感器则需要24位的A/D转换器,这使得ER5000压力控制器无法满足一些测量控制精度要求较高的场合。(5) 尽管ER5000压力控制器采用了PID控制方式,但PID参数的调节都需要使用专用软件,控制器自身缺乏PID参数自整定功能,还需连接计算机,现场操作非常繁复。(6) ER5000压力控制器自身缺乏显示功能,还需连接计算机和使用配套软件才能进行调试和显示控制过程和结果。(7) ER5000压力控制器的整体价格偏高,而且操作复杂,对操作人员有较高的要求。再结合控制器上述不足,这使得ER5000压力控制器的性价比并不高,很多场合下使用显着非常的奢侈和浪费。[size=18px][color=#990000]2. 国产化替代技术路线[/color][/size]对艾默生公司最新一代TESCOM ER5000系列电子压力控制器的国产化替代,技术路线是首先实现ER5000压力控制器的测控功能,提供高性价比国产压力控制器。然后采用模块结构技术路线,将真空压力传感器、PID控制器和电子阀门分离为各自独立模块,每一类模块由一系列不同技术指标的部件组成,通过这些不同性能指标模块的组合来实现不同控制功能和精度要求,拓展控制器功能,满足不同需求,并具有高性价比。[size=16px][color=#990000]2.1. 实现ER5000压力控制器功能[/color][/size](1) 国产化替代产品要达到ER5000电子压力控制器绝大部分功能,即实现ER5000压力控制器自身的减压和控压功能。(2) 国产化替代产品同时与ER5000压力控制器一样,可作用先导阀来对大量程高压范围的气体进行减压和控压。(3) 国产化替代产品具有设定值输入和显示功能,无需软件和连接计算机进行操作。(4) 国产化替代产品价格低,具有高性价比。[size=16px][color=#990000]2.2. 模块化结构和功能拓展[/color][/size](1) 模块化结构分为传感器、PID控制器和电子阀门三个模块。(2) PID控制器模块是所有模块的核心器件,决定了测控精度,决定了可配合使用的传感器和电子阀门的种类,决定了控制方式和控制模式。PID控制器模块将采用24位A/D转换器提高测控精度,集成两个独立控制通道可同时控制2路真空压力或1路真空压力和1路温度,可连接多种真空压力和温度传感器,2通道结合可进行正反双向控制以满足真空压力的上下游控制模式,2通道结合可具备双传感器自动切换功能以覆盖宽泛测控量程,PID控制器带程序设定功能可输入多条控制工艺曲线,可输入和存储多组PID参数,PID参数调整带自整定功能,控制器带彩色液晶屏显示全过程参数和结果。(3) 电子阀门模块由多种规格型号的电子阀门构成,主要有流量调节阀和压力调节阀两大类。流量调节阀主要有小流量电动针阀和大流量大口径电动球阀蝶阀,这些流量调节阀都属于高速调节阀,开闭速度都在1s以内。压力调节阀主要有真空型背压阀和高压型背压阀,两种背压阀都可以在水气两相介质下工作。(4) 传感器模块主要是外协配套件,由多种规格型号的压力传感器和温度传感器构成,主要分为高压传感器、低压(真空)传感器、热电偶、铂电阻、热敏电阻、红外测温仪和直流电压信号,由此可覆盖几乎所有压力和温度范围内的测量。[size=18px][color=#990000]3. 国产化替代产品[/color][/size]根据上述的国产化替代技术路线,上海依阳实业有限公司研制了相应的产品,现分别介绍如下。[size=16px][color=#990000]3.1. 数显压力控制器[/color][/size]国产化的数显式压力控制器包括正压型和真空型两种规格,其压力控制原理和基本结构与艾默生TESCOM ER5000系列电子压力控制器一样,如图3-1所示。[align=center][color=#990000][img=ER5000国产化替代,690,390]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027032534_5519_3384_3.png!w690x390.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 国产化电子压力控制器及其结构原理[/color][/align]国产化的数显式压力控制器同样是压力传感器、控制器和双阀结构压力调节器三部分的集成结构,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大50bar(5MPa)(4) 出气口压力(绝对压力):最小0.21bar(21kPa),最大30bar(3M Pa)(5) 输入信号:4~20mA、0~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、0~5V或0~10V。(7) 内部压力传感器测量精度:±1.0%(FSO),其中包括了±0.5%(FSO)线性度和±0.5%(FSO)迟滞。(8) 控制器A/D转换:12位。(9) 控制器重复性:±0.5%(FSO)。(10) 控制器分辨率灵敏度:±0.2%(FSO)。(11) 控制方式:内置PID自动控制,无需人工干预。(12) 控制模式:内部反馈和外部反馈。从上述技术指标可以看出,国产化压力控制器的有些技术指标进行了降低,如12位的A/D转换和±1.0%测量精度,但拓宽了使用压力范围,增加了显示和输入功能,压力控制器可独立使用无需外接计算机和软件调试,降低了操作难度,提高了性价比,基本上能满足绝大多数领域的应用。[size=16px][color=#990000]3.2. 背压阀(高压型和真空型)[/color][/size]国产化的新型背压阀模块单独分为高压型和真空型背压阀,两种背压阀都采用上述数显压力控制器做先导阀进行控制,但新型背压阀对艾默生TESCOM等传统背压阀做了重大改进。传统的背压阀,都具有一个固定在阀体上的阀座,此阀座与阀芯紧密贴合,来达到密封效果。它可以为大多数简单过程提供基本的压力控制,在这种设计中,通过弹簧或其他的方式提供一个预设加载力,这个加载力使得阀芯与阀座密封。当管路压力作用到阀芯上的力,与加载力相同时,则背压阀在预设的压力状态下正常工作;当阀门的入口端压力升高,使作用在阀芯上的力超过预设的加载力时,阀芯和阀座分离,释放入口端多余的压力,直至恢复预设的压力。传统背压阀结构,在瞬时流量变化较大、或入口压力波动频繁的情况下,控制压力的精度较低,原因如下:(1) 由于大多数控制压力超过20bar的传统背压阀,采用了活塞的方式作为阀芯的负载机构,活塞中的O形密封圈增加了动作摩擦,从而使阀芯动作卡滞;(2) 传统背压阀的进出口流道,多为单一且固定截面积的通路,当阀门入口的流量迅速增加或降低时,阀门的Cv值(流通能力)却没有变化,这样会使入口压力产生剧烈波动;(3) 传统背压阀阀芯和阀座,因密封需要,贴合时存在应力或摩擦,频繁的开合,会使其彼此互相磨损和消耗,破坏初始的形状,使Cv值发生不可预知的改变。新型背压阀是上向下相连接的阀盖和阀体结构,如图3-2所示。阀盖和阀体之间连接有膜片,阀盖顶部开设先导气孔,先导气孔通过阀盖内部开设的气源通道连通至阀盖底部开设的供膜片中部起伏运动的活动槽,形成上下贯通的通路,阀体侧壁上分别开设相对设置的介质入口和介质出口,介质入口与阀体上表面开设的多个入口小孔相连通,介质出口与阀体上表面开设的多个出口小孔相连通。新型背压阀的突出特点是整个动作无摩擦,不会产生压力滞后,入口压力稳定性高,具备更大的流通能力。[align=center][color=#990000][img=ER5000国产化替代,690,259]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027186867_2208_3384_3.png!w690x259.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-2多孔式结构新型背压阀[/color][/align][size=16px][color=#990000]3.3. 双通道高精度PID控制器[/color][/size]针对PID控制模块,为满足广泛的真空压力控制要求,上海依阳实业有限公司出品了VPC2021系列PID控制器,此系列控制器可进行真空、压力和温度的测量、显示和控制。采用了24位数据采集和人工智能PID控制技术,可接入各种型号的真空、压力和温度传感器,可控制多种型号的电动针阀、电动阀门和加热器等执行结构,可实现高精度真空、压力和温度等参量的定点和程序控制,是替代国外高端控制器产品的高性能和高性价比控制器。如图3-3所示,VPC2021系列PID控制器具有双通道独立测控功能,可对不同通道上的参数同时进行测量、显示和控制。如果两个通道接入相同类型但量程不同传感器,如图3-4所示,可以根据测试值实现两个传感器之间自动切换,由此可覆盖宽量程的测量和控制。[align=center][img=ER5000国产化替代,690,348]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027332455_2803_3384_3.png!w690x348.jpg[/img][/align][align=center][color=#990000]图3-3 VPC2021系列双通道高精度PID控制器及其应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,369]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027510730_967_3384_3.png!w690x369.jpg[/img][/align][align=center][color=#990000]图3-4 双通道高精度PID控制器的双传感器自动切换[/color][/align]VPC2021系列双通道高精度PID控制器主要技术指标如下:(1) 测量精度:±0.05%FS(24位A/D)。(2) 输入信号:可连接众多真空压力传感器,32种信号输入类型(电压、电流、热电偶、热电阻)。(3) 控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。(4) 控制算法:PID控制和自整定(可存储和调用20组PID参数)。(5) 控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。(6) 通道:双通道,双通道传感器自动切换。(7) 通讯方式:RS 485和以太网通讯。(8) 供电电源:交流(86-260V)或直流24V。(9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)[size=16px][color=#990000]3.4. 高速电动流量调节阀[/color][/size]针对电子阀门模块,为满足不同大小流量的高速调控,上海依阳实业有限公司推出了两个系列的电子阀门,一个系列是电动针阀用于小流量调控,另一个系列是电动球阀和蝶阀用于大流量调控。这两个系列电子阀门的最大特点是可电控,并具有1s以内的高速闭合时间,是国内非常罕见的快速电子阀门。如图3-5所示,电动针阀NCNV系列是将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,599,513]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182028158401_6212_3384_3.png!w599x513.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-5 NCNV系列电子针阀[/color][/align]NCNV系列电动针阀主要技术指标和特点如下:(1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。(2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。(3) 高重复性:通过每次达到0.1%的相同流量,NCNV系列电动针阀可提供长期稳定的一致性。(4) 宽压力范围:通过5或7bar巴的真空,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。(5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。(6) 高分辨率:0.2%的分辨率允许NCNV系列电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。(7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。(8) 工作电压:VDC 24V。(9) 输入信号:4~20mA、0~5V和0~10V。如图3-6所示,电动球阀NCBV系列是将高速电动执行器及高品质V型球阀组成,是目前常用慢速电动球阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,377,500]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182029196473_3852_3384_3.png!w377x500.jpg[/img][/color][/align][align=center][color=#990000]图3-6 NCBV系列电动球阀[/color][/align]NCBV系列电动球阀主要技术指标和特点如下:(1) 最大扭力:2N.m。(2) 阀球转动角度:90°。(3) 开关阀时间:小于1秒。(4) 工作电压:VDC 24V(5) 输入信号:4~20mA、0~5V和0~10V(6) 防护等级:IP67。(7) 环境温度\湿度:-20℃至45℃;≤85%(不凝露)。(8) 介质温度和压力:0~100℃;≤1.0MPa [size=18px][color=#990000]4. 总结[/color][/size]综上所述,通过一系列国产化替代产品的开发,基本可以完全替代艾默生最新一代TESCOM ER5000系列电子压力控制器及其背压阀,且性价比大幅度提高。重要的是,在国产化替代基础上,设计了更灵活易用的模块化结构,对单项模块产品进行了功能扩展和技术创新,开发了新型背压阀和高速电动流量调节阀,新开发的PID控制器具有更强大的功能和测量精度,整个系列的国产化替代产品具有较高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 鱼缸水位开关自动控制器

    鱼缸水位开关自动控制器

    [align=left][font=宋体][color=#333333][back=white]随着科技的发展,人们的生活越来越智能化。对于养鱼爱好者来说,一个自动控制的鱼缸水位开关控制器能够极大地提高养鱼的便利性和舒适度。[/back][/color][/font][/align][align=left][font=宋体][color=#333333][back=white]这款鱼缸水位[url=https://www.eptsz.com]开关自动控制器[/url]采用先进的微处理器技术,能够实时监测鱼缸的水位。当水位过低或过高时,控制器会立即启动相应的工作模式。当水位过低时,控制器会自动打开水泵,将水注入鱼缸,确保鱼儿有足够的水生活环境。[/back][/color][/font][/align][align=center][img=水位自动控制器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/12/202312141603520014_401_4008598_3.jpg!w673x582.jpg[/img][/align][align=left][font=宋体][color=#333333][back=white]鱼缸补水器分为控制器和磁性吸盘两部分,确定鱼缸需要保持的水位线,将吸盘与控制器对准后分别放在鱼缸壁的内侧与外侧。电源的一头插入控制器,将另一头插入插座内,即可完成补水器供电。水泵插头插入控制器,水泵接上水管放入备用水箱中,既可实现补水功能。[/back][/color][/font][/align][align=left][font=宋体][color=#333333][back=white]这款鱼缸水位开关自动控制器是养鱼爱好者的理想选择。它不仅能够提供舒适的鱼儿生活环境,还能大大降低养鱼的难度和劳动强度。在未来,随着技术的不断进步,相信这款控制器将会更加智能、更加人性化,为养鱼爱好者带来更多的便利和乐趣。[/back][/color][/font][/align]

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 自动水位控制器开关

    自动水位控制器开关

    [font=&][color=#333333]自动水位控制器开关,也称为鱼缸自动补水器,是一种用于鱼缸或水族箱的设备,可以自动监测和控制水位,确保鱼缸中的水位始终保持在适当的范围内。它通常包括一个水位传感器和一个控制开关。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]水位传感器是自动水位控制器的核心部件,它可以通过不同的原理来检测水位。其中,光电液位传感器是一种常用的水位传感器。它利用发射器和接收器之间的光束来检测水位。当水位低于设定值时,光束被阻挡,接收器接收到的光信号减弱,从而触发控制开关,启动补水装置。当水位达到设定值时,光束不再被阻挡,控制开关停止补水。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]鱼缸自动补水器的工作原理如下:首先,将水位传感器安装在鱼缸中,确保传感器的位置能够准确地检测到水位。然后,将补水装置连接到自动水位控制器,并将补水管放入鱼缸中。当水位低于设定值时,光电液位传感器会触发控制开关,启动补水装置,补充鱼缸中的水。当水位达到设定值时,光电液位传感器会停止触发控制开关,补水装置停止工作。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]选择合适的自动水位控制器开关时,需要考虑以下几个因素:首先,根据鱼缸的大小和水位需求,选择适当的控制开关和水位传感器。其次,考虑自动水位控制器的稳定性和可靠性,选择具有高品质和可靠性的产品。此外,还需要考虑自动水位控制器的安装和操作便捷性,以及价格和性价比。[/color][/font][font=&][color=#333333][/color][/font][align=center][img=鱼缸补水器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/07/202307071357083064_4373_4008598_3.jpg!w673x582.jpg[/img][/align][font=&][color=#333333] [/color][/font][font=&][color=#333333]总之,自动水位控制器开关是一种方便实用的设备,可以帮助鱼缸或水族箱保持适当的水位。通过光电液位传感器的检测和控制,自动水位控制器可以自动补充鱼缸中的水,确保鱼类的生活环境稳定和舒适。选择合适的自动水位控制器开关时,需要考虑水位需求、稳定性、可靠性、安装便捷性和价格等因素,以确保其能够满足鱼缸的需求。[/color][/font][font=&][color=#333333][/color][/font]

  • 冷热冲击试验箱的控制器系统

    冷热冲击试验箱PID控制,以PID控制仪为控制核心,通过控制时间继电器、中间继电器、SSR、接触器等达到所要实现的目的,报警系统功能齐全。该控制系统机动性强,稳定,可直接读取老化过程中的温度、电流、电压等参数,方便维修,成本相对较低,但是其控制系统所能达到的功能简单, PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作得不是太好。最重要的是,简单的PID控制器有时却是最好的控制器。东莞高天冷热冲击试验箱的冲击温度控制器:液晶显示触控式莹幕直接按键型控制器,中英文表示5.7”图形之广视角,高对比附可调背光功能之大型LCD液晶显示控制器.一、控制器规格:(1)精度:温度±0.1℃+1digit.(2)分辨率:温度±0.1.(3)具有上下限待机及警报功能.(4)温度入力信号 T型.(5)P.I.D控制参数设定,P.I.D自动演算.二、画面显示功能:(1)采画面对谈式,无须按键输入,屏幕直接触摸选项.(2)温度设定(SV)与实际(PV)值直接显示.(3)显示故障状态及说明故障排除方法.(4)可显示目前执行程序号码,段次,剩余时间及循环次数.(5)温度程序设定值以图形曲线显示,具实时显示程序曲线执行功能.(6)具单独程序编辑画面,可输入温度,时间及循环次数.(7)屏幕可作背光调整.(8)屏幕显示保护功能可作定时,TIMER或手动关闭设定.三、程序容量及控制功能: a.可使用的程序组:最大96个PATTEN(即96个试验规范可设定).(1)可重复执行命令:每一个命令可达999次.(2)SEGMENTS时间设定0--99Hour59Min.(3)具有断电程序记忆,复电后自动启动并继续执行程序功能.(4)程序执行时可实时显示图形曲线.(5)具有预约启动及关机功能.(6)具有日期,时间调整功能.http://www.whgt17.com/uploads/allimg/160524/1-160524163P00-L.jpg

  • 具有分程控制功能的超高精度PID控制器及其应用

    具有分程控制功能的超高精度PID控制器及其应用

    [size=16px][color=#339999]摘要:分程控制作为一种典型的复杂控制方法之一,常用于聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等领域。为快速和便捷的使用分程控制,避免采用PLC时存在的控制精度差和使用门槛高等问题,本文介绍了具有分程控制功能的超高精度VPC-2021系列PID控制器,以及使用分程控制时的参数设置、接线和具体应用。[/color][/size][align=center][size=16px][img=超高精度PID控制器的特殊功能(4)——分程控制功能及其应用,650,440]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191326452103_3866_3221506_3.jpg!w690x468.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 分程控制简介[/color][/size][/b][size=16px] 分程控制是采用一个输出变量来控制几个不同操作变量之间协调运行的一种复杂控制方式,如单个控制器用于控制两个执行机构(例如两个阀门、加热和制冷器等),控制这两个操作变量将一个受控变量保持在设定点上。分程控制主要包括以下三种不同方式:[/size][size=16px] (1)分程控制(Split Range Control)[/size][size=16px] (2)顺序控制(Sequence Control)[/size][size=16px] (3)正反向动作控制(Opposite Acting Control)[/size][size=16px] 一个典型的分程控制且应用广泛的是密闭容器的真空压力控制,控制回路上有两个控制阀,一个阀负责进气加压,另一个阀负责排气。图1(a)曲线图显示了阀门开度与真空压力的关系。[/size][align=center][size=16px][color=#339999][b][img=01.分程控制的三种形式,690,249]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329331841_5111_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 分程控制三种形式的操作示意图[/b][/color][/size][/align][size=16px] 如果需要对阀门进行顺序控制,其工作方式如图1(b)所示。在这种顺序阀操作中,当PID控制器输出为0~50%时,阀门A将从0~100%打开。当PID控制器输出达到50%时,阀门A将100%打开,然后阀门B将在PID输出达到50%后开始打开。因此,对于PID控制器输出50%至100%,阀门B将从0%至100%打开。[/size][size=16px] 在正反向动作控制中,对于0~100%的PID控制器输出,阀A将从0~100%开始打开,同时对于相同的PID控制器输出,阀B将从100%到0%关闭。[/size][size=16px] 在上述分程控制的具体实施过程中,普遍需要采用具有PID控制功能的相应装置。目前这种控制装置大多采用PLC形式才能实现,存在使用门槛高和控制精度差等问题。为此本文将介绍一种具有分程控制功能的超高精度PID控制器,以及分程控制时的参数设置、接线和具体应用。[/size][size=18px][color=#339999][b]2. 具有分程控制功能的超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列超高精度PID控制器的内核是一款双通道控制器,其中VPC2021-1系列是具有分程控制功能的PID控制器,而VPC2021-2系列则是独立双通道PID控制器。本文将重点介绍具有分程控制功能的VPC2021-1系列PID控制器,此控制器如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.VPC2021-1控制器及其电气接线图,690,199]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329550947_4629_3221506_3.jpg!w690x199.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC2021-1控制器及其电气接线图[/b][/color][/size][/align][size=16px] VPC-2021系列PID控制器的主要技术特征如下:[/size][size=16px] (1)尽管VPC-2021系列PID控制器的内核是双通道控制器,具有两路传感器输入和两路控制信号输出,但为了实现分程控制功能,控制器仅配置了一套PID控制模块,所以在实际应用中还是一款单通道PID控制器。[/size][size=16px] (2)具有两路控制信号输出(主控输出1和主控输出2),两路输出可以分别控制相应的阀门、加热和制冷器,适合真空压力和温度的分程控制功能实现。[/size][size=16px] (3)具有一路变送输出通道,可变送输出测量值PV、设定值SV、输出值OP和偏差值DV四个控制参数中的任选一种,这也有助于分程控制功能的实现和拓展。[/size][size=16px] (4)具有两路传感器信号输入通道,可连接相同测量参数(如真空压力或温度)但量程不同的传感器,可实现两个传感器之间的自动切换,由此可进行宽量程范围内的PID控制。[/size][size=16px] (5)所具有的两路输入通道,还可实现本地设定和远程设定功能之间的切换,通过远程设定功能,可任意改变设定值(如周期性波形形式的设定曲线),实现周期性复杂波形的控制。[/size][size=16px] (6)具有程序控制功能,支持20条编程曲线,每条50段,支持段内循环和曲线循环。[/size][size=16px] (7)具有超高的测量和控制精度,24位AD、16位DA、双精度浮点运行和0.01%最小输出百分比。控制器是面板安装式的标准工业调节器,最大开孔尺寸为92mm×92mm。[/size][size=18px][color=#339999][b]3. 分程控制功能的具体应用[/b][/color][/size][size=16px] 针对图1所示的三种分程控制形式,采用VPC2021-1控制器的具体实施方法如下。[/size][size=16px][color=#339999][b] (1)分程控制应用[/b][/color][/size][size=16px] 对于典型的分程控制,PID控制器的具体接线如图3(a)所示,将两个被控对象,如常闭型阀门或加热制冷器,直接连接到主控输出1和主控输出2接线端。测量传感器连接到主输入1接线端。[/size][align=center][size=16px][color=#339999][b][img=03.分程控制接线示意图,690,222]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191330182623_478_3221506_3.jpg!w690x222.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 两种分程控制形式的PID控制器接线示意图[/b][/color][/size][/align][size=16px][color=#339999][b] (2)顺序控制应用[/b][/color][/size][size=16px] 对于顺序控制,PID控制器的具体接线如图3(b)所示,将一个被控对象,如常闭型阀门,直接连接到主控输出1接线端,将第二个被动对象,如常闭型阀门,连接到变送输出接线端。测量传感器连接到主输入1接线端。[/size][size=16px][color=#339999][b] (3)正反向控制应用[/b][/color][/size][size=16px] 对于正反向控制,PID控制器的具体接线与图3(a)所示相同,区别只是所连接阀门一个是常闭型,另一个是常开型。[/size][size=16px] 在使用PID控制器进行分程控制之前,还需进行以下几项控制器参数的设置:[/size][size=16px] (1)设置仪表功能的控制方式为“双输出”。[/size][size=16px] (2)在分程控制中,根据实际被控对象设置“死区”范围。[/size][size=16px] (3)如需采用变送功能,还需进行相应的变送参数设置。[/size][size=16px] (4)如需采用双传感器切换功能,还需进行相应的切换参数设置。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了具有分程控制功能的VPC2021-1系列超高精度PID控制器,采用此控制器可直接用于相应分程控制的实施,且具有很高的控制精度。[/size][size=16px] 分程控制在实践中应用广泛,然而,由于忽视了与之相关的独特挑战,分程控制经常会被误用或滥用。在许多应用中,如上述的顺序控制和正反向动作控制中,采用如VPC2021-2这种独立双通道PID控制器,无论在配置、调试和故障排除上都要简单得多。[/size][align=center][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align]

  • 温度控制器

    您好!我一朋友现在用的岛津的液相,想外配一个温度控制器,将其温度控制在10°左右,想请教一下您,一般有哪些型号,这个通用吗?

  • 控制器数据存储

    水质监测用那种在线的[url=https://www.hach.com.cn/product/orbisphere410]智能数字控制器[/url]连接电极,监测数据是能存储到控制器然后通过u盘给导出来吧?这种控制器,可以操作存储数据的存储次数和间隔嘛?比如我想一个小时存储几次之类的。

  • 《电磁环境公众曝露控制限值》(征求意见)

    .《电磁环境公众曝露控制限值》是首次制修订的标准,标准规定了电磁环境中控制公众曝露的电场、磁场、电磁场(1Hz~300GHz)的场量限值、评价方法和相关设施(设备)的豁免范围。 标准适用于电磁环境中控制公众曝露的评价和管理。但本标准的限值不适用于控制以治疗或诊断为目的所致病人或陪护人员的曝露,不适用于控制无线通信终端、家用电器等对使用者的曝露,也不能作为对产生电场、磁场、电磁场设施(设备)的产品质量指标要求。

  • 防水型压力控制器

    防水型压力控制器:怎么防水呢?采用什么材质?(YWK-50/C)型防水型压力控制器是怎么输出的。具体资料有没有啊

  • 冷热冲击试验箱控制器为什么显示异常?

    冷热冲击试验箱控制器为什么显示异常?

    在仪表故障分类中,偶发故障由于故障现象的不可重复性,常常难以找到原因。本文针对[b][url=http://www.linpin.com/]冷热冲击试验箱[/url][/b]温度控制器出现的偶发故障现象,通过认真细致的分析辅以器件硬件检查得出了结果。对于此类问题及隐患,可采取相应措施,避免故障的发生,提高产品可靠性。以下由小编为你介绍:  一、仪表的自我检验:  1、检查过热保护装置(黑色旋钮上刻有温度值)是否设置在150℃处;  2、检查测试箱内的循环电机是否损坏未运转;  3、检查有无温控装置中的固态继电器短路:如果加热器没有烧毁,使用三用仪表交流电压档,电压档位为600伏特,将红、黑两种灯杆分别放在交流侧,表现号为T,将温控装置设置在0℃下,则固态继电器烧毁温度档在10V以下,表明该固态继电器的短路。[align=center][img=,450,450]https://ng1.17img.cn/bbsfiles/images/2022/09/202209061553369954_9477_5295056_3.jpg!w450x450.jpg[/img][/align]  二、自我检验后的维护方法:  1、将超温保护装置调至150℃处,或使用温度增加30℃处;  2、通知厂商客户服务中心维修部门更换循环电机;  三、该设备吊篮失效的原因:  在结构上,将冷热冲击试验箱分为高低温室;通过将产品置于吊篮中,实现了高低温切换。该设备的吊篮不工作,造成卡死,具体原因是什么?  1、外部电源未加气或压力调节阀损坏;  2、提蓝卡死,打开测试箱门,观察提篮有无卡死;  3、钢丝绳松动或断裂;  4、气动电磁阀损坏,导致气缸内的气路无法切换,罐笼只能停留在起始位置,气缸内没有密封。  设备的偶发故障不易捕获,尤其是设备本身存在缺陷时,对产品设计人员来说,很难找出其根源,本文对冷热冲击试验箱温度控制器发生故障的原因进行了分析,使此类偶发故障能到及时发现,从而提高产品的可靠性。

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 控制器自动加药和进水

    能控制水泵自动上水和停止还有加药机启停的[url=https://www.hach.com.cn/product-list/kongzhichuangan]智能控制器[/url],大概要多少钱;就是灌溉用水的水池,现在想实现根据水位高低启动进水;然后放了个水质测定仪和加药装置,想控制自动加药,两个可以用一个控制器实现吗?

  • 【原创大赛】气相色谱仪流量控制原理与维护 (一-二) 进样口手工流量控制器和电子流量控制器原理

    【原创大赛】气相色谱仪流量控制原理与维护   (一-二) 进样口手工流量控制器和电子流量控制器原理

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](一)[/font] [font=宋体]进样口手工流量控制器原理[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]以分流[/font]/[font=宋体]不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口手工流量控制的基本原理。[/font][/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流[/font]/[font=宋体]不分流([/font][font=Calibri]Split/Spliless[/font][font=宋体])进样口。进样口流量控制方式有手工流量控制和电子流量控制两种,手工流量控制方式的色谱仪价格较为低廉,抗污染能力强,运行与维护成本较低,目前仍旧在普通化工分析等行业中使用。[/font][/font][font=宋体] [/font][align=center][font=宋体]常见的手工流量控制方式[/font][/align][font=宋体]进样口手工流量控制器大致分流两类,压力控制方式和总流量控制方式。[/font][font=宋体][font=宋体]图[/font]1[font=宋体]所示为压力控制方式,载气由压力控制器调节到适合压力,即为柱前压。[/font][/font][font=宋体]隔垫吹扫流量和分流流量分别由对应的针型阀控制,调节到合适的流量。[/font][font=宋体]柱流量由色谱柱来确定。[/font][font=宋体]压力控制器调节速度较快,适合气体阀进样或者样品气化体积较大的场合。分流流量、隔垫吹扫流量、柱流量各自独立,需要单独测定各流路流量,调节工作量较大。[/font][align=center][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010003569364_7168_1604036_3.png!w690x457.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]压力控制方式原理[/font][/font][/align][align=center][img=,690,453]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010004036078_273_1604036_3.png!w690x453.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]总流量控制方式原理[/font][/font][/align][font=宋体]载气由总流量控制器调节,输入进样口固定的流量,进样口压力缓慢上升,当压力达到设定值后,分流控制器开启,使得进样口压力恒定于设定值。[/font][font=宋体]分流控制器一般是背压阀,当输入压力达到设定值时才能开启。进样口的压力最终由分流控制进行调节。[/font][font=宋体]总流量控制方式,进样口流量调节工作量较小,总流量和进样口压力之间有相互影响,系统的调节惯性较大。样品气化气体较大或者气体进样阀进样时一般可能会观测到相对较长时间的压力流量扰动。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体][font=宋体]分流[/font]/ [font=宋体]不分流进样口常见控制方式的原理和性能比较。[/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font]------------------[font=宋体][font=宋体][/font][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] (二) 进样口电子流量控制器原理[/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以分流/不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口电子流量控制的基本原理。[/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流/不分流([font=Calibri]Split/Spliless[/font])进样口。目前较多使用电子流量控制器,不同仪器厂家对于电子流量控制命名不同,如[font=Calibri]AFC[/font]、[font=Calibri]EPC[/font]、[font=Calibri]EFC[/font]等,其大致原理比较接近,都是采用了基于电磁阀通断气流结合流量控制器和压力计来实现进样口的流量(压力)控制。[/font][font=宋体]图1为常见的分流[font=Calibri]/[/font]不分流进样口电子流量控制器的结构框图,当[font=Calibri]GC[/font]系统开启后,总流量控制器向进样口注入设定的流量,压力计测定的进样口压力会逐渐上升,在分流控制器的调解下,进样口压力达到设定值,进样口的流量状态达到就绪。[/font][font=宋体]隔垫吹扫流量值较低,受进样口压力的限制。[/font][font=宋体]色谱柱流量为计算值,电子流量控制器实际上只控制进样口压力。色谱柱是否安装正确,色谱柱是否堵塞,色谱柱是否断开,实际上进样口并不能感知到。[/font][font=宋体] [/font][align=center][font=宋体] [img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010005202895_1475_1604036_3.png!w690x419.jpg[/img][/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]在分流工作方式下,进样口的总流量等于分流流量、隔垫吹扫流量和柱流量之和。[/font][font=宋体]当由于某种原因,进样口压力发生增大现象,此时GC系统会控制分流控制器增加分流出口流量,以降低进样口压力,使得进样口压力恢复设定值;反之亦然。在进样较大体积的液体或者气体样品时,一般会观察到进样口压力(流量)的瞬间变化。[/font][font=宋体] [/font][font=宋体]在不分流进样状态下,进样瞬间分流控制器将分流流量关闭,此时进样口总流量等于柱流量和隔垫吹扫流量之和。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体] [/font][font=宋体]电子流量控制器,实际上只控制进样口的输入总流量和压力。[/font]

  • 热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    [color=#990000]摘要:针对温度跟踪控制中存在热电堆信号小致使控制器温度跟踪控制精度差,以及热电阻形式的温度跟踪控制中需要额外配置惠斯特电桥进行转换的问题,本文提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此仅通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[/color][align=center][img=高精度温度跟踪控制,600,330]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051642301750_9704_3221506_3.jpg!w690x380.jpg[/img][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size] 在一些工业领域和热分析仪器领域内,常会用到温度自动跟踪功能,以达到以下目的: (1)保证温度均匀性:如一些高精度加热炉和半导体圆晶快速热处理炉等,为实现一定空间或面积内的温度均匀,一般会采取分区加热方式,即辅助加热区的温度会自动跟踪主加热区。 (2)绝热防护:在许多热分析仪器中,如绝热量热仪、热导率测试仪和量热计等,测试模型要求绝热边界条件。这些热分析仪器往往会采取等温绝热方式手段,由此来实现比采用隔热材料的被动绝热方式更高的测量精度。 自动温度跟踪功能的使用往往意味着要实现快速和准确的温度控制,其特征是具有多个温度传感器和加热器,其中温差探测器多为电压信号输出的热电偶和电阻输出的热电阻形式。对于采用这两种温差探测器的温度跟踪控制,在具体实施过程中还存在以下两方面的问题: (1)在以热电堆为温差传感器的跟踪温度控制过程中,往往会用多只热电偶构成热电堆来放大,N对热电偶组成的热电堆会将温差信号放大N倍,但即使放大了温差信号,总的温差信号对应的输出电压也是非常小。如对于K型热电偶,1℃温差对应40uV的电压信号,若使用10对K型热电偶组成温差热电堆,则1℃温差时热电堆只有400uV的电压信号输出。对于如此小的电压值作为PID控制器的输入信号,若要实现小于0.1℃的温度跟踪控制,一般精度的PID控制器很难实现高精度,因此必须采用更高精度的PID控制器。 (2)在以热电阻测温形式的跟踪温度控制过程中,情况将更为复杂,一般是采用复杂的惠斯登电桥(wheatstonebridge)将两只热电阻温度传感器的电阻差转换为电压信号,再采用PID控制器进行跟踪控制。但这样一方面是增加额外的电桥仪表,另一方面同样要面临普通PID控制器精度不高的问题。 为此,针对上述温度跟踪控制中存在的上述问题,本文将提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 为了实现热电堆和热电阻两种测温形式的温度跟踪控制,解决方案需要解决两个问题: (1)高精度的PID控制器,可检测由多只热电偶组成的温差热电堆输出小信号。 (2)不使用电桥仪器,直接采用PID控制器连接两只热电阻温度传感器进行跟踪控制。 为解决温度跟踪控制中的上述两个问题,解决方案将采用VPC-2021系列多功能超高精度的PID控制器。此控制器的外观和背面接线图如图1所示。[align=center][img=,600,177]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051656426331_2008_3221506_3.jpg!w690x204.jpg[/img][/align][align=center][b][color=#990000]图1 VPC 2021系列多功能超高精度PID控制器[/color][/b][/align] 针对温度跟踪控制,VPC 2021系列多功能超高精度PID程序控制器的主要特点如下: (1)24位AD,16位DA,双精度浮点运算,最小输出百分比为0.01%。 (2)可连接模拟电压小信号,可连接各种热电偶,可连接各种铂电阻和热敏电阻温度传感器,共有多达47种输入信号形式。 (3)具备远程设定点功能,即将外部传感器信号直接作为设定点来进行自动控制。 对于由热电偶组成的热电堆温差探测器形式的温度跟踪控制,具体接线形式如图2所示。[align=center][color=#990000][b][img=温差热电堆控制器接线图,500,194]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051643371408_3010_3221506_3.jpg!w690x268.jpg[/img][/b][/color][/align][align=center][b][color=#990000]图2 温差热电堆控制器接线图[/color][/b][/align] 图2是典型的温差热电堆控制器接线形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 对于由热电阻温度传感器形式构成的温度跟踪控制,具体接线形式如图3所示。这里用了控制器的远程设定点功能,这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。[align=center][img=热电阻温度传感器控制器接线图,500,195]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051644317319_3570_3221506_3.jpg!w690x270.jpg[/img][/align][align=center][b][color=#990000]图3 热电阻温度传感器控制器接线图[/color][/b][/align][b][color=#990000][size=18px]3. 总结[/size][/color][/b] 高精度的温度跟踪控制一直以来都是一个技术难点,如对于热电偶组成的温差热电堆温度跟踪控制,若采用普通精度的PID控制器还有实现高精度的温度跟踪控制,通常需要增加外围辅助技术手段,一是通过增加热电偶对数来增大温差电压信号,但这种方式工程实现难度较大且带来导线漏热问题,二是采用较高品质的直流信号放大器对温差电压信号进行放大,这同时增加了控制设备的复杂程度和造价。 对于采用热电阻温度传感器进行温度跟踪控制,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将两只热电阻温度传感器的电阻差转换为电压信号,这同样增加了控制设备的复杂程度和造价。 由此可见,采用VPC 2021系列多功能超高精度PID调节器,可直接与相应的温度传感器进行连接,简化了温度跟踪控制的实现难度和装置的体积,更主要的是超高精度的数据采集和控制可大幅提高温度跟踪的控制精度。[align=center]~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 阀件、控制器半导体元器件控温中的作用有哪些?

    半导体元器件控温设备中,每个配件都有着不同的作用,由于作用不同,无锡冠亚的半导体元器件控温的阀件和控制器的作用也是不同的。  半导体元器件控温的水泵,是用于加速水流动的工具,以达到加强水在换热器中换热的效果。半导体元器件控温的水流开关用作管道内流体流量的控制或断流保护,当流体流量到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的压力控制器用作压力控制和压力保护之用,机组有低压和高压控制器,用来控制系统的压力的工作范围,当系统压力到调定值时,开关自动切断(或接通)电路。  半导体元器件控温的压差控制器用作压力差的控制,当压力差到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的温度控制器用作机组的控制或保护,当温度到达调定值时,开关自动切断(或接通)电路。在我们的产品上,温度的控制常用到,用水箱温度来控制机组的开停机情况。还有些象防冻都需要用到温度控制器。  半导体元器件控温视液镜用于指示制冷装置中液体管路的制冷剂的状况、制冷剂中的含水量、回油管路中来自油分离器的润滑油的流动状况,有的视液镜带有一指示器,它通过改变其颜色来指出制冷剂中的含水量。(绿色表示干燥,黄色表示潮湿)。因温度变化而引起水的体积变化,膨胀水箱用来贮存这部分膨胀水,对系统起稳压定压的作用,能给系统补偿部分水。  半导体元器件控温是一项比较新的设备,性能上面要求高一点才能使得半导体元器件控温的运行更加稳定。

  • 微流体系统控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/microfluidic-controller.html]微流体系统控制器flowtest[/url][/b]是专业为[b]控制微流体器件[/b]设计,是用于micropump, microvalues等[b]微流体器件控制[/b]的进口[b]微流体控制器[/b]。[b]微流体系统控制器[/b]能够同时和独立地控制流体系统使用8个阀和8个泵,还可通过计算机编程控制微流动序列。此编程功能可以编辑新程序控制要求液体位移,取样和注射,并可以设置,存储和管理多个程序。用户可以毫不费力地检索和运行他们的程序。[img=微流体系统控制器]http://www.f-lab.cn/Upload/flow-test-controller.jpg[/img]在使用跨实验室和工业应用领域,需要精确液体转移。比如,微流体系统控制器FlowTest™ 将被证明是许多质量检测应用,流体系统发展或使用泵和阀门仪表的宝贵资产。微流体系统控制器还可以作为一个独立的仪器使用,无需电脑。在这种情况下,程序被加载在USB密钥上。通过位于控制盒的上方“运行/暂停”和“停”按钮,方便地操作控制器。微流体系统控制器:[url]http://www.f-lab.cn/microarray-manufacturing/microfluidic-controller.html[/url]

  • 升级试验机的拉伸装置中的控制器

    改造升级方案加热炉的改造将原有的一个固定对开式电阻加热炉,改造升级为两个移动对开式电阻加热炉。具体改造方法是在试验机上增加旋转臂炉架,如所示。旋转臂炉架分前臂和后臂两部分,分别与试验机底座上的立柱和加热炉连接。通过调节旋转臂炉架的位置不仅能相对试验机调整加热炉的高度,而且能方便地将高温炉炉膛和试验机的夹头中心轴线调整到适当的位置。  可旋转的对开式电阻加热炉示意图两个可移动对开式电阻加热炉的主要参数如下:外形尺寸320mm440mm,炉膛尺寸80mm320mm,均热带150mm,加热炉上、中和下三段发热体(镍铬电热合金丝)的直径均为1.0mm,绕制成螺旋体。加热炉上、中和下三段发热体的最大功率分别为1000,2000和1000W,试样上绑扎热电偶(K型热电偶)与加热炉上、中和下三段发热体和各段温度控制器对应。高温拉伸夹具的改造改造前拉杆和试验机保持相对的固定关系,在进行完一次高温拉伸试验后要等待高温拉杆冷却到室温状态(或接近室温)后,才能进行下一次高温拉伸试验的控温过程。为提高工作效率,对试验机的高温拉伸夹具也进行了改造。重新设计了高温拉伸夹具,在夹具的上部分增加隔热板,在隔热板上增加可以调节高度的悬挂固定杆,从而有效地解决了高温拉杆和试验拉棒在高温环境中产生的热膨胀变形问题。悬挂固定杆(根据不同试样的长度调节以保证试样位于加热炉的中央)可以保证高温夹具位置在高温炉中保持相对固定,解决了不同试样造成的在加热炉内的相对位置不同的问题,提高了控温过程中的精度。另外,加入悬挂固定杆后,相当于增加了一个把手,实现了在高温试验过程结束后将已拉断试样快速拿出,将另一支含有高温试样的拉杆装入加热炉内,从而有效地提高了加热炉的利用效率。  同时把以上设计为两个可以移动的加热炉,在试验机后侧两端分别增加一个支柱,可以再次提高一倍的工作效率。最后,将高温夹具设计为上下两部分可以与拉伸试验机分离的结构部件,待保温结束后再与拉伸试验机连接进行高温拉伸试验,其他时间可以利用该试验机进行常温拉伸等试验,从而可以实现试验机的最大利用率。温度控制器的升级该试验机高温装置原温度控制仪表功能很简单,主要存在如下缺点:由于其控制方式为加热、保持和停止三位式控制,存在着温度控制波动大、温度控制精度差和加热功率不可调节等缺点,因而能源浪费大,加热效率低;该温度控制仪表老化严重,存在着温度控制失灵等故障,仪表控制精度难以满足相关高温拉伸试验标准的精度要求,而且此仪表要求日常频繁维护。因此,对试验机高温拉伸装置中的温度控制器进行了升级,优化了控制器的控制参数。通过调研,笔者决定采用国产宇电A1-808P仪表替代原控制仪表,主要增加了程序控制和手动调节等方便试验控制的功能。A1-808P仪表属于智能型控制仪表,在整个温度控制中可以人工干涉控制参数,以保证试验的精度要求。在应用人工智能调节算法功能后,能自动学习系统特性。当自整定完成后,虽然初次控制时效果不太理想,但第二次使用时便能获得非常精确的控制。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制