当前位置: 仪器信息网 > 行业主题 > >

综析智能仪

仪器信息网综析智能仪专题为您提供2024年最新综析智能仪价格报价、厂家品牌的相关信息, 包括综析智能仪参数、型号等,不管是国产,还是进口品牌的综析智能仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合综析智能仪相关的耗材配件、试剂标物,还有综析智能仪相关的最新资讯、资料,以及综析智能仪相关的解决方案。

综析智能仪相关的资讯

  • 中国石油集团首套智能综合录井仪启用
    9月29日,由中国石油渤海钻探研发的中国石油集团首套智能综合录井仪——德玛3.0智能综合录井仪正式启用。自此,一个集成现场作业大数据中心和共享平台的井场“智慧大脑”,接过传统录井接力棒,用智能录井实现“找油眼睛”到“勘探大脑”的转变。  德玛3.0智能综合录井仪是渤海钻探德玛品牌第三代智能产品,具有功能布局人性化、技术组合全面化、数据融合共享智能化等特点。该录井仪集成了多井对比、综合解释、井眼轨迹跟踪等15种工程应用模块,整合8种小型分析化验设备数据,覆盖钻井、泥浆、定向井、固井等多专业256道采集数据,推进工程地质一体化的深度融合;可实现无线化安装和数据采集,并可“一机多井”采集信号;快速色谱实现15秒的快速色谱分析和光谱10ppm的最小检测精度,有效解决薄层和快速钻进油气难发现、远程控制效果不突出、设备运维成本高、劳动强度大等诸多难题。  遵循中国石油数字化转型智能化发展要求,渤海钻探瞄准国际先进水平,围绕工程地质一体化重点业务,强化井场多专业、多技术、多平台纵向集成,推动智能化综合录井仪研制,确保井场全要素、钻探全过程全面感知全面管控,实现生产协同优化、风险快速响应、决策精准高效,整体效益最大化。  “德玛3.0智能综合录井仪的成功研制,提升了录井行业数智化发展的水平,满足了超深井施工、快速钻井工艺、智能钻机应用等钻探技术的进步,以及页岩油气、水合物等非常规油气资源的开发需求,提升了录井技术和录井行业在油气勘探开发环节中的核心竞争力。”项目负责人孙合辉说。  渤海钻探自2006年研制出首台德玛综合录井仪后,面向勘探开发、钻探现场和客户需求,推陈出新,先后自主研发德玛系列40余种产品,产品远销国内外市场。
  • 线上课堂丨食品药品智能感官分析综合解决方案
    线上课堂丨食品药品智能感官分析综合解决方案随着人们生活水平和消费认识的提高,消费者在关注食品、药品安全的同时,更关注产品的食用体验,故而建立可靠、科学、稳定的感官评价方法显得尤为重要。感官评价的核心主要是味觉分析、嗅觉分析和物性分析,传统的感官评价主要是通过人进行感官评定,而此方法通常会受到评价员的经验、心情及身体状况等环境因素的影响,难以获得客观、一致的品评结果,为提高感官评价的客观性,减少人为差异,近年来智能设备电子舌、电子鼻、辣度仪和质构仪越来越多的应用到了食品的感官评价之中。课程详情电子舌技术采用同人的舌头味觉细胞工作原理相类似的人工脂质膜传感器技术,实现客观数字化的评价食品药品的各项味觉指标;辣度仪采用革命性的辣味传感器技术,快速检测辣味食品的辣度值;电子鼻技术则是对样品挥发的气味进行定性判断和定量预测;物性分析俗称质构仪则是分析食品在口腔中咀嚼时的感官,核心是分析食品在咀嚼时的力量、形变和时间的变化关系。目前智能感官设备越来越多的应用到了食品药品的感官评价当中并取得了良好的效果,在此以常见的食品和药品等为例介绍智能感官设备在感官综合解决方案中的应用。讲师简介李轩:硕士研究生,毕业于河北农业大学自2015年加入北京盈盛恒泰科技有限责任公司技术部后主要负责智能感官设备(电子舌、辣度仪、电子鼻和质构仪)在食品、药品、农产品等中应用的方法开发和应用支持,经过多年的实践经历在智能感官设备应用方面积累了大量工作经验。联系方式单位名称:北京盈盛恒泰科技有限责任公司扫码听课
  • 同方威视打响科技战“疫”:打造智能化综合解决方案
    自武汉暴发新型冠状病毒疫情以来,对民众的日常生活、企业的正常运营带来了严重的影响。目前,全国各界都在积极采取措施,防止疫情的扩散传播。传统的防控措施初具成效,但在实施中面临着多种挑战和潜在风险,人工接触式检查及测温风险较高,数据共享与上报体系不完善、消毒方式效率较低等。2020年2月14日,习近平总书记主持召开中央全面深化改革委员会第十二次会议,强调完善重大疫情防控体制机制、健全国家公共卫生应急管理体系,会议提出鼓励运用大数据、人工智能、云计算等数字技术,在疫情监测分析、病毒溯源、防控救治、资源调配等方面更好地发挥支撑作用。同方威视积极响应国家号召,用科学技术筑成抗疫后方队伍,将人工智能、大数据、物联网等与检测、灭菌技术深度融合,通过即插即用、场景丰富、快速部署的威视云平台,打造“N种智能产品+一个云平台+五大典型应用场景”的综合解决方案,包括医疗机构、交通枢纽、社区高校、口岸检疫、楼宇办公,提供非接触式人体测温、快速有效安检、特定环境监测、消毒灭菌、机器人应用、远程监管等多种功能,满足了防控一线的不同需求,全面提升抗击疫情的预警、预防、消杀三种能力。 预警能力 近日,伴随着大量人口的返城与复工,如何在人流量较大的区域,快速、高效、精准地识别出高温个体,成为疫情防控的难点。同方威视根据各防疫场景特点,首先可提供多种类型快速查验测温产品,实现监管区域内疫情相关信息的便捷采集和及时上报,通过监管平台云端部署,使得监管单位及时感知、提前预警、联动处置。 预防能力 根据疫情防控的需求,无感无接触、智能化的防控措施也是必不可少的。同方威视拥有多种类型产品,可满足非接触式安检、环境监测、出入口管控、巡检辅查等不同场景需求,实现安全防范、人员信息管理、出入身份核验、远程查验等功能,达到智慧化监管、远距离防控的目的。 消杀能力 同方威视辐照灭系统可为医疗机构、机要部门、科研单位的医疗物资、文件、实验器材进行批量化辐照,达到消杀细菌病毒的目的,特别是医疗物资可实现重复利用;在民航手提行李检查和海关旅客通关查验场景中,同方威视Key-Line智能旅检集成系统可提高安检效率,在行包托盘传送过程中进行灭菌、消毒处理,有效防止交叉感染。没有一个冬天不可逾越,没有一个春天不会到来。我们期待着疫情结束的那一天,更期待拥有美好、安全的未来。
  • 产值达500亿元! 湖南加快培育智能传感和网联产业综合性孵育平台
    2月19日,湘江科学城智能传感和网联产业签约暨揭牌仪式活动在长沙举行。中南大学交通运输工程学院、湖南大学半导体学院(集成电路学院)、高速铁路建造技术国家工程研究中心和岳麓高新区管委会代表现场签约,中南大学智能交通研究中心、长沙半导体技术与应用创新研究院产业化基地、高速铁路建造技术国家工程研究中心产业化基地现场揭牌,正式落户湘江科学城智能传感与网联产业基地。湘江科学城智能传感和网联产业基地位于岳麓高新区,是湖南湘江新区加快培育智能传感和网联产业的综合性孵育平台。基地以5万平方米科创空间为载体,聚焦成果转化、初创孵育、创新平台三类孵育对象,提供场地支持、资金赋能、技术对接、人才服务、场景支撑等10大科创服务,以“高校院所+基地+基金+科创服务”的创新创业生态,赋能带动智能传感和网联产业跨越发展。中南大学智能交通研究中心下设轨道车辆和装备、轨道交通监测和控制、智能网联交通与汽车、智慧物流系统与装备4个前沿研究方向,共建科学研究平台、共孵成果转化项目。“今年力争完成3个项目孵化、5个技术成果转化,培育1家科创板上市企业。”中南大学交通运输工程学院院长黄合来介绍,预计4年内有望形成20余项发明专利、超过15项产业孵化项目。长沙半导体技术与应用创新研究院产业化基地将构建全链条服务体系,形成“半导体材料-器件-芯片-装备”产业集群,打造成果转化、企业孵化、总部办公一体化创新生态链。高速铁路建造技术国家工程研究中心产业化基地聚焦高速铁路建造领域应用基础理论研究和关键技术研发,推进科研项目产业化落地。岳麓高新区相关负责人介绍,力争3至5年,将湘江科学城智能传感与网联产业基地打造成为国家级科技企业孵化器平台,推动园区智能传感与网联产业产值达500亿元。
  • 长春智能生产汽车燃油箱综合试验台
    汽车燃油箱综合测试系统平台 我公司于2001年就为德国KOTAS制造了一套奥迪C6燃油箱检漏设备生产线,由于采用了PLC和计算机智能化自动检测合格与不合格分选智能存储打印和气动控制得到了德方的好评。在日本检湿传感器,在日方工作人员不能及时到现场的情况下,我们解决了安装调试。因此,德方亲自来我公司考察两次,又定制了一套PQ35检漏生产线的合同,我方用两个月的时间完成并验收。对于此次与贵公司合作的项目,我方将借鉴为德国KOTAS制做设备的经验,并结合国内外相关产品的优点为贵公司做出合格满意的产品。一,系统构成及试验方案本系统有四个组成部分,可分别进行如下试验1, 汽车燃油箱油箱盖的密封性试验2, 燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验3, 塑料燃油箱角锤冲击试验4, 燃油箱密封性试验。该系统满足GB18296-2001和QC/T 644-2000标准中的相关要求。该系统为四个相对独立的试验平台。 试验平台一:该试验平台为燃油箱箱盖密封性试验台。技术要求参照QC/T 644-2000行业标准中4..6项,安全性能要求参照GB18296-2001国家标准中3.1项,试验方法参照QC/T 644-2000行业标准中5.4项和GB18296-2001国家标准中4.1项。油箱放到旋转台后装夹固定,在空载的情况下通过电动翻转台将油箱翻转180度,通过电机水平二维控制将漏杯定位在燃油箱箱盖下方。然后再将油箱翻转回位。通过流量控制装置装入额定量水后密封,油箱经通过PLC控制电机与减速器驱动操作平台翻转180度,将15秒稳定后一分钟内的漏液去皮称重。操作平台翻转回位,然后开封抽水松夹并将漏杯自动升起倒掉漏液。用户可通过计算机采集的漏液重量,打印试验结果,建议增加操作平台旋转时安全保护功能。 试验平台二:燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验台。燃油箱耐压试验的安全性能要求参照GB18296-2001国家标准中3.6,3.7,试验方法参照GB18296-2001国家标准中4.4,4.5项。燃油箱耐压试验分塑料油箱试验和金属油箱试验两种。塑料油箱耐压试验温度非常温。自动增压系统采用比例阀控制,注水采用流量控制装置控制注入额定容量。后俩项试验温度为常温。安全阀开启压力试验安全性能要求参照GB18296-2001国家标准中3.1项和3.4项,试验方法参照GB18296-2001国家标准中4.2项。进气阀开启压力试验技术要求参照QC/T 644-2000行业标准中4.8项,试验方法参照QC/T 644-2000行业标准中5.6项中。自动增压系统采用比例阀控制,注水采用流量控制装置控制注入额定容量,抽水时采用流量可控抽水装置。整个试验台可移动,试验配套外设随用随取。 试验平台三:塑料燃油箱角锤冲击试验台。本试验试验方法参照GB18296-2001国家标准z中4.6项。在油箱中加入额定液体后装夹,通过15KG重的三角形云锤,用30J冲击能量冲击易损伤部位;自动调整角锤高度,使角锤在20J~50J的范围内可调。整个装夹平台可垂直升降水平翻转,摆锤位置可水平调整。摆锤位置控制可分手动和自动两种。油箱内介质可过滤回收。注水采用流量控制装置控制注入额定容量。整个试验台可移动,试验配套外设随用随取。 试验平台四:燃油箱密封性试验台。具体技术要求参照QC/T 644-2000行业标准中4.5项中相关内容。试验方法参照QC/T 644-2000行业标准中5.3项。整个系统采用PLC控制,水下测漏箱采用高亮度照明易于检测。水循环过滤系统可另选。 二、技术指标及报价:1、 燃油箱盖密封性试验:(1) 油箱注水流量控制装置和抽水系统:充满额定水 ± 95%(此系统随取随用,此系统费用不包含在该项试验设备费用中,价格按市场同类产品价格做适当调整)(2) 翻转/复位精度:± 3° (3) 自动称量: 0~30g~100g连续称重(4) PLC控制显示:0~15s~1min~2min(5) 合格/不合格报警、打印。(6) 操作平台旋转时安全保护功能。(7) 漏杯电子定位系统(8) 报价: 燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验台:(9) 压缩空气源: 4.0Mpa(此设备随取随用,此设备费用不包含在该项试验设备价格中,价格按市场同类产品价格做适当调整)(10) 加压速率控制: 8kPa/min(11) PLC控制显示:监测气源: 0~100kPa± 2%开启压力控制: 0~100kPa± 1%开启后压力检测:0~60kPa± 1%加压速率控制: 0~8kPa/min± 2%(12) 合格/不合格报警、打印(13) 安全防爆保护(14) 53℃± 2℃水加热循环控制系统(此设备随取随用,此系统费用不包含在该项试验费用中,价格按市场同类产品价格做适当调整) 报价:2、 塑料燃油箱角锤冲击试验(1) 角锤规格: 三角冲锤 15kg(2) 冲击能量: 30J(3) 压力控制: 0~100kPa± 1%(4) 压力检测: 0~100kPa± 1%(5) 冲击位置移动/转动夹持系统(6) 冲击锤提升系统(7) 冲击防护罩(8) 油箱内介质回收过滤系统 报价以上塑料燃油箱角锤冲击试验需要在借鉴国内外相关产品的经验并根据客户要求做适当调整,以上价格仅供参考。4, 燃油箱密封性试验台。(1) 压力控制: 0~100kPa± 1%(2) 压力检测: 0~100kPa± 1%(3) PLC控制显示:监测气源: 0~100kPa± 2%(4) 高亮度水下测漏箱 (5) 水循环过滤系统可选配。(此系统费用不包含在该项试验费用中,价格按市场同类产品价格做适当调整)报价以上试验所需的燃油箱进出口密封装置需要根据具体装配要求双方确定方案,价格待定。三各试验台所用配件一览1, 燃油箱盖密封性试验。⑴ 大连电机厂生产的三相异步电机,3KW⑵ 与电机匹配的日本富士变频调速器⑶ 国产优质减速器⑷ 日本欧姆龙可编程控制器⑸ 日本富士伺服电机⑹ 国产优质电子天平⑺ 国产优质直线导轨⑻ 国产优质电器开关⑼ 研华工控机,显示器及电脑操作台2. 燃油箱耐压试验,安全阀开启,进气阀开启压力试验⑴ 日本欧姆龙可编程控制器⑵ 日本SMC压力控制表⑶ 国产优质气动三联件,⑷ 国产优质压缩机(不包含在整体报价中,根据客户要求选配)⑸ 温度控制系统⑹ 国产优质比例阀⑺ 国产优质自吸泵3.塑料燃油箱角锤冲击试验⑴ 国产优质万向轴承⑵ 国产优质电磁离合器4.燃油箱密封性试验 ⑴ 日本欧姆龙可编程控制器 ⑵ 日本SMC压力控制表 ⑶ 国产优质气动三联件 ⑷ 国产优质气动导轨 ⑸ 国产优质电器元件公司名称:长春市智能仪器设备有限公司 地址:长春市经济开发区昆山路2755号联系电话:0431-84644218 传真:0431-84642036 联系人:芮小姐Http://www.znyq.com E-mail:ruishume@yahoo.com.cn
  • 智能传感功能材料等11个国家重点实验室落户怀柔,综合性国家科学中心已见雏形
    京郊山脉下,有座蓝绿交织的崭新城市。2022年以来,这里引来上千名科研和管理人员、上百个科研团队。一批“十四五”重大项目在此处加速落地,人类器官生理病理模拟装置和四个平台完成选址。12月27日,新京报记者从北京市怀柔区第六届人民代表大会第三次会议中获悉,怀柔综合性国家科学中心已见雏形,科技创新主体集聚效应开始显现,智能传感功能材料等11个国家重点实验室落户怀柔。不仅科学的力量在释放,“城”的功能也愈加凸显。怀柔区人民政府区长于庆丰在工作报告中指出,2023年重点任务要完善“城”的功能,打造生态宜居创新示范区;让更多科研人员走进怀柔、融入怀柔。怀柔科学城部分重点区域提升效果图。北京怀柔科学城建设发展有限公司供图科技要素集聚,高新产业形成规模燕山脚下、雁栖湖畔,规划面积达100.9平方公里的怀柔科学城,在北京市“三城一区”的规划中,其功能是聚集一批大科学装置,建设国家重大科技基础设施和前沿科技交叉研究平台。12月27日,中国科学院北京纳米能源与系统研究所研究员程廷海告诉记者,纳米能源所是怀柔科学城正式启动建设以来,第一个整建制搬迁入驻怀柔科学城的科研机构。目前该所有600多名科研人员在怀柔科学城办公。他认为,怀柔科学城给科研工作者提供了良好的科研环境,这里的科学和生活设施够现代化。过去一年,怀柔科学城里“十三五”29个科学设施土建工程全部完工,地球系统数值模拟装置和5个第一批交叉研究平台正式运行,综合极端条件实验装置进入科研状态,子午工程二期、多模态跨尺度生物医学成像设施、高能同步辐射光源、8个第二批交叉研究平台和11个科教基础设施进入设备安装调试阶段。“十四五”重大项目加速落地,人类器官生理病理模拟装置和4个平台完成选址。推动设施平台开放共享,服务150余家科研单位,为180余项重大任务提供科研支撑。制定交叉研究平台运行经费支持细则。与此同时,科技创新主体集聚效应开始显现。智能传感功能材料等11个国家重点实验室落户怀柔,多领域开展基础研究和应用研究。北京干细胞与再生医学研究院、启元实验室完成主体结构建设,德勤(中国)大学项目主体结构封顶,机械研究总院怀柔科技创新基地竣工,雁栖湖应用数学研究院陆续交付使用。中科院自动化所、空间中心等联合成立产业技术研究院,推动30余个重大科技成果在怀转化,储备高校院所科研成果项目270余个。借助科技力量要素汇集,高新技术产业也得以快速发展。怀柔区联合市级有关部门发布《北京市关于支持发展高端仪器装备和传感器产业的若干政策措施实施细则》,启动国家高端科学仪器装备产业示范区规划建设,实施“十百千”工程,培育独角兽和隐形冠军企业,设立北京市知识产权保护中心怀柔科学城分中心,成立硬科技和智能传感器产业基金,统筹1.63亿元政策资金支持21个仪器传感器项目建设。集聚仪器传感器企业256家,预计实现规上企业产值12.5亿元,增长8.7%。“科学+城”模式,兼顾生态和人居怀柔科学城建设方案自2017年批复以来,不仅得到科技界关注,也燃起周边居民的好奇心。崭新的环形建筑、积木形状的实验楼,在青山绿水掩映下颇具科技感。有附近居民告诉记者,有时在怀柔科学城周边散步时,夕阳在建筑的表面折射出耀眼的光,让建筑群看起来很壮观。怀柔科学城走的是“科学+城”融合发展的路子。一年来,怀柔科学城城市控规通过市委城工委会议审议。科院路、青年路等道路完工,永乐北四街、雁栖东五路开工建设。科学城东110千伏电站投用,安各庄110千伏电站开工,综合管廊完工投用。科荟雅园、雁栖国际人才社区一期竣工。栖美园、华远达公寓科研人员入住。怀柔医院二期投入使用。国科大附属学校开始招生。“聚人气、聚科研气”效果开始显著。怀柔区介绍,今年一批科学家和青年杰出人才落户,130个科研团队入驻。国科大在怀纳统,师生达到1.3万余人。在怀科研主体发表高水平论文103篇,形成重大发明专利263项,突破加速器电子枪阴栅组件、无液氦稀释制冷机、新型复合折射透镜等“卡脖子”技术35项。研究员程廷海告诉记者,怀柔的空气特别好,这让人在压力较大的科研工作中得到很大的精神放松。自2020年随科研所搬到怀柔科学城以来,他经常在单位,“闲暇时候,骑车在周边走走,周边山清水秀,挺让人精神放松的。”怀柔区今年完成百万亩造林工程1万亩,森林面积达1.64万公顷,人均绿地面积位列全市第二。完成喇叭沟门和怀沙河、怀九河自然保护区生态修复。生物多样性更加丰富,黑天鹅等珍稀动物来怀栖息,“水中大熊猫”桃花水母再现怀柔水库,国家一级保护植物珙桐迎来20年第一次盛花期。未来任务,打造生态宜居创新示范区新的一年即将到来,怀柔区将“聚焦世界科技强国和国家战略科技力量建设,进一步突破怀柔科学城”作为2023年重点任务之一。怀柔科学城将实现多模态跨尺度生物医学成像设施、子午工程二期和分子科学等9个“十三五”科学设施试运行,力争人类器官生理病理模拟装置、太赫兹科学技术中心等5个“十四五”项目开工建设。完善科学设施开放共享机制,加强原创性引领性科技攻关,产出更多科学发现和科技创新成果。支持新型研发机构发展,确保雁栖湖应用数学研究院入驻金隅科教园,推动干细胞与再生医学研究院搬迁入驻。深化院所与高校、企业合作,推动北大医学影像设备预研项目落地,突出企业科技创新主体地位,联合头部企业、平台公司组建工程研究中心和产业技术研究院,着力打通基础研究、应用研究和产业化通道。怀柔区区长于庆丰在工作报告中指出,要突出以科学家为中心,打造科学家的家园。用好北京高水平人才高地建设和中关村先行先试政策,聚焦解决“从0到1”的卡脖子问题,加大战略科学家、科技领军人才和创新团队的引进力度,吸引更多国际一流的人才择怀而栖。强化对青年科学家的政策倾斜,让青年人才成为科学城的源头活水。加大对高层次人才创新创业的支持力度,引进培养高级技工、工程师等科研辅助人才。加快推进第三实验学校建设和妇幼保健院迁建,有序布局商业文化等生活服务配套。建立多元住房保障体系,加快雁栖小镇国际人才社区、雁栖国际人才社区二期、国际青年公寓、国科大集体宿舍建设。怀柔科学城还将继续完善“城”的功能,打造生态宜居创新示范区。推动怀柔科学城街区控规落地实施,构建“创新生态体系”与“自然生态体系”高度融合的整体格局。加强经常性学术交流,让更多科研人员走进怀柔、融入怀柔。坚持交通先行,积极推动通密线电气化和市郊铁路改造提升,启动雁栖东四路、密西路建设。完善市政基础设施,实现安各庄变电站和起步区10千伏配网项目竣工,加快科学城500千伏、永胜和罗山输变电工程建设。积极使用可再生能源,做好水源保护,建设蓝绿交织的生态之城。
  • 分析仪不离传感器 微电子智能化为主
    分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • 在线分析仪器在智能制造中的应用
    一、概述随着我国制造业迅速发展,已成为世界第一制造大国,《中国制造2025》指明智能制造是我国现代先进制造业新的发展方向。实现智能制造智就是从原材料、工厂制造、销售、客户需求一体化的数字化管理过程,使产品在生产过程中独立地找到自己的运行路径,持续提升制造执行力(交付能力),按用户需求动态地匹配产品产时、产量、运销等市场经营品质。智能制造作为一种工具来延展和完善产业链,提升我们认识世界和改造世界的能力,助力国家产业转型升级,将产生是一种全新的智能经济形态。智能制造是信息化和智能化技术与工业制造过程的深度融合,促进了传统制造业到新型的转变。本文主要简要介绍了在线分析仪器在冶金、石化工业生产中(智能制造)的一些应用,以及引导传统制造向智能制造转型升级的思路和过程,力求分析论述预期与客观效果的结合。二、在线分析简介在线分析仪器(成套系统)是在实验室离线分析基础上发展起来的,到目前为止仍有一些仪器是实验室分析技术的平移。起初在线分析仪器主要是解决实验室分析难做到的高分析频次、采样样品物性突变、现场采样安全性等系列问题。随着在线分析技术的发展,不仅解决了上述问题,主要解决数字化生产中“靶点” 和“靶标”问题,或者说是通过网络和大数据代替人工找出解决问题的方法(自学提高),不断完善和优化数字控制过程,实现清晰智能分析功能。在线分析仪器一般有两种基本形式,一种是取样式分析仪器,另一种是非取样式(原位)分析仪器,就使仪器分成了截然不同的两大类。取样式分析仪器由取样单元、样品预处理单元、智能分析仪器、数据处理与输出,以及公用工程的防护、信号传输(通信)、电气辅助设备等设施组成。这类仪器都可嵌入在工业生产流程中,完成对被测工艺介质的自动采样与物性参数定性、定量分析,连续不间断地往生产主控计算机(DCS)传输分析数据。图-1三、原理与分类工业在线分析仪器的种类繁多,用途各异,按分析方法和原理可分为数百种。按照被测介质的相态划分,将在线分析仪器分为气体、液体、固体分析仪器三大类;按照测量原理在冶金、石化等行业使用较多的划分为:光谱类、色谱类、湿法化学类、物性检测类。(1)光学仪器类包括采用吸收光谱法的红外线分析仪、红外光谱仪、紫外光谱仪、激光分析仪等;采用发射光谱法的化学发光法、紫外荧光法分析仪等。(2)湿法化学类包括采用化学滴定、化学色差法,PH、电位、电导、电流法的各种电化学分析仪等。(3)色谱分析类采用色谱柱分离技术和检测器定量的色谱类仪器,与其它分析仪器相比有显著应用特点,而且使用量较大,单独划为一类。(4)物性分析和专用仪器类物性分析仪器按其检测对象来分类和命名,如:露点、热值、浊度、分离指数等类物性分析仪器;针对石油石化行业的水分、密度、黏度、酸度、馏程、蒸气压、闪点、倾点、辛烷值等测定等仪器,统称为石化专用类。(5)其它类分析仪器在上述几类仪器之外的在线分析仪器,如磁氧分析仪、差热分析仪、冷焰燃烧分析仪、射线法分析仪(γ射线密度计、中子及微波水分、X射线能谱)等近代物理方法类的在线分析仪器。典型工业在线分析仪器原理图(如:图-2)图-2四、工业在线分析仪器典型应用仪器(一)湿法化学在线分析(滴定)成套系统在冶金行业应用1、在线酸浓度分析的由来酸洗是冷轧带钢生产的龙头工序,酸洗液浓度的控制会直接影响到产品的质量;如果酸洗液浓度偏低,会有氧化皮残留在钢铁表面;酸洗液浓度偏高,酸洗过度,钢铁表面则会出现针眼状凹坑。正常的盐酸酸洗能够有效溶解氧化铁皮,同时生成溶于水的氯化亚铁。当酸洗过程中铁离子浓度逐渐升高到一定量时,酸洗环境就发生改变,即使再增加酸的浓度,氧化皮(氧化亚铁)不发生置换反应,而是与金属铁发生复杂的氧化反应,致使金属铁被腐蚀。这时候就需要把酸换成新酸,才能恢复正常的酸洗流程。所以钢铁行业迫切需要对下面两个工艺参数动态控制和准确的分析:①酸洗槽中的酸浓度变化值,以动态补酸维持酸洗环境;②跟踪分析铁离子浓度的增加量,确定最佳 “换新酸节点”传统酸洗液检测方法是,人工在生产线上取酸样(通常频次为1次/4h),用化学滴定分析酸浓度和铁离子含量。再由生产线操作人员依据酸浓度分析数据凭经验补酸(维持酸浓度);依据铁离子含量数据确定换酸(换新配酸洗液)。此方式采样存在较多安全生产隐患,人工分析有及时性和频次问题,不适合规模化生产模式。虽然,行业也使用压差法、电磁法、PH计、β射线法等酸洗中分析法(压差法和β射线法是测密度原理),终因铁离子的干扰检测和不断补充辅助计算机校正模型库,分析数据误差较大,不适合数字化生产线。实践证明,湿法化学在线酸浓度分析(滴定)成套系统能较好解决上述问题。2、分析模型带钢酸洗件表面氧化层主要为FeO(96%)和少量的Fe2O3和Fe3O4含量,酸洗过程的反应原理为:FeO + HCl= FeCl2 + H2O酸浓度(H+%)和铁离子(Fe2+g/l)含量分析模型,其反应式如下: NaOH + HCl = NaCl + H2O… … … … … … … … … … … … ..(1)2NaOH + FeCl2 = 2NaCl + Fe(OH)2… … … … … … … … (2)滴定HCl溶液,化学计量关系式:(CV)HCL=(CV1)NaOH … … … … (3)滴定Fe2+离子,化学计量关系式:(CV)Fe=(CV2)NaOH ..… … … … (4)综合滴定曲线(如:图-3)图-3红色曲线为改进后实际滴定曲线,红色虚线为人工滴定曲线,红点等当点。计算公式: CHCL %=(CV)NaOH×36.5/VHCl … … … … … ⑴ CFe g/L=(CV)NaOH ×MFe/VHCl… … … .… … ⑵3、控制模型①控制模型流程图(如:图-4)图-4②软件组态图(如:图-5) 图-5③滴定控制图(如图-6):图-64、智能控制使用在线分析系统后,解决了人工采样分析和自动上传分析数据的问题,接下来就是要把分析系统嵌入到生产工艺控制系统中,实现智能补酸和换酸功能。根据即酸浓度(H+%)和Fe+2离子的浓度建立数据库,门限值和优化区间上下限,以及线性跟踪纠偏辅助数据库,将(H+%)和Fe两组数据间设置关联计算因子,关联计算换酸点,将补酸与换酸数据关联到DCS控制系统中实现智能控制。DCS生产线控制系统显示界面(如图-7):图-7 酸浓度和铁离子的浓度关系图(交点为换酸点) 5、应用考核与评价技术参数考核结果如下表(表-1)序号项目技术参数检测结论1分析频次每个组分的分析周期6分钟/次达标2酸浓度检测范围盐酸浓度:0~30%(w/v)硫酸浓度:0~80%(w/v)达标3Fe2+检测范围Fe2+含量;0-100 g/l达标4结果单位定义%、g/L、mg/L、ppm达标5分析频次酸浓度和Fe2+检测周期:5-8分钟/次达标6分析精度盐酸浓度:<1%;Fe2+含量;<1%达标7系统稳定性2100小时连续考察结果稳定、可靠、无故障达标8自动化程度采样、分析、传输信号、显示酸浓度和Fe2+检测结果全部自动进行达标9结果输出将分析结果远传DCS或独立计算机以二元曲线显示达标10内部存储器每个结果自动存储最近1800组数据达标在线滴定分析仪检测精度数据略(与标样对比验证)(二)在线色谱分析成套系统在石化行业典型应用1、氯化苄及相关生产工艺控制检测背景氯化苄产品是一个易燃、易爆、有毒、有害的危险化学品,相关生产过程危险性较大,安全生产一直是企业永恒的主题。应生产企业要求,我们做了相应在线分析方案,解决生产中检测分析和安全需求。经过实地考察了解相关的生产工艺、物料物性和分析检测现状,充分考虑到生产工艺过程特殊性,有针对性的设计和编制了工业在线分析系统技术配套方案,确保现场应用的可靠性、完整性及安全性。2、物料物性与分析需求(1)检测需求 氯化苄反应工段(区):8台反应釜的反应产物组成含量分析原料区:2个原料罐物质组成含量分析精馏区:3台精馏塔塔顶塔底产物组成含量分析(2)精馏产物项目密度(g/l)馏程(℃)压力(KPa)流量(Kg/m3)温度(℃)1#塔顶996暂缺-90.7暂缺48.21#塔釜1111暂缺-88.6暂缺111.22#塔顶1114暂缺-98.5暂缺67.52#塔釜1204暂缺-95.3暂缺105.83#塔顶1210暂缺-96.9暂缺84.23#塔釜未知暂缺-93.9暂缺122.33、检测原理 在线分析检测系统,是根据拟定检测的物料按流路输送到各个采样预处理单元,通过临界流量控制动和分子仿真技术,使物料中待测组分和杂质分离,经过高选择性检测器检测出含量信号,分析系统再将检测信号解读成可识别分析结果,并且自动传输到用户DCS窗口。4、分析系统流程5、检测流路取样流程配置说明:反应工序8台反应釜出料(产品),共用一套工业在线分析检测系统(IGC);精馏区的三个精馏塔的塔顶产品中高沸点杂质较少,共用一套IGC;精馏塔的塔釜回流液和1#塔进料含有高沸点物,共用一套IGC,减少过载。6、色谱分析单元控制图7、无残留进样控制示意图8、分析小屋布局图(视现场情况确定)9、在线分析系统构成(部件)(1)分析仪及相应的采样、前级减压站、样品预处理系统和分析小屋等。序号名称规格単位数量生产厂家备注1分析小屋2.5*2.5*2.7m套2磐诺仪器磐诺仪器2过程在线气相色谱仪PGC-88台3磐诺仪器3取样阀PF-1套15磐诺仪器4前级预处理PQ-2套15磐诺仪器5预处理PY-3套3磐诺仪器6标样4种套1国际标物7管缆米待定8开车备件批1详见清单注:所有预处理系统的部件型号需由乙方审核后方可采购。(2)过程气相色谱仪配置表序号名称规格和型号单位数量生产厂家备注1PGC-80谱分析仪PGC-80 监测套3磐诺仪器2零气发生器A8001套3磐诺仪器3氢气发生器A8002套3磐诺仪器4预处理单元PGC-80监测套3磐诺仪器5PGC-80D电控单元PANNA3.624.004套3磐诺仪器6专用色谱柱0.53×0.5×20m个3磐诺仪器(三)在线色谱分析成套系统在环保领域应用(因篇幅略)五、综述1、在线分析仪器(成套系统)是智能制造企业数字化控制的一个主要组成部分,它解决的是控制环节上的 “靶点”和“靶标”问题,系统配套赋予它代替人工(智能)实现控制的同时,还要融入体系自学提高(不断完善和优化数字控制资源),成为一类嵌入生产控制体系参与控制的智能系统。2、在从事在线分析技术推广应用的实践中,认识到每一个现场应用都是有很大差异的。只有深入现场调查了解应用状况,实际模拟推演才能确定两个模型。照抄照搬的方案遇到的问题很大,甚至导致应用失败。它决定实施应用的成败。仪器主要解决数字化生产中或者说是通过网络和大数据找出解决问题的方法,实现清晰智能分析功能。3、对于一些化工生产过程中,工业在线分析仪器配置较少,或者是配置了也是辅助参考,仍然依赖化验室人工分析数据等的系列问题,主要是企业还没有步入智能制造阶段,在线分析仪器只能代替人工采样分析,智能控制和嵌入生产系统功能未用上。是应用的时机不成熟,并不是智能制造和数字化工厂排斥它。(作者:魏宏杰,李杉)
  • 便携式水质综合分析仪全新上市
    水质检测在水环境保护,水污染处理和水环境健康维护中发挥着重要的作用。对于饮用水,如果水中含有伤寒,霍乱,痢疾和其他细菌等有害细菌,则会传播各种传染病。当水中存在大量浮游生物时,那么水中的含氧量就会减少,就会造成水中大量鱼类的死亡。如果饮用水中的氟化物过多,会导致牙齿出现条纹并导致“斑块病”。在严重的情况下,牙齿可能会完全溃疡。因此,对监测饮用水水质是否符合饮用水标准对我们的日常生活用水至关重要。对于工业用水,根据不同的用途分类也有很多的类型。例如,锅炉水一定不能含有大量的硫酸钙和硫酸镁,否则锅炉中会产生水垢,这不仅会消耗过多的燃料,还会导致锅炉爆炸。再例如,冶金厂的冷却设备中,给水中的悬浮物含量有非常严格的规定。此外,水质监测还可以为环境管理和环境科学研究提供数据和信息 确定水体中污染物的分布,追踪污染物的来源,污染途径,迁移,转化和生长与下降的规律,并预测水污染的趋势 判断水污染对环境生物和人体健康的影响,评估污染预防措施的实际效果 提供代表水质现状的数据,用于评估水体的环境质量 探究污染原因,污染机理和各种污染物。也正因如此我们生产并升级打造了便携式水质综合分析仪。下面是该产品的具体的介绍:B3120便携式水质综合分析仪是一款高性能的便携式测量仪表,用于测量水溶液的pH、ORP、电导率、盐度、TDS等参数,其外形简洁、重量轻、集成电路,智能程度高,使用人机对话的方式,宜于理解和操作,测量精度高,特别适用在石化、电力、饮料、制药、半导体、科研院所等行业应用。产品升级点:1、宽温、高亮度的点阵液晶显示,可视角度大,可适用于灰暗、温度低下使用2、结构简单、体积小、重量轻、携带方便、使用灵活3、智能型人机对话操作界面,便于理解和使用4、间断或连续数据存储,测量数据可上传电脑,进行二次存储和处理5、自带USB接口,具有自充电、数据导出功能6、关键参数密码保护,防止非操作人员对本机误操作,保证仪器的基本性能7、具有测量数据、运行、校准记录存储查询功能,可存储测量数据600条8、连续使用时间不低于40个小时
  • 从“新”出发!托普云农小虫体智能测报系统迈向纵深发展新阶段
    托普云农亮相2023年度浙江省植保技术暨农药械推广信息交流会12月14日,2023年度浙江省植保技术暨农药械推广信息交流会在嘉兴开幕。本次活动以“作物健康与乡村振兴”为主题,由浙江省植物保护学会、浙农集团股份有限公司主办,浙农现代农业有限公司、浙江浙农金泰生物科技有限公司等承办。50多家企业代表、500余名植保人士会聚于此,共商植保发展新未来。会议同期举办主题报告、植保新技术新产品展示、植保信息发布及学术交流等活动,托普云农应邀参会,获得2019-2023年度浙江省植物保护技术推广优秀企业荣誉表彰,智慧农业研究院院长朱旭华在信息发布会上作题为《人工智能在植保测报中的应用和展望》的主题报告。浙江托普云农科技股份有限公司荣获2019-2023年度浙江省植物保护技术推广优秀企业浙江托普云农科技股份有限公司智慧农业研究院院长朱旭华作专题报告托普云农展位直击一、智能测报装备,“慧”就测报新图景随着信息化的不断推进,大数据、物联网、人工智能技术的广泛应用,新的业态不断出现,高科技在植保领域同样大有作为。针对基层测报费人力、效率低且实时性差等难题,托普云农研发出多款用于提升现代植保工作效率的智能测报装备,实现通用虫体、微小虫体、病害识别全覆盖,同时推出灯诱、性诱等综合测报方式,全方位提升测报质效。现有的智能测报装备应用效果也广受认可。截至目前,托普云农智能虫情测报灯已实现对草地贪夜蛾、草地螟、粘虫、稻纵卷叶螟、二化螟、玉米螟、棉铃虫等119种一二类趋光性及其他主要农林害虫的精准识别;今年在全国农技中心组织的智能化监测设备现场展示和比试环节中,图像自动识别综合准确率达到97.5%,优势显著。对于小虫体智能测报系统,现已实现对稻飞虱、叶蝉类毫米级趋光性害虫的高效诱集、智能识别和虫情数据统计分析,识别准确率达90%以上;同时,这款产品还入选了2023数字农业农村新技术新产品新模式优秀项目,产品技术创新水平和推广应用价值获行业认可。针对一类农作物病虫害番茄潜叶蛾,托普云农自主研发智慧性诱测报系统,通过性诱剂吸引靶标害虫,在实时监测害虫动态的同时,干扰雌雄交配,降低下一代虫口密度。托普云农智能装备二、监测预警平台,织牢闭环管理“防护网”深度挖掘并利用好监测数据,对于提高农作物病虫害监测预警水平,保障粮食安全意义重大。托普云农以监测点为基础,聚点成网,汇集各点的病虫情数据到数字化平台,通过构建算法模型、决策系统等对平台数据进行汇总、处理、挖掘分析与决策应用,不断迭代升级数字植保监测预警水平。目前,托普云农已打造农作物重大病虫智慧监测预警平台,通过物联网智能装备,建立区域智能监测网络,实现病虫害监测数据集中采集、统一管理和综合应用。除此之外,托普云农联合浙江省植保检疫与农药管理总站打造集监测预警、分析研判到统防统治、服务反馈为一体的“浙江植保服务在线平台”,通过汇集多方数据,多形式呈现各地区病虫发生动态,实现智能自动预警并提供病虫情报精准推送服务,打造从“智能监测—模型预警研判—决策服务”的数字化联动响应模式和数据应用闭环。同时,为辅助植保工作,托普云农创新打造虫情自动推送服务,有效提升植保智能化、数字化水平。农作物重大病虫智慧监测预警平台浙江植保服务在线平台“未来,我们将继续深度挖掘监测数据,了解病虫害爆发规律、预测未来趋势,提高农作物病虫害的监测预警水平。当前,我们联合科研院校研发‘空—天—地’多源数据融合的迁飞害虫监测预警技术,期待为虫情监测提供更加完善的产品和方案,为我国农户防治迁飞性害虫提供更多可靠依据,全面保障我国粮食生产安全。”托普云农智慧农业研究院院长朱旭华补充道。
  • 智能化成分析仪器与传感器发展方向
    我国分析仪器和传感器产品,已经加大力度朝向智能化、信息化、网络化方向发展,以实现更灵敏、更准确、更快速、更可靠地实时检测。  分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • “网络化智能全彩色3D打印机的研制与产业化”等3个项目公示综合绩效评价结论
    近日,国家科技管理信息公共服务平台公示了国家重点研发计划“增材制造与激光制造”重点专项“网络化智能全彩色3D打印机的研制与产业化”等3个项目的综合绩效评价结论。附件:国家重点研发计划“增材制造与激光制造”重点专项项目综合绩效评价结论_20210414152657.pdf以下为公示信息:关于国家重点研发计划“增材制造与激光制造”重点专项“网络化智能全彩色3D打印机的研制与产业化”等3个项目综合绩效评价结论的公示发布时间: 2021年04月13日 来源:科学技术部根据科技部《国家重点研发计划项目综合绩效评价工作规范(试行)》等文件的相关要求,国家重点研发计划“增材制造与激光制造”重点专项“网络化智能全彩色3D 打印机的研制与产业化”等3个项目已完成综合绩效评价。现将项目综合绩效评价结论予以公示。公示时间:2021年4月13日至4月17日。对于公示内容有异议者,按照有关申诉程序,于公示期内通过国家科技管理信息系统在线提交申诉材料,逾期不予受理。 科技部高技术研究发展中心2021年4月13日
  • 国家药监局综合司关于印发药品监管人工智能典型应用场景清单的通知
    各省、自治区、直辖市和新疆生产建设兵团药品监督管理局,局机关各司局、各直属单位:  为贯彻落实党中央、国务院关于开展“人工智能+”行动的决策部署,落实《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《新一代人工智能发展规划》《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》《药品监管网络安全与信息化建设“十四五”规划》等工作要求,有效促进“人工智能+”行动在药品监管领域的实践探索,统筹推进人工智能场景创新,更好支撑高水平监管和高质量发展,现将《药品监管人工智能典型应用场景清单》(以下简称《清单》)印发给你们,请结合实际,积极探索实施。有关事项通知如下:  一、工作目标  《清单》列出了15个具有引领示范性的、有发展潜力的、针对工作痛点的、需求较为迫切的应用场景,旨在推动人工智能技术在药品监管领域的研究探索,以促进人工智能与药品监管深度融合为主线,规范和指导各级药品监管部门开展人工智能技术研究应用,引导资源聚焦,推动人工智能赋能药监系统;同时也为其他科研机构、技术公司和药品企业相关研究应用提供参考和指导。  二、组织实施  各单位应充分发挥主观能动性,结合人工智能技术现状和自身实际工作需求,选择《清单》中列出的典型应用场景为切入点,由本单位监管业务部门和信息化技术部门共同牵头,协作开展人工智能应用实践探索。鼓励各单位联合高校、科研机构、技术企业等多种主体,采用灵活可行的合作模式,利用多种渠道积极寻求资金和技术支持,共同开展相关技术研究和落地实施工作。后期随着人工智能技术的进步以及监管融合应用的发展,各单位可以进一步研究探索新的应用场景,并反馈给国家局网信办,逐步扩充《清单》的内容。  各单位在开展人工智能应用实践工作时,还需注意网络安全和数据安全问题,应根据人工智能模型涉及到的监管数据资源分类分级保护要求和人工智能计算模型所需的算力需求,选择适当的应用部署方案,合理设置系统和数据访问权限,避免数据泄露和滥用风险,确保人工智能技术在药品监管领域安全、稳健地应用和发展。  国家局网信办将适时征集一批具有示范引领效果、可复制推广的典型应用场景项目,作为智慧监管典型案例或药品智慧监管示范项目进行示范宣传和推广。  国家药监局综合司  2024年6月13日药品监管人工智能典型应用场景清单.doc
  • 从国家战略看分析仪器的“智能制造”之路
    p  不久前,笔者有幸在中国工程院参加了由中国机械工程学会、中国汽车工程学会、中国电工技术学会、中国仪器仪表学会、中国农业机械学会联合主办的“2018年迎春报告会”。“迎春报告会”是每年元月五家学会联合奉献给会员们的一个品牌项目,也是学会间友好合作、会员间沟通交流有效平台。报告会邀请国内著名专家就重大年度热点问题进行全方位的分析和深度解读,报告主题所涉猎的领域相当广泛,包括:工业、科技、军事、国际关系、地区局势等。本次报告会,主办方邀请到了中国工程院院长周济院士,以“新一代智能制造——新一轮工业革命的核心驱动力”为题对“智能制造”进行了全方位分析和深度解读。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201801/insimg/e153d58f-87f2-4ba2-8245-4578fff76294.jpg" title="timg.jpg"//pp style="text-align: center "strong周济 院长/strong/pp  自盘古开天辟地以来,大地生灵进化,从猿到人。当人类文明出现在这个星球上后,人类的社会形态与生产方式随着历史的变迁,也在不断地发生改变。/pp  18世纪中叶,以英国为代表的工业国家,展开了以机械化为中心的第一次工业革命。珍妮纺织机、瓦特蒸汽机、以及以蒸汽机为动力的轮船、火车等交通工具相继问世。解放双手、以车代步的模式给人类的生产、生活带来了极大的改变。/pp  19世纪70年代,标志着电气化时代的第二次工业革命爆发。西门子发电机、爱迪生电灯、电话等发明让人类社会进入了“电气”时代。也正是有了那时的电力等的发明和应用,才有了现在的各种电脑、播放器,以及便于沟通交流和娱乐的手机。/pp  第三次工业革命始于二战结束后,以信息技术为显著特点,又称信息化革命。具体而言,就是以电子计算机为代表的信息技术应用范围越来越广,计算速度不断加快,能够完成人脑无法完成的大规模复杂计算、大量数据存储以及信息的快速传播。正因如此,使得空间技术、核能技术和生物技术的快速发展成为可能。/pp  几次工业革命的产生,其原因归跟到底,在笔者看来,基本上可以总结为:提高生产效率,提高产品质量,优化生产要素配置,降低成本,满足用户不断增长的个性化需求。以第三次工业革命为例,1950年,全球GDP总量为5.3万亿美元,在1970达到了13.8万亿美元,年均复合增长率达到了4.9%,其中在1960~1970年间年均增长高达5.03%(数据来源:互联网)。/pp  二十一世纪的现在,以智能化制造为标志的第四次工业革命正在展开。/pp  由于智能制造是一个大概念,范式众多,不利于形成统一的智能制造技术路线,给企业在推进智能升级的实践中造成了许多困扰。根据中国工程院的最新研究成果,综合智能制造相关方式可以总结归纳和提升出三种智能制造的基本范式,也就是数字化制造、数字化网络化制造,数字化网络化智能化制造(即新一代智能制造),智能制造三个基本范式次第展开、迭代升级。一方面,三个基本范式体现着国际上智能制造发展历程中三个阶段,另一方面对中国而言,必须发挥后发优势,采取三个基本范式" 并行推进、融合发展" 的技术路线。/pp  具体到未来三年到五年之内,我国推进智能制造的重点则是大规模地推广和全面应用数字化网络化制造,即第二代智能制造。德国工业4.0和美国工业互联网完善地阐述了这一阶段的制造范式,也提出了实现数字化网络化制造的技术路线。而真正能够称得上是新一代工业革命的,则是要到智能制造的第三阶段,即数字化网络化智能化制造。如果说数字化网络化制造是新一轮工业革命的开始,那么新一代智能制造的突破和广泛应用将推动形成这次工业革命的高潮,引领真正意义上的工业4.0,实现第四次工业革命。那么,新一代智能制造系统比第一代和第二代有什么进步?最本质的特征就是它的信息系统发生重大变化。增加了认知和学习的功能,原来我们在上一代的信息系统当中,主要只有感知、分析和决策和控制的功能,现在增加了一个新的功能,就是认知和学习功能,因此信息系统不仅具有强大的感知计算分析和控制能力,更加具备了学习提升和产生知识的能力。/pp  2015年,国务院印发《中国制造2025》,部署全面推进实施制造强国战略。要通过“三步走”的一个战略,大体上每一步用十年左右的时间来实现我们从制造业大国向制造业强国转变的目标。到2025年,我国要进入世界制造强国的第二梯队,即工业技术水平接近德国、日本 到2035年,我国在第二梯队中要居于前列,即开始超越德、日 到2045年,我国要进入世界制造强国的第一梯队,即和美国并驾齐驱。而《中国制造2025》的主攻方向之一就是智能制造。/pp  国家工业战略的时间表已经制定,战略方向也非常清晰,就是以制造业的繁荣和强大,来支撑国家的繁荣和强大,笔者听来确实让人热血沸腾。作为一家分析仪器行业的专业网站,我们也在观察,中国分析仪器工业自己的时间表又将如何制定?/pp 对于民族分析仪器制造企业而言,还有很多尚未完成数字化转型,这一课是需要补上的,数字化生产也是智能制造的基础。在产品层面,分析仪器/设备智能化的发展,据笔者浅薄的看法,首先应当结合利用大数据、云平台等新兴技术,进一步发展完善无需样品前处理或样品前处理简单的分析技术,譬如:近红外、拉曼、LIBS、常压敞开式离子源质谱等。其中原因其实也很简单,在现今的分析实验室,样品前处理的工作量在整个分析工作过程中一般能占到70%以上。如果能够让广大的实验室分析人员从繁重的样品处理工作中解放出来,无疑是善莫大焉;第二、依然和样品前处理有关,发展样品前处理自动化技术,并向智能化过渡。未来能否出现智能化样品前处理技术,即由设备自己来摸索、开发样品处理方法,我们充满期待 第三、利用传感器、大数据、人工智能等技术,对分析仪器/设备进行实时智能分析和智能控制,从而实现优化仪器/设备的运行和智能化保障。如果未来分析仪器企业希望从生产型制造向服务型制造转变,这是一个很值得关注的技术发展方向 第四、集成创新,即将多个分析或样品处理技术集成于一台仪器/设备上,这一技术发展趋势最近几年日见清晰,无论是进口产品还是国产产品,都有所体现。/pp  最后,我们想说的是,无论何种“制造”,最终要由企业来落实。中国智能制造战略方针也指出:推进智能制造要充分激发企业内生动力,特别是广大中小企业,要实事求是地探索适合自己转型升级的技术路径。各级政府、科技界、学界、金融界都要共同营造良好的生态环境,帮助和支持企业特别是广大中小企业智能升级。/p
  • 发布弗莱德FISA-2000燃料油品综合分析仪新品
    产品详细说明FISA-2000 油品综合快速分析仪油品分析利器随着石油化工生产技术的不断进步,石油化工装置正朝着大型化、一体化、智能化和清洁化等方向发展,传统企业生产过程控制系统正随之发生了改变,建设智能化炼厂已成为炼化企业升级转型的重要目标。实时在线优化(RTO)是实现炼厂装置智能化控制的重要基础,而快速、高效、准确、低成本的在线分析和现场分析技术则是实施RTO的基本单元。可检测原油到馏分油不同组分产品:柴油:十六烷值、多环芳烃、凝点......汽油:辛烷值、芳烃、烯烃、笨...... 进厂原料:石脑油PONA、调和组分辛烷值......原油:原油快评、原油详评仪器优点:快、多、优、省、稳、准优点解析:快:操作便捷,1min完成检测 多:一次出具多项检测指标 优:常温下工作,绿色、环保安全 省:节省人力,仪器免维护,低运行成本 稳:专利动态准直技术,工作状态稳定 准:国际仪器品牌,保证数据准确性创新点:1、1分钟出汽油、柴油、乙醇汽油多项指标,出具用户指定的全指标检测单2、无耗材,无操作人员要求3、与实验室数据对比,数据准确可靠,4、仪器适用于实验于及车载环境,可配于油品检测车中使用5、应用于加油站、油库等市场监管、;炼化企业;环保;公安等多部门以此仪器做为验证仪器的山东省快检标准已于2019年8月6日发布实施,配套此仪器的本公司的油品快检车已在山东省内加油站展开全覆盖检测。弗莱德FISA-2000燃料油品综合分析仪
  • 盘点:智能炼厂里面有哪些分析仪器?(内含多个专场直达链接)
    通过工业化与信息化的不断融合,以及智能化技术在炼化生产全过程的不断应用,传统流程的炼化行业已经逐步在生产过程智能化、供应链智能化、资产全生命周期管理智能化等方面取得初步成效。石化企业智能工厂经历了两个发展阶段,智能炼厂1.0 总体以炼化企业信息系统建设与应用为核心,智能炼厂2.0 则以智能化优化技术研发与应用为核心。从目前一些国外知名技术公司和大型石化企业的设计思路来看,现阶段的智能炼厂主要是在整合原有不同领域技术基础上的智能化设计与研究,涉及的技术包括原油及成品油在线调和、油品在线分析、生产计划优化、生产调度排产优化、装置实时优化、公用工程在线优化、设备运行预测预警、智能无线巡检等多项技术,但尚未研发形成具有颠覆性的智能化技术。究其原因,主要是由于炼化生产过程本身的复杂性和涉及多专业多领域的特点,使得智能炼厂的发展不可能一蹴而就,而是一个长期的研究与建设过程。对于智能炼厂里的分析仪器,其实能从其相关单位的采购、招标信息中了解到一些信息,小编整理了近半年部分炼厂的招标信息如下表(蓝色字体直达相关仪器专场):招标仪器相关参数在线微量水分析仪0-10ppm 2℃ 隔爆+粉尘防爆0-10ppm 2℃ 本安型0-100ppm 3℃ 本安型 分析小屋+正压防爆柜+预处理系统0-1000ppm 2℃ 隔爆+粉尘防爆在线微量氧分析仪0-1vol% 2% 隔爆+粉尘防爆0-1% 1% 隔爆型0-5vol% 2% 隔爆+粉尘防爆0-50ppm 2% 隔爆型 预处理+取样系统+机柜在线氧化锆气体分析仪抽吸式 隔爆型 0.1级在线钠离子计0-120ppb 0.02% 隔爆型便携式红外测温仪-32℃-600℃ ±1℃在线TOC分析仪0-50ppm 2% 隔爆型 分析仪柜+预处理系统0-50ppm 0.2ppm 本安隔爆型0-35mg/L 10% 隔爆型 分析小屋+预处理系统在线近红外分析仪单路 隔爆型 1.0级 分析小屋+预处理系统在线多组分气体分析仪0-10000ppm 3% 本安隔爆型在线冰点分析仪-70-10℃ 1℃ 隔爆型预处理系统全馏程在线分析仪130-250℃ 1℃ 隔爆型 分析小屋+预处理系统+回收系统在线热值仪0-350℃ 2.0 本安型0-100MJ/Nm3 ±0.1%总有机碳分析仪0-50ppm 2% 本安隔爆型便携式拉曼光谱仪200-3200cm-1在线色谱仪1个流路 分析小屋+预处理系统+防爆机柜+采样系统2个流路 分析小屋+预处理系统+防爆机柜+采样系统3个流路 分析小屋+预处理系统+防爆机柜+采样系统5个流路 分析小屋+预处理系统+防爆机柜+采样系统6个流路 分析小屋+预处理系统+防爆机柜+采样系统7个流路 分析小屋+预处理系统+防爆机柜+采样系统废气爆炸限检测仪空气/油气/粉尘 0-100%LEL 隔爆型 4-20mA核磁共振波谱仪20MHz在线氨氮分析仪0-15mg/L 5% 隔爆型 分析小屋+预处理系统0-15mg/L 5% 本安隔爆型在线酸度仪0-14PH 侵入式 本安型 DC24V 0.01PH0-14PH 插入式 本安型 DC24V 0.01PH在线COD分析仪重铬酸钾法 0-150mg/L ±10% 防爆型重铬酸钾法 0-150mg/L ±5% 防爆型重铬酸钾法 0-2000mg/L ±10% 防爆型在线水中油分析仪0-15mg/L 1% 本安隔爆型 分析小屋+预处理系统在线PH/COD/氨氮分析仪0-14PH 0.01PH 本安型 温度补偿在线溶解氧分析仪0-15mg/L 0.3mg/L 本安型 预处理系统+防爆箱0-1mg/L 0.3mg/L 本安型 预处理系统+防爆箱在线激光气体分析仪0-5% 1% 隔爆型在线总碳烃分析仪0-100mg/L 0.5% 隔爆+粉尘防爆 预处理系统+机柜激光粒度仪光激励 450-650nm在线拉曼光谱分析仪3-100% 0.05级 隔爆型 流通池维卡软化点及变形温度测定仪20-300℃ 0-15mm 0.1°C 0.001mm -JCEMS烟气在线分析系统SO2:0-200mg/Nm3 NOx:0-200mg/Nm3 O2:0-25%Vol 0.1级 隔爆型SO2:0-150mg/m3 NOx:0-300mg/m3 颗粒物:0-60mg/m3 1级 隔爆型 分析小屋+取样系统在线挥发性有机物监测系统(VOCs)0-50mg/m3 0.1级 隔爆型0-300μg/m3 2% 不防爆 分析小屋+预处理系统双气路大气采样器0.1-1L/min多种气体检测仪便携式CH4 0-10000ppm/i-C4H10 0-200ppm 0.1ppm林格曼黑度计手持式 10-500m 10m颗粒物采样分析仪便携式 0-120L/min 0.1L/min5-30L/min 0.01L/min红外CO/CO2分析仪便携式 0-50ppm 0.1ppm硫化物酸化吹气仪台式 0-3L/min 0.1L/min在线磁氧式气体分析仪磁力机械式 隔爆型 带预处理装置+分析小屋在线氢气分析仪0-1vol% 2% 隔爆型 预处理+取样系统+机柜50-100mol% 2% 隔爆型 预处理+取样系统+机柜红外热像仪-40℃-350℃在线闪点分析仪25-175℃ 1℃ 隔爆型 预处理系统+取样系统还有未指定参数的多参数水质分析仪、在线质谱仪、红外分光测油仪、原油盐含量测定器、X射线荧光定硫仪、电位滴定仪、自动密度仪、ICP元素分析仪、在线总硫分析仪、高温气相模拟蒸馏仪、石油倾点测定器、离子色谱仪等。在智能炼厂中有许多快速分析技术,在6月29-30日的“石油化工分析技术与应用(2021)”主题网络研讨会中特别邀请了中石油的专家讲解石化领域的快速分析技术。
  • 近三年光谱结合化学计量学分析技术综述文献的评述(一)
    近三年光谱结合化学计量学分析技术综述文献的评述(一)Commentary on the review articles of spectroscopy technology combined with chemometrics in the last three years褚小立(中石化石油化工科学研究院有限公司,北京,100083)摘要:近些年,现代光谱分析技术得到了迅猛发展,该技术的一个关键特征是采用化学计量学方法对光谱数据进行处理,从而尽可能多地获得有用信息,并且,该技术可直接对不同形态的复杂混合物进行定性和定量分析,在检测速度、成本、效率、通用性、自动化和便携性等方面表现出优于多数传统方法的特殊优势,在农业、食品、制药、石油、化工、烟草、环保和医学等各个领域得到了广泛的应用。因此,现代光谱分析技术也日益得到关注和重视。本文对近三年(2020-2022年)发表的涉及光谱结合化学计量学为主题的综述论文进行评述,主要论述了这类技术的发展现状、存在的挑战以及未来的发展方向,引用文献351篇。1引言现代光谱分析技术,如紫外可见光谱(UV-vis)、中红外(MIR)、近红外(NIR)、拉曼光谱(Raman)、三维荧光光谱(EEM)、太赫兹(THz)光谱、核磁共振(NMR)光谱、激光诱导击穿光谱(LIBS)等,可直接对不同形态的复杂混合物进行定性和定量分析,具有速度快,效率高,可无损和在线分析等优势,在农业、食品、制药、石油、化工、烟草、环保和医学等各个领域得到了广泛的应用(图1)。该技术的一个显著特点是借助化学计量学方法从光谱数据中尽可能多的提取详细的有价值的化学信息,其目的是为了显著提高分析结果的稳健性和准确性,使传统光谱技术不可实现的应用成为现实。图1 光谱结合化学计量学方法的分析技术框架图近年来,随着人工智能、大数据、云计算等,尤其是深度学习的快速发展,为化学计量学注入了新思路、新途径和新方法,用于光谱分析的新型化学计量学方法如雨后春笋般涌现出来,成为国内外本领域专家学者的重点和热点研究方向。借助材料学、MEMS制造技术、计算机技术等的进步,光谱类仪器及其应用也得到了长足发展。近三年(2020-2022年),光谱结合化学计量学的综述论文也如井喷式般的出现,涉及到光谱学、光谱仪器、化学计量学(机器学习)方法、以及在诸多领域的应用研究等方方面面。本文以“化学计量学(chemometric)” 或“机器学习(machine learning)”,“光谱(spectroscopy)”或“光谱技术(spectroscopic technology)”或“光谱仪(spectrometer)”,以及“综述(review或overview)”为关键词,以2020年至今为时间段,在Science Direct、Scopus、Web of Science、Google Scholar和知网(CNKI)上进行检索,对检索到的351篇综述类论文进行了整理、归纳和评述。2 光谱学与光谱技术2.1近/中红外光谱Beć等综述了量子计算化学在近红外光谱解析方面的进展,指出振动光谱学与计算化学形成的显著的协同作用,随着理论方法和计算机技术的进步,将大大提高振动光谱,特别是近红外光谱的应用潜力[1]。在另一篇综述中,他们论述了明确且详细的谱带归属研究对深入认识和理解近红外光谱的重要意义,解释了不同微型光谱仪所提供的化学信息贡献的差异的原因[2]。水光谱组学是一门研究水和水系统分子间氢键组成形态的新兴科学,它通过观察近红外光对水的作用所表征特征峰的变化来分析水系统中溶剂与溶质间的作用关系,具有非侵入性、分析速度快和定性定量等特点。孙岩等总结了用于温控近红外光谱分析的化学计量学方法,以及利用温控近红外光谱技术研究小分子的结构和蛋白质、温敏聚合物结构转变过程等方面的研究工作,利用随温度变化的水光谱信息,可实现对含水混合物的定性和定量分析[3]。陈定芳等梳理了水光谱组学的历史沿革、研究方法及其应用现状,阐明了水光谱组学用于测定人体经络脏腑的超分子结构特征的可行性[4]。褚小立等从振动光谱基础理论、光谱仪器硬件和化学计量学3个方面对近红外光谱分析技术的最新进展进行了综述,认为以近红外光谱为核心的商业产品将在不同应用领域进一步提供深化和细化的服务,近红外光谱有望成为与时代发展特征(如人工智能、大数据、云计算和物联网等)最相关的一项分析技术[5]。王家俊等探讨了在网络化应用环境中,近红外光谱仪器设备存在的硬件差异以及传统化学计量学方法在建模、数据处理存在的不足对近红外光谱的深度应用产生的影响,提出了云计算应用的解决思路,并对大数据时代近红外光谱分析网络化模式的应用前景进行了展望[6]。Fakayode等介绍了近红外光谱、傅里叶变换红外光谱仪器和拉曼光谱的最新技术创新进展,对2015-2018年期间近红外光谱、傅里叶变换红外光谱仪器和拉曼光谱在药品、食品等质量控制和保证等方面的应用现状进行了探究[7]。霍学松等综述了近些年新型的商品化微小型(便携式、手持式和袖珍式)近红外光谱仪器及其应用进展,指出物联网技术在智能农业、智能工厂、智能医疗和智慧城市等众多领域的兴起,成为推动近红外光谱传感器向着微型化方向发展的主要力量[8]。Zhu等综述了商品化便携式近红外光谱仪的主要类型,总结并比较了它们的性能指标,还介绍了促进小型化的新技术,对仪器未来发展的前景进行了展望[9]。表面增强红外吸收(SEIRA)是一种超灵敏的红外光谱技术,能够实现亚单层膜水平的表面选择性探测。Zhou等对SEIRA传感机制和理论模型的进展进行了综述,从结构设计、材料选择到结合机器学习算法等方面讨论了优化SEIRA性能的方法[10]。2.2拉曼光谱Pan等综述了人工智能方法结合拉曼光谱用于分析复杂混合物的进展,包括化学品、食品、药品和医学诊断等,指出拉曼光谱如SERS可以与红外光谱相结合,以增强物质识别能力[11]。Orlando等综述了拉曼光谱在先进材料科学表征中的应用进展,认为随着现场拉曼分析的推广应用,该技术在未来有望成为材料表征的常规分析技术[12]。Löbenberg等系统比较了不同拉曼分析技术的特点,介绍了拉曼光谱作为过程分析技术(PAT)工具在医药产品和工艺开发中的应用进展[13]。图2 用于体内上皮组织诊断的快速光纤共焦拉曼光谱系统Heng等综述了现代拉曼仪器、微型光纤拉曼探针设计和制造的最新进展(图2),论述了实时光纤拉曼光谱在临床内窥镜检查期间改善体内癌前病变和癌症早期诊断等方面具备的潜力[14]。Barik等概述了用于体内测量的不同光纤探针,重点介绍了用于生物医学的拉曼光谱探头,并对影响探针提取最佳光谱特征的各种方面,如光纤探头、辐射源、探测器和光谱仪等进行了探究[15]。 图3 基于SERS的传感器在农业应用示意图表面增强拉曼光谱(SERS)是一种高度灵敏的技术,可增强由某些纳米结构材料支撑的分子的拉曼散射。Han等概述了SERS设备、SERS活性材料制备和SERS测量的详细信息,重点介绍了SERS与化学计量学结合在多个研究领域的最新应用,包括探测表面反应和界面电荷转移、结构表征和化学/生物传感。此外,还讨论了SERS光谱再现性、技术局限性和可能的优化方法[16]。Liu等对目前SERS农业传感器现状和发展进行了总结,较全面地阐述了SERS在农产品质量安全控制中,对农药残留等有害物质检测的发展和应用(图3),介绍了SERS 传感器/基底在不同应用场景中的优势和价值[17]。空间偏移拉曼光谱(SORS)技术可在一定程度上克服通过包装对材料进行定性或定量分析的问题。Arroyo-Cerezo等综述了SORS结合化学计量学方法在食品和农业领域的应用,比较了商业和工业分析仪以及实验室规模的食品和饮料SORS实施情况,讨论了未来在农业食品供应链中的部署途径[18]。低频拉曼光谱(LFR)探测与长程有序(即结晶度)相关的振动模式,该模式可提供固态结构特征和其他特性的独特信息。Bērziņš等详细讨论了LFR的基础理论、仪器和数据分析(包括化学计量学和计算技术的应用)的各个方面,并总结了LFR在药物分析中的新应用[19]。2.3太赫兹光谱随着光源和探测器组件的迅猛发展,太赫兹(THz)谱技术最近在医学、材料、生物传感和制药工业等多个领域都得到了较快发展。Feng综述了太赫兹光谱与化学计量学结合的最新进展,以及太赫兹谱在评估食品质量和确保食品安全方面中的应用,并讨论了太赫兹谱的优势和一些固有的局限性[20]。Rawson等讨论了太赫兹光谱的原理和仪器,重点介绍了太赫兹技术在水分监测、土壤传感、种子分类、品种来源鉴别、残留检测、微生物、毒素和食品腐败检测、食品掺假鉴定、食品或农产品中的异物检测等方面的应用[21]。2.4 LIBS光谱激光诱导击穿光谱法(LIBS)是一种简单、直观、多用途的原子发射光谱法,它将快速脉冲激光束聚焦到样品上,形成含有其组成元素的等离子体,然后使用发射光的光谱分析检测存在的元素。激光诱导击穿光谱技术具有多元素同时检测、结构简单、检测速度快、不受样品形态影响等特点,在诸多领域展现出广阔的应用前景。Andrade等综述了近些年LIBS样品制备、定性分析、校正策略以及提高LIBS分析灵敏度方法的进展,指出现场应用、在线应用、以及与化学计量学方法的深度融合是未来LIBS技术的主要发展趋势[22]。李祥友等综述了激光诱导击穿光谱技术的机理、装置类型、基础研究进展(信号增强方法、定性定量分析方法),以及在深空探测、地质勘探、环境污染、食品安全、工业冶金和生物医疗等领域的应用进展,指出为了实现海量材料的快速、高灵敏度检测,在线 LIBS 装置的研制将是未来的发展趋势[23]。Harmon等论述了实验室和现场LIBS分析技术,综述了LIBS在大气、天然水、矿物、岩石、沉积物和土壤等地球科学领域中的应用研究进展[24]。Wang等总结了LIBS定量分析技术的最新进展,包括不确定性和误差产生机制、硬件改进和定量校正方法(包括基于物理原理的校正模型、基于数据驱动的校正模型和混合模型),解释了信号不确定性和矩阵效应对LIB定量分析性能的影响,提出了LIBS定量分析的改进策略框架[25]。Chen等综述了激光诱导击穿光谱(LIBS)与机器学习相结合在地球化学和环境资源勘探中的最新进展,提出了LIBS在未来发展中的潜在应用,包括现场快速筛选和极端环境下的远程探测等。由于LIBS可同时分析轻元素和重元素含量,在工业中,特别是在钢铁、汽车和飞机制造业中变得非常流行[26]。Velásquez-Ferrín 论述了LIBS在分析食品微量营养素、基本成分和有毒物质的应用进展,包括谷物、蔬菜、盐、酒精饮料、烟草、糖、肉、鱼、咖啡、茶和水等[27]。Legnaioli等综述了激光诱导击穿光谱(LIBS)在工业应用中的进展,包括能源工业、制药业、金属工业、建筑业、食品和饲料工业、资源回收工业等[28]。图4 激光诱导击穿光谱成像技术的应用示意图曾庆栋等综述了便携式LIBS的发展历程,对各种激光光源(小型 Nd:YAG固体激光器、二极管泵浦固体激光器、微片激光器、光纤激光器以及光纤传能的方案)应用于便携式LIBS系统的最新研究进展进行了综述和分类讨论,提出在应用领域应当从“专机专用”的角度着手,即一个样机只针对某个领域的某几种元素,甚至是某几个谱线来设计[29]。Limbeck等综述了LIBS成像仪器和相关化学计量学方法的最近进展,总结了LIBS成像在生命科学、地质学和材料科学领域的应用实例(图4),展示了LIBS在空间分辨分析中的优势,还讨论了该技术的未来前景和潜在应用[30]。2.6微型光谱仪光学、半导体、智能手机和许多其他制造技术的最新进展促进了光谱仪器的小型化和微型化。从未来的角度来看,这些传感器的小型化和性能改进将导致广泛的传感网络与物联网相结合,提供前所未有的现场诊断,从而为医疗保健和环境监测等许多其他应用提供实时分析。Yang等对光谱仪微型化的技术路线、技术突破及其后续应用进行了系统的分析,总结了过去三十年中所发展的四种微型光谱仪(图5),即色散型(dispersive optics)、窄带滤光型(narrowband filters)、傅里叶变换型(Fourier transform)和计算光谱(reconstructive)。论文指出了微型光谱仪发展历程中的重要技术突破,认为微型光谱仪的发展主要依赖于加工技术的进步和计算能力的提升[31]。图5 超小型微型光谱仪的四种策略示意图Biswas等概述了智能手机光谱仪的最新发展,重点是光收集、色散、检测和光谱校准,这些光谱仪可以利用实时物联网将边缘数据传输到云端,在未来,该仪器或将为使用者提供前所未有的现场诊断[32]。Zhi等总结了国内外微型光谱仪的发展现状,重点介绍了微型光谱仪在精准农业中的应用研究进展,指出随着新原理、新工艺和新材料的发展,微型光谱仪在提高特异性的同时,正朝着高性能、高集成度和单芯片方向发展[33]。荧光传感器有着高灵敏度和特异性的优点,Shin等论述了便携式不同类型荧光传感器的特点,并讨论了其在水质监测、生物医学等领域的应用进展[34]。Zhang等从理论、实现和性能指标方面系统地回顾了芯片傅里叶变换光谱仪(FTS)的进展,尤其是芯片静态FTS,包括空间调制、时间调制和空时共调制FTS,指出芯片FTS的应用将会逐渐扩展到食品安全、健康分析和大气探测等领域[35]。Ravindran评述了用于微光谱仪的光栅技术的新研究趋势,探究了评估光栅性能的主要参数,发现光栅效率、凹槽密度、自由光谱范围和分辨率对光栅性能有重要影响[36]。王飞等论述了片上光谱成像系统的分光原理、集成方式,展望了片上光谱成像系统在生物医疗、环境监测、军事装备和智能消费电子等领域的应用前景,指出未来基于片上光谱成像系统的各种光谱成像设备将真正进入掌上时代,深度融入个人日常生活,在食品安全、移动健康等方面展现出其独特的魅力[37]。3 化学计量学算法与策略3.1概述Wang等从实用性的角度综述了近十年来在现代光谱分析中应用的各种化学计量学方法,包括光谱预处理、波长(变量)选择、数据降维、定量校正、模式识别、模型传递、模型维护和多光谱数据融合等[38]。Houhou等重点介绍了化学计量学、机器学习和深度学习等人工智能方法用于光谱和成像分析的最新研究和趋势,包括核磁共振、质谱、振动光谱、X射线、原子力显微镜、电子显微镜和二维色谱等,他们认为深度学习在生物医学中的应用,以及数据融合方法,是未来研究的主题之一[39]。Zhang等汇总了用于LIBS多元定量和定性分析的机器学习方法(图6),讨论了模型可解释性、数据集大小、过拟合以及噪声、干扰等问题和挑战[40]。Costa等也综述了用于LIBS的化学计量学方法,比较了多种定量校正方法的优缺点[41]。图6 人工智能、机器学习、化学计量学之间的关系示意图图7 用于电化学、光谱学和联用质谱学中的化学计量学方法框架图Peris-Díaz等引用300多篇文献回顾了2018~2020期间化学计量学方法在电化学、光谱学和联用质谱学中的应用研究和发展趋势(图7),并论述了使用这些方法时要避免的潜在陷阱[42]。图8 光谱分析中常用的化学计量学方法工具箱Meza Ramirez等介绍了应用于光谱分析的机器学习和人工智能背景、概念和方法,及其在生命科学和医疗领域的最新研究进展,并给出了光谱分析中常用的机器学习和人工智能工具箱(图8)[43]。Oliveira等综述了各种分析技术与化学计量学方法结合用于石油泄漏研究中的应用和研究进展,讨论了化学计量学方法的一些概念性和不当使用等问题[44]。Aleixandre-Tudo等对化学计量学在食品科学和技术研究领域的应用进行了文献计量学评估,结果表明,化学计量学是一个内容丰富且发展快速的领域,广泛应用于食品领域[45]。Rocha等综述了2008-2018年期间非线性方法(人工神经网络、支持向量机、自组织映射等)在食品(蔬菜、水果、食用油和奶制品等)分类和预测分析中的应用,讨论了非线性方法相对于传统多元分析方法的优缺点[46]。Carolien等用实例对用于食品质量评估的多种化学计量学方法进行了探究,指出食品科学家和统计学家之间需要跨学科合作,以便正确使用数据分析方法并合理解释结果[47]。Ma等全面综述了神经网络在食品分析(如食品识别、食品供应链安全和组学分析等)中的应用进展,提出友好界面软件包的空白、难以解释的模型行为、多源异质数据等是阻碍神经网络广泛推广应用的主要挑战[48]。3.2光谱预处理与波长选择由于测量模式、样品状态和其他外部物理、化学和环境因素,光谱仪等分析仪器产生的数据可能包含不必要的变化。数据预处理的总体目标是从信号中去除不必要的变化或影响,以便与感兴趣属性相关的有用信息可用于有效建模。基线漂移是拉曼、中红外、近红外以及激光诱导击穿光谱等光谱仪器测量过程中经常出现的问题,会对光谱的定量和定性分析产生不利影响。王海朋等系统评述了光谱基线校正的基本算法、改进算法和新型算法及其应用研究进展,认为目前的基线校正算法大都没有从机理或光谱本质方面对基线漂移做出解释,在具体应用时应根据具体的对象加以选择和改进[49]。Mishra等系统介绍了用于光谱预处理的方法,重点论述了新出现的集成融合预处理方法,并归纳出了三种基于集成融合的预处理策略[50]。波长(变量)选择是近红外光谱(NIR)多元校准的重要步骤,也是近红外光谱研究的一个热点。现如今,已经开发了大量的变量选择方法,由于其原理和应用范围的不同,它们具有不同的优点和缺点。Fu等归纳了基于联合策略开发的变量选择方法,联合方法的目的是应用两种或多种变量选择算法,利用它们各自的优势,从高维NIR数据集中更有效地选择特征波长[51]。de Araújo Gomes等则概述了用于食品光谱数据分析中的波长变量筛选方法,并通过定量校正和分类识别实例论述了变量选择的重要性[52]。3.2多维高阶算法化学多维校正方法具有突出的“二阶或更高阶优势”,被视为借助绿色智能的“数学分离”来替代或增强传统的“物理/化学分离”,这避免或显著简化了样品预处理过程,减少了分析时间。此外,可以消除背景基体和干扰信号的影响,即使在存在未知干扰的情况下,也可以实现对感兴趣的多个分量的同时、快速和准确的定量分析。Wu等综述了基于各种高阶分析数据的多维校正的理论和分析应用的最新进展,重点讨论了多线性模型及其扩展、具有二阶或高阶优势的多维校正算法以及其他基本问题,并着重介绍了它们对绿色分析化学的贡献,例如在环境样品定量分析中的应用[53, 54]。在另一篇综述中,吴海龙等则系统综述了近5年来二阶、三阶、四阶校正方法与不同高阶分析仪器相结合的代表性应用,强调了多维校正方法对绿色分析化学的贡献[55]。图10 近红外光谱成像与高阶化学计量学算法用于药物杂质测定和有效期估计的分析流程图Sun对用于化学和生物制造过程中张量数据分析的方法进行了综述,指出张量数据分析是一种有前景的过程理解和优化工具,为提取有用的过程信息开辟了新的可能性[56]。Vignaduzzo等讨论了高阶化学计量学与多种仪器技术(如紫外-可见光谱、荧光、色谱、电化学等)相结合解决药学定性和定量问题的研究进展,是解决包括降解研究、杂质和原料药测定(溶解试验、均匀性试验等)等问题的有力工具(图10),还讨论了该策略在药物鉴定、PAT和QbD中的应用潜力[57]。Yu等综述了多维校正算法与近红外光谱结合在食品工业过程控制、质量评价、欺诈识别和分类、以及图像分析等方面的应用进展,作者认为,多维算法与光谱数据的结合可以将食品加工数据信息转化为操作知识,能进一步提高对食品系统和食品过程的理解[58]。Mazivila等论述了如何利用多维分辨方法从基于分析物触发的半导体量子点(QD)荧光调制(猝灭/增强)的传感平台中体现激发发射荧光矩阵(EEFM)的二阶优势,包括平行因子分析(PARAFAC)、多元曲线分辨交替最小二乘(MCR-ALS)和基于残差双线性的未展开偏最小二乘(U-PLS/RBL)[59]。de Juan等系统论述了多元曲线分辨(MCR)方法50年的发展历程,重点介绍了MCR在组学、成像或多维色谱等领域的新应用[60]。Mazivila 等则重点论述了MCR-ALS结合光谱和色谱技术在过程分析化学(PAC)和过程分析技术(PAT)中用于实时过程监测和控制的进展[61]。Park等系统综述了二维相关光谱在概念、实验方法和应用研究等方面的进展,强调了二维相关光谱与多元分辨和多元校正方法的结合[62]。Yang等重点综述了二维相关光谱结合多维化学计量学方法在乳制品、酒精饮料、食用油等食品质量检测中的应用[63]。Liu等综述了二维相关光谱在水环境、土壤环境和大气环境检测和分析中的应用,特别是在研究环境中有机物的分子特性以及与金属离子的相互作用机理等方面的进展[64]。Rutherford等讨论了应用于生物流体红外光谱分析的机器学习分类算法,强调了二维红外光谱的多维性及其具有的丰富信息,其与分类算法结合具有令人鼓舞的潜力[65]。3.3多数据融合多光谱融合技术是将不同类型的光谱进行优化和整合,实现单光谱优势互补,以获得更全面、更可靠、更丰富的特征数据,达到提高模型预测准确性和稳定性的目的。戴嘉伟等对近年出现的多光谱数据融合技术的新策略和新方法进行了综述,作者认为将多光谱仪器硬件与多光谱数据融合算法结合是未来的发展趋势,通过云平台可将多光谱数据的采集和数据的融合处理进行集成,进一步节约人力物力,提高分析效率[66]。图11 低级、中级和高级数据融合的建模策略(包括深度学习)示意图Calvin等综述了用于评估食品质量的电子鼻(ENs)、电子舌(ET)和电子眼(EEs)组合系统开发的最新进展,特别讨论了不同数据融合策略的应用(图11)[67]。Azcarate等系统论述了数据融合的不同策略,强调数据结构对选择融合策略的重要性,以及如何将它们合并到不同的数据分析场景中[68]。Mishra等概述了多块数据分析的概念、可执行的各种任务(包括探索性数据分析、预测建模、变量选择、预处理优化和模型转移)以及不同方法的优缺点[69]。3.4深度学习图12 人工神经网络家族的Venn图深度学习是近年来非常活跃的一支人工神经网络方法(图12),主要包括CNN、ResNets、自动编码器、GAN、RNN等,在光谱分析中主要有四种应用场景:光谱预处理、分类、回归和光谱特征提取。Debus等综述了深度学习方法及其在分析化学中的应用,包括定量分析、混合物中特定化合物的识别、光谱重建、图像分析和样品分类等[70]。数据规模的增长和计算能力的提高促进了深度学习在光谱及医学影像分析中的应用,但深度学习模型可解释性的不足是阻碍其应用的关键因素。刘煦阳等从算法角度介绍了深度学习及三类可解释性方法的原理,综述了深度学习及可解释性方法在光谱及医学影像分析,提出基于小规模数据的训练策略、增强模型可解释性的方法及可解释模型的构建仍是未来的发展趋势[71]。光谱数据的深度学习建模中的一个主要主题是选择和优化适用于光谱建模特定任务的深度神经网络架构。Passos等基于实现和优化光谱回归和分类两个实例,介绍了一套旨在优化深度学习模型超参数的方法[72]。图13 传统人工神经网络与深度神经网络的区别Mishra等就深度学习在近红外光谱数据建模中的主要优点和潜在缺陷进行了批判性和全面的论述(图13),介绍了深度学习在回归、分类、模型更新、模型转移和光谱图像处理等方面的应用,作者认为具有广泛变异性的大光谱数据集是训练更复杂、准确和稳健模型的关键。尽管该文是针对近红外光谱评述的,但许多观点也可扩展适用于其他光谱技术[73]。Nikzad-Langerodi等从化学计量学和分析化学角度概述了迁移学习的理论、概念和应用,并将其与校正模型更新/适应和模型转移向联系,提出了未来的应用前景[74]。Luo等在综述中讨论了深度学习算法在拉曼光谱分析中的最新发展以及这些算法存在的挑战[75]。Mozaffari等综述了一维卷积神经网络在便携式拉曼光谱仪中识别未知物质的研究进展,指出缺乏可用于深度学习的大型拉曼光谱数据库是当前面临的最大挑战[76]。Lussier等论述了应用于拉曼和SERS的深度学习和人工智能方法,涉及食品和饮料,病毒和细菌,刑侦、医疗等领域的定性和定量分析[77]。Cobas等论述了机器学习(ML)和深度学习(DL)方法在核磁共振信号处理和小分子分析领域的各种应用,包括结构自动验证和溶液中NMR观测值的预测等[78]。Chen等总结了深度学习方法在核磁共振(NMR)光谱学中的应用,认为深度学习方法有可能将NMR光谱学转化为化学和生命科学中更高效和强大的技术[79]。图14 用于LIBS的ANN方法Li等综述了用于激光诱导击穿光谱(LIBS)分析的人工神经网络(ANN)方法(图14),包括反向传播神经网络(BPNN)、径向基函数神经网络(RBFNN)、自组织映射(SOM)和卷积神经网络(CNN)等,比较了这些有代表性人工神经网络方法的网络结构原理及其特点,以及它们在LIBS分析中的应用,深入讨论了变量选择、网络构建、数据集利用、网络训练、模型评估等具体实施时的策略性问题,指出了ANN方法在过拟合和可解释性等方面的局限性,展望了多光谱融合、全谱建模、广义谱、多算法组合等方面的发展[80]。赵文雅等总结了LIBS结合ANN模型在地质、合金、有机聚合物、煤炭、土壤及生物等领域的具体应用,展望了ANN在LIBS光谱深度信息挖掘、便携式专用型设备开发、技术联用等方面的发展前景[81]。Cui等讨论了卷积神经网络(CNN)和递归神经网络(RNN)等深度学习方法在电化学生物传感器、可穿戴电子器件、SERS和基于其他光谱的生物传感器、荧光生物传感器和比色生物传感器中的应用,提出在这些应用程序中,所建模型必须是可解释的(而不是黑匣子)。医疗专业人员和决策者必须能够理解机器决策。同时,人类的知识和推理规则需要以透明的方式纳入深度学习系统,以强制和规范其学习和决策过程。此外,将人类知识和推理规则纳入机器学习过程可以显著减少训练模型所需的样本量[82]。Pradhan等讨论了深度学习在生物光子领域的可能性,包括图像分类、分割、配准、伪染色和分辨率增强,以及深度学习在光谱数据中的潜在用途,如光谱数据预处理和光谱分类,并对深度学习在振动光谱应用面临一些挑战进行了讨论,例如数据的缺乏、光谱的复杂性、光谱内的类间和类内差异以及深度学习模型的可解释性[83]。Nayak等论述了从人工神经网络到深度学习在智能食品加工中的应用进展,包括了该领域从浅层学习到深度学习的详细过程[84]。Liang等论述了近红外光谱和红外光谱与人工神经网络(浅层神经网络和深层神经网络)相结合用于食品质量和安全认证以及品种和产地的可追溯性的研究进展,指出不应盲目追求复杂的神经网络结构,应根据测量数据集的复杂性设计网络,并应专注于研究神经网络轻量级结构和算法[85]。Zhang等的综述侧重于深入学习算法在食品和农产品质量评估中的应用、当前研究的经验教训和未来展望,深度学习方法能够平滑光谱数据并提取信息特征,所以其主要优点之一是通过端到端分析可在很大程度上减少对领域知识的依赖[86]。Mishra等综述了用于高光谱图像特征提取和分类的4种深度学习方法,并归纳了它们在常用数据集中获得的对比结果[87]。Ozdemir等综述了用于高光谱图像特征提取和分类的深度学习算法[88]。Kassem等系统综述了用于图像视觉诊断皮肤病变的机器学习和深度学习方法,认为小数据集、特殊图像选择和种族偏见是当前面临的主要挑战[89]。Zhu等则综述了应用于食品加工领域机器视觉技术的传统机器学习和深度学习方法,应用领域包括食品安全检测、食品加工监控和异物检测等[90]。Jaiswal等综述了高光谱成像结合深度学习在多领域的应用进展,包括生物医学、食品质量、农业、生态、采矿、林业和国防等领域,提出应在高光谱解混合、异常检测、模式识别和数据融合等方面进行深入研究,以有效利用高光谱数据立方体[91]。Wang等从深度学习模型和特征网络两个方面综述了高光谱图像分析在农业中的应用,包括品种分类、成熟度和成分预测、遥感图像分类和植物病害检测,提出了迁移学习、生成对抗网络、半监督学习和主动学习是应对有限标记训练样本挑战的有前景的技术[92]。Odebiri等论述了从传统神经网络向深度学习的过渡,并讨论了遥感数据预测土壤有机碳(SOC)带来的应用潜力和主要挑战[93]。Yang等概述了深度学习技术在园艺领域中的应用场景,以及应用的模型和框架、使用的数据和总体性能结果,包括品种识别、产量估计、质量检测、病虫害管理、生长监测等[94]。3.5标准与规范拉曼光谱越来越多地应用于生物学、法医学、诊断学、药剂学和食品科学。这种增长不仅是由仪器设备和实验方法的改进引起的,也是由化学计量学技术的发展引起的。Guo等概述了拉曼光谱分析中的化学计量学过程,包括实验设计、数据预处理、数据学习和模型传递,讨论了可能遇到的方法陷阱问题及解决办法,在此基础上提出了化学计量学方法用于拉曼光谱分析的标准化流程,其目的是将基于化学计量学方法的拉曼分析技术从概念验证研究进一步推向实际应用[95]。Barton等论述了用于拉曼光谱分析的化学计量学方法进展,尤其是与仪器和数据校准相关的方法,概述了使用拉曼光谱创建、验证和传递化学计量学模型所需的步骤和应注意的问题[96]。Ntziouni等全面分析了与拉曼光谱相关的标准方法、指南和规范,指出制定通用标准方法对进一步促进拉曼光谱技术的发展和应用至关重要,尤其是对于表面增强拉曼光谱和低分辨率便携式分析仪来说[97]。结合化学计量学的光谱分析方法在疾病筛查和诊断、微生物学研究、法医学和环境调查中非常有吸引力,其中快速、准确和可靠的分类模型是基础。Morais等编写了用于振动光谱数据(FTIR、Raman和近红外)的多元分类分析规程,重点介绍了一系列关键步骤,如预处理、数据选择、特征提取、分类和模型验证[98]。Afara等提出了近红外光谱和成像表征生物组织的工作流程规范,并展示了近红外光谱和成像在探索和诊断生物组织应用中的分析能力[99]。Yang等系统总结了世界范围内的近红外光谱相关的标准,涉及仪器、建模通则和应用方法等[100]。3.6其他随着校正样本数据集的日益增大、样本来源日益广泛及光谱采集条件日益复杂,非线性方法的使用越来越普遍。Zareef等概述了近红外光谱应用于食品分析的非线性定量和定性校正算法,包括ANN、AdaBoost、SVM、ELM和局部校正方法(LA),讨论了各种方法的优缺点[101]。李明等针对近红外光谱通用模型在农产品和食品检测中的研究进行综述,通过比较传统模型建模方法与通用模型建模方法,分别就建立通用模型过程中样品信息的获取、模型的建立以及样品信息的预测三大建模步骤中使用的方法进行总结,并归纳了近红外光谱通用模型在建模步骤中的要点[102]。Dorantes等针对土壤的光谱分析,综述了校正集大小的选择、通过子集构建目标校正模型,以及通过加标方法实现库转移等建模优化方法和策略[103]。模型转移是用于在光谱仪之间转移光谱校正模型的一类化学计量学方法。传统模型转移方法对标准样品的要求一直是一个挑战,因为此类测量在现实应用中存在困难。Mishra等论述了近年来在模型转移领域取得的研究进展,提出随着人工智能、深度学习和计算能力的不断进步,无标样算法将会得到越来越多的应用[104]。在模式识别中,单类分类方法(one-class classification)是一种只针对一类实例建模分析,以特定的置信水平固定目标样本类的边界,对新样本的类别进行判定的方法,利用这一特点能有效区分不同于真实样本的数据,大大减少了检测的工作量,在食品掺假检测应用领域有一定的发展潜力。唐逸芸等对单类分类方法进行了综述,重点介绍了几种常见的单类分类方法如数据驱动的簇类独立软模式(DD-SIMCA)、单类偏最小二乘(OCPLS)、单类支持向量机(OCSVM)以及单类随机森林(OCRF),论述了该方法在食品真实性鉴别中的应用,包括食用油、乳制品、饮料、保健品、香辛料及谷物等[105]。Lavine等论述了红外光谱两种相似性比对方式(库搜索算法和模式识别方法)的优劣,强调了在使用统计方法比较光谱时,光谱专家参与认证以及光谱高质量的重要性[106]。Ferguson等综述了傅里叶变换红外光谱(FTIR)和量子级联激光红外光谱(QCL)结合机器学习方法在检测和分类不同癌症组织的进展,论文强调了F1得分可作为直接比较模型性能的定量指标,并指出基于集成策略的识别方法往往能得到较好的结果,而且识别技术正在朝着可以捕捉组织复杂性的分层建模方向发展[107]。独立分量分析(ICA)是一种概率方法,其目标是从混合观测信号中提取最大独立和非高斯的基本分量信号。由于分析化学中许多应用获取的数据是成分信号的混合物,因此这种方法非常有用。Monakhova等综述了近年来ICA在荧光、UV-VIS、NMR、振动光谱以及色谱中定量和定性分析的应用,提出了进一步的研究方向[108]。图15 光谱解混技术的研究现状Research status of spectral unmixing technology光谱成像中,低空间分辨率和物质异质性等因素造成的图像混合像元问题,使像元级的数据处理和应用难以满足实际需求。光谱解混提取亚像元尺度上的端元和丰度信息,为现实应用的数据精细化定量分析提供技术支撑。杨斌等介绍了近些年光谱解混理论方法和应用的相关研究进展(图15),总结了光谱解混技术与应用研究中的不足和构建二者协同发展的必要性[109]。本文为评述第一部分,第二部分查看请点击此处
  • 智能碳硫分析仪
    智能碳硫分析仪 什么是智能碳硫分析仪? 智能碳硫分析仪采用中国国标测定(碳采用气体容量法、硫采用碘量法)原理设置而成,配备了电子天平实现了不定量称样测定,触摸式薄膜按键全中文菜单式操作,并可贮存四条工作曲线,检测结果大屏幕液晶显示并直接打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标。 智能碳硫分析仪能快速、准确地检测钢铁、其它金属以及非金属材料中碳硫两元素的质量分数。适用于钢铁、冶金、机械制造加工、铸造有色金属等行业化验室进行碳、硫质量分数检测的主要手段。是分析工作者检测碳硫的理想设备。智能碳硫分析仪广泛应用于冶金铸造、采矿、建筑、机械、电子、环保、卫生、化工、电力、技术监督等部门、可检测钢、铁、及铁合金、铝合金、铜合金、锌合金、钢铁氧化液及磷化液等材料中各种化学成份的含量。 智能碳硫分析仪主要技术参数: 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒(包含称样时间) 测量精度:符合GB223.69-2008,GB223.68-1997标准 智能碳硫分析仪主要特点: 采用单片机控制,全自动操作,零点自动调整彻底消除人为误差,性能可靠,抗干扰强; 配备电子天平实现不定量称样,提高了检测速度和精度; 采用国际先进的传感技术,使用进口传感器,测量结果可数字显示并自动打印测试结果; 高碳、低碳均可直接显示,不需换算; 采用气体容量法定碳、碘量法定硫。
  • 人工智能将融合、推动甚至颠覆科学仪器和分析测试技术是大势所趋
    p  strong撰稿:中国农业科学院 蒋士强研究员/strong/pp  strong(一)、怀念与启示。/strong每当议及科学仪器与测试分析时,总使我想起strong王大珩院士/strong生前对科学仪器精辟的定义:“strong科学仪器是认识世界和改造世界的工具/strong”。同时也使我想起strong邹承鲁院士/strong生前一直坚持的立论:“strong科学是认识自然,大至宇宙,小到基本粒子。而技术是在认识自然的基础上改造自然,为人类服务/strong”。科学仪器和测试分析(以下简称为科仪与测试)在学科分类上是二级乃至是分支学料,但又是跨多学科,而且是科学发展的工具和产物,大家分析一下,众多与科学仪器和分析测试有关的诺贝尔奖得主就一目了然了。在行业地位上处于第二产业的分支中的分支。但是在当今全世界都在谋求科学和技术全方位的、不断的、甚至颠覆性的创新,以造就各领域、各学科、各产业、各行业的腾飞,使社会财富和政经不断增值和振兴,以满足strong人民日益增长的美好生活需求/strong。无论是探索科学发明和技术的创新,乃至具体到确保和提髙质量,直至更新、换代,都需要科仪和测试,即在学科和产业体量不大,并不显眼的领域,将越来越彰显出“庙小显神通”的作用。当今人工智能新浪涛己经来到之时,如何应对,急待探索和实践。/pp  (二)、strong要充分认知人工智能大幕己开启、新浪涛己经来到,科仪和分析测试领域的学界和业界都不能固守原有思维模式、思路和策略。/strong我国传统思维比较保守,惯于从四书五经等典籍中,寻找治国安天下的方略,我国古代有四大发明,但我国自然科学的发展史是英国人写的,科学救国是近代一时思潮,后来受到批判,将社会发展、变革的推动力被阶级斗争等取代了,直到现代光辉的近30年、40年、70年才有所突破。就以机器和仪器而言,一字之差,前者是解放人的体力,后者是扩展、延伸人的感官,两者不断地融合、昇华… 直到如今将脑科学、人的智慧,渗透、移植、乃至深化、超越地赋于各领域、产业、行业、事物的戴体(客体) 。寻求我国的轨迹,可说也是世界潮流的涌动波及和启迪的结果,恕我直言,我国有优良的文化、传统,但学界、业界乃至大众也有历史造成的不良习俗,多喜于学之外表,不求真谛,不仅缺乏异想天开的创造性,而乐于找捷径、跟风、蹭边、冒名… … 。如早先,把仅能测电阻、电流、电压的三用表叫成“万用表” 把清涼油加点药料就叫“万金油”,… … 。“人工智能”、“智能”、“智慧”等响亮而谜人的冠词,在各行业、各种产品上已有泛用之势,国内是乎更盛。但在国际上的仪器仪表、科学仪器、测试分析的领域,国外产品命名和广告宣传,还是比较谨慎的,strong很少冠用人工智能/strong,即使其功能上具有某些初级人工智能的部分要素,如各种图谱的识别、解释、训练、自校正、自检等,这是值得学习的。/pp  (三)、strong人工智能逐步渗透、融合于科学仪器和分析测试技术的历史回顾/strong/pp  在科学仪器、实验室设备和分析测试技术中,经历了自动化、数字化、信息化、网络化之后,逐步渗透、融合了部分“人工智能元素”、“专家的部分智能”,如:可编程,进而可自检、自校正的自动进样器和样品前处理工作站 实验室管理系统LIMS系统(Laboratory Information Management System 英文缩写LIMS)是将以数据库为核心的信息化技术与实验室管理需求相结合的信息化管理工具,结合网络化技术,将实验室的业务流程和一切资源以及行政管理等以合理方式进行管理,通过LIMS系统,配合分析数据的自动采集和分析,大大提高了实验室的检测效率,降低了实验室运行成本并且体现了快速溯源和痕迹,使传统实验室手工作业中存在的各种弊端得以顺利解决 又如各种谱仪和联用仪中,应用了各种控制和分析的专家系统(有时称工作站、软件包等),先是出现在进口仪器的操作系统中,接着国产仪器设备也逐步跟进,而且学者们发表了不少论文和专著,例如:strong卢佩章院士于1992年12月就出版了《高效液相色谱法及专家系统》,2012年3月的版本是,由卢佩章院士、张玉奎院士和梁鑫淼增订的,是一本经典性的著作。在回味人工智能在分析测试技术中的应用时,非常贴近的实例,是早在上世纪末的近红外分析测试技术的突破,国外以Karl Norris博士、国内以陆婉珍院士、严衍禄教授等为代表的学者们,就建立了近红外光谱模型分析、人工神经网络模型算法等技术、以及用标样校正(训练)图谱模型的技术。/strong1998年湖南大学许亚兰发表论文,提出了模糊智能仪器这一新构想,针对这一构想,论文从其原理入手介绍了模糊智能仪器的相关基础理论--模糊数学与人工智能,其次在传统微机化仪器的基础上设计了模糊智能仪器。2004年由南开大学出版了裴雷著的《科学仪器软件平台研发——人工智能软件包开发》,提出:以软件为关键技术的通用平台上,可以很方便地改变软件配置来适应不同的需要,功能更加灵活、强大,更适合科学研究和创新的需要,建立中国自己的科学仪器通用软件平台,可带动我国分析仪器水平的提高,是我国分析仪器产业实现跳跃式发展的一次难得的机遇。中科院化工冶金所、中国科技大学、湖南大学的石乐明、张懋森、李志良的论文中指出:专家系统在分析化学中的一些应用,例如谱图解析,分析方法与分离路线的设计与优化,分析仪器工作参数的优化以及故障的诊断等。2010年11月1日,在化学_自然科学_专业资料中,发布了“分析化学中的应用”一文提出: 知识系统、知识工程已成为人工智能应用最显著新技术。2015年9月12日,在能源_工程科技_专业资料中,发布了“人工智能技术在分析化学中的应用技术”一文。2016年12月31日中国科学院化工冶金研究所李晓霞等发表论文,报导建立了HIN(chemicalinformationnetwork)。其实国内外生产的大型、专用型的光谱仪、色谱仪、质谱仪、波谱仪、基因导入仪、基因测序仪、蛋白质纯化系统、细胞融合仪、电泳仪、病毒免疫荧光分析仪、层析仪、生化分析仪和各种联用仪以及大型样品自动处理设备等,都渗入部分初级人工智能,strong确切地说都有一定基础和苗头,只是有待于逐步完善。/strong/pp  (四)、strong从以上(三)所述的案例中,近乎可得出一个规律,即:有强力的应用人工智能科技的需求,而且开发应用者、实施者对人工智能有足够的认知,二者碰撞即能产岀鲜艳的火花。/strong为此我建议在科学仪器与分析测试的学界与业界,宜先行有关人工智能的科普(在我国规划中就列有strong人工智能的全民科普的布署/strong)。对学界、业界领军机构、人士、决策者,都有良好的科技学术基础,对类似以上列举的二本著作,肯定能熟读而有启迪的。新的科学技术的创新和应用不是炒岀来的,也不是抄岀来,更不是吹岀来的,是学者和业界同心合用探索、啃岀来的。/pp  (五)、strong依据众多人工智能的著名院士、学者论述,我感悟人工智能与科学仪器和分析测试有着一些相似性,但因学科和产业的层次、目标、定位、历经和发展速度的不同,又有巨大差异。科仪和测试技术应该充分借助于人工智能的巨大驱动力和利用以下相似性:人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学 目前用的办法就是我们现在说的神经网络或者准符号模型等 目的是研制出具有类人智能的智能机器,表现形式是会图像识别… … ,会人机对话… … ,会自动运行… … ,会思考、证明、诊断… … ,会学习… … ,会表示认知结果… … 。鉴于人工智能总体发展水平当前仍处于起步阶段,专用人工智能取得突破性进展,由于应用背景需求明确、领域知识积累深厚、建模计算简单可行,(任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单)因此形成了人工智能领域的单点突破,如图像检测分析… … ,都建立在数据的基础上/strong(最初级的数据大多来自传感器和己有文献),strong都涉及众多学科,是多学科交叉、实践性很强的综合性学科。差异是人工智能更深,涉及到当今和未来的科技、产业乃至于社会变革。更新、是近60年来兴起的。更大、是新一轮科技革命和产业变革的重要驱动力量。更神、是引领这一轮科技革命和产业变革的战略性技术,具有溢出带动性很强的“头雁”效应。/strong而仪器与测试是原系古老庙小、时显神灵 更通俗的比喻是:后者古老的小庙、小神,既需依靠大神、大庙,也宜发挥庙小有神灵的特点,strong我很赞赏将人工智能科技,逐步渗透、融合于科仪和测试的机理、构思、设计、研发之中,并在实施中与精细工匠精神相结合,推动科仪和测试技术发展,甚至颠覆其面貌。/strong/pp  (六)、strong科仪和测试技术也应走人工智能应用上的细分工与专用化之路/strong,下棋人工智能机器人,决不能用于自动驾驶车辆… … ,当今高档的科仪和测试技术系统,越做越大、越复杂,有利于生产厂家赚钱,而买家只用其中部分功能,科仪和测试技术设备中逐步引入人工智能机器人技术,必能使科仪和测试技术设备走向细分工和专用化,硬件可能更简化,研发出各种新型传感器,当今庞大的科学仪器可能变成各种专用的传感部件,科仪将更灵敏、更小巧,测试分析将更具智能化,其实,万能的仪器设备都是假的。例如就食品安全检测而言,就应开发出检测某类、某种,甚至特定有害组份的人工智能机器人,其硬件将更精而少,而更神通,轻便和价廉。/pp  (七)、strong学科和产业发展上应注重社会需求驱动,中医学的人工智能化将是我国的瑰宝。/strong/pp  科学仪器和测试分析技术在医疗保健和生命科学中的应用,可说一支独秀,这原系这两界本身就是大学科、大产业,有巨大社会需求,也正因此,不论在仪器设备或测试技术方面都很快地融人工智能技术,已有不少案例(请参阅上述三、),编撰者一直关注中医学中人工智能技术的运用,在去年4月份发表的《人工智能化将猛力推动甚至颠覆现有科学仪器与测试分析技术的面貌》一文中用strong“中医学的人工智能化将是我国的瑰宝” 表述/strong ,引用了2017年以前较详细媒体报导的资料,但近二年未见更多的报导,但愿是疏漏,strong我仍坚信中医学领域,人工智能将大有作为。一方面应尽快抢救极其丰富的著名中医学大师积累的中医诊断中病人型像学和病案、宝方的经验,并转化为图像和数据,同时在中医院校引进人工智能专才,推进人工智能在中医学中的应用。/strong/pp  (八)、将传统的科学仪器与分析测试的机理,变为模块、模型、模式,strong将感知数据转变为图像,也许是得以融入以深度神经网络模型算法和图像分析等为代表的人工智能技术的捷径/strong,即大幅跨越了科学与应用之间的“技术鸿沟”,这也许是近年来,国外把许多传统的谱仪分析,转为图像分析的原因。/pp  (九)、strong人才的培养、吸纳和借助。/strong科仪和测试界本身就需多学科人才,而要将人工智能技术引入,人才是关键,据媒体报导,华为拥有700多位数学家、300位物理学家、200位化学家,而且我国人工智能领域高级人材奇缺,科仪和测试业还属小庙,养不起“大和尚”即人工智能专才,那只能从原来从事计算机软件、自动化专业的人才中培养人工智能中级人才吧!当然也宜与从事人工智能的机构合作,吸纳和借助人才资源了。另外、今后开源的模型、算法等会越来越多,据报导,西方有不少中小型企业、机构,就是针对自已应用目的,利用开源的资料,修改、嫁接、而用之。/pp  (十)、strong共建大数据共享联盟。/strong大数据分析是人工智能神力之一,也是科学仪器和测试分析技术跃进的梯子,而测试分析领域的数据也非常可观,以庞国芳院士的团队为例,就己公开岀版了色谱、质谱、核磁共振图谱集三大本,五亿多个数据吧!大数据在大数据分析,乃至于人工智能中的地位业内人士比我更清楚,我只是呼吁通过已有联盟机构,协同共建更大的分析测试大数据共享联盟,strong是时候了!/strong/p
  • 115万!泉州师范学院资环学院环境检测仪及综合分析仪器采购项目
    项目编号:[350500]YXHC[TP]2022002项目名称:泉州师范学院资环学院环境检测仪及综合分析仪器采购项目采购方式:竞争性谈判预算金额:115.6000000 万元(人民币)最高限价(如有):115.6000000 万元(人民币)采购需求:品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100415-环境监测仪器及综合分析装置智能COD/氨氮/总磷/总氮多参数测定仪套件5(套)否详见谈判文件要求85000工业1-2A02100415-环境监测仪器及综合分析装置紫外可见分光光度计5(套)否详见谈判文件要求142500工业1-3A02100415-环境监测仪器及综合分析装置pH计10(套)否详见谈判文件要求135000工业1-4A02100415-环境监测仪器及综合分析装置BOD测定仪10(套)否详见谈判文件要求105000工业1-5A02100415-环境监测仪器及综合分析装置浊度计10(套)否详见谈判文件要求33000工业1-6A02100415-环境监测仪器及综合分析装置空气综合采样器10(套)否详见谈判文件要求158000工业1-7A02100415-环境监测仪器及综合分析装置智能四路空气采样器 (电子流量计)10(套)否详见谈判文件要求198000工业1-8A02100415-环境监测仪器及综合分析装置声级计10(套)否详见谈判文件要求18000工业1-9A02100415-环境监测仪器及综合分析装置色度仪10(套)否详见谈判文件要求28500工业1-10A02100415-环境监测仪器及综合分析装置便携式溶解氧测定仪10(套)否详见谈判文件要求175000工业1-11A02100415-环境监测仪器及综合分析装置电子分析天平1(台)否详见谈判文件要求18000工业1-12A02100415-环境监测仪器及综合分析装置便携式水质多参数分析仪1(套)否详见谈判文件要求60000工业合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕。本项目( 不接受 )联合体投标。
  • 仪乐智能发布上海仪乐智能滴定分析机器人TS8600新品
    上海仪乐智能仪器有限公司成立于 2014 年 2 月,总部位于上海漕河泾开发区浦江高科技园区是—家集科研、 开发、 生产和销售为—体的提供实验室智能检测机器人的高新技术企业。 2014 年公司自主研发推出了市场上第 1 台全自动电化学分析机器人, 2015 年推出了市场上第1 台全自动高猛酸盐指数分析机器人, 2017 年推出了市场上第 1 台全自动CODCr分析机器人,用户遍布全国各环境监测实验室和水质监测实验室 2018 年推出了市场上第 1 台土壤有机质检测分析机器人和智能滴定分析机器人,公司将继续专注于实验室领域智能检测机器人的研发和生产,为客户提供无人值守实验室的解决方案。创新点:1.批量化的颜色滴定仪。2.用颜色变化来判定分析终点。3.适用于各种颜色滴定实验。上海仪乐智能滴定分析机器人TS8600
  • TOC总有机碳分析仪选型方案 | 德国元素
    近日,国家出台对高校科学研究所需重大仪器设备购置与更新、配套设施建设的鼓励政策,旨在进一步加快高校科技创新体系建设,大力提升创新能力。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。作为世界上第一批将高温燃烧法引入TOC分析仪的厂家,德国元素Elementar在TOC分析仪方面已经有五十多年的经验积累。以下是关于TOC总有机碳分析仪的选型方案,针对客户的不同应用,提供定制化的精准解决方案,为科研工作提供强有力的支持。应用领域:环境水样、废污水、浸提液、饮用水、土壤、沉积物、固废、制药用水、工艺用水、超纯水等测试项目:TOC、TIC、TC、NPOC、POC、TNb德国元素ElementarTOC总有机碳分析仪enviro TOC 总有机碳分析仪enviro TOC总有机碳分析仪采用德国元素经典的高温燃烧法,可轻松应对难氧化的所有有机物,获得良好的准确度与精确度。集液体与固体模式为一体,轻松应对水样、固体样测试困扰60位大通量自动进样器,且集成自动清洗平台,避免交叉污染SALTTRAP基体分离技术,解决高盐负荷影响燃烧炉最高温度可达1200℃,10年质保多通道宽范围红外检测器,10年质保配置智能化软件,高效、便捷典型应用:环境水样、废污水、浸提液、土壤、沉积物等Acquray TOC 总有机碳分析仪Acquray TOC总有机碳分析仪是一款采用模块化概念的总有机碳分析仪,且可配置总磷、总氮及固体测试模块。采用经典的湿化学法,检出限低至2ppb配置双波长紫外灯,超强氧化性,且质保三年可配置总磷、总氮、固体测试模块,实现多应用扩展高灵敏度、宽范围红外检测器,10年质保典型应用:超纯水、制药用水、清洁验证、工艺用水、锅炉用水、冷凝水等Soli TOC cube 碳组分分析仪Soli TOC cube是一款专业的碳组分分析仪,通过动态程序升温法,实现TOC(有机碳)、TIC(无机碳)、ROC(元素碳)、TN(总氮)的测定。程序升温,可自定义升温步骤及加热速率,实现无需酸化测定TOC89位自动进样器,实现大通量、无人值守操作先进的坩埚进样技术,无需手动,实现自动除灰专有宽范围红外检测器,10年质保典型应用:土壤、固体废弃物、沉积物等以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 云唐高智能食品安全检测仪对食品样品进行全面分析
    云唐高智能食品安全检测仪对食品样品进行全面分析  山东云唐智能科技有限公司生产的食品安全综合分析仪,采用多功能集成、箱仪一体化设计,以高强度安全防护箱为载体,内部集成多个检测功能,适用于食药监局、卫生部门、高教院校、科研院所、农业农村局、食品深加工企业及检验检疫部门等单位。 高智能食品安全检测仪产品链接https://www.instrument.com.cn/netshow/SH104655/C467598.htm 高精度食品安全检测仪创新点和产品特性:  1. 功能构成:主要包括分光光度模块、新型农残检测模块、胶体金检测模块、荧光检测模块、数字化管理模块等,所有模块集成一体,可快速检测200多种食品安全项目,如兽药残留、农药残留、非法添加剂、细菌数值等指标。  2. 检测样品种类:餐具及厨房用品、瓜果蔬菜及其制品、水产品及其制品、畜禽产品及其制品、婴幼儿乳品及奶粉制品、蜂蜜、粮油及其制品、调味品(食醋、酱油、味精、盐等)、酒类茶叶及其制品、食用菌、饮料、蛋类药物残留(鸡蛋,鸭蛋等)、米豆面制品、糖果糕点类(小食品)、薯类及膨化食品、瓶(桶)装饮用水、添加食用色素的食品、使用添加剂的食品、含有有毒有害物质的相关食品。  3、显示屏幕:仪器采用15.6英寸液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,操作方便,性能更强。  4、供电模式:仪器交直流两用,直流12V供电,可连接车载电源,配18ah大容量充电锂电池,电量可实时显示,无外部电源条件下可持续工作至少 4 小时。  5、检测通道:≥24通道 采用精密旋转比色池设计,使用同芯片同光源校准精度,解决不同光源之间的误差值,更加准确高效,采用高精度进口四波长冷光源,每个通道均配置 410、520、590、630nm 波长光源,标配先进的光路切换装置,专利光路切换功能可实现64波长,并且所有检测项目可实现所有通道同时检测.  6、通讯接口:配备无线通信模块、4G(APN)通讯模块、蓝牙传输,同时具有双USB接口以及RJ45网线接口,可以多方式实现数据保存及数据传输。  7、存储方式:支持U盘存储,两个标准USB接口,免驱动安装。检测结果存储容量20万条以上,可生成Excel表格进行拷贝,并具有登录保护功能。  8、操作系统:仪器可在同一检测界面自动对应相关检测通道,一次性选择不少于11个样品名称,无需退出界面,节省操作时间。并可以对每个通道属性和样品信息单独进行编辑,例如送检单位、人员,检测人员等,打印时勾选打印显示。  9、数据集成系统:设备首页自动汇总分析检测数据,包含:周检测数据、月检测数据,全部检测总数量,包含检测总数,合格数,不合格数,以及相关柱形分析图,各项检测数据一目了然,无需电脑查询,更加快捷直观。  10、数据库系统:十几项数据库分类管理仪器:包含项目类型、项目数据、检测数据、历史记录、国标信息、曲线信息、采样信息、检测信息、受检信息、复核信息、图表信息、光源校准信息、打印样式信息、样品库信息等等,数据库之间互相协调联动保证数据的真实完整性。同时产品数据库以及历史检测记录支持一键检索功能。  11、限量规判系统:具有限量查询、添加物质合规判定系统。检测出结果后,系统自动调用系统数据库中相关国标进行比对判定,客观显示判定结果是否合格。  12、项目预设系统:仪器具有任务预设模块,一键提前预设,给出方便快捷的新检测方案,每一个任务分别可以设置不同的样品、批次、编号、来源、备注、抽样信息、检测信息、受检信息、复核信息等更多信息。样品送检时一键调取保存信息,并可多次调取,适用于大批量检测业务,可以大大提高检测效率。  13、数据监管系统:同步对接监管平台,数据可局域网和互联网数据上传,检测结果可直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,监测区域食品安全长短期动态及问题预估、预警。  14.1、全新打印系统:内置全新打印机,新创自定义打印方式,可按需灵活勾选控制:产品合格证(国家农业部标准要求),二维码,抽样信息、检测信息,受检信息、复核信息、抽样日期、检测日期等信息的打印。  14.2、A4纸版本报告打印功能:设备拥有两种结果展示方式,可以自动生成A4打印模板和小票打印模板两种样式,可通过WiFi及网线等方式连接外置打印机可进行打印。  15、胶体金检测模块:采用单通道CMOS成像处理技术及胶体金免疫层析技术,可读取胶体金卡数据,自动采集、处理分析,将检测结果显示,并可根据参考限值自动判断检测结果,可检测常见的兽药残留、生物毒素、抗生素、违禁添加物等。  15.1、可即时检测单联卡及三联卡   15.2、检测通道:2个通道   15.3、检测方式:消线法和比色法   15.4、显示模式:阴性或阳性   15.5、曲线形式:插入式扫描方式,显示金标卡图像,实时生成、识别CT曲线图,无需手动调整。兼容市场上其他金标卡,使用耗材不受限制。  16、荧光检测模块:快速检测水质中微生物、固体物细菌含量。利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。以ATP含量表明样品中微生物与其他生物残余得多少,用于判断卫生状况。 适用于食品、餐具、手、液体等表面及水质洁净度的检测。  16.1、检测通道:双通道  检测精度:1×10-18mol  16.2、检测范围:0 to 99999 RLU  16.3、检测时间:15 秒  16.4、检测干扰:±5﹪或±5 RLU  16.5、操作温度范围:5℃到 40℃  16.6、操作湿度范围:20—85﹪  16.7、开机 30 秒自检、内置自校光源、自动判断合格与不合格、自动统计合格率 。  17、仪器具备远程升级功能,可定向分客户分仪器更新,开机后自动更新,并可持续性免费更新系统版本,无需像传统产品返厂更新,节省时间及人力成本并避免了物流运输返厂升级导致设备损坏的潜在风险。
  • 国家智能制造标准体系建设指南(2018年版)印发 提及仪器仪表
    p  近日,工信部、国家标准委共同组织制定并印发《国家智能制造标准体系建设指南(2018年版)》,以加快推进智能制造发展,指导智能制造标准化工作的开展。以下为指南全文。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/28470e18-f993-4f54-a1ef-41d090899ded.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "span style="color: rgb(0, 0, 0) "工业和信息化部/span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "国家标准化管理委员会/span/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong关于印发国家智能制造标准体系建设指南(2018年版)的通知/strong/span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "工信部联科〔2018〕154号/span/pp  各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、质量技术监督局(市场监督管理部门),有关标准化技术组织、标准化专业机构,有关中央企业、行业协会,有关单位:/pp  为加快推进智能制造发展,指导智能制造标准化工作的开展,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》,现予印发。/pp style="text-align: right "  工业和信息化部/pp style="text-align: right "  国家标准化管理委员会/pp style="text-align: right "  2018年8月14日/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "国家智能制造标准体系建设指南/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "(2018年版)/span/strong/pp  制造业是国民经济的主体,是立国之本、兴国之器、强国之基。智能制造是落实我国制造强国战略的重要举措,加快推进智能制造,是加速我国工业化和信息化深度融合、推动制造业供给侧结构性改革的重要着力点,对重塑我国制造业竞争新优势具有重要意义,“智能制造、标准先行”,标准化工作是实现智能制造的重要技术基础。/pp  为指导当前和未来一段时间智能制造标准化工作,解决标准缺失、滞后、交叉重复等问题,落实“加快制造强国建设”,工业和信息化部、国家标准化管理委员会在2015年共同组织制定了《国家智能制造标准体系建设指南(2015年版)》并建立动态更新机制。/pp  按照标准体系动态更新机制,扎实构建满足产业发展需求、先进适用的智能制造标准体系,推动装备质量水平的整体提升,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》。/pp span style="background-color: rgb(255, 255, 255) " /spanspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "strong一、总体要求/strong/span/pp  span style="color: rgb(0, 112, 192) "strong(一)指导思想/strong/span/pp  进一步贯彻落实《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)和《装备制造业标准化和质量提升规划》(国质检标联〔2016〕396号)的工作部署,充分发挥标准在推进智能制造产业健康有序发展中的指导、规范、引领和保障作用。针对智能制造标准跨行业、跨领域、跨专业的特点,立足国内需求,兼顾国际体系,建立涵盖基础共性、关键技术和行业应用等三类标准的国家智能制造标准体系。加强标准的统筹规划与宏观指导,加快创新技术成果向标准转化,强化标准的实施与监督,深化智能制造标准国际交流与合作,提升标准对制造业的整体支撑作用,为产业高质量发展保驾护航。/pp span style="color: rgb(0, 112, 192) "strong (二)基本原则/strong/span/pp  按照《国家智能制造标准体系建设指南(2015年版)》中提出的“统筹规划,分类施策,跨界融合,急用先行,立足国情,开放合作”原则,进一步完善智能制造标准体系,全面开展基础共性标准、关键技术标准、行业应用标准研究,加快标准制(修)订,在制造业各个领域全面推广。同时,加强标准的创新发展与国际化,积极参与国际标准化组织活动,加强与相关国家和地区间的技术标准交流与合作,开展标准互认,共同推进国际标准制定。/pp  span style="color: rgb(0, 112, 192) "strong(三)建设目标/strong/span/pp  按照“共性先立、急用先行”的原则,制定安全、可靠性、检测、评价等基础共性标准,识别与传感、控制系统、工业机器人等智能装备标准,智能工厂设计、智能工厂交付、智能生产等智能工厂标准,大规模个性化定制、运维服务、网络协同制造等智能服务标准,人工智能应用、边缘计算等智能赋能技术标准,工业无线通信、工业有线通信等工业网络标准,机床制造、航天复杂装备云端协同制造、大型船舶设计工艺仿真与信息集成、轨道交通网络控制系统、新能源汽车智能工厂运行系统等行业应用标准,带动行业应用标准的研制工作。推动智能制造国家和行业标准上升成为国际标准。/pp  到2018年,累计制修订150项以上智能制造标准,基本覆盖基础共性标准和关键技术标准。/pp  到2019年,累计制修订300项以上智能制造标准,全面覆盖基础共性标准和关键技术标准,逐步建立起较为完善的智能制造标准体系。建设智能制造标准试验验证平台,提升公共服务能力,提高标准应用水平和国际化水平。/pp  span style="color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) "strong二、建设思路/strong/span/pp  国家智能制造标准体系按照“三步法”原则建设完成。第一步,通过研究各类智能制造应用系统,提取其共性抽象特征,构建由生命周期、系统层级和智能特征组成的三维智能制造系统架构,从而明确智能制造对象和边界,识别智能制造现有和缺失的标准,认知现有标准间的交叉重叠关系 第二步,在深入分析标准化需求的基础上,综合智能制造系统架构各维度逻辑关系,将智能制造系统架构的生命周期维度和系统层级维度组成的平面自上而下依次映射到智能特征维度的五个层级,形成智能装备、智能工厂、智能服务、智能赋能技术、工业网络等五类关键技术标准,与基础共性标准和行业应用标准共同构成智能制造标准体系结构 第三步,对智能制造标准体系结构分解细化,进而建立智能制造标准体系框架,指导智能制造标准体系建设及相关标准立项工作。/pp span style="color: rgb(0, 112, 192) "strong (一)智能制造系统架构/strong/span/pp  《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)指出,智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。/pp  智能制造系统架构从生命周期、系统层级和智能特征三个维度对智能制造所涉及的活动、装备、特征等内容进行描述,主要用于明确智能制造的标准化需求、对象和范围,指导国家智能制造标准体系建设。智能制造系统架构如图1所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/69e999c9-14b7-45ea-b883-8b32d12690b4.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "图 1 智能制造系统架构/pp span style="color: rgb(0, 112, 192) "strong 1. 生命周期/strong/span/pp  生命周期是指从产品原型研发开始到产品回收再制造的各个阶段,包括设计、生产、物流、销售、服务等一系列相互联系的价值创造活动。生命周期的各项活动可进行迭代优化,具有可持续性发展等特点,不同行业的生命周期构成不尽相同。/pp  (1)设计是指根据企业的所有约束条件以及所选择的技术来对需求进行构造、仿真、验证、优化等研发活动过程 /pp  (2)生产是指通过劳动创造所需要的物质资料的过程 /pp  (3)物流是指物品从供应地向接收地的实体流动过程 /pp  (4)销售是指产品或商品等从企业转移到客户手中的经营活动 /pp  (5)服务是指提供者与客户接触过程中所产生的一系列活动的过程及其结果,包括回收等。/pp span style="color: rgb(0, 112, 192) "strong 2. 系统层级/strong/span/pp  系统层级是指与企业生产活动相关的组织结构的层级划分,包括设备层、单元层、车间层、企业层和协同层。/pp  strong(1)/strongstrong设备层是指企业利用传感器、仪器仪表、机器、装置等,实现实际物理流程并感知和操控物理流程的层级 /strong/pp  (2)单元层是指用于工厂内处理信息、实现监测和控制物理流程的层级 /pp  (3)车间层是实现面向工厂或车间的生产管理的层级 /pp  (4)企业层是实现面向企业经营管理的层级 /pp  (5)协同层是企业实现其内部和外部信息互联和共享过程的层级。/pp  span style="color: rgb(0, 112, 192) "strong3. 智能特征/strong/span/pp  智能特征是指基于新一代信息通信技术使制造活动具有自感知、自学习、自决策、自执行、自适应等一个或多个功能的层级划分,包括资源要素、互联互通、融合共享、系统集成和新兴业态等五层智能化要求。/pp  (1)资源要素是指企业对生产时所需要使用的资源或工具及其数字化模型所在的层级 /pp  (2)互联互通是指通过有线、无线等通信技术,实现装备之间、装备与控制系统之间,企业之间相互连接及信息交换功能的层级 /pp  (3)融合共享是指在互联互通的基础上,利用云计算、大数据等新一代信息通信技术,在保障信息安全的前提下,实现信息协同共享的层级 /pp  (4)系统集成是指企业实现智能装备到智能生产单元、智能生产线、数字化车间、智能工厂,乃至智能制造系统集成过程的层级 /pp  (5)新兴业态是企业为形成新型产业形态进行企业间价值链整合的层级。/pp  智能制造的关键是实现贯穿企业设备层、单元层、车间层、工厂层、协同层不同层面的纵向集成,跨资源要素、互联互通、融合共享、系统集成和新兴业态不同级别的横向集成,以及覆盖设计、生产、物流、销售、服务的端到端集成。/pp span style="color: rgb(0, 112, 192) "strong (二)智能制造标准体系结构/strong/span/pp  智能制造标准体系结构包括“A基础共性”、“B关键技术”、“C行业应用”等三个部分,主要反映标准体系各部分的组成关系。智能制造标准体系结构图如图2所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/119fcc1f-42e0-461b-92c0-cc146bea2988.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "图2 智能制造标准体系结构图/pp  具体而言,A基础共性标准包括通用、安全、可靠性、检测、评价等五大类,位于智能制造标准体系结构图的最底层,是B关键技术标准和C行业应用标准的支撑。B关键技术标准是智能制造系统架构智能特征维度在生命周期维度和系统层级维度所组成的制造平面的投影,其中BA智能装备对应智能特征维度的资源要素,BB智能工厂对应智能特征维度的资源要素和系统集成,BC智能服务对应智能特征维度的新兴业态,BD智能赋能技术对应智能特征维度的融合共享,BE工业网络对应智能特征维度的互联互通。C行业应用标准位于智能制造标准体系结构图的最顶层,面向行业具体需求,对A基础共性标准和B关键技术标准进行细化和落地,指导各行业推进智能制造。/pp  智能制造标准体系结构中明确了智能制造的标准化需求,与智能制造系统架构具有映射关系。以大规模个性化定制模块化设计规范为例,它属于智能制造标准体系结构中B关键技术-BC智能服务中的大规模个性化定制标准。在智能制造系统架构中,它位于生命周期维度设计环节,系统层级维度的企业层和协同层,以及智能特征维度的新兴业态。其中,智能制造系统架构三个维度与智能制造标准体系的映射关系及示例解析详见附件2。/pp  span style="color: rgb(0, 112, 192) "strong(三)智能制造标准体系框架/strong/span/pp  智能制造标准体系框架由智能制造标准体系结构向下映射而成,是形成智能制造标准体系的基本组成单元。智能制造标准体系框架包括“A基础共性”、“B关键技术”、“C行业应用”三个部分,如图3所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/f73eeadb-c50e-41c5-a66b-b231643b6a2f.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "图3 智能制造标准体系框架/pp  strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "三、建设内容/span/strong/pp  span style="color: rgb(0, 112, 192) "strong(一)基础共性标准/strong/span/pp  基础共性标准用于统一智能制造相关概念,解决智能制造基础共性关键问题,包括通用、安全、可靠性、检测、评价等五个部分,如图4所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/a8dfce4d-fac0-40e0-bedf-99ae0b46c421.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "图4 基础共性标准子体系/pp  span style="color: rgb(0, 112, 192) "strong1. 通用标准/strong/span/pp  主要包括术语定义、参考模型、元数据与数据字典、标识等四个部分。术语定义标准用于统一智能制造相关概念,为其他各部分标准的制定提供支撑。参考模型标准用于帮助各方认识和理解智能制造标准化的对象、边界、各部分的层级关系和内在联系。元数据和数据字典标准用于规定智能制造产品设计、生产、流通等环节涉及的元数据命名规则、数据格式、数据模型、数据元素和注册要求、数据字典建立方法,为智能制造各环节产生的数据集成、交互共享奠定基础。标识标准用于对智能制造中各类对象进行唯一标识与解析,建设既与制造企业已有的标识编码系统兼容,又能满足设备互联网协议(IP)化、智能化等智能制造发展要求的智能制造标识体系。/pp  span style="color: rgb(0, 112, 192) "strong2. 安全标准/strong/span/pp  主要包括功能安全、信息安全和人因安全三个部分。功能安全标准用于保证控制系统在危险发生时正确地执行其安全功能,从而避免因设备故障或系统功能失效而导致生产事故,包括面向智能制造的功能安全要求、功能安全系统设计和实施、功能安全测试和评估、功能安全管理等标准。信息安全标准用于保证智能制造领域相关信息系统及其数据不被破坏、更改、泄露,从而确保系统能连续可靠地运行,包括软件安全、设备信息安全、网络信息安全、数据安全、信息安全防护及评估等标准。人因安全标准用于避免在智能制造各环节中因人的行为造成的隐患或威胁,通过合理分配任务,调节工作环境,提高人员能力,以保证人身安全,预防误操作等,包括工作任务、环境、设备、人员能力、管理支持等标准。/pp  span style="color: rgb(0, 112, 192) "strong3. 可靠性标准/strong/span/pp  主要包括工程管理、技术方法两个部分。工程管理标准主要对智能制造系统的可靠性活动进行规划、组织、协调与监督,包括智能制造系统及其各系统层级对象的可靠性要求、可靠性管理、综合保障管理、寿命周期成本管理等标准。技术方法标准主要用于指导智能制造系统及其各系统层级开展具体的可靠性保证与验证工作,包括可靠性设计、可靠性预计、可靠性试验、可靠性分析、可靠性增长、可靠性评价等标准。/pp  span style="color: rgb(0, 112, 192) "strong4. 检测标准/strong/span/pp  strong主要包括测试项目、测试方法等两个部分。测试项目标准用于指导智能制造装备和系统在测试过程中的科学排序和有效管理,包括不同类型的智能制造装备和系统一致性和互操作、集成和互联互通、系统能效、电磁兼容等测试项目标准。测试方法标准用于不同类型智能制造装备和系统的测试,包括试验内容、方式、步骤、过程、计算分析等内容的标准,以及性能、环境适应性和参数校准等。/strong/pp  span style="color: rgb(0, 112, 192) "strong5. 评价标准/strong/span/pp  主要包括指标体系、能力成熟度、评价方法、实施指南等四个部分。指标体系标准用于智能制造实施的绩效与结果的评估,促进企业不断提升智能制造水平。能力成熟度标准用于企业识别智能制造现状、规划智能制造框架与提升智能制造能力水平提供过程方法论,为企业识别差距、确立目标、实施改进提供参考。评价方法标准用于为相关方提供一致的方法和依据,规范评价过程,指导相关方开展智能制造评价。实施指南标准用于指导企业提升制造能力,为企业开展智能化建设、提高生产力提供参考。/pp span style="color: rgb(0, 112, 192) "strong (二)关键技术标准/strong/span/pp  主要包括智能装备、智能工厂、智能服务、智能赋能技术和工业网络等五个部分。/pp span style="color: rgb(0, 112, 192) "strong 1. 智能装备标准/strong/span/pp  主要包括识别与传感、人机交互系统、控制系统、增材制造、工业机器人、数控机床及设备、智能工艺装备等七个部分,如图5所示,其中重点是识别与传感、控制系统和工业机器人标准。主要规定智能传感器、自动识别系统、工业机器人等智能装备的信息模型、数据字典、通信协议、接口、集成和互联互通、优化等技术要求,解决智能生产过程中智能装备之间,以及智能装备与智能化产品、物流系统、检测系统、工业软件、工业云平台之间数据共享和互联互通的问题。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/7aa8a32a-4026-41f2-bb3f-10cec1a98bf8.jpg" title="6.jpg" alt="6.jpg"//pp style="text-align: center "图5 智能装备标准子体系/pp  span style="color: rgb(0, 112, 192) "strong(1)识别与传感标准/strong/span/pp  主要包括标识及解析、数据编码与交换、系统性能评估等通用技术标准 信息集成、接口规范和互操作等设备集成标准 通信协议、安全通信、协议符合性等通信标准 智能设备管理、产品全生命周期管理等管理标准。主要用于在测量、分析、控制等工业生产过程,以及非接触式感知设备自动识别目标对象、采集并分析相关数据的过程中,解决数据采集与交换过程中数据格式、程序接口不统一的问题,确保编码的一致性。/pp  span style="color: rgb(0, 112, 192) "(2)人机交互系统标准/span/pp  主要包括工控键盘布局等文字标准 智能制造专业图形符号分类和定义等图形标准 语音交互系统、语义库等语音语义标准 单点、多点等触摸体感标准 情感数据等情感交互标准 虚拟显示软件、数据等VR/AR设备标准。主要用于规范人与信息系统多通道、多模式和多维度的交互途径、模式、方法和技术要求,解决包括工控键盘、操作屏等高可靠性和安全性交互模式,语音、手势、体感、虚拟现实/增强现实(VR/AR)设备等多维度交互的融合协调和高效应用的问题。/pp  span style="color: rgb(0, 112, 192) "strong(3)控制系统标准/strong/span/pp  主要包括控制方法、数据采集及存储、人机界面及可视化、通信、柔性化、智能化等通用技术标准 控制设备集成、时钟同步、系统互联等集成标准。主要用于规定生产过程及装置自动化、数字化的信息控制系统,如可编程逻辑控制器(PLC)、可编程自动控制器(PAC)、分布式控制系统(DCS)、现场总线控制系统(FCS)、数据采集与监控系统(SCADA)等相关标准,解决控制系统数据采集、控制方法、通信、集成等问题。/pp  span style="color: rgb(0, 112, 192) "strong(4)增材制造标准/strong/span/pp  主要包括典型增材制造工艺和方法标准 设计规范、文件格式、数据质量保障、文件存储和数据处理等模型设计标准 增材制造设备接口标准 增材制造材料、设备和零部件性能的测试方法标准 增材制造服务架构、服务模式等服务标准。主要用于规范智能制造系统中增材制造相关技术、方法,确保增材制造与智能制造各环节、要素的协调一致及效能最优。/pp span style="color: rgb(0, 112, 192) "strong (5)/strong/spanspan style="color: rgb(0, 112, 192) "strong工业机器人标准/strong/span/pp  主要包括集成安全要求、统一标识及互联互通、信息安全等通用技术标准 数据格式、通信协议、通信接口、通信架构、控制语义、信息模型、对象字典等通信标准 编程和用户接口、编程系统和机器人控制间的接口、机器人云服务平台等接口标准 制造过程机器人与人、机器人与机器人、机器人与生产线、机器人与生产环境间的协同标准。主要用于规定工业机器人的系统集成、人机协同等通用要求,确保工业机器人系统集成的规范性、协同作业的安全性、通信接口的通用性。/pp  span style="color: rgb(0, 112, 192) "strong(6)数控机床及设备标准/strong/span/pp  主要包括智能化要求、语言与格式、故障信息字典等通用技术标准 互联互通及互操作、物理映射模型、远程诊断及维护、优化与状态监控、能效管理、接口、安全通信等集成与协同标准 智能功能部件、分类与特性、智能特征评价、智能控制要求等制造单元标准。主要用于规范数字程序控制进行运动轨迹和逻辑控制的机床及设备,解决其过程、集成与协同以及在智能制造应用中的标准化问题。/pp  span style="color: rgb(0, 112, 192) "strong(7)智能工艺装备标准/strong/span/pp  主要包括成形工艺和方法标准 工艺术语、工艺符号、工艺文件及其格式、存储、传输、数据处理标准 成形工艺装备接口标准 工艺过程信息感知、采集、传输、处理、反馈标准 工艺装备状态监控、运维标准。主要用于规范智能制造系统中铸造、塑性成形、焊接、热处理与表面改性、粉末冶金成形等热加工成形工艺装备相关技术、方法、工艺,确保成形制造与智能制造系统的协调一致。/pp  span style="color: rgb(0, 112, 192) "strong智能装备标准建设重点/strong/span/pp  span style="color: rgb(0, 112, 192) "strong识别与传感标准。/strong/span标识及解析、数据编码与交换、系统性能评估等通用技术标准 信息集成、接口规范和互操作等设备集成标准 通信协议、安全通信、协议符合性等通信标准 智能设备管理、产品全生命周期管理等管理标准。/pp  span style="color: rgb(0, 112, 192) "strong控制系统标准。/strong/span控制方法、数据采集及存储、人机界面及可视化、通信、柔性化、智能化等通用技术标准 控制设备集成、时钟同步、系统互联等集成标准。/pp  span style="color: rgb(0, 112, 192) "strong工业机器人标准/strong/span。集成安全要求、统一标识及互联互通、信息安全等通用技术标准 数据格式、通信协议、通信接口、通信架构、控制语义、信息模型、对象字典等通信标准 编程和用户接口、编程系统和机器人控制间的接口、机器人云服务平台等接口标准 制造过程机器人与人、机器人与机器人、机器人与生产线、机器人与生产环境间的协同标准。/pp  span style="color: rgb(0, 112, 192) "strong数控机床及设备标准。/strong/span智能化要求、语言与格式、故障信息字典等通用技术标准 互联互通及互操作、物理映射模型、远程诊断及维护、优化与状态监控、能效管理、接口、安全通信等集成与协同标准 智能功能部件、分类与特性、智能特征评价、智能控制要求等制造单元标准。/pp  span style="color: rgb(0, 112, 192) "strong智能工艺装备标准。/strong/span成形工艺和方法标准 工艺术语、工艺符号、工艺文件及其格式、存储、传输、数据处理标准 成形工艺装备接口标准 工艺过程信息感知、采集、传输、处理、反馈标准 工艺装备状态监控、运维标准。/pp  strong2. 智能工厂标准/strong/pp  主要包括智能工厂设计、建造与交付,智能设计、生产、管理、物流和集成优化等部分,如图6所示,其中重点是智能工厂设计、智能工厂交付、智能生产和集成优化等标准。主要用于规定智能工厂设计、建造和交付等建设过程和工厂内设计、生产、管理、物流及其系统集成等业务活动。针对流程、工具、系统、接口等应满足的要求,确保智能工厂建设过程规范化、系统集成规范化、产品制造过程智能化。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/4d35ea79-85e2-4bba-b8e6-d2e7cfa91494.jpg" title="7.jpg" alt="7.jpg"//pp style="text-align: center "图6 智能工厂标准子体系/pp span style="color: rgb(0, 112, 192) "strong (1)智能工厂设计标准/strong/span/pp  主要包括智能工厂的基本功能、设计要求、设计模型等总体规划标准 智能工厂物联网系统设计、信息化应用系统设计等智能化系统设计标准 虚拟工厂参考架构、工艺流程及布局模型、生产过程模型和组织模型等系统建模标准 达成智能工厂规划设计要求所需的工艺优化、协同设计、仿真分析、设计文件深度要求、工厂信息标识编码等实施指南标准。主要用于规定智能工厂的规划设计,确保工厂的数字化、网络化和智能化水平。/pp span style="color: rgb(0, 112, 192) "strong (2)智能工厂建造标准/strong/span/pp  主要包括建造过程数据采集范围、流程、信息载体、系统平台要求等建造过程数据采集标准 满足集成性、创新性要求、促进智能工厂建设项目管理科学化、规范化的建造过程项目管理标准。主要用于规定智能工厂建设和技术改造过程,通过智能工厂建造过程的控制与约束,确保智能工厂建设质量、建设周期、建设成本等预定目标的实现。/pp  span style="color: rgb(0, 112, 192) "strong(3)智能工厂交付标准/strong/span/pp  主要包括交付内容、深度要求、流程要求等数字化交付标准 智能工厂各环节、各系统及系统集成等竣工验收标准。主要用于规定智能工厂建设完成后的验收与交付,确保建成的智能工厂达到预定建设目标,交付数据资料满足智能工厂运营维护要求。/pp span style="color: rgb(0, 112, 192) "strong (4)智能设计标准/strong/span/pp  主要包括基于数据驱动的参数化设计、专业化并行/协同设计、基于模型的产品生命周期(定义MBD、制造和检验)标准以及产品设计全过程的标准化管理 试验方法设计、试验数据与流程的管理、试验结果的分析与验证、试验结果反馈等试验仿真标准。主要用于规定产品的数字化设计和仿真,以及产品试验验证过程仿真的方法和要求,确保产品的功能、性能、易装配性、易维修性,缩短新产品研制和制造周期,降低成本。/pp  span style="color: rgb(0, 112, 192) "strong(5)智能生产标准/strong/span/pp  主要包括计划仿真、多级计划协同、可视化排产、动态优化调度等计划调度标准 作业文件自动下发与执行、设计与制造协同、制造资源动态组织、生产过程管理与优化、生产过程可视化监控与反馈、生产绩效分析、异常管理等生产执行标准 质量数据采集、在线质量监测和预警、质量档案及质量追溯、质量分析与改进等质量管控标准 设备运行状态监控、设备维修维护、基于知识的设备故障管理、设备运行分析与优化等设备运维标准。主要用于规定智能制造环境下生产过程中计划调度、生产执行、质量管控、设备运维等应满足的要求,确保制造过程的智能化、柔性化和敏捷化。/pp  span style="color: rgb(0, 112, 192) "strong(6)智能管理标准/strong/span/pp  主要包括供货商评价、质量检验分析等采购管理标准 销售预测、客户关系管理、个性化客户服务等销售管理标准 设备可靠性管理等资产管理标准 能流管理、能效评估等能源管理标准 作业过程管控、应急管理、危化品管理等安全管理标准 职业病危害因素监测、职业危害项目指标等健康管理标准 环保实时监测和预测预警能力描述、环保闭环管理等环保管理标准 基于模型的企业战略、生产组织与服务保障等基于模型的企业(MBE)标准。主要用于规定企业生产经营中采购、销售、能源、工厂安全、环保和健康等方面的知识模型和管理要求等,指导智能管理系统的设计与开发,确保管理过程的规范化和精益化。/pp  span style="color: rgb(0, 112, 192) "strong(7)智能物流标准/strong/span/pp  主要包括物料标识、物流信息采集、物料货位分配、出入库输送系统、作业调度、信息处理、作业状态及装备状态的管控、货物实时监控等智能仓储标准 物料智能分拣系统、配送路径规划、配送状态跟踪等智能配送标准。主要用于规定智能制造环境下厂内物流关键技术应满足的要求,指导智能物流系统的设计与开发,确保物料仓储配送准确高效和运输精益化管控。/pp  span style="color: rgb(0, 112, 192) "strong(8)集成优化标准/strong/span/pp  主要包括虚拟工厂与物理工厂的集成、业务间集成架构与功能、集成的活动模型和工作流、信息交互、集成接口和性能、现场设备与系统集成、系统之间集成、系统互操作等集成与互操作标准 各业务流程的优化、操作与控制的优化、销售与生产协同优化、设计与制造协同优化、生产管控协同优化、供应链协同优化等系统与业务优化标准。主要用于规定一致的语法和语义,满足通用接口中应用特定的功能关系,协调使能技术和业务应用之间的关系,确保信息的共享和交换。/pp  strongspan style="color: rgb(0, 112, 192) "智能工厂标准建设重点/span/strong/pp  span style="color: rgb(0, 112, 192) "strong智能工厂设计标准。/strong/span智能工厂参考模型、通用技术要求等总体规划标准 智能工厂信息基础设施设计、物联网系统设计和信息化应用系统设计等工厂智能化系统设计标准 虚拟工厂设计参考架构、虚拟工厂信息模型和虚拟工厂建设要求等虚拟工厂设计标准 达成智能工厂规划设计要求所需的仿真分析、工艺优化、工厂信息标识编码和设计文件深度要求等实施指南标准。/pp  span style="color: rgb(0, 112, 192) "strong智能工厂交付标准。/strong/span交付内容、深度要求、流程要求等数字化交付标准 智能工厂各环节、各系统及系统集成等竣工验收标准。/pp  span style="color: rgb(0, 112, 192) "strong智能生产标准。/strong/span计划仿真、多级计划协同、可视化排产、动态优化调度等计划调度标准 作业文件自动下发、协同生产、生产过程管理与优化、可视化监控与反馈、生产绩效分析、异常管理等生产执行标准 质量数据采集、在线质量监测和预警、质量档案及质量追溯、质量分析与改进等质量管控标准 设备运行状态监控、设备维修维护、基于知识的设备故障管理、设备运行分析与优化等设备运维标准。/pp  span style="color: rgb(0, 112, 192) "strong集成优化标准。/strong/span虚拟工厂与物理工厂的集成、业务间集成架构与功能、集成的活动模型和工作流、信息模型、信息交互、集成接口和性能、现场设备与系统集成、系统之间集成、系统互操作等集成与互操作标准 各业务流程的优化、操作与控制的优化、销售与生产协同优化、设计与制造协同优化、生产管控协同优化、供应链协同优化等系统与业务优化标准。/pp  span style="color: rgb(0, 112, 192) "strong3. 智能服务标准/strong/span/pp  主要包括大规模个性化定制、运维服务和网络协同制造等三个部分,如图7所示,其中重点是大规模个性化定制标准和运维服务标准。主要用于实现产品与服务的融合、分散化制造资源的有机整合和各自核心竞争力的高度协同,解决了综合利用企业内部和外部的各类资源,提供各类规范、可靠的新型服务的问题。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/40685663-9aef-47ef-af5d-bfc4038d52f0.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "图7 智能服务标准子体系/pp span style="color: rgb(0, 112, 192) " (1)大规模个性化定制标准/span/pp  主要包括通用要求、需求交互规范、模块化设计规范和生产规范等标准。主要用于指导企业实现以客户需求为核心的大规模个性化定制服务模式,通过新一代信息技术和柔性制造技术,以模块化设计为基础,以接近大批量生产的效率和成本满足客户个性化需求。/pp  span style="color: rgb(0, 112, 192) "(2)运维服务标准/span/pp  主要包括基础通用、数据采集与处理、知识库、状态监测、故障诊断、寿命预测等标准。主要用于指导企业开展远程运维和预测性维护系统建设和管理,通过对设备的状态远程监测和健康诊断,实现对复杂系统快速、及时、正确诊断和维护,全面分析设备现场实际使用运行状况,为设备设计及制造工艺改进等后续产品的持续优化提供支撑。/pp span style="color: rgb(0, 112, 192) "strong (3)网络协同制造标准/strong/span/pp  主要包括实施指南、总体框架、平台技术要求、交互流程和资源优化配置等标准。主要用于指导企业持续改进和不断优化网络化制造资源协同云平台,通过高度集成企业间、部门间创新资源、生产能力和服务能力的相关技术方法,实现生产制造与服务运维信息高度共享、资源和服务的动态分析,增强柔性配置水平。/pp  span style="color: rgb(0, 112, 192) "strong智能服务标准建设重点/strong/span/pp  span style="color: rgb(0, 112, 192) "strong大规模个性化定制标准。/strong/span通用要求、需求交互规范、模块化设计规范和生产规范等标准。/pp  span style="color: rgb(0, 112, 192) "strong运维服务标准。/strong/span基础通用、数据采集与处理、知识库、状态监测、故障诊断、寿命预测等标准。/pp  span style="color: rgb(0, 112, 192) "strong网络协同制造标准。/strong/span实施指南、总体框架、平台技术要求、交互流程和资源优化配置等标准。/pp  span style="color: rgb(0, 112, 192) "strong4. 智能赋能技术标准/strong/span/pp  主要包括人工智能应用、工业大数据、工业软件、工业云、边缘计算等部分,如图8所示,其中重点是人工智能应用标准和边缘计算标准。主要用于构建智能制造信息技术生态体系,提升制造领域的信息化和智能化水平。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/f41f5cf5-1a95-47e7-b9e6-0f6b321ae332.jpg" title="9.jpg" alt="9.jpg"//pp style="text-align: center "图8 智能赋能技术标准子体系/pp span style="color: rgb(0, 112, 192) "strong (1)人工智能应用标准/strong/span/pp  主要包括场景描述与定义标准、知识库标准、性能评估标准,以及智能在线检测、基于群体智能的个性化创新设计、协同研发群智空间、智能云生产、智能协同保障与供应营销服务链等应用标准。主要用于满足制造全生命周期活动的智能化发展需求,指导人工智能技术在设计、生产、物流、销售、服务等生命周期环节中的应用,并确保人工智能技术在应用中的可靠性与安全性。/pp  span style="color: rgb(0, 112, 192) "strong(2)工业大数据标准/strong/span/pp  主要包括平台建设的要求、运维和检测评估等工业大数据平台标准 工业大数据采集、预处理、分析、可视化和访问等数据处理标准 数据质量、数据管理能力等数据管理标准 工厂内部数据共享、工厂外部数据交换等数据流通标准。主要用于典型智能制造模式中,提高产品全生命周期各个环节所产生的各类数据的处理和应用水平。/pp strongspan style="color: rgb(0, 112, 192) " (3)工/span/strongspan style="color: rgb(0, 112, 192) "strong业软件标准/strong/span/pp  主要包括产品、工具、嵌入式软件、系统和平台的功能定义、业务模型、技术要求等软件产品与系统标准 工业软件接口规范、集成规程、产品线工程等软件系统集成和接口标准 生存周期管理、质量管理、资产管理、配置管理、可靠性要求等服务与管理标准 工业技术软件化方法、参考架构、工业应用程序(APP)封装等工业技术软件化标准。主要用于促进软件成为工业领域知识、技术和管理的载体,提高软件在工业领域的研发设计、生产制造、经营管理以及营销服务活动中发挥的作用,指导工业企业对研发、制造、生产管理等工业软件的集成和选型,帮助工业企业开展工业技术软件化,对工业知识进行有效积累。/pp span style="color: rgb(0, 112, 192) "strong (4)工业云标准/strong/span/pp  主要包括平台建设与应用,工业云资源和服务能力的接入与管理等资源标准 能力测评规范、计量计费、服务级别协议(SLA)等服务标准。主要用于构建工业云生态体系,指导工业云平台的设计和建设,规范不同工业云服务的业务能力,提升工业云服务的设计、实现、部署、供应和运营管理水平,指导开展各类工业云服务的采购、审计、监管和评价活动。/pp  span style="color: rgb(0, 112, 192) "(5)边缘计算标准/span/pp  主要包括架构与技术要求、计算及存储、安全、应用等标准。主要用于指导智能制造行业数字化转型、数字化创新,解决制造业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求,用于智能制造中边缘计算技术、设备或产品的研发和应用。/pp  span style="color: rgb(0, 112, 192) "strong智能赋能技术标准建设重点/strong/span/pp  人工智能应用标准。场景描述与定义标准,知识库标准,性能评估标准,以及智能在线检测、基于群体智能的个性化创新设计、协同研发群智空间、智能云生产、智能协同保障与供应营销服务链等应用标准。/pp  边缘计算标准。架构与技术要求、计算及存储、安全、应用等标准。/pp  span style="color: rgb(0, 112, 192) "strong5. 工业网络标准/strong/span/pp  主要包括体系架构、组网与并联技术和资源管理,其中体系架构包括总体框架、工厂内网络、工厂外网络和网络演进增强技术等 组网与并联技术包括工厂内部不同层级的组网技术,工厂与设计、制造、供应链、用户等产业链各环节之间的互联技术 资源管理包括地址、频谱等,但智能制造中工业网络仅包括工业无线通信和工业有线通信,如图9所示。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/7bdbbbf4-685a-40d3-b754-6d1914a40033.jpg" title="10.jpg" alt="10.jpg"//pp style="text-align: center "图9 工业网络标准子体系/pp span style="color: rgb(0, 112, 192) "strong (1)工业无线通信标准/strong/span/pp  针对现场设备级、车间监测级及工厂管理级的不同需求的各种局域和广域工业无线网络标准。/pp  span style="color: rgb(0, 112, 192) "strong(2)工业有线通信标准/strong/span/pp  针对工业现场总线、工业以太网、工业布缆的工业有线网络标准。/pp  工业网络标准建设重点/pp  工业无线通信标准。针对现场设备级、车间监测级及工厂管理级的不同需求的各种局域和广域工业无线网络标准 /pp  工业有线通信标准。针对工业现场总线、工业以太网、工业布缆的工业有线网络标准。/pp span style="color: rgb(0, 112, 192) "strong (三)行业应用标准/strong/span/pp  依据基础共性标准和关键技术标准,围绕新一代信息技术、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业机械装备、新材料、生物医药及高性能医疗器械等十大重点领域,同时兼顾传统制造业转型升级的需求,优先在重点领域实现突破,并逐步覆盖智能制造全应用领域。行业应用标准体系如图10所示。/pp style="text-align: center "  /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/6e36eb49-21b3-4cb8-bdd3-35383350d62b.jpg" title="11.jpg" alt="11.jpg"//pp style="text-align: center "图10 行业应用标准子体系br//pp  发挥基础共性标准和关键技术标准在行业应用标准制定中的指导和支撑作用,优先制定各行业均有需求的设备互联互通、智能工厂建设指南、数字化车间、数据字典、运维服务等重点标准。在此基础上,发挥各行业特点,制定行业亟需的智能制造相关标准。如:新一代信息技术领域的射频识别标准等。高档数控机床和机器人领域的机床制造和测试标准等。航空航天装备领域的复杂装备云端协同制造标准、航天装备数字化双胞胎制造标准等。海洋工程装备及高技术船舶领域的大型船舶设计工艺仿真与信息集成标准、海洋石油装备互联互通和运维服务标准等。先进轨道交通装备领域的轨道交通网络控制系统标准、车载信号系统标准、高速动车组智能工厂运行管理标准等。节能与新能源汽车领域的新能源汽车智能工厂运行系统标准等。电力装备领域的存储管理标准、数据智能采集标准、监测诊断服务标准等。农业机械装备领域的农机装备智能工厂平台化制造运行管理系统标准等。生物医药及高性能医疗器械领域的医疗设备质量追溯标准等。其他领域的标准包括:家电行业空调产品信息集成数据接口标准,石油石化行业智能设备互联互通标准,纺织行业智能装备网络通讯接口、系统集成与互操作标准,锂离子电池制造行业智能工厂标准,采矿、冶金、建筑专用设备制造行业高端工程机械可靠性仿真与协同制造标准等。/pp  智能制造标准体系与机械、航空、汽车、船舶、石化、钢铁、轻工、纺织等制造业领域标准体系之间不是从属关系,内容存在交集。交集部分是智能制造标准体系中的行业应用标准。例如,船舶工业标准体系用于指导船舶相关产品设计、制造、试验、修理管理和工程建设等,智能制造标准体系中的船舶行业相关标准主要涉及到船舶制造环节中的互联互通等智能制造相关内容。/pp  span style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "strong四、组织实施/strong/span/pp  span style="color: rgb(0, 112, 192) "strong加强统筹协调。/strong/span在工业和信息化部、国家标准化管理委员会的指导下,积极发挥国家智能制造标准化协调推进组、总体组和专家咨询组的作用,开展智能制造标准体系的建设及规划。充分利用多部门协调、多标委会协作、军民融合等工作机制,凝聚各类标准化资源,扎实构建满足产业发展需求、先进适用的智能制造标准体系。/pp  span style="color: rgb(0, 112, 192) "strong实施动态更新。/strong/span实施动态更新完善机制,随着智能制造发展水平和行业认识水平的不断提高,根据智能制造发展的不同阶段,每两年滚动修订《国家智能制造标准体系建设指南》。/pp  span style="color: rgb(0, 112, 192) "strong加快标准研制。/strong/span基于“共性先立,急用先行”的原则,完善智能制造标准绿色通道,加快国家和行业标准的制定 推动标准试验验证平台和公共服务平台建设,为标准的制定和实施提供技术支撑和保障。/pp  span style="color: rgb(0, 112, 192) "strong加强宣贯培训。/strong/span充分发挥地方主管部门、行业协会和学会的作用,进一步加强标准的培训、宣贯工作,通过培训、咨询等手段推进标准宣贯与实施。用标准引领行业实现智能转型。/pp  加强国际交流与合作。加强与国际标准化组织的交流与合作,定期举办智能制造标准化国际论坛,组织中外企业和标准化组织开展交流合作,通过参与国际标准化组织(ISO)、国际电工技术委员会(IEC)等相关国际标准化组织的标准化工作,积极向国际标准化组织提供我国智能制造标准化工作的研究成果。/pp  附件1:智能制造相关名词术语和缩略语/pp  附件2:智能制造系统架构映射及示例解析/pp  附件3:已发布、制定中的智能制造基础共性标准和关键技术标准/ppbr//p
  • 智能、前沿、可靠赛默飞助力分析测试中心平台建设
    第二十三次全国分析测试中心主任及地方协会负责人会议7月4-5日,第二十三次全国分析测试中心主任及地方协会负责人会议盛大召开,400余位来自地方、高校分析测试中心,以及地方分析测试协会/学会负责人齐聚银川,共同探讨交流分析测试工作面临的发展与机遇。平台化建设有利于整体管理,提高综合效率。赛默飞具有智能化平台管理,完善的平台方案,安全可靠的数据质量控制以及高效及时的应用支持培训,进一步助力分析测试中心平台建设与管理。 1、平台管理智能性分析人员:我们平台已经拥有多款分析仪器,现在有新的课题需求,需要在平台上增加功能,在继续利用原有仪器的基础上,我们该如何拓展呢?是否有更高效的管理解决方案?赛默飞:平台化的建设对实验室整体管理、运行维护有更大的优势,同时对仪器可拓展性也提出更高的要求。赛默飞涵盖丰富的产品组合、联用技术,从平台设计到持续优化,良好的平台拓展能力都能给客户提供支持。赛默飞可以提供云分析平台(比如iOmics Cloud组学分析云平台),享誉业界的Chromeleon变色龙色谱数据系统,统一的实验室数据和流程管理平台LIMS,有效提高平台工作者效率,提升仪器设备综合效率,降低实验室运营及维护成本。 2、平台方案前沿性及完善性分析人员:我们希望能够及时了解全球分析测试前沿应用,进一步完善提高平台方案,赛默飞是否可以提供相应支持?赛默飞:赛默飞一直以来不断增加研发投入,在创新产品的同时,也乐于与平台工作者分享技术发展及更完善的解决方案。此次会议中,黄敏工程师分享的《从鉴定到定量—Orbitrap超高分辨质谱助力定量蛋白组学的发展》,指明定量在蛋白组学中的重要性,介绍了赛默飞各类完善的定量解决方案和技术进展,以及今年ASMS新推出的Orbitrap Exploris™ 480质谱仪和Orbitrap Eclipse™ Tribrid™ 质谱仪的定量新功能。赛默飞不断探索前沿发展,完善全流程解决方案,引领学科前沿应用,助力平台进一步发展。 3、保障平台数据质量可靠分析人员:越来越多的科研打假使得数据质量控制的重要性日趋彰显,赛默飞是否能马上帮到我避免出现数据质量问题呢?赛默飞:在大数据建设,平台发展与管理都进一步提升的同时,数据质量一直以来处于非常重要的地位,正如中国钢研科技集团的王海舟院士在大会报告《科研实验结果有效性评价》中提出了科研试验结果可靠性评价体系建议,包括建立并推广科研实验室良好规范认可,推进科研活动标准化及成果转化系统标准等。赛默飞对数据质量、安全及合规性一直非常重视,享誉业界的Chromeleon变色龙色谱数据系统,智能化管理海量数据,从源头保证数据质量,可同时控制多品牌、多型号仪器,提升实验室效率,节约运行成本。 统一的实验室数据和流程管理平台LIMS:样品在实验室内全生命周期管理,支持自定义及可视化的工作流引擎,数据安全性和合规性管理,实现LIMS与检测仪器的单向/双向数据传输。4、售后及应用培训及时性分析人员:最怕仪器出问题,耽误平台运转,售后支持是我们考虑的重要指标之一。赛默飞:面对仪器运行满载、操作人员水平不一等带来的仪器维护挑战,赛默飞提供全方位支持,在硬件管理方面,赛默飞售后支持部门可以提供仪器设备年度服务计划,帮助提升实验室运营效率。在技术培训和方法开发方面,提供从基础到进阶的培训,以及能随时进行的远程在线培训,与客户合作开发实验方法,完善解决方案。赛默飞凭借平台设计与管理,持续优化产品组合及平台建设,提高实验室运营效率,并辅以完善的解决方案和及时的售后及应用培训支持,依靠强大的数据处理软件,最终助力智能化平台管理建设。赛默飞展台人头攒动,“新品”广受欢迎
  • 安捷伦研发下一代质谱:智能质谱将改变分析领域
    随着自主技术的全球趋势,质谱领域也不例外。仪器智能的进步,如诊断和故障排除能力,使分析实验室能够简化工作流程,节省时间,提高准确性和再现性,并延长仪器正常运行时间。  在Select Science访谈中,安捷伦科技公司四极杆质谱仪助理研发副总裁Shane Tichy博士讨论了仪器智能的趋势和挑战,以及它们将如何影响食品安全、环境、制药/生物制药、生命科学、临床诊断、法医学等领域的科学家。 Shane Tichy博士,安捷伦科技公司四极杆质谱仪助理研发副总裁  质谱专长  在安捷伦科技公司,Tichy领导着一支由化学家、科学家、项目经理、电气工程师、软件程序员和机械工程师组成的的团队,这些才华横溢的人员在做质谱创新的前沿工作。在过去十年中,该小组开发并引进了十种新型四极杆质谱仪。“我很幸运能在安捷伦从事多个最先进的项目。” Tichy分享道。  在此期间,他最喜欢的部分项目包括灵敏的6495C三重四极杆LC/MS、紧凑且功能强大的Ultivo三重四极杆液质联用LC/MS(LC/TQ)以及为方便使用而设计的InfinityLab LC/MSD iQ。这些仪器结合了推进分析应用的关键技术和特点。Tichy强调,“6495C三重四极杆LC/MS系统在灵敏度、可靠性和准确性方面处于领先地位,是许多应用的完美选择,包括肽定量、食品安全、环境测试、临床研究和法医学。”Ultivo和LC/MSD iQ同时为分析实验室提供了一个紧凑但功能强大的解决方案,并结合了多项创新技术和智能功能。Tichy说:“它们提供了适用的、简单的、强健的LC/MS分析,而且相比于同类更高性能的产品,尺寸要小得多。”  结合智能功能  该团队的最新项目旨在进一步改变分析领域。Tichy分享道:“我们最近一直在研究新一代LC/MS三重四极杆,它可以进一步提高灵敏度、精度和仪器智能。”  新系统将集成可编程智能芯片,实现高级监控和反馈。Tichy充满热情道,“我们很高兴将智能芯片纳入我们的质谱仪,因为它提供了更高的精度、重复性和长期稳定性。同时,它可以减少重新校准的频率,通过故障自诊断降低维护成本,以及存储调谐和校准数据的能力,这些数据可以在下次校准期间进行评估。”  这些智能功能将有助于满足所有市场质谱仪用户的需求。Tichy解释道:“除了提高精度和灵敏度外,他们还需要反馈,‘嘿,我的仪器是在最高水平上运行的。而且,当分析性能下降时,系统出了什么问题?’这就是仪器智能真正发挥作用的地方。”  仪器智能化趋势  “过去几年来,围绕仪器智能的讨论相当热烈。”Tichy分享道:“不管你信不信,30多年前出现了第一台智能仪器。”  虽然昂贵的可编程芯片最初阻碍了分析仪器行业的发展,但自那时以来,随着功率的增加,成本也在下降。Tichy解释道:“我们看到的是,这些设备的价格大幅下降,而其功率却有所增加,使得智能设备和传统设备之间的成本差异相对较小。”  将智能芯片纳入质谱仪的能力为用户提供了丰富的优势,从物理上更小的仪器和快速双向数字通信,到仪器自校准。这将提高在不同环境条件下的测量精度,以及仪器自我诊断,同时可以指示系统的健康状况,并提醒操作员测量质量的变化和潜在问题。  质谱仪将更易使用  采用质谱仪的一个关键挑战是,缺乏经验的用户往往将质谱仪视为复杂的仪器,难以操作和维护。 “一些操作人员努力手动优化仪器调谐或源参数,以达到最高的性能水平。”Tichy解释道:“另一个挑战是对仪器进行故障排除。当系统性能下降时,客户不知道该去哪里查找。是柱吗?是脏污吗?是否有透镜污染?可能与机械或电气组件有关?对于这些原因,即使质谱是解决其挑战的最佳分析工具,他们也会怯于使用该系统。”  在这里,仪器智能有助于克服这些挑战,并增加质谱的可及性。通过在安捷伦科技公司的系统中使用智能芯片,Tichy和他的团队增强了自动调谐和校准算法,使他们能够始终如一地设置最佳仪器参数。通过早期维护反馈跟踪系统的健康状况,最大限度地减少了停机时间,同时,自我感知即插即用技术也避免了使用新系统进行质谱检测的冗长学习时间。  Tichy强调:“仪器智能化使质谱分析变得更简单,并帮助我们的客户克服威胁因素。它从本质上将高度复杂的质谱仪转变为易于使用的质量检测设备。”。  未来趋势  展望未来,Tichy预计仪器智能将在实验室和未来仪器发展中发挥关键作用。Tichy总结道:“我会保持简单。我看到了一种更自主、更复杂的技术趋势,它让人们在实验室的工作更容易。质谱也不例外。我们将继续创新,让我们的客户保持在未来趋势的领先地位。”
  • 得利特销售组讲述:实验室总磷分析仪具有的特点
    得利特销售组最近发现咨询总氮分析仪,总磷分析仪,氨氮分析仪等水质设备客户比较多,便自发的组织大家,一起对于该类仪器的具体特点及性能进行了回顾与讲述。对于总氮分析仪他们进行了反复讨论:该仪器同时可以进行COD测定、氨氮测定、总磷测定、总氮测定均根据国家保护总局发布文件研发,测定结果准确有效。COD采用密闭消解比色法,氨氮采用纳氏试剂比色法,总磷采用密闭消解比色法,总氮采用密闭消解紫外光度吸收法。仪器广泛适用于环境检测、污水处理、科研单位及大专院校。COD氨氮总磷总氮快速测定仪,高精度COD氨氮总磷总氮测定仪。仪器特点1、COD测定使用美国EPA认可方法,符合HJ/T399-2007,测定准确有效。2、氨氮测定使用美国EPA认可方法,符合HJ535-2009,测定准确有效。3、总磷测定根据GB11894-89设计研发,测定结果准确有效。4、采用**高亮度长寿命冷光源,光学性能,光源寿命长达10万小时。5、大屏幕液晶中文显示,操作简单省时。6、可保存标准曲线20条及999个测定值(日期、时间、参数、检测数据)。7、内存标准工作曲线,用户还可以根据需要标定曲线。8、COD氨氮总磷总氮快速测定仪,高精度COD氨氮总磷总氮测定仪具有数据断电保护功能和数据储存功能。9、具有USB接口,数据可传输到电脑。10、具有打印功能,可对测试的记录立即打印或查询记录打印。11、消解器通用于COD、总磷、总氮等项目的消解;智能PID温度控制技术,加热均匀、加热速度快。12、消解器温度自动控制,防超温保护系统,显示当前温度,设定温度,时间。
  • 云唐全新升级|新型果蔬肉类检测仪(综合款)详细参数
    云唐全新升级|新型果蔬肉类检测仪(综合款)详细参数  山东云唐智能科技有限公司生产的果蔬肉类检测仪,采用手提箱式一体化设计,可快速检测几十种项目,包含各种蔬菜水果中有机磷和氨基甲酸酯类农药残留,病害肉诊断:肉中组胺、挥发性盐基氮 各种肉食品中瘦肉精激素类残留、抗生素、兽药残留等现场的定性定量检测。  该果蔬肉类检测仪为集成化食品安全快速检测分析设备,目前已于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业及检验检疫部门等单位广泛使用。 果蔬肉类检测仪(综合款)产品链接https://www.instrument.com.cn/netshow/SH104655/C467598.htm 果蔬肉类检测仪(综合款)创新点和产品特性:  项目 项目分类 果蔬中 农药残留 病害肉诊断 组胺、挥发性盐基氮 瘦肉精激素(兽药) 盐酸克伦特罗、沙丁胺醇、莱克多巴胺、己烯雌酚等 抗生素残留(兽药) 四环素类、硝基呋喃类、磺胺类、β-兴奋剂类、沙星类、磺胺类、喹诺酮类,甲砜霉素,氟苯尼考,金刚烷胺、替米考星、庆大霉素、林可霉素、链霉素、恩诺沙星、环丙沙星、头孢啦啶、青霉素、阿莫西林等 水产品安全类 孔雀石绿、氯霉素、呋喃妥因、呋喃西林、呋喃它酮、呋喃唑酮等 蛋类药物残留类 氯霉素,四环素,磺胺类,喹诺酮类,呋喃西林,呋喃它酮,呋喃妥因,呋喃唑酮,氟苯尼考,阿莫西林、头孢氨苄、红霉素、链霉素等 真菌毒素残留 食用油、粮食及饲料中黄曲霉毒素B1、黄曲霉毒素总量,奶中黄曲霉毒素M1、呕吐毒素、玉米赤霉烯酮、赭曲霉毒素A、T2毒素、伏马毒素等 动物疫病类 禽流感、新城疫、牛羊口蹄疫、牛羊结核病、牛羊包虫、牛羊布病、小反刍兽、猪蓝耳病毒、猪瘟病毒、猪伪狂犬病毒、猪细小、猪圆环、犬细小病毒、犬瘟热病毒、犬狂犬病毒等  1、仪器采用手提箱一体化设计,将分光光度模块、胶体金检测模块、新型农残检测模块、数字化管理模块、无线通讯模块高度集成于一体,同时预留升级检测方法,可远程进行升级系统。  2、仪器检测模块标准化、智能化,检测项目可随意自由组合。检测箱体内置多个标准检测单元,检测模块可以调整配置。  3、显示屏幕:仪器采用10.1英寸竖向液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,操作方便,性能更强。  4、检测通道:≥12通道 采用精密旋转比色池设计,使用同芯片同光源校准精度,解决不同光源之间的误差值,更加准确高效。(1-12通道间误差0.1%,专利号:ZL202022821055.2)  5、仪器光源:高精度进口四波长冷光源,每个通道均配置 410、520、590、630nm 波长光源,标配先进的光路切换装置,专利光路切换功能可实现64波长,并且所有检测项目可实现所有通道同时检测。  6、设备可一键校准,自动保存校准数据,自动对比校验,得到精准光源,采用Android SP存储数据,光源数据永不丢失,方便每一次使用。  7、通讯接口:配备无线通信模块、4G(APN)通讯模块、蓝牙传输,同时具有双USB接口以及RJ45网线接口,可以多方式实现数据保存及数据传输。  8、存储方式:支持U盘存储,标准USB接口,免驱动安装。检测结果存储容量20万条以上,可生成Excel表格进行拷贝,并具有登录保护功能。  9、智能化操作系统:  9.1、操作系统:仪器可在同一检测界面自动对应相关检测通道,一次性选择1-12个样品名称,无需退出界面,节省操作时间。并可以对每个通道属性和样品信息单独进行编辑,例如送检单位、人员,检测人员等,打印时勾选打印显示。  9.2、数据集成系统:设备首页自动汇总分析检测数据,包含:周检测数据、月检测数据,全部检测总数量,包含检测总数,合格数,不合格数,以及相关柱形分析图,各项检测数据一目了然,无需电脑查询,更加快捷直观。  9.3、数据库系统:十几项数据库分类管理仪器:包含项目类型、项目数据、检测数据、历史记录、国标信息、曲线信息、采样信息、检测信息、受检信息、复核信息、图表信息、光源校准信息、打印样式信息、样品库信息等等,数据库之间互相协调联动保证数据的真实完整性。同时产品数据库以及历史检测记录支持一键检索功能。  9.4、限量规判系统:具有限量查询、添加物质合规判定系统。检测出结果后,系统自动调用系统数据库中相关国标进行比对判定,客观显示判定结果是否合格。  9.5、项目预设系统:仪器具有任务预设模块,一键提前预设,给出方便快捷的新检测方案,每一个任务分别可以设置不同的样品、批次、编号、来源、备注、抽样信息、检测信息、受检信息、复核信息等更多信息。样品送检时一键调取保存信息,并可多次调取,大大提高检测效率。  9.6、数据监管系统:同步对接监管平台,数据可局域网和互联网数据上传,检测结果可直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,监测区域食品安全长短期动态及问题预估、预警。  9.7.1、全新打印系统:内置全新打印机,新创自定义打印方式,可按需灵活勾选控制:产品合格证(国家农业部标准要求),二维码,抽样信息、检测信息,受检信息、复核信息、抽样日期、检测日期等信息的打印。  9.7.2、A4纸版本报告打印功能(可选配):设备拥有两种结果展示方式,可以自动生成A4打印模板和小票打印模板两种样式,可通过WiFi及网线等方式链接外置打印机可进行打印。  10、供电模式:仪器交直流两用,直流12V供电,可连接车载电源,配6ah大容量充电锂电池,电量可实时显示,方便户外流动测试。  11、胶体金检测模块:采用CMOS成像处理技术及胶体金免疫层析技术,可读取胶体金卡数据,自动采集、处理分析,将检测结果显示,并可根据参考限值自动判断检测结果,可检测常见的兽药残留、生物毒素、抗生素、违禁添加物等。  11.1、探测技术:CMOS成像探测   11.2、检测通道:1个通道   11.3、检测方式:消线法和比色法   11.4、显示模式:阴性或阳性   11.5、曲线形式:轨道式扫描方式,显示金标卡图像,实时生成、识别CT曲线图,无需手动调整,完成检测后自动退出检测卡。兼容市场上其他金标卡,使用耗材不受限制。  12、仪器具备远程升级功能,可定向分客户分仪器更新,开机后自动更新,并可持续性免费更新系统版本,无需像传统产品返厂更新,节省时间及人力成本并避免了物流运输返厂升级导致设备损坏的潜在风险。
  • Muse智能触控细胞分析仪新品问世
    默克密理博秉承一贯的创新理念,突破流式研发的思维定式,带来了革命性创新一代Muse&trade 智能触控细胞分析仪。内置Pad版触屏式电脑,结合全面的预置细胞分析常规实验方案,为您开创前所未有的流式操作新体验。您只需动动手指,即可实现包括:细胞计数,细胞活性,细胞周期,细胞凋亡等在内的细胞分析常规实验。分分钟让您体验悦动指尖的细胞分析艺术。 除此之外,默克密理博还将为Muse&trade 平台不断开发更多细胞分析的预置实验方案,近期8个预置实验方案即将推出:涉及Caspase 凋亡通路、线粒体损伤、免疫分型、淋巴细胞活力分析、细胞信号通路、DNA损伤等多个研究应用领域。用户将全部免费获得预置实验方案的软件升级。请欣赏Muse 智能触控细胞分析仪介绍视频申请试用 | 索取MUSE资料 | 询价 更多详情,请点击此处 默克密理博:新流式,新思维 &mdash &mdash 全新的流式平台,全新的学术思维
  • 精准+智能——记优秀新品百特BeNano 90 Zeta纳米粒度及Zeta电位分析仪
    为了将在中国仪器市场上推出的、创新性比较突出的国内外仪器产品全面、公正、客观地展现给广大的国内用户,同时,鼓励各仪器厂商积极创新、推出满足中国用户需求的仪器新品,仪器信息网自2006年发起“优秀新品”评选活动,至今已成功举办十六届。发展至今,该奖项也成为了国内外科学仪器行业最权威的奖项之一,获奖名单被多个政府部门采信。2022年度“优秀新品”评选活动正在进行中,2022下半年入围名单已公布(详情链接)。值此之际,一起再来回顾下往届年度优秀新品奖获得者们吧! 本期带您回顾的是2021年度“优秀新品”获奖产品:百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪。2021年度共有711台仪器参与“优秀新品”奖项评选,在“技术评审委员会主席团”的监督下,经仪器信息网“专业编辑团”初审、“网络评审团”评审、“技术评审委员会”终审,确定12台仪器获奖。其中,百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪脱颖而出。百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪介绍如下:BeNano 90 Zeta是BeNano系列纳米粒度及Zeta电位分析仪中的一员,是百特历经12年,经过不懈研发投入而推出的第四代该类产品。BeNano 90 Zeta集动态光散射(DLS)、电泳光散射(ELS)和静态光散射技术(SLS)三种技术于一体,能准确的检测颗粒的粒径及粒径分布、Zeta电位、高分子和蛋白体系的分子量信息等参数,可广泛应用于药物及药物释放体系、生命科学和生物制药、油漆油墨和涂料、食品和饮料、纳米材料以及学术领域等。综合各方表现,BeNano 90 Zeta堪称为一款“精准,智能,值得信赖”的纳米粒度及Zeta电位分析仪。此外,BeNano系列纳米粒度及Zeta电位分析仪具有众多突出特点,主要包括以下几点:(1)高速测试能力:更快的测试速度,所有结果可以随后编辑处理;(2)高性能固体激光器光源:高功率、极佳的稳定性、长寿命、低维护;(3)智能光源能量调节:根据信噪比,软件智能控制光源能量;(4)光纤检测系统:高灵敏度,有效增加信噪比;(5)相位分析光散射:准确检测低电泳迁移率样品的Zeta电位;(6)可抛弃毛细管电极:极佳的Zeta电位测试重复性,避免较交叉污染;(7)毛细管极微量粒径池:3-5μL极微量样品检测和更高的大颗粒测试质量;(8)智能结果判断系统:智能辨别信号质量,消除随机事件影响;(9)宽泛的温度控制范围:-10℃~110℃ 温控满足用户测试需求;(10)高稳定性设计:结果重复性极佳,不需日常光路维护;(11)灵活的动态计算模式:多种计算模型选择涵盖科研和应用领域。百特产品总监宁辉发表获奖感言:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制