当前位置: 仪器信息网 > 行业主题 > >

自动稳定器

仪器信息网自动稳定器专题为您提供2024年最新自动稳定器价格报价、厂家品牌的相关信息, 包括自动稳定器参数、型号等,不管是国产,还是进口品牌的自动稳定器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动稳定器相关的耗材配件、试剂标物,还有自动稳定器相关的最新资讯、资料,以及自动稳定器相关的解决方案。

自动稳定器相关的资讯

  • 自动微量残炭测定器:嵌入式操作系统,工作稳定可靠
    A1260微量残炭测定仪是依据GB/T 17144标准,设计制造的测试仪器,主要用于石油产品残碳含量的测定。仪器特点5英寸TFT彩色触摸屏显示,图像清晰、操作方便。升温、流量自动控制,实时显示实验进程。采用嵌入式操作系统,工作稳定可靠。高温室设计合理,稳定控温。可编辑输入样品管、试样的质量。依据操作,自动计算残炭数值。储存100组历史数据,方便查询。历史数据可以根据日期查询。技术参数测量范围:0.0℃~+1372℃分辨率:0.1℃(0.0℃~999.9℃),1℃ (大于 999.9℃)精 度:0.2%环境温度:≤30℃相对湿度:≤85%储运温度:(-25~55)℃工作电源:AC220V±10%,50Hz功 率:2kw外形尺寸:400mm x360mm x500mm(主机)
  • 超级电容又添新材料,稳定性大幅度提高
    p  多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在其表面涂了一层几纳米厚的氮化钛涂层,使其性质得以改变。/pp  该团队负责人麦卡· 普伦尼拉解释说,因化学反应导致的不稳定性和高电阻导致的低功率,不带涂层的多孔硅本是一种极差的电容器电极材料。涂上氮化钛的能提供化学惰性和高导电性,带来了高度稳定性和高功率,且多孔硅有很大的表面积矩阵。/pp  根据荷兰爱思唯尔出版集团《纳米能源》杂志在线发表的论文,新电极装置经13000次充放电循环而没有明显的电容减弱。普伦尼拉说,报告数据受检测时间的限制,而并非电极真实性能。他们继续对其进行充放电循环,至今已达到5万次,甚至在循环中让电极干燥,也没有出现物理损坏或电学性能衰减问题。“超级电容要求稳定地达到10万次循环。目前用多孔硅—氮化钛(Si-TiN)做电极的电容装置能完全稳定地通过5万次测试。”/pp  在功率密度和能量密度方面,新电极装置比得上目前最先进的超级电容器。目前由氧化石墨烯/还原氧化石墨烯制造的芯片微电容器功率密度为200瓦/立方厘米,能量密度为2毫瓦时/立方厘米,而新电极装置功率密度达到214瓦/立方厘米,能量密度为1.3毫瓦时/立方厘米。普伦尼拉说,这些数字标志着硅基材料首次达到了碳基和石墨烯基电极方案的标准。/pp  从电子产品的功率稳定器到局部能量采集存储器,芯片超级电容器有着广泛的应用。普伦尼拉说,他们在整体设计中还存在一些难题,每单位面积电容仍需提高,要达到技术许可的最高水平,他们还需进一步研究。/pp  总编辑圈点/pp  日本厨师发现将牛油果加上芥末竟然有了三文鱼的味道。如今,芬兰科学家也玩起了这样混搭的“戏法”——他们给多孔硅穿上一层氮化钛的外衣,尽管这层薄薄的外衣只有几纳米那么厚,却足以改变多孔硅电极的性能。这样的想象力让超级电容器的电极材料又多了一位优质成员,且它给人们的生活带来的改变也许远比一道日本料理大得多!随着芯片技术的广泛应用,希望科学家尽快解决多孔硅电极材料在超小型超级电容器上的设计问题,让这样巧思的发明早日造福人类。/ppbr//p
  • 药品研发与生产的稳定之锚:稳定性实验箱的应用
    在现代医药领域,药品的研发、生产和质量控制是一个高度复杂且精密的过程,常常受到诸多外界因素的挑战与考验。药品存放的时间长短、存放环境的空气质量、温度波动、湿度变化以及光照强度等因素,都可能对药品质量产生影响,使得药品中的有效成分逐渐降解,药品的疗效大打折扣,甚至完全失效,产生有害物质。 因此,深入研究药品的稳定性,全面了解影响药品质量的各种因素,显得尤为重要。通过科学的稳定性研究,我们可以为药品的生产、包装、贮存、运输等环节提供有力的科学依据,为患者提供安全、有效的用药保障。 为了全面而精准地评估药品在不同环境条件下的稳定性表现,科研人员常常借助稳定性试验箱这一关键设备来进行测试。这种试验箱具备模拟多种环境条件的强大功能,能够精确控制温度、湿度、光照等重要参数,从而为试验药品提供一个稳定且标准化的测试环境。通过将测试样品置于试验箱中,并暴露于特定环境条件下一段时间后,科研人员可以评估样品是否发生变化,确认其在不同环境下的稳定性表现。Aralab是欧洲标准环境控制设备、药物稳定测试设备和特殊测试设备的主要供应商之一,凭借逾30年的专业研发与生产经验,其各类箱体设备和步入式房间品质卓越,一直深受客户赞誉。「Aralab葡萄牙总部」Aralab FitoClima 600 & 1200系列箱体,为药品稳定性试验提供了卓越而全面的解决方案:这一系列箱体分为600L和1200L两种规格,内部配置灵活多变,可分别搭载4层和8层不锈钢搁板,更可按需升级至10层和20层。每层搁板均可轻松拆卸,清洗维护极为方便。为了满足科研人员在稳定性测试中的多样化需求,FitoClima 600&1200系列还提供了多种型号选择:&bull FitoClima 600/1200 P:专为精准温度控制而设计。&bull FitoClima 600/1200 PH:在温度控制的基础上增加了湿度控制功能,可模拟更加复杂的环境条件。&bull FitoClima 600 PLH:集温度、湿度、紫外线和可见光控制于一体,满足更加全面的需求。&bull FitoClima 600 PLH-R:在PLH的基础上,通过集成辐射计和光传感器,实现了辐照暴露程度的自动控制。&bull FitoClima 1200 PN/PNH:可控制零下温度(-20℃),湿度控制功能可选配。此外,箱体还配备了7英寸的彩色触摸屏,使得科研人员能够直观、便捷地设置所有环境变量。无论是温度、湿度还是光照,都能轻松调节,满足各种实验需求。利用这一系统,科研人员能够设计复杂而全面的环境模拟程序。例如,在生物医药领域,由于疫苗、血清、抗体、细胞因子和酶等制品对温度变化异常敏感,冻融过程可能引发蛋白质变性、聚集或活性丧失等风险,因此冻融测试成为必不可少的环节。借助FitoClima 1200 PN/PNH试验箱,科研人员可通过程序预先设置好从-20℃至60℃的不同温度区间,分别模拟冷冻和融化阶段的环境条件,然后一键启动,即可直接进行冻融循环测试,无需频繁更换试验箱,大大提高了实验效率和准确性。FitoClima 600&1200系列试验箱 技术参数&bull 温度范围:-5℃ 至 60℃1200 PN/PHN型号可以扩展至-20℃至60℃&bull 温度波动 (随时间变化):±0.1°C 至 ±0.2°C&bull 空间温度均匀性:± 0.15°C 至 ± 1.0°C&bull 湿度范围:20% 至 95% rH&bull 湿度波动 (随时间变化):± 1%rH&bull 空间湿度均匀性:± 2%rH作为Aralab的中国区授权经销商,上海昊扩提供Aralab旗下各类高精度的环境控制设备,包括: &bull 低温培养箱/恒温恒湿箱/光照培养箱 &bull 步入式恒温恒湿房间 &bull 环境试验箱 &bull 步入式环境测试室 &bull 高低温冲击箱 &bull 人工气候箱/室想要了解更多相关产品信息,欢迎来电咨询!
  • 理加联合参加“第二届稳定同位素生态学学术研讨会暨稳定同位素技术研修班”
    2014年5月19日-22日,第二届稳定同位素生态学学术研讨会暨稳定同位素技术研修班在北京顺利召开,会议由清华大学地球科学研究中心主办,中国生态学学会联办,会议邀请了国内外本领域的著名专家做主题特邀报告,来自全国各地近200位学者参加了学术研讨会,另有120位学者参加了技术研修班。北京理加联合科技有限公司(以下简称:理加联合)应主办方邀请,携众多生态仪器设备参加了此次盛会。 5月19日-20日,中国 北京 清华园宾馆 稳定同位素生态学学术研讨会 5月19日,研讨会开始,清华大学地球系统科学研究中心暨全球变化研究院林光辉教授主持会议。 5月20日,理加联合市场总监朱湘宁先生在大会上为专家学者介绍了LGR激光稳定性同位素分析仪的新应用,并回答了与会学者提出的一系列问题。 报告结束后,与会学者表现出浓厚兴趣,并与我们的工程师在研发项目的进展与需求方面做了深切交流。与会学者表示,稳定同位素技术在现代生态学的发展中起着极为重要的作用,美国LGR公司的OA-ICOS技术能够快速、连续、精确的测量痕量物质,对于生态学研究而言,尤其是稳定同位素生态学研究,有着很高的契合性。 5月21-22日,中国 北京 清华大学 稳定同位素技术研修班 为了确保每位学者都可以亲自动手操作专业仪器,并与我们的工程师沟通,技术研修班分四组进行。 首先,中国科学院地理科学与资源研究所生态系统网络观测与模拟实验室温学发副研究员讲解“基于稳定同位素红外光谱技术连续测定温室气体同位素比值和通量”。 讲解结束,在理加联合工程师的指导下,学员亲自动手操作仪器,了解仪器的内部构造和操作技巧;更值得一提的是,由美国LGR公司推出的温室气体分析仪,以其强大的功能、小巧的身材、可背负式的设计赢得与会学者的一致青睐。 关于理加联合主要代理产品:美国LGR公司激光痕量气体和稳定同位素分析仪美国ASD公司地物光谱仪瑞典OPSIS公司凯氏定氮仪和自动消解仪美国CSI公司闭路涡度相关和大气廓线测量系统美国Resonon公司高光谱成像光谱仪意大利AMS集团全自动化学分析仪和流动分析仪 理加联合作为专业的生态与环境仪器的供应商和服务商,一直以“为客户提供最先进的产品和最优质的服务”为目标,在不断引进国外新产品和新技术的同时,努力提升自身的技术支持、售后服务和研发能力,为用户提供更高品质的产品和服务。欲了解更多信息,请浏览公司网站:www.li-ca.com
  • 项目案例|在线水中颗粒计数器opc-2300在某地表水厂稳定运行
    项目案例|在线水中颗粒计数器在某地表水厂稳定运行在线水中颗粒计数器在某地表水厂的稳定运行,犹如一位勤勉的哨兵,时刻守护着水质的纯净与安全。这款精密的仪器,以其高效的颗粒检测能力和稳定的运行性能,为水厂的水质监测提供了强有力的技术支持。 在这家地表水厂中,在线水中颗粒计数器发挥着至关重要的作用。它运用光阻法原理,能够迅速而准确地检测出水中各种大小的颗粒物的数量和颗粒大小,从而帮助水厂及时掌握水质状况,确保出厂水的安全卫生。 该计数器的稳定运行,得益于其精密的制造工艺和严谨的质量控制。从设计到生产,每一个环节都经过了严格把关,确保产品能够在恶劣的工业环境中长期稳定运行。此外,该计数器还具备自动校准和故障诊断功能,能够在出现问题时及时发出警报,为水厂的维护人员提供便利。 在线水中颗粒计数器的稳定运行,不仅提高了水厂的水质监测效率,还为水厂的节能减排做出了贡献。传统的水质监测方法往往需要耗费大量的人力和物力,而在线颗粒计数器则能够自动完成检测任务,降低了人力成本。同时,由于它能够实时监测水质状况,水厂可以根据实际情况调整处理工艺,减少不必要的能源消耗和污染物排放。 总的来说,在线水中颗粒计数器在某地表水厂的稳定运行,为水厂的水质监测提供了有力保障,同时也推动了水厂的节能减排工作。在未来,随着技术的不断进步和应用领域的不断拓展,相信这款仪器将在更多领域发挥重要作用。
  • 微量试剂生产救星!稳定高效,解放双手!
    随着生命科学行业的高速发展,微量试剂的分液需求也逐日提升。目前业界通常采用人工移液器进行分液操作,但移液过程中难免会出现吸液量不足、枪头没有及时更换、移液速度过快导致气泡产生或液体飞溅、关盖失误导致漏液,或某些需要低温保存的试剂(如酶、核酸等)分解等诸多问题,影响分液质量。同时大量人力也在重复劳动中被消耗,容易陷入恶性循环。镁伽针对微量试剂的分液需求,研发出MRA-LSF-880系列产品,即微量试剂分液的自动化解决方案,一台设备可完成10 – 20人份的产出,真正做到解放双手,稳定高效。MRA-LSF-880 系列产品是针对微量灌装所研发的高通量、高精度解决方案,能够实现从上料、贴标、灌装、关盖、喷码、下料的全自动化步骤。它具有以下优势:采用移液模块,有效提升微量灌装的精度;通过多步骤CCD检测进行质量控制,提升良品率;针对酶类试剂的特性,配置三段低温保存模块;系统支持可视化监控以及样品溯源。01效率与质量兼得超高通量,峰值可达2500pcs/h高精度移液模块,峰值精度可达1%多步骤QC,CCD可检测液量、关盖、贴标、打码、管盖颜色等,NG品单独下料02兼容多种管型与试剂支持0.5 – 2 mL 可立螺旋管灌装酶类和水基试剂均可灌装,酶类试剂可配备三段温控低温保存Tip头自动装卸,母液无残留03运行环境清洁无污染上料区域配备FFU,确保料仓内清洁紫外消杀配合层流罩,确保运行环境百级洁净880 HP 将移液区与贴标喷码区分隔开,防止油墨粉尘等细小颗粒污染试剂除此之外,镁伽凭借在生命科学和实验室智能自动化领域积累的技术能力,还同步推出了从新冠核酸检测到抗原检测的全流程灌装解决方案,有效提高自动化程度及通量,赋能智能工厂全面升级,大幅提高产能,保障产品质量稳定。
  • 稳定、快速、可靠的Xevo TQD
    沃特世Xevo TQD为降低质谱分析的复杂性而设计,体现了我们的工程精简设计理念,确保以最小的工作量达到最大的生产力。这种工程精简设计方法是我们整个Xevo产品系列的制造基础。当您需要在不同次分析、不同仪器和不同实验室之间达到绝佳的一致性时,ACQUITY UPLC系统的先进技术以及Xevo TQD配备的稳定型通用离子源结构能确保其可靠性,同时也可提供一个能适应不断变化样本类型的灵活平台。凭借Xevo串联四极杆质谱仪系列现已拥有的创新功能,Xevo TQD是该系列产品中能同步采集最宽泛试验的高质量定量和定性数据的唯一一款整合型系统。信息富集型数据■ RADARTM,揭开样本的神秘面纱这是一种信息富集型数据采集方法,既可使您采集高度特异性的目标化合物定量数据,又可对样本基质中的其他所有组分进行同步可视化。通过同步采集MRM和全扫描模式的数据而实现的。另外,RADAR可采集正负离子全扫描质谱中的所有可检出离子,这为您提供了之前无法从传统定量分析中获取的深层次样本信息。RADAR因其拥有可在MS、MS/MS、正负离子模式之间进行不牺牲任何模式下性能的快速转换能力而成为了唯一的可能。您不会再受到与基质效应相关的复杂因素和不确定性的干扰。当进行目标定量分析时,RADAR使您可全面了解情况,进而能更快速、更有信心地开发方法。借助RADAR,您既可监测样本中的基质干扰物、代谢物、杂质和降解产物,同时又可准确定量目标化合物。■ PICsTM子离子确认扫描,一种可通过单一勾选框激活的数据导向性子离子扫描采集功能。借助子离子确认扫描(PICS),您将随时获得完全可信的结果。P ICS提供不限制用于辅助确认的碎片离子个数的数据导向性确认,仅通过一个勾选框即可激活。当MRM检测到一个色谱峰时,PICS可自动触发子离子扫描,可在检出潜在的目标化合物时收集尽可能多的信息。■ T-Wave经证实的碰撞室技术,可提供快速、高质量、UPLC兼容型的MS/MS数据采集。易用性■ 工程精简在可保证您不断取得成功的卓越技术支持的帮助下,确保在设置、样本运行和数据解释方面以最小的工作量实现最佳的系统性能。多用途■ 通用离子源结构:改变您的离子源,而非您的仪器拥有服务于最广泛应用的最大界面选择范围。当您需要某些选项而又时间紧迫时,可在离子源之间进行快速转换,几分钟内即可使用。 RADAR因其拥有可在MS、MS/MS、正负离子模式之间进行不牺牲任何模式下性能的快速转换能力而成为了唯一的可能。RADAR因其拥有可在MS、MS/MS、正负离子模式之间进行不牺牲任何模式下性能的快速转换能力而成为了唯一的可能。 信息富集型数据■ RADARTM,揭开样本的神秘面纱这是一种信息富集型数据采集方法,既可使您采集高度特异性的目标化合物定量数据,又可对样本基质中的其他所有组分进行同步可视化。通过同步采集MRM和全扫描模式的数据而实现的。另外,RADAR可采集正负离子全扫描质谱中的所有可检出离子,这为您提供了之前无法从传统定量分析中获取的深层次样本信息。 实用的定量工作流程:从样本制备到数据分析,Xevo TQD系统解决方案服务于您的每个工作步骤,让您对结果放心准备借助诸如Oasis、Ostro&trade 和DisQuETM分散型SPE等经验证的样本制备工具,可确保测定项目能更稳定、更快速和更高效地进行。IntelliStart&trade 可通过能自动运行常规任务并减轻复杂操作负担的用户友好型界面而简化系统设置,帮助每个人都成为质谱专家。这项技术通过快速而可信地产生最高质量且重现性好的UPLC/MS/MS数据,确保各个层次的科学家都能完成仪器操作。我们的可扩展、可搜索QuanpediaTM数据库可对定量LC/MS/MS方法信息进行高效管理和优化,其中包括MRM的自动安排以及采集和处理方法的自动生成。分析快速、不间断的样本分析需要一台稳定而可靠的系统。自动化实时质控检查确保了有用样本不被损耗;如果未达到您的质控容限,QCMonitor将自动发送一封电子邮件通知您,这样不会损耗您的宝贵样本。解释通过以前所未有的能力自动处理、直观显示、比较和解释最复杂的数据,可重新定义您的分析工作流程。然后通过目标MassLynx&trade 管理系统将其快速转化为有意义的信息。TargetLynx&trade 可精简定量数据的复核和报告程序,通过提供关于质控检查和结果的清晰概览而尽可能减小出错概率。 决定更快得出答案&mdash &mdash 用TrendPlot标记超限的结果、质控趋势和方法性能。消除您对大量数据结果的疑虑,使您能够将其快速送达您的客户。利用MassLynx和NuGenesis SDMS软件,可比以往更加方便地管理和操作数据结果。由于能编写可集中存储的清晰报告并能在整个机构内共享,因此您可以比以往更快更好地作出决策。Xevo的强大功能不论您进行何种定量应用,Xevo串联四极杆系列都能符合要求。无与伦比的可靠性、灵敏度和易用性使Xevo串联四极杆系列产品臻于完美。可在您需要时提供结果,并帮助您解决复杂的科学难题。Xevo TQD、Xevo TQ MS和Xevo TQ-S为定量UPLC/MS/MS应用而设计;您能对最复杂样本中甚至极低浓度水平下的微量组分进行定量和确认。最重要的是,每台Xevo系统使您能以前所未有的速度轻松实现您的目标。利用MassLynx和NuGenesis SDMS软件,可比以往更加方便地管理和操作数据结果。由于能编写可集中存储的清晰报告并能在整个机构内共享,因此您可以比以往更快更好地作出决策。Xevo的强大功能不论您进行何种定量应用,Xevo串联四极杆系列都能符合要求。无与伦比的可靠性、灵敏度和易用性使Xevo串联四极杆系列产品臻于完美。可在您需要时提供结果,并帮助您解决复杂的科学难题。Xevo TQD、Xevo TQ MS和Xevo TQ-S为定量UPLC/MS/MS应用而设计;您能对最复杂样本中甚至极低浓度水平下的微量组分进行定量和确认。最重要的是,每台Xevo系统使您能以前所未有的速度轻松实现您的目标。
  • 赛默飞成功举办第七届稳定同位素比质谱仪用户交流会
    2014年6月18日,上海——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在成都峨眉山世纪阳光大酒店成功举办第七届稳定同位素比质谱仪用户交流会。翠色山峦下,花溪迎曲巷,风景如画的峨眉山迎来了本次会议的参会人员共计100余人,环境、地质、海洋、生态、食品安全等多个行业的稳定同位素比质谱仪资深用户,出席了本次会议。 赛默飞无机质谱销售经理为大会做了开幕致辞,60多年以来,赛默飞始终是稳定同位素分析仪器的领先的供应商,其中,稳定同位素比质谱仪作为无机质谱产品线上最重要的组成部分,提供了久经考验的全球经销、支持和服务网络,在同位素分析领域已获得无数客户的满意和信赖,目前越来越广泛地应用于各行各业。赛默飞无机质谱销售经理 赛默飞无机质谱产品专员为大家介绍了近期发布的稳定同位素分析仪器三款新产品,分别为Delta Ray、MAT253 Ultra和新一代GC – IRMS。1. 小巧便携的Delta Ray稳定同位素比红外光谱仪,采用了DFG中红外激光差频发生器,引用了基于ConFlo IV – IRMS技术的URI万用参考气接口,第一次将气体稳定同位素比的测定从实验室移到了野外,实现了大气CO2同位素比的原位连续观测,获得了CO2的δ13C和δ18O及其浓度的高测定精度和准确度,Delta Ray在碳储量和碳封存、温室气体监测、植物生态学和火山监测等研究方向具有广阔的应用空间。2. MAT253 Ultra 高分辨率稳定同位素比质谱仪,采用了双聚焦磁分析器等新设计,大大提高了质量分辨率,足以区分实际质量非常接近的同位素体,同时,增加了二次电子倍增器,大大降低了检测器的噪音信号,有效地检出了丰度极低的同位素体,针对当前的热门研究——利用耦合同位素 (Clumped isotope)确定矿物形成温度,MAT253 Ultra在测定耦合同位素方面越来越不受到仪器技术的限制。3. 新一代GC – IRMS,采用了最新的前端处理装置,即TriPlus RSH自动进样器、TRACE 1310 GC专用气相色谱仪和GC IsoLink II燃烧和转化单元,色谱分离更彻底,模块化程度更高,连接更简便,而且还能与Thermo ScientificTM的GC-MS系列产品中的任何一款台式质谱仪(例如ISQ单四极杆质谱仪)相结合,组成GC – MS – IRMS联用系统,只需一次注射,即可同时获得复杂混合体系中的每一个目标化合物的结构特性和同位素比信息。Delta Ray、MAT253 Ultra和新一代GC – IRMS三款新产品可作为现有的稳定同位素仪器技术的扩展和补充,为目前开展的更高端、更前沿、更专业的稳定同位素示踪技术与热点应用提供了新的契机。 赛默飞无机质谱产品专员 赛默飞亦有幸邀请到了中科院南京土壤研究所、同济大学、中科院地质与地球物理研究所、中国食品发酵工业研究院、国家地质实验测试中心、广东石油化工学院、核工业北京地质研究院、中科院微生物研究所、河北农科院遗传所、中科院地质古生物研究所等16位特邀专家出席了本次会议,并为本次会议奉献了精彩的报告。 稳定同位素比质谱仪用户交流会的精彩瞬间 赛默飞2014稳定同位素比质谱仪用户交流会合影留念 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 【新品速递】安全、稳定、高效的天隆20合1采样管上市啦
    近日,国务院应对新冠疫情联防联控机制(医疗救治组)印发《关于新冠病毒核酸20合1混采检测技术规范的通知》,在目前已有10合1混采检测技术的基础上,明确了新冠病毒核酸20合1混采检测(20-in-1 test)技术规范。天隆20合1采样管上市天隆科技迅速响应国家号召,推出20合1采样管(内含样本保存液),大幅提升了新冠病毒核酸检测的能力和效率,适用于大规模人群核酸筛查工作,能为新冠疫情的有效快速防控提供有力保障。产品特点安全:含有病毒灭活成分,生物安全性高,降低了操作人员被感染的风险。稳定:含有抑制核酸酶活性成分,能保持样本稳定,避免核酸降解,保证检测结果的准确性。高效:粉红色液体,便于样本吸取及加样,采样管可适配天隆全自动样品处理系统等自动化设备,大大提高样本的检测效率。合规:采样管材质、规格及保存液性质等完全符合最新技术规范的要求。多种采样管满足多场景应用针对不同的场景需求及技术规范,天隆科技不仅可以提供20合1混采,还可提供单采、10合1等多种采样规格产品,满足疫情防控所需。产品信息储存条件及有效期:室温保存,有效期24个月使用方法天隆新冠病毒核酸检测整体方案基于多年在分子诊断、核酸检测领域的技术积淀,天隆科技可提供从样本采集、核酸提取、核酸检测等系列设备、试剂及实验室建设等多种新冠核酸检测解决方案,全面满足复杂疫情防控形势下的各种检测需求。未来,天隆科技将持续创新,推出更多优质产品,为守护全人类健康贡献“利”器。
  • 致力高效稳定节能 半导体行业数字化需求旺盛
    与大多数行业一样,电子半导体行业也正面临着劳动力短缺、投资资本减少等各种挑战。企业要如何应对?AVEVA剑维软件中国区售前技术总监曹科告诉中国工业报记者,半导体行业发展至今,已形成复杂的生态系统。半导体制造企业需要运用高效的解决方案,通过数字化运营,实现信息化、精益化、流程无断点及能耗可视化。数字化转型需求旺盛从传统的石油石化行业到半导体行业,都在进行数字化转型。曹科表示,“半导体企业覆盖原材料、晶圆、集成电路以及下游的生产应用,产业链非常长,可以进行数字化的环节非常多。从我们对行业的观察来看,它对整个数字化转型的需求以及敏感度非常强。”曹科给出了一组数据:2021年,国内集成电路全行业销售额首次突破万亿元,2018—2021年复合增长率为17%,是同期全球增速的3倍多。“这是整个产业数字化转型发展的机遇。但半导体行业要实现数字化转型,并不能一蹴而就,还面临不少挑战。”曹科表示,一是各个数字化厂商底层数据之间不贯通,各个数字化软件之间的数据接收以及数字化标准通讯方面还存在差异,给企业的生产运营带来一定的挑战,很容易在企业内部形成数据孤岛。二是每个企业应用数字化解决方案的水平参差不齐,导致数字化发展水平不一致。三是近年来,国家政策的引导以及大量资本的涌入,使得半导体企业数字化发展非常迅速,但数字化手段以及数字化工具的跟进还存在一定落差。曹科表示,AVEVA剑维软件作为一个厂商,更多的是引导和融合生态伙伴,一起为用户提供一站式的解决方案。“从数字化的角度来讲,我们不仅需要厂商做更多的研究和创新,也需要集各家所长,发挥整体生态的作用来推动整体转型。”曹科说道。助力产业减碳半导体是能源、水、化学品和原材料的资源密集型产业,应如何利用数字化方式解决碳排放问题?中电智维(上海)科技有限公司(以下简称中电智维)总工程师华来珍告诉记者,对于半导体产业来讲,碳排放主要由两大部分组成,一是厂务系统,二是工艺生产系统。而高制程的半导体产业,在工艺生产系统上节能空间有限,更多的需要在厂务系统中做节能降耗的工作。华来珍介绍,对于工程总承包企业而言,在规划建设阶段,中电智维会从规划设计端开始,进行节能降耗设计理念的植入。在系统建造阶段,通常会搭建能源管理系统,进行数据信号采集以及系统的基层集成等。在运营维护阶段,会通过技术或者管理的改善,采取相应的节能降耗措施。“希望能够进一步加强与AVEVA剑维软件的深度合作,同时加强自身的研发能力以及对软件二次开发的能力,以便基于具体的业务场景开展定制化的合作。”华来珍说道。改善工艺生产半导体行业的数据庞大,如何把这些数据梳理出来?中电智维副总经理张小敏表示, AVEVA剑维软件跟中电智维通过数据做总结,让数据真正为客户所用,并延伸到客户的日常运营中。张小敏认为,半导体工厂的建设,投入资金量比较大,后期会面临运维的挑战,也就是工厂建完之后,水电气等能耗如何管理。而通过AVEVA System Platform等工具处理数据,以及通过中电智维的中电易维iFOMS软件平台,可以给客户提供透明、可视化的数字化工厂,助力半导体工厂突围。提高生产过程稳定性工业软件能够给半导体企业带来哪些方面的提升?曹科介绍,在AVEVA剑维软件产品研发的过程中,运用了人工智能、云平台、大数据、工业物联网和边缘计算。人工智能,是通过不断数据采集、数据分析和优化,为半导体企业中的核心设备或生产提供预测,从而提高设备的可操作性或者稳定程度。工业大数据是工业制造各个环节都离不开的有力支撑。随着半导体企业的发展,产线越来越大,运用工业大数据有助于提高整个生产过程的稳定性。“未来在很多的系统里,我们都会采用自动化方案,特别是混合现实、虚拟现实方案,开启工业元宇宙。通过这样混合现实的应用,赋能员工,提高整个生产或者是操作过程中的稳定性,从而满足半导体企业对稳定和高效的两个要求。”曹科说道。
  • 稳定高效的纳升二维分离技术-在线双反相色谱
    贾伟沃特世科技(上海)有限公司实验中心对于微量而且复杂的样品,如蛋白质组学样品、蛋白药物中的残留宿主细胞蛋白(HCP)等,不但需要高灵敏的纳升级液相,而且需要更为充分的分离。在线二维纳升分离技术(on-line 2D NanoLC)应运而生,并已成为微量复杂样品液质分析所必不可少的分离手段。 传统的纳升在线二维技术,一般采用强阳离子交换(SCX)作为第一维,反相色谱(RP)作为第二维的分离手段。这种方法是根据样品在盐溶液中的离子特性与疏水性,这两种属性间的正交关系实现的。但是SCX-RP技术在纳升级分离中却困难重重。困难主要来自SCX分离维度。在SCX分离中需要使用浓度较高的盐溶液作为流动相,但含盐流动相易发生盐析或导致样品在管路内沉淀,而纳升液相的管路内径又非常小(25-100微米)。因此,在实际运用SCX-RP分离时,经常出现管路阻塞而导致实验失败。 为此,除提供传统的SCX-RP分离技术外,沃特世创造性地开发了双反相二维分离方法。(RP-RP)。这种RP-RP技术不必使用高浓度盐溶液作为流动相,避免了离子交换分离易造成的管路阻塞问题,从而大大提高了纳升二维液相的系统稳定性和实用性。更令人兴奋的是,经过哈佛医学院的Jarrod A. Marto全面的实验对比发现,较SCX-RP方法, 运用RP-RP分离技术得到的液质分析结果更好(图1)[1] RP-RP双反相二维方法可以帮助科学家得到更多的蛋白质分析结果.这是因为:1、SCX方法使用的盐缓冲液易产生离子噪音背景,从而影响质谱数据质量;2、SCX分离效果取决于多肽所携带的电荷数,而多肽携带电荷数量类别有限,因此第一维SCX分离度较差,造成液质数据信息质量不高。图一R P-R P双反相分离技术在第一、第二维都使用了反相色谱,那么它是如何实现二维分离所必须的分离性质的正交呢?原来,经过研究发现,在不同pH值环境下,多肽的反相保留行为是不一样的(图2)[2]。根据这个性质,沃特世的科学家开发出了独有的RP-RP纳升在线二维系统——nanoACQUITY UPLC System with 2D-LC。这个系统的分离柱,使用了UPLC一贯的亚二微米颗粒填料,因此具有了UPLC的超高分离度等优点。此外,它还不需要分流就可以实现精准的纳升流速,可为实验室节省巨大的高纯度流动相购买费用及废液处理费用,而且更加环保。nanoACQUITY UPLC System with 2D-LC双反相二维系统优点总结如下:■ 较SCX-RP技术,使用RP-RP系统可得到更多的蛋白鉴定结果。■ RP-RP系统较SCX-RP系统更稳定、耐用。■ 与nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分离效果。■ 不分流实现精准的纳图二nanoACQUITY UPLC System with 2D-LC双反相在线二维系统结构及分析流程如图3,其中包括三根色谱柱:高pH反相柱、捕获柱、低pH反相柱。在此系统中,第一维色谱柱为高pH色谱柱。样品进入第一维色谱柱后,第一维梯度泵可按使用者要求,自动地阶梯式提高有机相比例,以将样品中不同疏水性肽段分批洗脱下来。从高pH反相柱上洗脱下的多肽会被富集柱捕获。每批次被富集的多肽,将在第二维泵的线性梯度模式下进入低pH反相分析柱,在这里经过充分分离后,样品将到达离子源,进入质谱分析器。 其中左下图为结构示意图。步骤①:样品被自动进样器采集后,在第一维梯度泵的推动下进入高pH色谱柱。步骤②:样品在第一维泵阶梯式梯度作用下,将一部分多肽冲出,后被捕获柱富集。其中第二维梯度泵通过施加9倍于第一维泵的水相流动相,将溶剂稀释为适合捕获柱富集的体系。步骤③:在六通阀切换后,第二维泵通过线性梯度,将多肽样品进行充分分离并送至质谱分析。在执行完步骤①后,步骤②与步骤③交替进行直到完成所需分析。双反相在线二维系统nanoACQUIT Y UP LC System with2D-LC已经在多肽的液质分析方面被广泛应用,帮助研究人员取得了众多极具价值的研究成果。图3. nanoACQUITY UPLC System with 2D-LC系统结构及分析流程图。参考文献(1) Zhou F, Cardoza JD, Ficarro SB, Adelmant GO, Lazaro JB, Marto JA. Online Nanoflow RP-RP-MS Reveals Dynamics of Multicomponent Ku Complex in Response to DNA Damage. J Proteome Res. 2010, 9, 6242-6255.(2) Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensionalseparation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005, 28, 1694–1703. 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 天美:短期无集资需要 内地业务稳定增长
    从事制造及分销实验室仪器的天美今日以介绍形式于主板上市,公司主席兼行政总裁劳逸强表示,公司短期无集资需要,但不排除有需要时会集资。  该公司生产的科学仪器涵盖15-16个领域,包括政府化验所、食品监测及大专院校实验室,他指,近年内地关注食品安全,该方面的增长强劲,但由于公司积极发展亚洲其它市场,内地业务占比有所下降,惟强调,内地业务仍在稳定增长。  他补充,欧洲业务占公司营业额约10-12%,又指,不担心欧债危机影响当地市场,因为公司主要生产中价型仪器,在经济不明朗下,客户倾向采用实用的仪器。
  • 理加联合成功参加第三届全国稳定同位素生态学研讨会及技术研修班
    2016年11月28日-12月1日,第三届全国稳定同位素生态学研讨会及技术研修班暨中国生态学会稳定同位素生态专业委员会2016年学术年会在深圳金百合大酒店成功召开。来自清华大学、北京大学、复旦大学、深圳大学、厦门大学、吉林大学、南京信息工程大学、中国农业大学、中国海洋大学、中科院系统等单位近300名生态专家学者齐聚鹏城,参与了此次盛会。 应主办方盛情邀请,北京理加联合科技有限公司(以下简称:理加联合)参加了会议,展示了我们在激光稳定同位素领域的最新技术,培训了lgr激光稳定同位素分析仪的操作技巧,为用户讲解了lgr仪器的最新应用。11月28日-11月29日,第三届全国稳定同位素生态学研讨会 大会由稳定同位素生态专业委员会秘书长喻朝庆教授主持,清华大学深圳研究生院康飞宇院长、中国生态学学会刘世荣理事长、清华大学地学中心生态学科负责人林光辉教授分别为本次会议致辞,欢迎前来参会的老师,预祝会议圆满成功。 在会上,我们向参会老师展示了LGR便携式CH4、CO2、H2O、NH3分析仪,SF-3000土壤气体通量测量系统和PS-3000便携式土壤气体通量测量系统。 更值得一提的是,理加联合执行董事李晓波博士给参会老师讲解了LGR OA-ICOS激光稳定同位素分析仪与痕量温室气体分析仪的功能、应用与实践案例。 报告结束后,与会学者对LGR激光稳定同位素分析仪表现出浓厚兴趣,并与我们的工程师在研发项目的进展与需求方面做了深切交流。与会学者表示,稳定同位素技术在现代生态学的发展中起着极为重要的作用,美国LGR公司的OA-ICOS技术能够快速、连续、精确的测量同位素,对于生态学研究而言,尤其是稳定同位素生态学研究,有重大的意义。 11月29日,理加联合工作人员精心为各位与会学者准备了晚宴,在晚宴上,李晓波博士代表理加联合全体同仁,祝贺研讨会的圆满成功,并预祝为期两天的研修班顺利举办,期盼每一位参会的学员都能够有所收获,满载而归。在晚宴过程中,我们举办了别开生面的抽奖活动,由中国科学院地理科学与资源研究温学发研究员主持,将现场气氛一次又一次推向高潮,一等奖无人机最后由中国农业大学资源与环境学院的张茹楠获得。11月30日-12月1日,第三届全国稳定同位素技术研修班培训仪器:LGR 水同位素分析仪,LGR 二氧化碳同位素分析仪,LGR 氧化亚氮同位素分析仪,LGR 便携式CH4、CO2、H2O、NH3分析仪,SF-3000土壤气体通量测量系统,PS-3000便携式土壤气体通量测量系统,LI-2100全自动真空冷凝抽提系统 为了确保每位学员都能在专业的技术工程师指导下,亲自动手操作仪器,研修班采用小班教学方式,分三组进行。 研修班开始,中国科学院地理科学与资源研究所生态系统观测与模拟重点实验室温学发研究员给各位学员讲解了“稳定同位素红外光谱(IRIS)技术测定碳水稳定同位素的校正策略”。 随后,理加联合执行董事李晓波博士给各位学员讲解了基于OA-ICOS技术的LGR激光稳定同位素分析仪的技术、应用和操作技巧。 最后,各位学员在李晓波博士、技术部经理陈滨和区域经理赵晓军的指导下,亲自动手操作仪器、学习操作技巧、观测仪器数据。 通过这次系统的培训、讲解、实践操作,各位学员更深入的了解了LGR OA-ICOS激光稳定同位素技术,更熟练的掌握了lgr仪器的操作技巧,更广泛的拓宽了LGR仪器的应用领域。 本次会议,将众多生态学者聚集到一起,共同探讨稳定同位素测量技术,加强了我国稳定同位素生态学者之间的交流,及时跟进了国际最新研究前沿,推广了稳定同位素技术在我国生态学各领域研究的应用。关于理加联合 理加联合成立于2005年,是一家专业的生态环境仪器供应商和技术服务商。主要产品涵盖稳定性同位素测定、痕量气体测量、地物光谱测量、高光谱成像测量、大气空气质量监测、水化学分析、野外便携和长期监测分析仪器。 理加联合先后为国内的权威研究机构、著名大学和政府监测部门提供了大量国际领先水平的仪器。公司先后获得了多项“211”工程,“985”工程,水利部“948”项目、农业部“学科群”项目、中国生态系统研究网络(cern)、中国森林生态系统定位研究网络 (cfern)的大额订单。这既是用户对我们的支持与信赖,也是对我们的服务能力和水平给予的充分认可。主要代理产品美国LGR公司激光痕量气体和稳定同位素分析仪美国ASD公司地物光谱仪意大利AMS集团全自动化学分析仪和流动分析仪美国CSI公司闭路涡度相关和大气廓线测量系统美国RESONON公司高光谱成像仪美国Thermofisher Scientific公司气体分析及颗粒物监测产品系列美国Agilent公司傅里叶红外光谱仪加拿大ITRES高光谱成像仪
  • 同位素 | 利用稳定同位素研究亚高山生境植物水源差异
    水分是植物生长不可或缺的因素,水分有效性的波动直接影响植物的生长、数量和空间分布。在全球气候变化下,区域降水格局已经发生了改变。植物不同水源的贡献率反映了生态系统对气候变化的响应程度。因此,追踪和分析植物水源可以为研究全球气候变化提供参考。祁连山位于青藏高原东北缘,是中国西北地区重要的生态屏障。因此,研究亚高山生境植物水源对于理解祁连山生态和水文过程具有重要意义。已有很多学者利用氢氧稳定同位素(δ2H和δ18O)进行了诸如此类的研究,但关于亚高山生境不同坡向植物水源的研究鲜少报道。基于此,在本研究中,来自西北师范大学和中科院西北生态环境资源研究所的研究团队监测了青藏高原东北缘祁连山东段冷龙岭北坡的上池沟(37°38′10″N,101°51′9″E,3080 m a.s.l.,图1)的降水、土壤水、木质部水、降水和泉水的稳定同位素组成以及相关环境变量(气象和土壤水变量),利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和木质部中的水分,并利用ABB LGR T-LWIA-45-EP液态水同位素分析仪测定所有水样的δ2H值和δ18O值。基于这些数据,分析了不同水体稳定同位素的变化,并利用多源线性混合模型(IsoSource)计算不同水源对植物的相对贡献率。本研究目标是:(1)观察相同和不同生境下亚高山灌木的水源以及(2)研究亚高山灌木对水源变化的适应性。图1 研究区和采样点位置。【结果】图2 不同水体δ2H和δ18O之间的关系。图3 半阳坡和半阴坡不同亚高山灌木的水源。表1 亚高山灌木主要水源及其贡献率。图4 5-12月半阳坡不同亚高山灌木的植物水源。图5 5-12月半阴坡不同亚高山灌木的植物水源。【结论】青藏高原东北缘的亚高山生境中灌木的水分吸收特征相似。特别是灌木木质部水分主要来源于0-30cm土壤水。在降水量少或需水量大的月份,同一生境的亚高山灌木争夺浅层土壤水。在此期间,为了满足生长所需的水分,一些亚高山灌木增加了对深层土壤水的利用,导致同一生境中亚高山灌木水源存在明显差异。同样,在旱季或生长季,半阳坡或半阴坡的亚高山灌木对深层土壤水的利用增加,导致不同生境中同一亚高山灌木物种水源存在显著差异。与其他亚高山灌木相比,杯腺柳(Salix cupularis),山生柳(Salix oritrepha),金露梅(Potentilla fruticosa),硬叶柳(Salix sclerophylla),烈香杜鹃(Rhododendron anthopogonoides)和 陇蜀杜鹃(Rhododendron przewalskii)根据降水和土壤水条件改变了其水分利用模式,表明其具有较强的环境适应性。在全球变化背景下,为了恢复亚高山生态环境,应选择能够在旱季或生长季调整其水分利用策略的灌木树种。请点击下方链接,阅读原文https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310499&idx=1&sn=50381317af5c0f25d0739b6cbcdcfa3f&chksm=bee1ab9c8996228a367dd8cc6f778f80a7deff7b49c807bac194f912428231318b4544693e27#rd
  • 2022 Medtec中国展参观渠道开放,800+参展企业将助力稳定供应链
    2022 Medtec中国展参观渠道开放,800+参展企业将助力稳定供应链中国医疗器械进入黄金发展期,市场规模将达万亿,医疗器械生产制造商仍需不断加强自主研发和创新能力,稳定本土医疗器械设计研发制造技术供应链,将中国医疗器械推向全球领先的新高度。Medtec中国展深谙当下行业发展关键点及痛点,17年来专注于上游领域医疗器械创新制造,坚持通过高效联结、精准匹配优质供应的模式,构建全局、高效、开放的医疗器械设计与制造资源一站式采购平台。2022Medtec中国展将于8月31日-9月2日在上海世博展览馆举办,预计将有800家企业参展,包括3M、日立、相干中国、ZEUS、路博润、发那科、ELGILOY、米克朗、通快、韦恩堡、吉达优、泰科电子、美好创亿、特瑞堡、迈得医疗、迈图、脉通、崇湛智能、美国TA仪器、日精、中兴化成等海内外知名企业。展会同期围绕法规/质量/技术/市场四大板块,举办80余场会议活动,为观众提供三天丰富的学习机会。观众参观预登记注册渠道现已全面开通,点此立即预登记免费参观,与上万行业专家聚在一起探究技术趋势。2020Medtec中国展“火爆”现场国内外品牌亮相Medtec中国展,品质资源加持医疗器械制造技术距离展会开幕不到5个月,已经有超过700个国内外知名品牌确认亮相2022 Medtec中国展。16年来,不断有新的优质企业入驻Medtec,多年参展的企业也具有强有力的研发能力,每年都有新产品新技术为医疗器械生产制造企业提供优质解决方案。从设计研发服务、医用材料、精密部件、自动化设备,到精密加工技术、管件和挤压加工、合同制造服务再到表面处理、包装和消毒及咨询服务等,Medtec 中国展的展品涵盖整个医疗器械生产全产业链,为医疗器械设计研发工程师提供高效、优质、品质、多元的研发采购平台。医用材料是Medtec中国展强势品类之一,医用金属以及医用橡塑材料的头部企业们悉数参展:韦恩堡、庄信万丰贵金属、田中贵金属(上海)、ELGILOY特种金属、三铃制线、江阴佩尔、麦迪斯、美国奥博锐、古河科技、沈阳中核舰航、路博润、NuSil、迈图、科思创、艾曼斯、塞拉尼斯、索尔维、龙海化工、江苏君华等。精密部件有特瑞堡、立洲、柏中、科思纳、汉科、景腾精工、固源、方驰、山特维克、爱沃、德科精密、爱芮斯、瀚尔馨、煜兴、美威尔、富驰、右黎科贸、埃普特、嘉杰、阿仕顿等国内外领先供应商亮相,覆盖金属、橡胶及医用导丝等精密部件,帮助医疗器械厂商研发生产高性能精密专业的系统。医疗制造自动化设备参展企业包括:米克朗、发那科、帝目、赛能、采万格、迈得、烽禾升、Kahle Automation、儒拉玛特、上海崇湛、艾利特、北诚、欧赛斯、天柯、宁波台基、均普工业、上海紫凯等。部分德国企业将在德国展团与其它20多家企业一道展出产品和设备,希望德国企业优质的技术和服务能给医疗设计和制造提供全新的视角和思路。管件和挤压加工和医用包装两大传统强势品类也吸引了众多国内外企业入驻,包括Zeus、Creganna、Telflex、戴维斯、卡尔托利、金子电线、海瑞嘉、圣安、翊科、金纬管道、道畅、朗医、拓迈、奥珂瑞、海医达、贝里精英包装、安姆科、科佩、鹏达、奥力拓医用包装、帕科、香港奥星、金澳威、华冠、诺洁、奥派、创捷、中田、万驰、美得康、圣普亚等。2020Medtec中国展部分展品合同制造展商诺美德科、迈普、法福来、罗斯蒂、明尼苏达、格雷斯海姆、卡柯洛、汉康、奥勒斯、戴圣思、山特维克Exera、锐嘉、美东汇成、森骏、驼人、三品医疗、东易科技、运怡、煜昊、贝德也纷纷齐聚2022 Medtec中国展现场。他们专注于为客户提供专业设计和定制开发,期待观众到展会现场参观,享受一站式、端对端的高质量服务。点击进行预登记,与合同制造展商一同探索行业亟待解决的技术难点。高端有源设备和IVD产品自疫情开始一直是关注焦点,Medtec中国展拓展相关资源,引进不少医疗电子、内窥镜/IVD研发与生产服务商: 日立、日臻、孚蕊哲、欧卓斯、砷泰中国、通鉴、格兰拓普、宏旭、思脉得、视疗、南雅富林、为实光电、夸迈、瀚越、智捷、顺谱等。他们均致力于光电产业研发,在2022 Medtec中国展为医疗行业客户提供全套技术解决方案。点击了解更多2022展商名录观众与展商在探讨医疗器械前沿技术大咖云集共襄医疗盛会,思维碰撞洞见行业新势2022年Medtec 中国展同期峰会围绕法规、质量、技术、市场等四大板块,共策划20场主题会议活动(详情请看下图)。目前来自国家食品药品监督管理总局高研院、FDA、中国药品生物制品检定所、上海食品药品监督局、北京大学、华中科技大学、上海交通大学、通快、迈图、汉高乐泰、埃万特等权威机构、高校和知名企业的专家学者或将作为会议的演讲嘉宾,分析行业前沿发展动态及研究新成果。点击了解更多2022 Medtec 中国展精彩会议活动及议题2022 Medtec中国展同期会议活动一览创新技术论坛和法规峰会2022的法规板块将继续探讨热门法规的更新与应对,质量论坛则聚焦于医疗产品生命周期风险管理和疫情下FDA的政策变化及工厂检查。技术论坛今年共策划15场主题,深挖不同细分领域工程师面临的技术难点,全方位多角度解决技术问题——医用材料/配件及精加工医疗器械包装与灭菌、医疗器械设计、医疗粘结与焊接技术、牙科的核心部件与产品、新型医用敷料技术和高分子材料应用等。今年打造全新“高端有源医疗设备核心部件与技术论坛”专题会议,从目前行业热议的内窥镜、高端影像设备、家用医疗设备、手术机器人、增材制造等话题切入讨论高端产品技术。Medtec 中国展通过一场场干货分享深化行业交流与合作,为业内人士探讨经验、拥抱医疗行业变化提供平台。点此立即报名参观2022Medtec中国展,即可免费参与同期现场技术会议活动。Medtec中国展将汇聚近800家来自全球近27个国家的优质品牌供应商,为中国医疗器械生产厂商提供产品研发、生产、注册所需的设计及软件服务、原材料、精密部件、自动化制造设备、超精加工技术、合同制造、测试和认证、政策法规和市场咨询服务,搭建行业一流的高效采购平台。2022 Medtec中国展预登记通道正式开通,立即报名即可免费登记参观,提前报名享多重超值好礼。预登记渠道和方式如下:1、在线登记登陆Medtec中国展官网www.medtecchina.com填写资料在线登记;2、微信登记加入“medtecchina”微信公众号,输入“参观登记”,快速登记。或点击链接完成预登记;3、电话登记拨打观众专线010-6562 3308,进行电话登记;4、团体登记如您的公司有10人或以上同事来参观2022 Medtec中国展,致电010-6562 3308办理团体预登记。获取更多信息,请访问Medtec中国展官方网站:www.medtecchina.com参展报名、参观咨询及媒体合作,请联络: 李娜 电话:+86 10 6562 3308 邮箱:carina.li@informa.com Medtec中国展组委会
  • 大昌华嘉成功举办IsoPrime稳定同位素质谱仪应用研讨会
    大昌华嘉商业(中国)有限公司携手Elementar上海技术中心的工程师于10月26日在上海海洋大学海洋科学学院成功举办的 IsoPrime稳定同位素质谱仪应用研讨会。 当前在中国,稳定同位素质谱仪的应用正在蓬勃发展,各方面的需求正在释放出来,尤其在食物的来源和污染源的示踪方面受到非常大的关注。上海海洋大学已经开始了鱼群食物链的研究,也有着更深的应用要求。本次应用研讨会提供了稳定同位素质谱仪的基础知识和Isoprime同位素质谱仪的介绍,旨在提高Isoprime稳定同位素质谱仪的操作和应用水平。 上海海洋大学海洋科学学院陈新军院长致辞 Elementar 上海技术中心叶昌强经理、邓好工程师和何斌工程师和牟志峰工程师就Isoprime稳定同位素质谱仪的仪器原理、构造、维护以及相关应用给予详细地介绍,共同交流技术,开展合作项目。大昌华嘉蒋海工程师掌握了大量的第一手的市场需求和信息,就稳定同位素市场的发展现状和应用前景展开报告。Elementar技术中心工程师讲解稳定同位素质谱的理论和仪器应用 关于大昌华嘉大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪-美国麦奇克(MICROTRAC)公司视频光学接触角测量仪、表面/界面张力仪-德国克吕士(Kruss)公司比表面/孔隙度分析仪&mdash 日本拜尔BEL公司密度计/旋光仪/折光仪/糖度仪-美国鲁道夫(Rudolph)公司全自动氨基酸分析仪-英国Biochrom公司元素分析仪、TOC总有机碳含量分析仪、稳定同位素质谱仪-德国elementar公司薄层扫描仪、点样仪-德国迪赛克(DESAGA)公司近红外分析仪-德国优泰科(ZEUTEC)公司水份活度仪-瑞士novasina公司凯氏定氮仪-德国贝尔(behr)公司高压反应釜-瑞士premex公司全自动反应量热仪-瑞士Systag公司LB膜分析系统&mdash 芬兰Kibron公司颗粒图像分析系统&mdash 挪威AnaTec公司粉末流动性分析仪&mdash 英国康普利COPLEY公司
  • 稳定性线下课程-如何使用Turbiscan分析配方的不稳定机理,如何以数据微基础有效的改善配方,制定质控标准
    大昌华嘉科学仪器部重磅发布稳定性分析线下系列讲座,课程议题是如何使用Turbiscan分析配方的不稳定机理,如何以数据微基础有效的改善配方,制定质控标准。线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!课程详情主讲专家介绍何羽薇何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到哪些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程连续举办4期,每期3天:上海,10月14-16日收费标准本次线下课程为收费培训,市场价格3500元/人。开课前10天报名享优惠价格,2800元/人。本次课程开班人数最低为15人,报名满15人开班,不满暂不开班,请感兴趣的朋友踊跃预报名。报名方式:联系人:李文艳 电话:13811359706/4008210778邮箱:swallow.li@dksh.com或者识别以下二维码报名~
  • 赋能高质量土壤普查 | ICP-OES让“精准”结果稳定输出!
    个明天(2022年4月22日),我们将迎来第52个世界地球日。今年世界地球日的主题是“Invest In Our Planet”,珀金埃尔默始终致力于人类健康和环境安全,在此共同呼吁:投资保护我们的地球,它是我们唯一的家园,每个人都需付诸行动!土壤和沉积物是地球必不可少的组成部分,对粮食的安全有着重要的作用,本期我们继续关注土壤普查。上期回顾:赋能高质量土壤普查,珀金埃尔默原子光谱“精准”出击土壤普查是查明土壤类型及分布规律,查清土壤资源数量和质量等的重要方法,普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。土壤中的元素组成对土壤质量有着重要的影响,并且也与人类和环境的健康密切相关,因此土壤中重金属及元素检测也是本次土壤普查的重要内容。ICP-OES因具有多元素同时测量、灵敏度高、检出限低等优点,被广泛用于实验室的土壤分析领域。本次土壤普查中涉及到ICP-OES的元素也有很多,主要包括:B、Mg、Al、Si、P、S、K、Ca、Cr、Mn、Fe、Ni、Cu、Zn 、Mo、Pb等元素,这些元素有的是做土壤中总量的,有的则是有效态等非总量元素,每种类型参考的方法也有所不同。Avio 200/220 Max系列ICP-OES让土壤检测的 “精准”结果稳定输出!高灵敏度无惧低含量元素分析挑战土壤中部分有害元素含量较低,尤其是Pb、Cd等元素,采用ICP-OES分析时往往需要较高的灵敏度。Avio 200/220 Max系列ICPOES由于其独特的光路设计和强大的DBI-CCD检测器,具有高效的光能传输与转化,使其获得远优于同类产品的灵敏度,可替代石墨炉进行超痕量元素分析。全面的扣背景技术轻松解决背景干扰土壤基质中元素组成复杂,对于一些低含量元素会受到较为严重的光谱干扰,如铅(220.353)的会受到基体中高含量铝元素形成的光谱背景干扰。Avio 200/220 Max系列具有全面的扣背景技术,包括自动扣背景、单点、双点扣背景、MSF、IEC等等,可以有效地去除复杂的背景结构。对于正常的光谱线信号,即使周边有强烈的连续信号,无论是平台、斜坡还是强谱线的翼部对测定信号的影响都可以通过自动背景选择进行背景校正,获得满意的测试结果。非常适合入门级或仅具有少量分析经验的客户。开创性平板等离子体技术降低运行成本此次土壤普查涉及样品数量庞大,Avio 200/220 Max系列可以为用户大大降低运行成本。专利平板等离子体技术,Avio系列ICP-OES仅需消耗其他系统一半的氩气量,即可生成稳定、耐基体的等离子体。同时无需对射频发生线圈进行冷却和维护,提供出色的运行效率和生产力。另外,为了提高效率,Avio 200/220 Max系列具有动态波长稳定(DWS)功能,在开机短短几分钟之后您就可以进行样品分析,并在分析工作结束后关闭仪器电源以节约电能。独有的土壤快速消解技术大大缩短样品前处理时间对于土壤样品元素分析,前处理通常占用了整个分析过程的大部分时间,那么寻找一种快速有效的土壤前处理方式则会大大提高分析效率。珀金埃尔默公司创新研发了一种土壤快速消解方法,该方法节约时间,最长仅需2h;用酸量少、操作更加安全;交叉污染少,结果更准确;适用于大批量样品分析。实际样品分析结果采用快速消解技术分析GSS-8中的As、Zn、Pb、Cd、Ni、 Cu、Cr等元素,结果均与标准值吻合。检测装备的灵敏、准确和稳定是获取高质量普查数据的重要保障。作为世界原子光谱技术的领导者,珀金埃尔默深谙土壤检测客户需求,携全能元素分析方案“精准”出击,为确保检测实验室高质量完成土壤普查任务赋能!赋能高质量土壤普查 | ICP-OES让“精准”结果稳定输出!Original Lily 珀金埃尔默 2022-04-21 18:15收录于合集#土壤三普3个#环境31个明天(2022年4月22日),我们将迎来第52个世界地球日。今年世界地球日的主题是“Invest In Our Planet”,珀金埃尔默始终致力于人类健康和环境安全,在此共同呼吁:投资保护我们的地球,它是我们唯一的家园,每个人都需付诸行动!土壤和沉积物是地球必不可少的组成部分,对粮食的安全有着重要的作用,本期我们继续关注土壤普查。上期回顾:赋能高质量土壤普查,珀金埃尔默原子光谱“精准”出击土壤普查是查明土壤类型及分布规律,查清土壤资源数量和质量等的重要方法,普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。土壤中的元素组成对土壤质量有着重要的影响,并且也与人类和环境的健康密切相关,因此土壤中重金属及元素检测也是本次土壤普查的重要内容。ICP-OES因具有多元素同时测量、灵敏度高、检出限低等优点,被广泛用于实验室的土壤分析领域。本次土壤普查中涉及到ICP-OES的元素也有很多,主要包括:B、Mg、Al、Si、P、S、K、Ca、Cr、Mn、Fe、Ni、Cu、Zn 、Mo、Pb等元素,这些元素有的是做土壤中总量的,有的则是有效态等非总量元素,每种类型参考的方法也有所不同。Avio 200/220 Max系列ICP-OES让土壤检测的 “精准”结果稳定输出!高灵敏度无惧低含量元素分析挑战土壤中部分有害元素含量较低,尤其是Pb、Cd等元素,采用ICP-OES分析时往往需要较高的灵敏度。Avio 200/220 Max系列ICPOES由于其独特的光路设计和强大的DBI-CCD检测器,具有高效的光能传输与转化,使其获得远优于同类产品的灵敏度,可替代石墨炉进行超痕量元素分析。全面的扣背景技术轻松解决背景干扰土壤基质中元素组成复杂,对于一些低含量元素会受到较为严重的光谱干扰,如铅(220.353)的会受到基体中高含量铝元素形成的光谱背景干扰。Avio 200/220 Max系列具有全面的扣背景技术,包括自动扣背景、单点、双点扣背景、MSF、IEC等等,可以有效地去除复杂的背景结构。对于正常的光谱线信号,即使周边有强烈的连续信号,无论是平台、斜坡还是强谱线的翼部对测定信号的影响都可以通过自动背景选择进行背景校正,获得满意的测试结果。非常适合入门级或仅具有少量分析经验的客户。开创性平板等离子体技术降低运行成本此次土壤普查涉及样品数量庞大,Avio 200/220 Max系列可以为用户大大降低运行成本。专利平板等离子体技术,Avio系列ICP-OES仅需消耗其他系统一半的氩气量,即可生成稳定、耐基体的等离子体。同时无需对射频发生线圈进行冷却和维护,提供出色的运行效率和生产力。另外,为了提高效率,Avio 200/220 Max系列具有动态波长稳定(DWS)功能,在开机短短几分钟之后您就可以进行样品分析,并在分析工作结束后关闭仪器电源以节约电能。独有的土壤快速消解技术大大缩短样品前处理时间对于土壤样品元素分析,前处理通常占用了整个分析过程的大部分时间,那么寻找一种快速有效的土壤前处理方式则会大大提高分析效率。珀金埃尔默公司创新研发了一种土壤快速消解方法,该方法节约时间,最长仅需2h;用酸量少、操作更加安全;交叉污染少,结果更准确;适用于大批量样品分析。实际样品分析结果采用快速消解技术分析GSS-8中的As、Zn、Pb、Cd、Ni、 Cu、Cr等元素,结果均与标准值吻合。检测装备的灵敏、准确和稳定是获取高质量普查数据的重要保障。作为世界原子光谱技术的领导者,珀金埃尔默深谙土壤检测客户需求,携全能元素分析方案“精准”出击,为确保检测实验室高质量完成土壤普查任务赋能!
  • 祝贺2018年稳定同位素测量技术及应用学术交流会圆满成功
    五月的北京,阳光明媚美好,树木郁郁葱葱。2018年5月15日,2018年稳定同位素测量技术及应用学术交流会在中国科学院生态环境研究中心成功召开。会议由中国科学院生态环境研究中心所级公共技术服务中心主办,美国ABB LGR公司,北京理加联合科技有限公司(以下简称理加联合)协办。 本次会议主要围绕稳定同位素测量技术及应用展开,来自中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院植物研究所、中国科学院沈阳应用生态研究所、中国林业科学研究院、中国农业科学院、清华大学、北京林业大学、中国农业大学、沈阳农业大学等30余个单位200余名专家学者参加了会议。会议开始,中国科学院生态环境研究中心科技开发处副处长周益奇老师致开幕辞,欢迎前来参会的老师,并预祝本次会议圆满成功。 清华大学地球系统科学研究中心暨全球变化研究院林光辉教授与参会老师介绍了同位素景观图谱(Isoscapes)研究及其应用进展。 河海大学陈建生教授与参会专家进行了隐伏火山岩地下水补径排关系的讨论。理加联合总经理孙宝宇先生向与会老师介绍了LGR激光稳定同位素测量技术及应用案例。 中国科学院沈阳应用生态研究所白娥研究员向与会老师分享了应用氮同位素标记技术研究森林生态系统氮循环的案例。 中国科学院地理科学与资源研究所宋献方研究员向与会老师介绍了基于地球化学方法的水循环研究。 中国林业科学研究院森林生态环境与保护研究所徐庆研究员分享了稳定同位素技术在林业生态研究中的应用。 中国科学院地理科学与资源研究所温学发研究员介绍了生态系统光合和呼吸通量拆分的碳同位素理论及其应用研究进展。 南京信息工程大学肖薇教授向参会老师分享了使用几种稳定同位素法对生态系统尺度下蒸散作用进行分类的研究综述。 北京师范大学王佩副教授讲解了同位素示踪技术及其在生态水文研究中的应用 众所周知,稳定同位素技术被广泛应用于生态、环境、水文、地质、农业、能源等众多研究领域,帮助科学家解决了诸多科学问题,现已逐步成为了解生物与其生存环境相互关系的强有力的工具。随着科研需求的发展,稳定同位素技术从实验室走向了野外。激光稳定同位素测量技术的出现,不仅在实验室可得到高精度的数据,同时使得快速获取高精度的连续在线同位素测量数据成为可能,该技术可以和传统的质谱相媲美,成为一种新型、有效的测量稳定同位素的方法之一,是经典的稳定同位素质谱技术的拓展和补充。 2018年稳定同位素测量技术及应用学术交流会的成功举办,让参会老师充分了解了稳定同位素测量最新技术与应用,促进了不同学科领域学者间的交流。关于理加联合: 北京理加联合科技有限公司(简称:理加联合)成立于2005年,是一家专业的生态环境仪器供应商和技术服务商,主要产品涵盖稳定性同位素测定、痕量气体测量、地物光谱测量、水化学分析、野外便携和长期监测分析仪器。理加公司先后为国内的权威研究机构、著名大学和政府监测部门提供了大量国际领先水平的仪器。公司先后获得了多项“211”工程,“985”工程,水利部“948”项目、农业部“学科群”项目、中国生态系统研究网络(CERN)、中国森林生态系统定位研究网络 (CFERN)的大额订单。这既是用户对我们的支持和厚爱,也是对我们的服务能力和水平给予的认可和肯定。主要代理产品:美国AirPhoton公司颗粒物浊度仪美国LGR公司激光痕量气体和稳定性同位素分析仪美国ASD公司地物光谱仪意大利AMS集团全自动化学分析仪和流动分析仪美国CSI公司涡动相关、大气廓线测量系统美国Resonon公司高光谱成像仪美国ThermoFisher Scientific公司气体分析及颗粒物监测产品系列美国Agilent公司傅里叶红外光谱仪加拿大Itres公司高光谱成像仪
  • LI-2100 | 内陆山区径流稳定同位素的气候与景观控制
    水,我们生活中无处不在的重要元素。它润泽着大地,孕育着生命。然而,水的旅程并不仅仅局限于地表,它通过蒸发和降水,与大气、植被形成了紧密的互动。而这种互动的背后隐藏着一系列的谜题,需要科学家们通过不断研究来揭示。水同位素研究便是一种重要的手段,通过分析水中的同位素元素,科学家们能够了解水的来源、循环和变化。水同位素研究为科研人员提供了一种宝贵的工具,帮助他们更好地了解水、植被和气候之间的复杂关系。一起来了解一下,来自西北师范大学的研究团队,用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)做的相关研究。水资源是制约干旱区社会发展的主要自然资源,山区是内陆干旱区重要的水源涵养区,山区冰川积雪融水对干旱区淡水供应至关重要。随着气候变暖,冰川积雪融化加速,地表蒸散发增强,降水变异性加剧,气候变化将增强山区河流水文过程的复杂性。水稳定同位素是深入了解区域水文过程的有效方法,研究内陆山区径流同位素时空变化的主要控制因素,对认识内陆山区水文过程变化,合理调配干旱区水资源至关重要。基于此,在本研究中,来自西北师范大学的研究团队监测了中亚干旱区典型的内陆山区流域-西营河流域不同水体同位素数据(地表水、降水、地下水以及积雪融水)和相关水文气象数据,结合相关气象观测数据及植被覆盖指数(NDVI),评估气候和景观对内陆山区径流稳定同位素的影响。研究可以为厘清内陆山区径流稳定同位素的控制机制提供更全面的参考。01 不同水体稳定同位素组成西营河流域不同景观区域气象要素和水体稳定同位素特征。(a)不同景观区域气温、相对湿度以及降水量的变化;(b)不同水体稳定同位素在不同景观区域的组成特征,P为降水,R为径流,M为积雪融水,G为地下水;(c)~(e)不同水体δ2H与δ18O的关系,(c)为冰川-灌丛区,(d)为中高覆盖度草地-森林区,(e)为低覆盖草地-裸地区。02 不同景观区域的径流同位素组成西营河流域不同景观区域径流同位素随NDVI指数以及海拔的变化特征。03 气候对山区径流同位素的影响西营河不同景观区域气象要素与降水稳定同位素的相关性分析,(a)降水δ18O与温度,(b)降水δ18O与相对湿度,(c)降水δ18O与降水量04 自然和人为景观变化对径流稳定同位素的影响西营河流域不同景观区域LEL的变化,LELs为局地蒸发水线。(a)冰川-灌丛区(GSARs),(b)中高覆盖草地-林地区(MHGFARs),(c)低覆盖草地-裸地区(LGBARs)。X轴和Y轴上的柱状统计图代表δ18O和δ2H的分布曲线。西营河流域海拔变化对降水稳定同位素的相关性分析,(a)径流δ18O与海拔,(b)降水δ18O与海拔。西营河降水(a)和径流(c)d-excess的变化,以及西营水库入口(b)和出口(d)处径流水线的变化。研究结论本研究利用典型内陆山区流域不同水体稳定同位素数据,结合相关气象观测数据和植被覆盖(NDVI)数据,为进一步了解内陆山区流域径流稳定同位素变化特征及其控制机制提供了依据。在内陆山区流域,气候和景观特征会随海拔而产生显著差异。因此,我们认为,在内陆山区,径流同位素组成及其控制因素需要做进一步更深入的研究。本研究强调了气象要素以及地表景观的空间差异对内陆山区流域径流稳定同位素的控制过程。这些结果有利于全面认识内陆山区径流稳定同位素的控制机制。1、气象要素通过控制径流的蒸发过程和补给源同位素特征来控制径流同位素变化;2、在植被覆盖度较低的区域,地表景观特征通过改变补给源同位素特征来控制着径流同位素组成;3、在植被覆盖度较高的区域,地表植被覆盖通过控制蒸发过程来影响径流稳定同位素。
  • 得利特上门回访老客户|反馈运动粘度试验器等仪器性能稳定
    北京得利特派销售人员上门拜访合作多年的客户--湖北一家固废处理公司。 最近,得利特销售人员奔赴湖固废处理公司参观了客户的实验室,里面仍旧摆放着多年前从我公司购入的A1010 运动粘度测定仪,A1070微量水分测定仪 , A1060石油及合成液抗乳化测定仪等台仪器。 参观期间,客户一直感慨跟我们合作这么久,这仪器也没有过售后问题,性能一直很稳定,实验人员操作也完全没有问题。表示仪器就是要稳定的使用起来才安心。希望我们一直保持。 得利特销售人员表示我们仪器主打就是稳定性好,当然只要您需要,我们一直会为您做售后服务。双方都很期待下次的合作。 得利特(北京)科技有限公司以北京的研发销售中心,吉林、山东的生产加工中心,深圳、浙江、山东、吉林、成都、西安等枢纽城市的服务中心逐步形成完善的研发生产销售服务体系,我们也将能更好的服务各地的客户朋友,专注油品检测领域是我们的方向,打造业内品牌是我们的目标,让得利特员工和伙伴与企业共同发展共赢是我们的原则,同时得利特也愿为中国企业油液检测设备润滑管理的进步贡献自己的微薄之力。
  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
  • 一招教会你快速制备稳定的微液滴!
    在基于液滴的微流控系统中,微液滴的稳定生成且不融合对后续实验操作有很大影响。本文将逐步探讨如何制备稳定的微液滴。图1.不同液滴生成油的效果对比介绍基于液滴的微流控技术正在成为生化分析筛选的有力工具。液滴微流控生成的液滴体积小至皮升级,且液滴单分散性极高,每个液滴都可作为独立的微反应器。此外,在这些液滴形成后,还可对其进行连续操作,如孵育、液滴融合和基于荧光的活化分选。高频率(kHz)的操作可以在小体积的反应器中进行,这使得这项技术非常适合小分子合成、药物发现和定向进化等领域的高通量筛选。这些应用通常基于荧光测定完成,而在测定之前荧光产物必须被有效的限制在液滴中。然而,在实际操作过程中,水相中化合物成分,如盐、微生物和细胞分泌物,均会对液滴的稳定性造成一定的影响,进而导致液滴间交叉污染或液滴间相互融合。因此,在制备液滴时,保证液滴的稳定生成且不融合至关重要。以油包水的液滴为例,常见的方法是在油相中添加表面活性剂降低液滴表面张力,以避免其融合。然而,不同的液滴生成油体系(油+表面活性剂)展现出的效果差异较大。本文以FluidicLab提供的微滴生成仪结合配套的PDMS标准芯片,以DMEM培养基为水相,以三种不同体系的液滴生油为油相,制备生成液滴并考察其稳定性。试剂与方法三种液滴生成油依次是在矿物油中加入6%Span-80的液滴生成油,在棕榈酸异丙酯中加入6%EM-180的液滴生成油,在HFE-7500电子氟化液中加入2%全氟表面活性剂的液滴生成油(Drop-Surf氟油);水相为DMEM培养基。FluidicLab提供的微滴生成仪结合配套的PDMS-FF-100标准芯片,以上述三种液滴生成油为油相,以DMEM培养基为水相,通过调整合适的流速生成100μm左右的液滴。随后,将生成的液滴收集到疏水的基底上,通过显微镜观察液滴形态。液滴稳定性对比由实验可知,在同一芯片中生成100μm左右的液滴,所用油相体系不同,稳定生成液滴的流速也很有大差异。以Drop-Surf氟油为油相制备液滴,可以实现极高的流速稳定生成液滴(Vwater=40μL/min)。这一结果由图2可知,在同一曝光时间和帧率下,相比于其他两种油相体系,相机更难捕捉到以Drop-Surf氟油为油相时液滴生成运动轨迹(图2.C)。图2.A、B、C三图分别为矿物油、棕榈酸异丙酯、Drop-Surf氟油三种体系的液滴生成状态在将生成的液滴接收到疏水的基底上后,通过显微镜可以准确观察到液滴的形态,且随着时间的延长,液滴的稳定性也有很大变化。由视频1可知,以矿物油体系为油相制备的液滴稳定性较差,高密集度液滴下融合显著;以棕榈酸异丙酯体系为油相制备的液滴,具有相对较好的稳定性,且随时间延长并未出现明显融合(有小部分大液滴存在);而以Drop-Surf氟油为油相制备的液滴,表现出极好的稳定性,高密集度下随时间延长无任何融合现象出现。结论在采用不同的油相体系(油+表面活性剂)制备油包水液滴时,液滴生成频率、水相流速和液滴稳定性有明显差异。采用矿物油体系制备的液滴不仅稳定性差,液滴生成频率和水相流速慢且后期收集的液滴更易融合;采用棕榈酸异丙酯体系制备的液滴稳定性虽相对较好,但同样存在液滴生成频率和水相流速慢的问题,此外,棕榈酸异丙酯熔点高(11~13℃),低温易凝固,这也很有可能影响液滴的正常生成。而采用Drop-Surf氟油制备的液滴则具有极高的稳定性,具有剪切频率、流速快等优点。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(二)
    本篇继上一篇“实用建议:“如何合理设计稳定的冻干蛋白配方(一)”继续为大家分享蛋白样品冻干的理想赋形剂有哪些、基于成功蛋白冻干配方会导致Final失败的一些细节问题等。 》》》对于蛋白样品,理想的赋形剂有哪些?从冻干对蛋白的所有危险以及我们需要在各个环节考虑的所有因素来看,快速开发一个稳定的蛋白配方看起来似乎是不可能的。幸运的是,如果我们能够采用合理的方法对配方进行很好的设计,大多数的配方问题是可以得到快速解决。这里,我们主要是对初始配方成分的选择提供基础。在一些情况下,初始的配方很有可能就是走向市场的Final产品。给定的组分,进行不同微小的修改,已经被成功地用于蛋白药物。需要强调的是对于冻干配方,在能够提供良好稳定性和结构的情况下,成分越简单越好。所加入的赋形剂都须要有数据证明对配方起有益的作用。01给定蛋白质维持稳定性的具体条件对于一些通用型的稳定剂,可以有效地保护绝大多数的蛋白质,在选择这些稳定剂之前,我们有必要通过优化影响蛋白物理和化学稳定性的具体因素来选择合适的稳定剂。影响蛋白物理和化学稳定性的具体因素:1. 避免极端的pH值可以显著降低蛋白脱氨基的几率。而且,通过优化溶液的pH值,可以显著提高蛋白在冻干过程中抵抗去折叠的能力。2. 还应该研究其他能提高蛋白质稳定性的特异性配体(通过增加去折叠的自由能)。肝素和其他聚阴离子对生长因子的稳定性影响就是一个很好的例子。3. 其它需要考虑的重要因素是离子强度对蛋白的去折叠和聚合的影响。须意识到,在预冻过程中,由于冰的形成将溶液浓缩,离子强度可增加50倍。因此负责原料药纯化和做药物配方前研究的人员已经对这些问题有了深刻的认识,配方科学家应该在着手设计冻干配方之前与他们进行沟通。即使在针对蛋白质稳定性优化的特定的溶液条件下,但是如果样品需要幸免于冻干的损害并长期保存,有必要加入一些其它的保护剂。首先,我们考虑一些已经用在冻干蛋白配方中的成分,但它们不能提供蛋白的稳定性,而且可能会促进蛋白在储存期间的破坏。我们将提供一个简单、有效的思路,并且讨论选择这些成分的原理。02不能提供蛋白稳定性的赋形剂部分多聚物作为赋形剂的优缺点在冻干工艺的快速开发过程中,为了获得一个强壮的蛋糕结构,一些多聚物,如葡聚糖,羟乙基淀粉,因具有较高的塌陷温度,导致Final产品的Tg也会比较高,常常是受欢迎的赋形剂。不好的是,这些多聚物在冻干过程中不能抑制蛋白结构的去折叠,因此在后续的储存中不能提供稳定性。无法抑制冻干诱导变性的原因大概是聚合物过大而无法与蛋白质氢键合,无法代替脱水过程中损失的水,或者是因为聚合物与蛋白质形成了分离的无定形相。尽管当这些多聚物单独使用时不是一种很好的稳定剂,但是经证实,如果其结合双糖稳定剂可以具有较好好的作用。冻干过程中的有效稳定剂对大量的化合物进行测定,显示在冻干过程在较有效的稳定剂是双糖,但是避免使用还原性糖。还原性糖在冻干过程中可以有效抑制蛋白结构的去折叠,但是在干燥样品的储存过程中,可以通过美拉德反应(糖的羰基和蛋白质上的游离氨基)降解蛋白,结果形成含有降解蛋白的棕色糖浆,而不是含活性蛋白的白色蛋糕状结构。通常,我们减缓这个过程的方法是将样品储存在零度以下,这就失去了产品冻干的意义,这些还原性的糖包括:葡萄糖,乳糖,麦芽糖,麦芽糊精等。在早期的研究中,晶体类的填充剂如甘露醇,甘氨酸在冻干过程中不能提供蛋白很好的稳定性,但是,一些配方使用了这两种物质的混合物,并且成功地推向了市场。在这些案例中,甘露醇和甘氨酸适当的比例可以导致一大部分的化合物保持无定形状态。这部分无定形状态的化合物足以抑制冻干过程中蛋白的去折叠并且提供长期储存的稳定性。但是建议谨慎选择这种方法,因为达到合适的工艺条件再加上合适的赋形剂比例,既耗时又很难办到的。03赋形剂的合理选择如何合理的选择赋形剂?案例分享举个具体的案例说明,假设:1. 蛋白药物的浓度定在2mg/ml;2. 主要的降解途径是冻干后或复水后蛋白的聚合以及储存期间蛋白的脱氨基;3. 优化具体的条件(如用柠檬酸盐缓冲液控制pH为6)只能将冻干和复水后聚合程度降到10%,尽管样品在低于Tg温度的20℃下进行储存脱氨基速度仍然不能接受。加入晶体类的膨胀剂,如甘露醇,保持样品强壮的结构及良好的外观。在这种情况下,主要缺少的成分是非还原性双糖,其在干燥样品中会与蛋白形成无定形的结构,作为主要的稳定剂,主要选择蔗糖或海藻糖。它们在预冻阶段能够很有效地保护蛋白并且能够很好的抑制复水过程中蛋白结构的去折叠。预冻阶段的保护取决于初始糖的总浓度,有时,超过5%(w/t)的浓度可以尽可能大程度地保持蛋白的稳定性。相反,在干燥阶段,蛋白的保护取决于Final糖和蛋白的质量比。一般来说,糖和蛋白的重量比至少为1:1时,可以提供较好的稳定性,当达到5:1时,可以达到很佳的稳定性。保持蛋白的浓度不变,选取一定范围的糖浓度进行筛选和检测,通过干燥样品中天然结构保留率以及复水后蛋白聚合降低的程度来确定最合适的浓度。一般来说,合适的糖浓度,可以在冻干过程中提供蛋白很好的稳定性,并且如果Final样品的Tg高于储存温度,在后期的储存期间也可以提供蛋白较好的稳定性。例如,假定最高的储存温度为30℃,那么Final产品的Tg >50℃应该是稳定的,但前提是Final样品的含水量需要达到允许的水平,因为水分的存在会降低样品的Tg。可以使用DSC检测每种样品的Tg值。蔗糖/海藻糖如何选择?蔗糖和海藻糖,作为两种常用的稳定剂,均有其优势和劣势,可根据不同的情况进行选择:● 在任何水分含量的样品中,海藻糖均会有较高的Tg,因此较为容易冻干。另外Tg >50℃的条件可以允许样品有较高的残留水分。然而,技术工程师应该能够针对这两种双糖设计经济有效的工艺。如果样品中蛋白浓度较高,可以提高Tg,这样就会弱化海藻糖的作用;● 与蔗糖相比,海藻糖更能抵抗酸解,双糖水解后会产生还原性的单糖,这是需要避免的。通常情况下,如果pH不是很低,如pH4左右或更低,这个应该不是很大的问题;● 蔗糖在冻干过程中抑制蛋白去折叠方面看似比海藻糖更有优势,当蛋白在预冻阶段非常不稳定(需要较高的糖浓度)和/或蛋白浓度较高时,这种优势更明显。海藻糖的相对不稳定性是由于在预冻和干燥过程中其更易于与蛋白之间产生相分离。对于给定的配方,这是否会有问题不能被预测,因此,每种制剂配方都需要检查其保护蛋白的能力。表面活性剂的作用在这里,我们案例中的配方可能就比较完整了,就像许多蛋白质的情况一样。然而,我们假设,即使蔗糖完全抑制可检测的蛋白质去折叠,正如用红外光谱对干燥固体的结构分析所评估那样,在复水后,仍然有1%的聚合蛋白。因为在原始的样品中是没有任何聚合的,假设在冻干过程中,一小部分蛋白发生了去折叠,在复水后,部分这些分子又重新折叠,但是部分聚合在一起。这个实际上看起来是个很普遍的问题,就像在冻干之前一些处理造成的聚合。幸运的是,通过在配方中加入一些非离子型表面活性剂,如聚山梨醇酯(吐温)通常可以抑制蛋白的聚合。要求的浓度通常比较低(<0.5% w/v),通过将表面活性剂滴定到包含所有其它组分的冻干制剂中,可以识别出理想浓度。应避免加入过量,因为表面活性剂在室温下是液体的状态,如果浓度较高,会降低配方的玻璃态转变温度。然而,通常在优化蛋白质稳定性所需的非常低的浓度下,不会有问题。表面活性剂看作是画龙点睛,通常在冻干产品配方中加入表面活性剂是有利的,可以抑制处理过程中界面引起的去折叠和聚集(如起泡夹带或瓶-液界面引起的)。最重要的是表面活性剂在冻干/复水过程中抑制聚合的能力,目前还不太清楚表面活性剂的保护在哪一步起作用的。有资料证明,表面活性剂在冻融及复水过程中可减少蛋白聚合并且在预冻阶段有助于抑制蛋白的去折叠,对干燥固体中聚集物特定红外波段的检查表明,表面活性剂可以抑制冻干过程中产生的聚集。在复水过程中,曲折叠分子的聚合能通过表面活性剂得到抑制,猜测是通过分子之间的相互作用和/或作为一种润湿剂,加速冻干产品的溶解。如果显示表面活性剂在复水过程中是有益的,则可以通过在稀释剂中加入表面活性剂来达到这种效果。 》》》还有哪些意想不到的危险可能会导致失败?尽管根据上述给出的建议,对于给定蛋白,我们可以设计出成功的配方,但是,还有其他一些问题可能会导致Final失败,特别是在长期储存期间。● 赋形剂中经常会有一些污染物,这些会导致蛋白快速的化学降解,糖类和甘露醇中会含有过渡金属元素,表面活性剂可能被过氧化物污染,所有的这些可以促进蛋白的氧化;● 在储存过程中,水分从胶塞转移到产品,引起水分参与的降解,直接损坏蛋白,并且降低蛋白的Tg,加速蛋白的降解,特别是当储存温度高于Tg 时;● 即使在高温(如40℃)下的储存稳定性研究中,一切都表现出理想的状态,但有一个常见的,但很少报道的事件可能是灾难性的,这个问题可以用下面的故事来说明。产品在实验室中在40℃下储存可以保持几个月的稳定性,在冬季,产品在运输过程中也保持良好的稳定性,没有来自消费者的问题报告,然而,有时在夏季,运输后,在室温下储存仅2周后发现产品过度降解,用差示扫描量热仪DSC对一开始的干燥粉末进行了检查,给出了合理的解释,结果发现,制剂中的甘露醇没有全部结晶,而是形成了Tg约为45℃的亚稳玻璃态,当在夏季运输过程中,超过了这个温度时,甘露醇变发生结晶,最先与甘露醇结合的水被转移到了剩余的无定形相中,蛋白相的水含量增加,降低了它的玻璃化转变温度,因此,加速了蛋白质的降解。这个问题可以使用DSC设计合理的退火方案使甘露醇再预冻阶段全部结晶来避免,另外也可以通过调整甘露醇的浓度,降低残留水分含量,使甘露醇即使在45℃的条件下也不会结晶。 》》》对于给定的蛋白药物,这些信息足够吗?对于大多数的蛋白,上面给出的建议一般会设计出成功的配方,但是,每种蛋白都有其独特的物理化学特性和稳定性要求。因此,针对每种不同的蛋白,配方也需要自定义设计。结合蛋白本身的特性知识以及选择合理的赋形剂可以快速设计出稳定的冻干蛋白配方。最后,在快速冻干工艺中保持干物质的物理性质和在干燥后获得天然的蛋白质之间需要折衷,研究表明:当蔗糖结合葡聚糖一起使用时,由于蔗糖的作用,蛋白质的天然结构可以保留在干燥的固体中;葡聚糖的存在提高了制剂的Tg,并提供了一种无定形的填充剂,快速干燥的同时保留了所需的蛋糕性质;其他的一些聚合物有可能提供与葡聚糖相同的优势,如羟乙基淀粉也具有较高的Tg,通常比葡聚糖更容易接受用于肠胃外给药。期望可以合理地利用这些多聚物作为Tg的调节剂,使得制剂更稳定,更容易快速冻干。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。德祥始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 英国国家物理实验室开发超稳定激光器和光学时钟
    据英国国家物理实验室(NPL)网站报道,NPL、英国空间署(UKSA)和欧洲空间局(ESA)正为未来的太空任务开发超稳定激光器和光学时钟,以改进未来的导航和计时。NPL的立方腔专利设计使光学腔的频率稳定性对振动高度不敏感,具有独特的鲁棒性,可将商业激光系统的谱线宽度从几个MHz降低到1 Hz以下。这提供了超稳定的激光器,既可作为独立的频率参考,也可作为光学原子钟的子组件。这种光学原子钟和超稳定激光技术在未来科学(基础物理学和宇宙学)、地球观测(相对论大地测量学)和导航(未来全球导航卫星系统)计划等方面具有较大应用前景。在NASA/ESA的下一代重力任务中,NPL的立方体空腔可用来测量地球重力场作为地球表面位置的函数。在极地地区,这种技术可比以前的GRACE和GOCE任务更精确地监测冰川变化。在未来NASA/ESA 2030激光干涉仪空间天线(LISA)任务中,可作为空间引力波测量的参考。注:本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 精准测量,可靠稳定 | 舒茨助力推进碳达峰碳中和战略
    《碳排放权交易管理暂行条例》已于2024年1月5日国务院第23次常务会议通过,自2024年5月1日起施行。碳排放权交易是利用市场机制控制和减少温室气体排放的重大制度创新,是实现碳达峰碳中和目标的重要举措。《条例》的出台是对《中共中央、国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》提出的“加快建设完善全国碳排放权交易市场”要求的立法回应,同时也为落实党的二十大报告“积极稳妥推进碳达峰碳中和”的战略部署提供了重要制度保障。 与《条例》相呼应联动,生态环境部、市场监管总局于2023年10月23日联合发布《温室气体自愿减排交易管理办法(试行)》。全国温室气体自愿减排交易市场与全国碳排放权交易市场共同组成我国碳交易体系。 自愿减排交易市场启动后,各类社会主体可以按照相关规定,自主自愿开发温室气体减排项目,项目减排效果经过科学方法量化核证并申请完成登记后,可在市场出售,以获取相应的减排贡献收益。这将有利于激励更广泛的行业、企业和社会各界参与温室气体减排行动,对推动经济社会绿色低碳转型,实现高质量发展具有积极意义。 舒茨股份始终致力于高端工业级气体分析解决方案的研发、生产与销售;针对市场关于温室气体(主要是CO2, CH4, N2O等气体)的检测精度、稳定性与可靠性等方面要求不断提高的情况,公司早已储备了从气体模块,分析仪,再到定制化成套系统一系列针对性的匹配解决方案与适用产品,帮助客户解决实际应用中的痛点和难点。 舒茨高端气体传感器FLOWEVO PLUS 是基于分析型 NDIR(非色散红外技术)气体传感器升级演变后的加强版本,特别适应严苛多变的复杂环境,其在稳定性、LDL(最低检测限)、T90 响应时间和读出频率等方面的卓越表现,使其成为业内新标杆。 产品特点 SIGAS的 PLUS 传感器将 NDIR 检测技术与数据分析能力相结合,在传感器模的块层面实现了更精准可靠的结果输出,而以往这些通常需要依靠高质量的分析仪器才能实现。为此,SIGAS在硬件和软件上开发了先进的分析模块,将FLOWEVO传感器升级成FLOWEVO PLUS。 FLOWEVO PLUS产品特点:温度恒定:FLOWEVO PLUS 集成了温度控制器,可调节吸收池加热系统,精度为 ±0.3 K自动压力补偿:通过压力传感器测量吸收池内部压力,测量误差由内部气体流量自动补偿噪音极低:通过适用于传感器和光学测量部分的高度集成的数字滤波器,将噪声降低至±0.075%FS,且信号不会失真T90响应时间与换气时间同数量级:过滤器的选择和参数化确保所得到的T90时间与吸收池长度的气体交换时间的顺序一致,范围为2 ... 3秒读出频率高:为确保适应诸如 TOC、COD 等分析应用以及快速过程气体控制,FLOWEVO PLUS 的读数频率高达 10Hz极低的LDL (检测下限):自适应滤波将 LDL 降低至 ±0.1 %[FS]工业级电源:所有FLOWEVO PLUS 都配备了10-26VDC输入电压的工业级集成电源。数字高速接口:对于数字通信,RS485 以及高达 115 kBaud 的 RS232 均可用 FLOWEVO PLUS 将 NDIR 气体检测与数据分析能力集成到一个传感器模块中,无需额外增添加热器、压力补偿或降噪模块等附件。是针对复杂环境应用,实现高精度测量以及可靠数据分析的完美解决方案。 技术参数 FLOWEVO / FLOWEVO PLUS:FLOWEVOFLOWEVO PLUS检测原理NDIR 非分散式红外(双光束)供气方式泵吸式读取噪声ABS±0.1%FS@ T90 14sec (标准模式)±0.075%FS @ T90 3sec(典型值)±1%FS @ T90 3sec (快速响应模式)读取频率Max 2.5HzMax 10Hz响应时间(T90)T90 14sec (标准模式)T90 3secT90 3sec (快速响应模式)数字分辨率(@零点)1 ppm ...0.1 Vol.%最低检测下限 (3sigma)≤ 1 % FS(典型值)重复性≤ ±1 % FS线性误差≤ ±1 % FS ( 根据传感器类型而定)稳定性(零点)≤ ±2 % FS /12月稳定性(量程点)≤ ±2 % FS /12月温度漂移 (零点)≤ ±0,1 % FS 每°C温度漂移 (量程点)≤ ±0,15 % FS 每°C压力漂移0.1 % up to 0.2 % 读取值每mbar 应用场景舒茨FLOWEVO系列传感器具备高精度、高可靠性和低维护的特点,适用于多种专业应用场景。工业过程监控:在化工、石油、天然气行业中,可以用来监测生产流程中的特定气体浓度,确保工艺安全和效率,例如监测SF6气体泄漏,这对于电力设备的绝缘状态监测至关重要。环境监测:由于其高灵敏度和稳定性,FLOWEVO系列传感器适用于大气环境监测,比如监测温室气体排放,帮助企业和环保机构遵守环境法规,减少环境污染。室内空气质量控制:在商业楼宇、医院、学校等场所,传感器可以监测室内空气质量,包括二氧化碳、VOCs等气体浓度,保障人员健康。农业熏蒸监控:在农业领域,用于监控熏蒸过程中使用的气体浓度,确保作物保护效果同时减少对环境的影响。汽车尾气排放检测:在汽车制造业和车辆排放检测站,FLOWEVO传感器能准确测量尾气中的特定气体成分,支持排放标准的合规性检查。安全监控:在矿井、仓库等易燃易爆环境中,实时监测有害气体浓度,预防安全事故。医疗设备:在医疗领域,特定气体浓度的监测对于维持特定治疗环境(如麻醉气体监测)的安全和有效性至关重要。
  • “高稳定度光源的研制与开发”十一五国家科技支撑计划课题已验收
    2010年10月26日,由国家地质实验测试中心承担的 “十一五”国家科技支撑计划重大项目《科学仪器设备研制与开发》中的“高稳定度光源的研制与开发”(课题编号:2006BAK03A01)课题,通过了由国家质量监督检验检疫总局科技司组织的专家验收。  该课题组织了产、学、研一体的研发队伍,参加单位有:北京地质仪器厂、中国地质大学(武汉)、北京有色金属研究总院、涿州迅利达科技创新公司、复旦大学、中国广州分析测试中心、长春新产业光电技术公司、北京吉天仪器有限公司、上海光谱仪器有限公司等九个单位。课题组经过三年努力,采用新技术、新材料、新工艺完成了分析仪器用光源——全固态ICP光源、光谱仪器用高性能元素灯、光谱仪器用长寿命氘灯、光谱仪器用短弧氙灯、光谱仪器激光光源、低温等离子体原子化器、高性能石墨炉原子化器七类产品的研发。  课题在国内率先研发完成的具有自主知识产权的40.68MHz和27.12 MHz两种全固态ICP光源,稳定地实现了正常的ICP功率输出,为我国高端电感耦合等离子体光/质谱仪的研发和维护打下了坚实的基础。  完成的光谱仪器用短弧氙灯和长寿命氘灯以及高性能元素灯,解决了主要部件规格化以及能量提高和稳定性问题,其中绝大部分关键设备具有自主知识产权,产品质量和使用寿命达到国外同类产品先进水平。研发的光谱仪器激光光源,采用具有自主知识产权的激光器谐振腔偏心调整机械技术和半导体激光泵浦全固态低噪声内腔倍频激光谐振腔技术,通过模块化设计、封装和系统集成,提高了产品稳定性和生产效率,成功研制了266nm、355nm、532nm全固态激光器和405nm、445nm、635nm三种半导体激光器系统。  课题组首先在国内成功研制了两类高效原子化器,其中研制的低温等离子体原子化器,采用基于介质阻挡放电的技术,具有原创性,操作温度接近室温,功耗50W,同时解决了批量生产中的工艺技术问题,为实现原子荧光仪器小型化、便携化打下了基础;研制的另一类高性能石墨炉原子化器,在国内首创了具有低电压、大电流直流开关型石墨炉电源系统,其重量轻、体积小,可同时适用于高阻与低阻石墨管,该电源能自动补偿和校正石墨管电阻变化,延长了石墨管使用寿命,保证了瞬变电流的快速响应和运行可靠性,产品已应用在相关高端原子吸收仪产品中。上述研发成果都进行了产业化建设,新建和扩建了相应的生产线,形成了批量生产能力。  课题申报了国内专利25项,其中实用新型专利19项(已授权11项),发明专利6项(已授权1项),软件著作权1项。完成论文6篇(其中2篇被SCI收录)。
  • 工业纯钛样品制备,用这两种金相抛光布,效果很稳定!
    工业纯钛是非常软的易延展的金属,金相样品制备非常困难,在样品研磨和抛光过程中,容易生成机械孪晶,塑性变形、研磨颗粒嵌入、划痕去除不完全等缺陷。使用手动研磨抛光方法制备时,更容易出现样品表面不平整,导致无法呈现真实微观组织。因此,欲快速方便制备组织清晰、无划痕、无变形、无嵌入的钛金相样品,不仅需要成熟的技术,也需要选择好每一步制备所使用的耗材。我们实验室,在抛光步骤中所选用的两种金相抛光布,配合金刚石抛光液使用,对工业纯钛样品抛光,效果一直都非常稳定,现分享给朋友们,愿能给做金相的朋友一些帮助。当然,我们使用的是自动磨抛机研磨抛光样品,通常采用四步法来制备,分别选用了美国QMAXIS(可脉)的SatinCloth 金相抛光布和MicroMet 金相抛光布。► SatinCloth 金相抛光布配合3µm 金刚石悬浮液,采用抛光冷却润滑液冷却► MicroMet 金相抛光布配合1µm 金刚石悬浮液,采用抛光冷却润滑液冷却具体制备方法如下:切割:精密切割机/砂轮切割机,QMAXIS 切割有色金属的金刚石切割片和砂轮切割片镶嵌:热压镶嵌机METPRESS A,PhenoPowder 酚醛树脂磨抛:自动研磨抛光机METPOL-A,P240和P1200金刚石磨盘,3μm和1μm金刚石悬浮液,SatinCloth和MicroMet 金相抛光布。小贴士:因工业纯钛研磨抛光的速率较低,在精细抛光步骤中应添加侵蚀抛光剂,以获得理想的抛光效果。如果对样品制备的要求较高时,可在精细抛光时使用振动抛光,以去除样品表面浅表层的内应力。 经验证明工业纯钛样品制备,用QMAXIS的这两种金相抛光布,效果很稳定!关于所选用的SatinCloth 金相抛光布和MicroMet 金相抛光布的详细信息和其他方面的应用,可联系可脉检测的应用工程师咨询,这里不做介绍了,他们更专业。
  • 祝贺2021年稳定同位素测量技术及应用学术交流会圆满成功!
    2021年4月15~16日,由北京师范大学地表过程与资源生态国家重点实验室主办,加拿大ABB公司及北京理加联合科技有限公司协办的2021年稳定同位素测量技术及应用学术交流会在线上成功举办。来自清华大学、北京大学、北京师范大学、中国林科院、中国科学院、中国农业大学、北京林业大学、东北师范大学、深圳大学、西南大学、南京信息工程大学、浙江大学、复旦大学、南开大学、同济大学、新疆大学、西北农林科技大学、美因茨大学、马德里理工大学等100余个单位的专家学者及业务人员参加了此次会议,直播间两日访问次数达3.5W余次。本次交流会的主题为:基于稳定同位素技术地表过程综合监测研究进展。目的为面向广大科研人员,开展以稳定同位素基础理论,技术方法,数据分析和地表过程综合监测研究进展等多方面为主的技术交流和培训,促进和推广稳定同位素技术在不同领域的应用。本次研讨会分为专家报告和技术培训两部分。4月15日9:00会议开始,北京理加联合科技有限公司孙宝宇总经理为会议致开幕辞,欢迎前来参会的老师,并预祝本次研讨会圆满成功。在上午的报告中,清华大学林光辉教授、东北师范大学白娥教授、深圳大学宋欣教授、北京理加联合科技有限公司孙宝宇总经理分别介绍了稳定同位素生态学研究及其应用的一些新进展、应用氮稳定同位素研究森林氮循环、植物水分及纤维素氧氢同位素分馏效应研究、生态系统监测新技术及应用实践的研究进展。在下午的报告中,北京师范大学王佩副教授、北京林业大学余新晓教授、西南大学何新华教授、ABB LGR公司Frederic despagne博士、中国科学院地理科学与资源研究所杨丽虎高级工程师、中国林业科学研究院徐庆研究员分别就植被冠层叶片水同位素观测及示踪研究、基于稳定同位素技术的植被水碳过程研究、田间原位13C/15N双标记实验技术及碳氮循环跟踪、Applications of ABB LGR-ICOS stable isotope analyzers in ecology、同位素技术在水文水资源中的应用、稳定同位素在陆地生态系统植物水分利用研究中的应用等方面进行了详细地介绍。4月16日上午,中国科学院地理科学与资源研究所温学发研究员、中国林业科学研究院孙守家副研究员、南京信息工程大学肖薇教授、北京师范大学吴秀臣教授、北京理加联合科技有限公司赵妮应用工程师分别介绍了同位素技术在生态系统生态学中的应用、稳定碳同位素在生态学研究中的应用、基于稳定同位素法研究地表对大气水汽的贡献、积雪对中国北方森林生长的影响、激光同位素测量技术在生态系统水碳氮循环中的应用。16日下午,由北京理加联合科技有限公司杜文生技术工程师对ABB LGR 水同位素分析仪及LI-2100 全自动真空冷凝抽提系统进行了详细的操作培训。本次交流会充分利用互联网平台,采用线上直播形式,各位老师通过共享屏幕、语音及文字对话等方式,快速进行问题答疑。培训过程中大家专心听讲,面对其中的难点,积极参与线上交流,学习氛围良好,互动热烈。此次线上会议还有直播抽奖环节,共抽取一等奖(2名)二等奖(6名)三等奖(10名)在直播结束后,依然有同学在直播间提出问题希望与老师进行交流,我们特此收集直播间内所提出的相关问题,如下,感谢各位老师的耐心解答。白娥老师Q&AQ:请问白老师,累积回收率超过100%如何理解?谢谢老师!A:累积回收率超过100%是由实验误差造成的,这在示踪实验中是比较常见的,也是被允许的。Q:请问白老师,零张力和吸力获取土壤溶液来源上的区别是什么?谢谢您。A:零张力和吸力获取土壤溶液来源上的区别:这个问题做土壤水的同仁们会更加清楚,零张力是渗漏水,也就是我们说的淋溶掉的。吸力采样计是孔隙水,采到的水可能并不一定能够淋失掉。但是有时候零张力采到的样品会非常少,为了更了解土壤水,就用吸力的代替了。Q:白老师 您好 在有机物的生物降解过程中 需要添加的氮量较多 才能降解有机物 我想知道有机物降解的过程中 氮的去向 那这时候我是可以加的标记的N15量较多吗?或者我可以加少量的标记15N,加更多的没有标记的氮吗?谢谢老师。A:在最终产品15N丰度达到很高的情况下,但是N15的添加量不足以降解有机物,我想既能降解有机物,又能知道氮的去向,我认为可以混合量多的没有标记的氮源和量少的15N标记的氮源,然后达到使用量后加入,只有计算的时候别算错了就可以。Q:白老师您好,想请教一下白老师,进一步讲一下气体怎么进行测定的,谢谢老师。A:气体的测定:用的静态箱法,采集到气袋后,用测定气体同位素的仪器测定同位素丰度Q:请问老师捕食者的同位素和猎物的同位素是否有具体的数值关系?A:捕食者的同位素和猎物的同位素一般有关系,决定一个生物的同位素最重要的因素是他的来源,比如猎物的氮是捕食者氮的来源,但是具体要看比例,如果还有很多其他来源,而这个猎物的占比小,则关系弱。如果捕食者只依赖这一单一来源,则应该有很强的相关性。Q:白老师,您好。在您讲的Part1.沉降氮的去向这个实验中,铵态氮和硝态氮是分别添加在不同的土壤中,还是同时添加在相同土壤中的?如果是添加在相同土壤,那么铵态氮和硝态氮在一系列的转化过程中,是不是会存在铵态氮中的N15跑到硝酸基中去了的情况,这应该是会影响硝态氮和铵态氮的测定的吧?A:Part1.沉降氮的去向这个实验中,铵态氮和硝态氮是分别添加在不同的土壤中的。不能同时添加到一个样品,你说的是对的。宋欣老师Q&AQ:感谢宋老师的精彩报告,有两个问题请教您一下:1. 用于抽提的枝条要剥皮吗?我看您PNAS的文章里面没有明确提到这一点,个人感觉剥皮对抽提的结果影响还挺大的;2. 您通过有机质H和木质部水的交换在一定程度上挑战了“两个水世界”,请问您有没有考虑过对于整株植物不同部位本身同位素组成的异质性以及土壤水分(比如不同孔隙尺度)同位素组成的异质性对您的整个结果的影响,谢谢。A:很好的问题。1)剥皮了,文章的方法里面其实有提到;2)这个问题很重要,土壤水真空抽提过程中也存在潜在的分馏,而且机制比较复杂,很多研究者都在做这个方面的研究,我们的控制实验使用的是沙土(我们甚至考虑过用水培,这样就能明确知道真实水源水的值了),因为根据前人的研究,沙土的分馏效应几乎可以忽略,我们论文里有针对土壤分馏复杂性的讨论;另植物不同部位同位素组成的差异,-- 这里是指枝条水还是叶片水?植物不同部位同位素组成的差异,我想了一下,在我们的实验体系里关系不大,一个是我们用的是小树苗,冠层比较简单,另外chamber里面空气充分混合,没有像野外一样存在小气候的差异,另外我们的取样部位是主干,而不是侧枝,而且主干使用了铝箔包裹,防止蒸腾富集。不过野外情况下会复杂很多,within-plant isotope heterogeneity的确是需要注意的问题。 Q:想问下宋老师,这种氢同位素贫化会因为植物的生长期不同和季节变化而变化吗?随时间和空间变化,还是会有一个恒定的偏移量?A:很好的问题。答案目前还不太清楚,这个问题值得通过进一步的数据积累去更好的揭示。根据我们发现的贫化程度和枝条水含量具有较好相关性的结果猜测,时空变化如果伴随枝条水含量(比如旱季枝条含水量可能偏低?)也发生变化的,那么贫化程度理应也会有差异的,不过差异幅度到底有多大还不说。一般来说枝条水含量的种间差异要比种内要大,因此贫化程度应该也是种间比种内差异大?何新华老师Q&AQ:13CO2标记要56天才取样?这样需要好多标记气体啊?A:大田标记13CO2标记一般是当天一次标记就拆掉装置,第二天就开始取样(持续天数根据实验目的和植物类型自定;土壤可持续数年如果标记地取样点未被扰动的话)。我们的经验是密闭留置标记装置过夜,第二天中午再拆掉,一般让剩余未吸收和/或当晚土壤呼吸释放的13CO2第二天上午再被植物吸收利用。Q:那个圆圆的土壤,是机器钻取的。那你们的机器最多是100cm吗?有没有试过更深的呢?A:根据作物根系,我们取样到100cm深度。(地质)钻孔机可取数米至数千米深样品。Q:标记之后一般多久取样,最优。A:没有最优取样时间,依实验目的而定。一般来说,叶片13C光合同化、15NO3-还原、15N同化取样可以以秒、分、小时至数天计;植物(上述情况除外)和土壤取样以天、周、月或年计。Q:植物是持续标记的吗?密封的环境怎么更换干冰这些降温装置?A:根据实验目的、植物和土壤等类型自定一次或持续多次标记。干冰是负20℃,多少视情况择定。Q:何老师,您好!在降雨量1800mm的地区做大树碳氮双标需要注意什么?A:需要数天以上的不降雨天气,其它以实验目的、植物树冠和土壤等类型择定。孙守家老师Q&AQ:老师您好,我想请教一下,油茶是碳三植物还是碳四植物?A:油茶是碳三植物,油茶叶片δ13C值在-29.55‰~-27.52‰之间,不同地区略有差异。关于此次会议PPT是否可以分享工作人员还在与各位老师沟通当中我们会将可以分享的PPT逐步在公众号内进行推送通过此次交流会的学习和交流,相信各位老师、同学对同位素的相关知识有了更深层次的认识,并且对LGR液态水同位素分析仪及LI-2100全自动真空冷凝抽提系统也有了进一步的了解。如您有任何需要,欢迎随时联系我们,北京理加科技有限公司将竭诚为广大科研工作者服务。点击链接观看此次会议回放。https://wx.vzan.com/live/livedetail-231207136?v=637432175100650385
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制