当前位置: 仪器信息网 > 行业主题 > >

低压脱扣器

仪器信息网低压脱扣器专题为您提供2024年最新低压脱扣器价格报价、厂家品牌的相关信息, 包括低压脱扣器参数、型号等,不管是国产,还是进口品牌的低压脱扣器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低压脱扣器相关的耗材配件、试剂标物,还有低压脱扣器相关的最新资讯、资料,以及低压脱扣器相关的解决方案。

低压脱扣器相关的论坛

  • 断路器的发展历史

    世界上最早的断路器产生于1885年,它是一种刀开头和过电流脱扣器的组合。1905年,具有自由脱扣装置的空气断路器诞生。1930年以来,随着科技的进步,电弧原理的发现和各种灭弧装置的发明,逐渐形成了目前的机构。50年代末,由于电子元件的兴起,又产生了电子脱扣器,到了今天,由于单片机的普及又有了智能型断路器的问世。   常见的有低压断路器和真空断:低压断路器是用于交流电压1200V,直流电压1500V的电路中起通断、控制或保护等作用的电器。低压断路器是电器工业的重要组成部分,在机械行业中是基础配套件,在配电系统中低压成套开关设备主要由各种低压断路器元件构成,低压断路器的功能及性能对低压成套开关设备起着至关重要的作用。发电设备所发出电能的80%以上是通过低压断路器分配使用的。每增加1万kW发电设备,约需2万件左右的各类低压断路器与之配套。在工业自动化系统中,也需要由低压断路器构成的各种控制屏、控制台、控制器等产品。我国低压断路器行业自1949午后,是在一些修理、装配简单电器工厂的基础上逐步发展成能独立设计、生产的行业,到1979共有生产企业600多家,经过1985~1986年、1990~1991年两个发展高峰,1995年低压断路器行业已有生产企业约1500家。    目前我国低压断路器制造企业主要集中在北京、天津、辽宁、上海、江苏、浙江、广东等地,在促进国民经济发展的同时,也暴露出许多问题。主要有以下两点:   1.企业规模偏小,且数量过多。目前我国低压断路器生产企业中,年销售收入和总资产均在5亿元以上的大型企业只有2~4家,绝大多数都是中小企业,导致企业缺乏规模经济和竞争力;而且我国低压断路器生产企业由建国初期发展到现今的1500多家,企业数量过多,导致经济资源过于分散,缺乏整体创新动力,导致生产效率、经济效益和市场竞争力不高。   2.区域结构趋同,重复建设严重。我国低压电器行业由于盲目上项目、铺摊子,地区产业趋同化现象严重,低水平重复建设,造成产品生产过剩、能源、原材料利用率低、经济效益低下以及地区保护、恶性竞争等后果。   真空断路器技术的进步,真空断路器技术的进步表现在大容量化、低过电压化、智能化和小型化。而这一进步又是由于真空技术、灭弧室技术的发展及采用新工艺、新材料及新操动技术的结果。据发明者介绍,这种技术除了可以作为传统电机技术的替代技术以外,还将为直流电机拓展更为广阔的发展和应用空间。如开发大容量直流电机代替高压直流输电网供电的交流同步发电机和换流站设备,不仅可以节省大量换流站的建设费用,还可大幅度降低变电损耗。   今后断路器会向着专用型、多功能、低过电压、智能化等方向发展。

  • 【原创】两元高压梯度和四元低压梯度(带在线脱气)系统优劣的比较

    目前HPLC仪器制造厂家大都推出四元低压梯度(带在线脱气)系统,而在数年前大都是两元高压梯度,当然是用在梯度时。那么两元高压梯度和四元低压梯度(带在线脱气)系统比较一下,各有什么优缺点。讨论范围不仅是性能,还应考虑生产成本和销售利润。大家觉得如何。我目前还是觉得这是国外厂商的一种销售技巧,从目前的售价看,四元的比二元高压并低不了太多,但他们节约的成本是不少的。我认为高压梯度在作高精度分析时优势明显。

  • 【原创大赛】话说四元低压梯度洗脱的优势与缺陷

    【原创大赛】话说四元低压梯度洗脱的优势与缺陷

    话说四元低压梯度洗脱的优势与缺陷 现在我们面对的样品复杂多样、千奇百怪,那我们检测这些样品所涉及到的仪器和方法也就多种多样各不相同了。比如很多混合化合物检测就得采用梯度洗脱的方式才能更准确、方便、快速的检测出来。然而梯度洗脱方法也有很多种,现在一般采用的有二元低压梯度洗脱、二元高压梯度洗脱、三元低压梯度洗脱、四元低压梯度洗脱、四元高压梯度洗脱,戴安还高调的推出一款双三元高压梯度洗脱等等,其中二元高压梯度与四元低压梯度应用的最为盛行。 这两种仪器在市场上都很多,各有优缺点。现在中国的国标中应用的仪器及方法最多也就用到二元梯度,四元梯度还没有具体国标方法。有的人可能认为买一套四元梯度没用,买二元的就足够了,买四元的纯粹是浪费钱和资源。其实不然,四元的有四元的优势。下面就一一说来听听。http://ng1.17img.cn/bbsfiles/images/2014/10/201410181613_518943_2498430_3.pnghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410181619_518949_2498430_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/10/201410181614_518945_2498430_3.pnghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410181614_518946_2498430_3.jpg 四元低压梯度洗脱不用说就是能同时走四种流动相,而且在不同时间下可以以任意比例走。它是由一台高压泵和一个四元比例阀组成的,通过程序控制比例阀来实现梯度洗脱。它的优势是只有一个泵,比二元高压梯度泵省一个泵,比四元高压梯度泵省三个泵,大大节省了实验仪器费用。四元低压梯度需要的高压泵少,那么该仪器的故障率相对也就少。一般情况下四元低压梯度洗脱时泵的流速不变,这样控制泵的脉动就容易的多,仪器的噪声小检出限也就低;一般的液相泵流速越小脉动越大,通常总流速都是1.0ml/min,这样的流速脉动很小、流速很稳。四元低压梯度和二元低压梯度相比只是比例阀一个是四元的一个是二元的,费用相差并不大,但除了日常梯度用的二元外,剩下的二元一元可以走过渡液(换流动相时不相容或有较剧烈反应等两种多多种流动相时,如含量较高的甲醇和含量较高的缓冲液相容可能会有盐结晶析出;含量较高的甲醇和含量较高的酸溶液相容可能会产生大量热量,甚至有较剧烈的反应等,损坏仪器甚至发生危险),反相色谱一般是5%-20%的甲醇水溶液,通常大家都选10%;另一元可以走纯甲醇等试剂,这样冲洗系统时非常方便,不用来回换流动相瓶,既能省时、提高效率又能省试剂、省费用。当然它也有不足的地方,那就是低压混合的流动相进入高压系统容易产生气泡,所以一般的四元低压泵都会加一个在线脱气机(这个和高压泵相比一般都不算贵);它的混合是在高压泵之前,从混合处开始到进样阀的管路都是混合体积,虽然混合会很充分,但混合体积也会很大,混合滞后时间较长;四元低压梯度由于低压混合和混合体积较大等因素,它的准确度没有二元高压梯度高,但能满足绝大多数梯度洗脱要求。http://ng1.17img.cn/bbsfiles/images/2014/10/201410181615_518947_2498430_3.pnghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410181615_518947_2498430_3.png 二元高压梯度洗脱是由两台高压泵同时走两种流动相,可以在不同时间下以任意比例走。它的优势是高压混合不容易产生气泡(相对四元低压梯度);混合体积较小;混合准确度较高等。缺陷是价格较高;故障率较高;冲洗系统时需要经常换流动相瓶,相对麻烦;泵流速小时有时会产生较大的压力(流速)脉动,影响仪器的检出限等。http://ng1.17img.cn/bbsfiles/images/2014/10/201410181616_518948_2498430_3.png 总之四元低压梯度洗脱和二元高压梯度洗脱都能实现现有梯度洗脱要求,只是使用过程和结果各不相同,各有优缺点。 四元低压梯度价格便宜,梯度混合噪声小,故障率小,使用方便等优点是我所看好的,相比我更支持四元低压梯度洗脱。长期从事液相色谱分析的您呢?您的看法和我有多大的差别呢?您更看好那种洗脱方式呢?

  • 【实战宝典】高压梯度洗脱与低压梯度洗脱有什么区别?

    [b][font=宋体][back=white]解答:[/back][/font][/b][font=宋体]梯度洗脱有两种实现方式:低压梯度(内梯度)和高压梯度(外梯度)。[/font][font=宋体][back=white]([/back][/font][back=white]1[/back][font=宋体][back=white])[/back][/font][font=宋体]低压梯度:[/font][font=宋体]流动相在低压下混合,然后用高压输液泵将流动相输入到色谱柱,因此对硬件的要求较低,其梯度的实现主要由电磁阀的开关来进行控制,只需一台泵、一台容积组织器和一台动态混合器,即可配置成四元梯度系统。优点是成本较低,系统的故障率较低,维护较为方便,此外,由于流动相是在常压下混合,不存在流动相的压缩,故而梯度准确度较好。缺点是精度比高压梯度略差。[/font][font=宋体][back=white]([/back][/font][back=white]2[/back][font=宋体][back=white])[/back][/font][font=宋体]高压梯度:[/font][font=宋体]流动相的混合是在高压下进行,所以该系统在硬件上需多台同样的输液泵的组合,而后经动态混合器进行混合,并有专用的软件模块进行控制。优点是梯度精度较高,但缺点是成本较高,硬件较多;而流动相的可压缩性和流动相混合时的热力学体积的变化,可能影响输入到色谱柱的流动相的组成,所以,梯度的准确度会出现偏差,另外,高压梯度洗脱过程中为保证流速稳定必须使用恒流泵,否则很难获得很好的重复性结果。[/font][font=宋体]([/font]3[font=宋体])从硬件价格上看,高压比低压贵不少。两者最大的区别还是在流动相可能出现的气泡上。在同样的两种流动相混合时,高压混合所产生的气泡几率要比低压混合时少。在四元低压梯度系统中,在线脱气机在混合前先脱气,使气体远远低于其在溶剂中的饱和溶解度,混合后一般也不会达到其在混合溶剂中的最大溶解度,所以一般不会有气泡产生。混合后脱气是不可行的,因为混合后脱气,会在一定程度上改变混合比例(各种溶剂的饱和蒸气压不同决定)。另外,混合前脱气能提高流量精度,这点更有意义。而高压梯度是泵后混合,此时气体在溶剂中的溶解度会增大(溶解度随压力增大而增大),所以一般也不会有气体溢出而产生气泡了。[/font][font='微软雅黑','sans-serif'][color=black][back=white]领取更多《实战宝典》请进:[url]http://instrument-vip.mikecrm.com/2bbmrpI[/url][/back][/color][/font][font='微软雅黑','sans-serif'][color=black][back=white] [/back][/color][/font]

  • 脱口而出的100句经典英文

    脱口而出的100句经典英文 Any day will do? 哪一天都可以? Any messages for me? 有我的留言吗? Are you by yourself? 你一个人来吗? All right with you? 你没有问题吧? Are you free tomorrow? 明天有空吗? Are you kidding me? 你在跟我开玩笑吧? As soon as possible! 尽可能快! Back in a moment! 马上回来! Believe it or not! 信不信由你! Better luck next time! 下次会更好! Boy will be boys 本性难移! Come to the point! 有话直说! Do you accept plastic? 收不收行用卡? Does it keep long? 可以保存吗? Dont be so fussy! 别挑剔了! Dont count to me! 别指望我! Dont fall for it! 不要上当! Dont get me wrong! 你搞错了! Dont give me that! 少来这套! Dont let me down! 别让我失望! Dont lose your head! 别乐昏了头! Dont over do it! 别做过头了! Dont sit there daydreaming! 别闲着做白日梦! Dont stand on ceremony! 别太拘束! Drop me a line! 要写信给我! Easy come easy go! 来得容易去得也快! First come first served! 先到先得! Get a move on! 快点吧! Get off my back! 不要嘲笑我! Give him the works! 给他点教训! Give me a break! 饶了我吧! Give me a hand! 帮我一个忙! Great minds think alike! 英雄所见略同! Ill treat you to lunch. 午餐我请你! In one ear, out the other ear. 一耳进,一耳出! Im spaced-out! 我开小差了! I beg your pardon! 请你再说一遍! I cant afford that! 我付不起! I cant follow you! 我不懂你说的! I cant help it! 我情不自禁! I couldnt reach him! 我联络不上他! I cross my heart! 我发誓是真的! I dont mean it! 我不是故意的! I feel very miserable! 我好沮丧! I have no choice! 我别无选择了! I watch my money! 视财如命! Ill be in touch! 保持联络! Ill check it out! 我去看看! Ill show you around! 我带你四处逛逛! Ill see to it! 我会留意的! Im crazy for you! 我为你疯狂! You make me jump! 你吓了我一跳! Make up your mind. 作个决定吧! Make yourself at home! 就当在家一样! My mouth is watering! 我要流口水了! Never heard of it! 没听说过! Nice talking to you! 很高兴和你聊天! No doubt about it! 勿庸置疑! No pain no gain! 不经一事,不长一智! None of your business! 要你管? There is nothing on your business! 这没你的事! Now you are really talking! 说得对! Please dont rush me! 请不要吹促我! Please keep me informed! 请一定要通知我 She looks blue today. 她今天很忧郁! She is under the weather. 她心情不好! So far, so good. 过得去。 Speaking of the devil! 一说曹操,曹操就到! Stay away from me! 离我远一点! Stay on the ball! 集中注意力! That makes no difference. 不都一样吗? Thats a touchy issue! 这是个辣手得问题! Thats always the case! 习以为常! Thats going too far! 这太离谱了! Thats more like that! 这才象话嘛! The answer is zero! 白忙了! The dice is cast! 已成定局了! The same as usual! 一如既往! The walls have ears! 隔墙有耳! There you go again! 你又来了! Time is running out! 没有时间了! We better get going! 最好马上就走! Well discuss it later! 回头再说吧! Well find out shortly! 我们很快就知道了! We are all for it! 我们全都赞成! Weve been expecting you! 我们正等着你呢! What a good deal! 真便宜! What a let down! 真令人失望! What do you figure? 你有什么想法? What happened to you? 你怎么了? What should I do? 我应该怎样做? Whats would you recommend? 你有何意见?

  • ARTU四遥单元在低压智能配电中的应用

    摘 要:针对馈线众多的低压配电线路,采用多功能电力监控仪表实现遥测、遥信、遥控及电能的测量管理,成本高、投资大。本文介绍一种基于ARTU四遥单元,实现对终端配电线路进行遥测、遥信、遥控、遥脉的智能配电方案。该方案具有成本低、投资少、安装接线简便等优点,有利于低压智能配电的进一步推广和应用。关键字:ARTU四遥单元 低压智能配电 应用1  引言  随着对生命、财产安全及电器节能管理考核的日趋重视,低压配电需要智能监控的应用场合越来越广泛。目前采用多功能电力监控仪表,对低压配电回路电流、电能进行遥测,对断路器的合闸、脱扣状态进行遥信和记录,并利用上位机软件通过仪表对断路器进行控制。虽然该方案能满足低压智能配电的要求,但每一馈线均需一台监控仪表,成本高、投资大,用户难以承受。  本文介绍在传统的低压配电线路上,增加ARTU四遥单元,实现对低压配电智能化低成本的多回路监控。2  产品特点  ARTU四遥单元包括遥测单元、遥脉单元、遥信单元、遥控单元四个规格。外观见图1,采用DIN35mm导轨安装。前端带通信指示和信号运行通道指示2组信号灯,通信有两路RS485接口,一路用于通用参数的设置及调试,另一路用于读取和设置“四遥”值。产品顶端设有拨码开关窗口,可通过拨码开关设置产品通讯地址和波特率。辅助电源有24Vdc或220Vac/dc两种供选择,整机功耗小于5W,防护等级达IP20。产品符合JB/T10388-2002《带总线通信功能的智能测控节点产品通用技术条件》、GB/T7261-2000《继电器及装置基本试验方法》和GB/T13729-2002《远动终端设备》标准。3.1 ARTU-M32遥测单元3.1.1 产品功能  ARTU-M32能同时采信32路交流或直流模拟信号,如0-20mA ac、0-5V dc、4-20mA dc等模拟量,经AC/DC转换,与上位机通讯RS485总线连接进行数据交换。32路双色指示灯用于指示每路输入信号的当前状态,绿灯表示正常状态,红灯表示紧急状态,黄色表示警示状态。遥测刷新速度小于1s,精度达0.5。3.1.2 产品应用  以检测16路馈线的工作电流为例,一次方案见图2(a),电流互感器采用AKH-0.66S低压双绕组互感器,用于电流采集,一次侧额定电流5A-6300A,二次输出有2个绕组,一组输出0-5A(或1A),给99T1、6L等指针表作当地显示电流值,另一组输出交流0-20mA,给ARTU-M32单元远传遥测,见图2(b),电流测量回路通过指针表显示各馈线回路相应的电流值,遥测回路利用通讯端口远程集中显示各回路电流值。3.2.1 产品功能  ARTU-P32遥脉单元采集32路电能脉冲信号,通过RS485总线与上位机连接进行数据交换,具有计数值掉电保护功能。脉冲宽度大于10ms,最大累积脉冲数4294967296个。上位机采集得到的电能脉冲数除以该回路电能表的脉冲常数(imp/kWh),就为该回路的电能数据。该遥脉单元还有GPS校时功能。3.2.2 产品应用  以计量32个馈线电能为例,电能表采用DTM862-2型,一次方案见图3(a),电能脉冲采集二次见图3(b)。使用传统的机械式电能表附带脉冲接口,利用智能化的脉冲接收装置实现远程集中式抄表功能。3.3.1 产品功能  ARTU-K32可接受32路有源或无源接点,把开关量信号转换为数字信号,经通讯实现和上位机监控系统的数据交换,32个通道扫描一周所需时间为1ms,可记录2000组事件容量,带GPS校时功能。3.3.2 产品应用  1台ARTU-K32可以监控8条马达回路或16路照明回路的工作状态。以监测马达回路为例,一次方案见图4(a),由配辅助、故障触点的NS断路器、LC1交流接触器、LR2热继电器和AKH-0.66P保护型互感器组成。每条马达回路监测4组节点,即断路器合闸、故障触点,电机运行(接触器)状态触点,电机热过载(热继电器)触点,1台ARTU-K32监测8条马达回路。见图4(b),通过现场启停按钮控制马达的运行与停车,现场红、绿指示灯同步显示马达的工作状态,遥信单元则可通过监测各元件触点的动作值远程显示马达的工作状态。ARTU-J16通过RS485总线与上位机相连,作为远程继电器输出模块,用于接收计算机指令,执行系统的遥控操作或自动控制,继电器输出共16路,继电器触点容量5A/250VAC或5A/30VDC,遥控准确率100%,可记录1600组事件顺序记录,带GPS校时功能。3.4.2 产品应用  以1台ARTU-J16控制8路低压馈线为例,CM1断路器配电动机操作机构,一次方案见图5(a),控制方式见图5(b)。启停按钮现场手动控制各回路断路器的合、分闸,遥控单元通过通讯接口集中控制8路断路器的工作状态,实现断路器就地与远程两地控制的工作模式。4  应用实例  以某工程为例,需监控32条低压馈线并组网,其中16路为照明回路、16路为马达回路,每条馈线均需测量三相电流、电能,并进行故障记录、防误跳。每条馈线的A相、C相电流采用AKH-0.66S双绕组互感器采集,32条馈线用2台ARTU-M32遥测单元测量并远程,B相电流默认为A相与C相的平均值;每条馈线的电能计量采用DTM862-2电度表,用1台ARTU-P32采集电能脉冲信号,并将数据上传,实现电能无人抄表。用1台ARTU-K32监测16路照明回路开关状态,2台ARTU-K32监测16路马达回路工作状况,并实现事件记录。用4台ARTU-J16控制32条馈线的断路器防误跳,1台ARTU-J16控制16条马达回路的接触器,控制马达运行状态。  当多个ARTU组网使用时,最后一个的RS485的A和B端子上应并接入一个终端匹配电阻R,以保证通讯阻抗匹配,终端匹配电阻一般在120Ω-10kΩ之间,布线不同终端匹配电阻可能会不同。正确接入RS485总线,并连接至上位机。上位机根据模块的站号和波特率,按规约格式下发命令。此时模块的通信指示灯闪烁,表明模块已收到上位机命令并应答,即通讯已经建立,见图6。  采用该方案的硬件成本如下:64只AKH-0.66S双绕组电流互感器,约增加成本10560元,2台ARTU-M32遥测单元,成本7200元,1台ARTU-P32遥脉单元成本为3500元,3台ARTU-K32遥信单元,成本10500元,5台ARTU-J16遥控单元成本19500元。32块DTM862-2成本为8000元。如果使用智能化的网络仪表来实现以上功能,需要选用ACR210E(测量三相电流及有功电能,带通讯接口)配2DI/2DO(2路遥信2路遥控)的方案,马达回路由于需要监测的参数较多,需要配4DI/4DO(4路遥信4路遥控)的开关量模块,32只此款仪表成本85760元,相比第一种方案增加成本44.7%。5  结束语  2007年12月,国家继电保护及自动化设备质量监督检验中心对ARTU四遥单元产品性能指标、电磁兼容、通讯规约进行测试检验,符合相关要求。该产品已在青海油田供水供电公司、苏州税务大厦、内蒙古镶黄旗林煤矿等工程配电监控系统中得到应用,降低了投资成本,产生了较好的社会和经济效益。

  • 【分享】液相色谱低压混合器电磁阀密闭不严处理方法

    低压混合的工作原理:常见的低压混合器是一个四进一出的装置,四个进口分别由四个电磁阀控制着,连接四个储液瓶中。一个出口连接泵。泵工作后在泵-出口-混合器的连通的管腔内实现负压,这是低压混合的动力来源。混合器的四个入口处的电磁阀控制各个入口的开启状态。开启储液瓶的液体就会在负压的作用下到达混合器。通过电磁阀控制各个入口电磁阀开启的时间调整混合液的比例。这是低压混合的工作原理。低压混合器的主要常见问题:1) 比例混合不准确。忽略溶剂的粘度使得混合比例失真,这是设计上固有缺陷。但是影响不大。原因是粘度不同,在相同负压下的流速不同,电磁阀只是控制开启时间,所以不够精确。比如:胶水和甲醇在50:50条件下基本上很合后的都是甲醇(例子比较极端,但好理解)。在粘度相差比较小的时候还是比较准的。2) 低压容易生气泡。尤其在没有在线脱气装置的情况下。3)容易产生电磁阀密闭不严的问题。这个是要讨论的。经常做梯度或者使用一个通道会出现这样的问题。现象是:1. 未开启的通道,但其对应的储液瓶液体减少。证明该通道电磁阀入口密闭不严;2. 走双通道时候一个储液瓶中的液体过快,另一个过慢。证明“快的”一个有问题。3. 保留时间明显变长或者变短。要怀疑一下这个问题,留意一下是不是有2.提到的现象。 处理方法:1) 更换新的混合器。这是最根本方法,但是比较贵。2) 个人曾使用解决的方法。确定密闭不严的通道(判断方法可以采用上面提到的),然后关闭其他通道,但是用次通道走50%甲醇,流速2.0ml/min,开启purge阀。5分钟后,缓慢降流速到0.2,旋紧purge阀,流速条到0。小心取出该储液瓶的输液管,用封口膜把输液管的终端密封死。最后,调试其他通道看看问题是否排除。

  • 【论坛劳模】 自动进样器低压阀泄漏的维修

    【论坛劳模】  自动进样器低压阀泄漏的维修

    自动进样器维修案例低压阀泄漏5.1有用户报修,Shimadzu的Sil-20A自动进样器报警,系统存在泄漏。自动进样器是较为复杂的体系,部件较尤其是运动的机械部件较多,所以故障率也较高。现场观察,开机后做自动进样器排气操作和清洗,此时发现泄漏发生在仪器低压阀上。在阀体接触面有液体流出,不是阀管路接头不良的问题。http://ng1.17img.cn/bbsfiles/images/2014/05/201405052122_498503_1604036_3.jpg在故障处理之前,对仪器结构和原理的把握是很重要的。其实Sil-20A的仪器结构图就在仪器的门上,可以按图索骥。http://ng1.17img.cn/bbsfiles/images/2014/05/201405052122_498504_1604036_3.jpg(图中的LPV就是低压阀。)另外,参见一下流路原理图。http://ng1.17img.cn/bbsfiles/images/2014/05/201405052123_498505_1604036_3.jpg上方的阀为低压阀,泄漏就发生在此处。低压阀的结构有点像手工进样阀,借鉴手工进样阀的经验,泄漏往往和转子定子的磨损有关系。于是试图拆解一下低压阀(其实事实并非如此,可见经验未必一定可靠)。在试图拆解低压阀之前,突然想到应该检查一下阀出口是否流畅。于是将低压阀出口管路(连接洗针口的位置)打开。发现低压阀不再泄漏。看来是通往洗针口的管路堵塞,于是顺着流路,打开洗针口。(这个地方很难拆,自动机进样器内部的空间甚小)。煞费心机,终于拆开,将洗针口提出。http://ng1.17img.cn/bbsfiles/images/2014/05/201405052123_498506_1604036_3.jpg将其连接到泵出口,反向送液,压力升到20几个MPa,终于把堵塞物顶开了。恢复原状,开机测试,一切正常。

  • 脱口秀

    脱口秀

    去看波姐,据说这个女人有点污[img=,690,626]https://ng1.17img.cn/bbsfiles/images/2019/09/201909181649135689_8037_3947961_3.png[/img]

  • 低压智能电动机保护器的可靠性设计

    摘 要:针对低压智能电动机保护器在实际使用中遇到的各种电磁兼容问题,根据微处理器系统的特点从硬件和软件两个方面,提出了抗干扰方法,获得了良好的EMC性能。关键词:微处理器;EMC电磁兼容性;软件;硬件;抗干扰1  引言  电动机作为一种拖动机械因具有结构简单、价格低廉、使用维护方便等优点,在国民经济各个方面被广泛采用。在当代,随着电子技术的发展和智能电动机保护器技术的成熟而普及率越来越高。   智能电动机保护器采用了微处理器技术,不仅解决了传统的热继整定粗糙、不能实现断相保护,重复性差、测量参数误差大的缺点。保护器通过电流来判断断相故障,软件模拟热积累过程的方法来实现过载保护等方法保证了电机的可靠运行,而微处理器强大的扩展性包括开关量输入、继电器输出,4~20mA变送输出、RS485通讯等很好的满足了控制系统的“四遥”功能。  电动机保护器提高了电动机运行的可靠性和系统智能化要求,因此保护器的可靠运行起着举足轻重的作用,同时也对保护器抗外界干扰提出了比较现实的要求。下面就从硬件和软件两个方面提出可靠性设计。2  硬件可靠性设计2.1 微处理的选择  采用Freescale公司的高性能处理器MC9S08AW60。MC9S08AW60是Freescale公司一款基于S08内核的高度节能型处理器,是第一款认可用于汽车市场的微控制器。可应用在家电、汽车、工业控制等场合,具有业内最佳的EMC性能。2.2 电源端滤波处理  利用电磁原理进行硬件电路滤波是提高保护器EMC的有效方法。线路如下图,经热敏电阻t、压敏电阻RV1、电感L1、L2、差模电容C1、共模电感L3、共模电容C2、C3组成的两级滤波处理,很好的隔离了由于电源端的输入和输出干扰。PTC热敏电阻器的主要用于过流过热保护,直接串在负载电路中,在线路出现异常状况时,能够自动限制过电流或阻断电流,当故障排除后又恢复原态,俗称“万次保险丝”。根据线路的最大工作电流来确定选择。压敏电阻主要用于吸收各种操作浪涌及感应雷浪涌过压保护,以防止这类过电压干扰或损坏各种电路元件。根据设计经受的浪涌电压按照最大允许使用电压和通流容量来选择。其中,L1、L2、C1为抑制差模干扰,L3、C2、C3为抑制共模干扰。L1、L2铁芯应选择不易饱和的材料及M-F特性优良的材料。按照IEC-380安全技术指标推荐,图中元件参数的选择范围为:C1=0.1~2uF;C2、C3=2.2~33uF;L3为几个或几十毫亨,随工作电流不同而取不同的参数值。  按照下面公式计算C2、C3的容量:     Ii=2πfCyU  式中:Ii───允许的交流漏电流     f───电源频率;     U───电源供电电压;  上图为电源端是否使用滤波器,使用瑞士TRANSIENT 2000电磁兼容测试仪1000V 100KHZ 0.75mS条件EFT群脉冲实验,从TEXtronix TDS1012B捕抓到的信号比较,未使用滤波处理的电源输出端产生了尖峰脉冲,会导致微处理器复位,甚至死机。2.3 信号端处理  谐波和电磁辐射干扰会导致保护器误动作,使电气仪表计量不准确,甚至无法正常工作。在电动机控制回路中产生该类干扰源为变频器和现场对讲机。解决的方法有:一是信号输入线胶合,胶合的双胶线能降低共模干扰,由于改变了导线电磁感应的磁通方向,使其感应互相抵消。二是内部线路处理。如下图,采用双差分输入的差动放大器,具有很高的共模抑制比。在输入回路中接RC滤波器、信号的输入和输出端使用专用器件、降低输入输出阻抗、可靠接地和合理的屏蔽等措施。2.4 保护输出端处理  输入输出端采用光电隔离的方法,也是可以消除共模干扰,同时在保护继电器的的输出端并接压敏电阻,有效的提高了继电器的寿命,也降低了由于外部接触器动作对内部的干扰。考虑到客户使用控制电压的不确定性和接触器线圈容量,确认使用MYG14D821。2.5 外部存储技术和看门狗保护电路  使用外置存储芯片X25043,SPI接口。微处理器内置SPI控制模块,方便的与该芯片接口,外部存储技术保证了运行状态和事件的记录。低电压复位和外部看门狗提高了保护器的可靠性。2.6 主体与显示单元通过RS485连接  考虑到使用环境的特殊性和要求的多样性,主体与显示单元之间连接也采用RS485 Modbus-Rtu协议连接,提高了显示与控制的可靠性。 3  软件可靠性设计3.1 实时多任务的调度  保护器起着保护电动机的重任,对它的要求是既不能误动,也不能拒动,而且必须快速。实时多任务的调度实际是通过时间片的轮换实现宏观上的多任务效果。对于保护器而言,存在着三个重要的任务,等间隔的交流采样,根据算法得到稳态与暂态电量数据;根据得到的数据判断故障,故障计时、清零和脱扣输出;人机交互界面。下图以一个周波T=20mS,32点采样为例(考虑到快速除法),32次采样总时间为3.2mS,数据计算时间为9.72mS, 计时0.36mS,则人机交互的时间为6.72mS。这样的任务调度即满足了保护实时性要求,又较快的响应了参数设置。3.2 交流采样、数字滤波  对于交流正弦信号,一个周期的电压有效值为  根据电工原理中连续周期交流信号的有效值的定义,将连续信号离散化,用数值积分代替连续积分,从而得到有效值与采样值之间的关系。离散化得到    在对信号多次采样的基础上,通过软件算法提取最逼近真值的数据。这种算法计算连续的周期的交流信号,精度高,抗波形畸变能力强。在使用这种算法时,也可同时采用连续平均值法、中值算法等数字滤波,提高保护器的抗干扰能力。3.3 软件陷阱  程序是固化在微处理器的存储器中,由编译器统一安排,但设计时,设计人员考虑到产品的扩展性,一般留有余量,也因此总有些存储空间会未被使用。当微处理器的PC指针因为干扰被错置时,系统就会出错。软件陷阱就是在不用的存储空间、中断入口、子程序后加入强制跳转指令,让出错的PC指针恢复正常。  方法是:NOP      NOP      JSR MAIN4  结束语  本文针对低压智能电动机保护器在实际使用中遇到的各种电磁兼容问题,根据微处理器系统的特点从硬件和软件两个方面,提出了抗干扰方法,获得了良好的EMC性能。

  • 【求助】高压梯度与低压梯度

    二元高压梯度(双泵+在线混合器)与四元低压梯度(单泵+低压梯度阀+脱气机+混合器),对于上面两个配置,现在哪个实用性更好?哪个洗脱效果更好?一般首选哪个配置? 顺便弱弱的问一下,如果我选二元高压梯度,对于像甲醇:水:冰醋酸(48:52:1)这种三种溶剂甚至四种的流动相该怎么去弄呢?它总共才二个溶剂通道吧。。。。

  • 高压梯度和低压梯度的区别

    如题,请各位大神帮忙解答一下,高压梯度和低压梯度的优缺点各在哪里?高压梯度泵后混合可减少气泡的产生,但有人也说在检测器内(恢复常压后)可能会产生气泡。如果这样,是否高压梯度最好也配在线脱气?低压梯度的精度可以做到多少?对于串联泵来说,除了混合体积不够的原因外,比例阀切换频率如果和泵运行频率同步的话,是否也会造成基线不平(波浪形基线)?二元低压梯度最好的切换比例阀的方式是什么?按照时间周期或者是按照泵的运转周期?有没有熟悉waters或agilent的大神帮忙告知一下这两家是如何做的?感谢!

  • 【分享】中国发布音视频设备、低压电涌保护器和信息技术设备的最新安全要求

    2011年6月16日,中国国家标准化管理委员会分别发布了关于音视频设备的电气安全要求、低压电涌保护器性能要求和测试方法、信息技术设备安全通用要求的G/TBT/N/CHN/822、G/TBT/N/CHN/825、G/TBT/N/CHN/826号通报。这三项通报都是关于设备的强制性安全标准, 均是修改采用了对应的国际标准要求。三项强制性标准在提交WTO秘书处的90天后正式通过,并在通过后6个月正式执行。1. G/TBT/N/CHN/822号通报主要阐述了适用于被设计成由电网电源、电源设备、电池或远程馈电系统供电的,预定用来分别接收、产生、录制或重放音频、视频和有关信号的电子设备的安全要求。该强制性标准主要修改采用了国际标准IEC60065:2005《音频、视频及类似电子设备 安全要求》,主要在电源额定值的标示、安全说明、电源插头、适用范围、电气间隙的要求值、湿热处理条件、温度限值、接触电流的限值、天线与保护地的隔离、显像管的试验方法、额定消耗功率的标识等方面做出了修改。2. G/TBT/N/CHN/825号通报主要阐述了低压电涌保护器的性能试验要求,规定了三种类别的实验及其试验方法。该强制性标准主要是修改采用了IEC61643-1:2005《低压电涌保护器 第一部分:连接低压配电系统的电涌保护器 性能要求和试验方法》,主要在脱离器和过载时的安全性能的一般要求中增加了注“用作指示装置或者类似功能的低压电涌保护器在试验时可断开”;在表11中,只规定了我国的过载特性电流系数的选取值;在短路耐受能力试验中的实验电压考虑到制造商推荐的最大过电流保护元件的额定电压。3. G/TBT/N/CHN/826号通报主要阐述了适用于电网电源供电的或电池供电的、额定电压不超过600V的信息技术设备的安全要求。该强制性标准主要修改采用了国际标准IEC60950-1:2005《信息技术设备的安全-第一部分:通用要求》,主要在电源容差、电源额定值的标示、安全说明、电源插头、适用范围、电气间隙的要求值、湿热处理条件、温度限值、过流保护装置、阴极射线管的机械强度要求等方面做出了修改。

  • 【资料】电动机额定电流速算及保护装置选用

    电动机额定电流的速算口诀及经验公式  (1) 速算口诀:  电动机额定电流(A):“电动机功率加倍”,即“一个千瓦两安培”。通常指常用的380V、功率因数在0.8左右的三相异步电动机,“将千瓦数加一倍”即电动机的额定电流。  (2) 经验公式:  电动机额定电流(A)=电动机容量(kW)数×2  上述的速算口诀和经验公式的使用结果都是一致的,所算出的额定电流与电动机铭牌上的实际电流数值非常接近,符合实用要求,例如一台Y132S1-2,10kW电动机,用速算口诀或经验公式算得其额定电流:10×2=20A。  二 电动机配用断路器的选择  低压断路器一般分为塑料外壳式(又称装置式)和框架式(又称万能式)两大类。380V245kW及以下的电动机多选用塑壳断路器。断路器按用途可分为保护配电线路用、保护电动机用、保护照明线路用和漏电保护用等。  2.1 电动机保护用断路器选用原则  (1) 长延时电流整定值等于电动机额定电流。  (2) 瞬时整定电流:对于保护笼型电动机的断路器,瞬时整定电流等于(8~15)倍电动机额定电流,取决于被保护笼型电动机的型号、容量和起动条件。对于保护绕线转子电动机的断路器,瞬时整定电流等于(3~6)倍电动机额定电流,取决于被保护绕线转子电动机的型号、容量及起动条件。  (3) 6倍长延时电流整定值的可返回时间大于或等于电动机的起动时间。按起动负载的轻重,可选用返回时间1s、3s、5s、8s、15s中的某一档。  2.2 断路器脱扣器整定电流的速算口诀  “电动机瞬动,千瓦20倍”  “热脱扣器,按额定值”  上述口诀是指控制保护一台380V三相笼型电动机的断路器,其电磁脱扣瞬时动作整定电流,可按“千瓦”数的20倍”选用。对于热脱扣器,则按电动机的额定电流选择。  三 电动机配用熔断器的选择  选择熔断器类别及容量时,要根据负载的保护特性、短路电流的大小和使用场合的工作条件。  大多数中小型电动机采用轻载全压或减压起动,起动电流一般为额定电流的5~7倍;电源容量较大,低压配电主变压器1000~400kVA(包括并列运行容量),系统阻抗小,当发生短路故障时,短路电流较大;工作场合如窑、粉磨场合,通风条件差,致使工作环境温度较高。因此,选用熔断器的分断能力和熔体的额定电流,较之一般工业使用要适当加大一点。  3.1 熔体额定电流的经验公式  熔体额定电流(A)=电动机额定电流(A)×3  3.2 熔体额定电流的速算口诀  “熔体保护,千瓦乘6”  该速算口诀,指的是一台380V笼型电动机,轻载全压起动或减压起动,操作频率较低,适合于90kW及以下的笼型电动机。  若实际使用的电动机起动频繁,或者起动时间长,则上述的经验公式或速算口诀所算的果可适当加大一点,但又不宜过大。总之要达到在电动机起动时,熔体不被熔断;在发生短路故障时,熔体必须可靠熔断,切断电源,达到短路保护之目的。  四 电动机配用接触器的选择  4.1 接触器的选用原则  (1) 按使用类别选用:  生产实际中,极大多数笼型电动机使用上,基本属于按AC-3使用类别选用。  (2) 确定容量等级:  接触器的容量即主触头在额定电压等技术条件下,其额定电流的确定,应注意如下几点:  1)工作制及工作频率的影响:  选用接触器时,应注意其控制对象是长期工作制,还是重复短时工作制。在操作频率高时,还必须考虑增加接触器额定电流的容量。应尽可能选用银、银合金或镶银触头的接触器,如采用KSDZ-U系列产品。  2)环境条件的影响  生产流程的环境比较恶劣的,粉尘污染严重,通风条件差,工作场所温度较高。要对接触仪器的选择宜采取降容使用的技术措施。   4.2 接触器额定电流的对表速查   例如一台Y180L-4,22kW电动机,从速查表查得应配用U60型接触器。该电机额定电流60A,接触器额定电流60A,按一般AC-3工作类别,该接触器可控制380V电动机功率为30kW,现在控制380V 22kW电动机,属于降容使用。  五 电动机配线  电动机配线口诀  “1.5加二,2.5加三”  “4加四,6后加六”  “25后加五,50后递增减五  “百二导线,配百数”  该口诀是按三相380V交流电动机容量直接选配导线的。  “1.5加二”表示1.5mm2的铜芯塑料线,能配3.5kW的及以下的电动机。由于4kW电动机接近3.5kW的选取用范围,而且该口诀又有一定的余量,所以在速查表中4kW以下的电动机所选导线皆取1.5mm2。“2.5加三”、“4后加四”,表示2.5mm2及4mm2的铜芯塑料线分别能配5.5kW、8kW电动机。  “6后加六”,是说从6mm2的开始,能配“加大六”kW的电动机。即6mm2的可配12kW,选相近规格即配11kW电动机。10mm2可配16kW,选相近规格即配15kW电动机。16mm2可配22kW电动机。这中间还有18.5kW电动机,亦选16mm2的铜芯塑料线。  “25后加五”,是说从25mm2开始,加数由六改为五了。即25mm2可配30kW的电动机。35mm2可配40kW,选相近规格即配37kW电动机。  “50后递增减五”,是说从50mm2开始,由加大变成减少了,而且是逐级递增减五的。即50mm2可配制45kW电动机(50-5)。70mm2可配60kW(70-10),选相近规格即配备55kW电动机。95mm2可配80kW(95-15),选相近规格即配75kW电动机。  “百二导线,配百数”,是说120mm2的铜芯塑料线可配100kW电动机,选相规格即90kW电动机。

  • 低压溶气释放器

    【题名】: 低压溶气释放器【期刊】:【年、卷、期、起止页码】:【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS198001006.htm

  • 液相色谱四元高压泵、四元与低压泵与二元高压泵的区别与比较

    我们在使用高效液相色谱仪做分析时通常会接触到多元泵。所谓几元,指的是能同时控制流路的多少。多元泵又分为高压混合与低压混合。高压混合又叫泵后混合,多元高压泵由多个泵构成,有几元则有几个泵,例如LabAlliance的PC2001型二元高压梯度泵、Series 4000系列的四元高压梯度泵等。低压混合又称泵前混合,其实就是一个泵,几元就是安装几路电磁阀,例如Agilent 1200型四元低压梯度泵等。为方便理解,附图如下(以四元泵为例):http://img1.17img.cn/17img/images/201408/uepic/4a1125ae-ea25-4775-80f1-326341dd8e9e.jpg!t600x500.jpg如图所示,四元高压梯度:配置有四个可独立工作的泵+在线混合器。工作方式为四个泵并联,可同时有四个流动相,按照预先设定的配比进入,分别送液到泵后的混合室内,在高压下进行混合,混合配比更准确,不易产生气泡,不用为了转换流动相而反复清洗,不仅节省溶剂,也提高了工作效率。无需增加真空脱气机,降低了混合死体积(泵前混合时、混合管、泵头等体积,脱气机内死体积)。同时,可以做梯度洗脱:当待测样品成分复杂,用一个固定的流动相配比无法将样品中成分完全分开时,就需要用到梯度洗脱,在同一个分析过程中由仪器自动改变流动相配比,将样品中前期无法分离的物质进行洗脱,在同一谱图中得到分开的峰的效果。有助于提高分析准确性,避免了遗漏重要物质或对其进行错误定性定量。http://img1.17img.cn/17img/images/201408/uepic/75fdfc3c-6ecd-4e5b-bbd1-b2c676c90a64.jpg!t600x500.jpg然而,四元低压梯度:配置比较繁琐:由单泵+低压混合比例阀(电磁阀)+在线脱气机+混合器构成,它的工作方式也与高压梯度泵有很大区别:最多可同时有四个流动相进入流路,按照预先设定的配比进行混合,是依靠电磁阀的切换使泵分段输送不同流动相,由于在常压下混合,气泡很容易从溶剂中析出,较易产生气泡,因此必须配备在线脱气机,可消除气泡影响。可以做梯度洗脱,在仪器上进行设定之后,在同一样品分析工程中,相隔一段时间后,按照用户的设定自行改变流动相配比,将样品中组分分离开来。目前HPLC仪器制造厂家大都推出四元低压梯度(带在线脱气)系统,而在数年前大都是二元高压梯度,以往四元低压系统通常是进口仪器的专属产品,国内大多采取高压混合的方式,并没有涉及到低压系统的应用开发,在国内有些招标项目中也有明确提出选用四元低压的案例,广大客户可能会误以为四元低压是进口仪器的先进技术,实则不然,四元低压实际上是对二元高压的补充,也就是说当比例发生改变的流动相数量较多,二元高压不能满足分析的时候,四元低压弥补了这一不足。但如果比例发生改变的流动相数量在2个以内,包括2个,应该来说二元高压梯度系统在作高精度分析时优势明显。从目前的售价看,四元低压的泵比二元高压的并低不了太多,但他们节约的成本是不少的。四元低压梯度系统采用单泵加梯度比例阀来实现,因为比例阀是在泵前的,并且各流路的溶剂在比例阀里就混合在一起了,所以是泵前、低压混合。一般地,对于常规分析来说,四元低压梯度也可以满足需要;如果分析样品成份复杂、对重现性要求较高,或者需要在低流量下进行梯度分析,还是选择高压梯度好一些。当然,现在美国SSI(LabAlliance)公司推出的四元高压梯度泵,在保证高精度分析的同时,也解决了流动相数量受限制问题。液相色谱从性能上比较,四元高压肯定优于四元低压。四元高压的混合比例是通过改变泵的流速来获得的,通常泵的流速都是很准的,所以混合的精度也是很高的。四元低压梯度的混合比例是通过控制不同流路的电磁阀的开闭时间长短来控制的,理论上混合的比例也是准确的,但是实际上电磁阀的开闭会有一个延迟,无论它动作多么快,总还是需要一点时间的。比如A路和B路各50%混合,在单位时间内,A路和B路的电磁阀各开通50%的时间,这时问题不大,电磁阀的延迟影响可以通过调整补偿系数来尽量弥补。但是如果极端一点的情况,[

  • 【求助】低压混合电磁阀处气泡不断

    昨天仪器被小实习生突然断电,今天就发现柱压不稳,在低压混合的四元电磁阀处产生很多气泡。单独用甲醇或者用水都没有问题,以混合,无论何种比例,气泡源源不断。有在线脱气设备的,请教各位同学如何解决,除了换电磁阀之外。

  • 低压配电系统电流互感器的选型方案

    摘 要:分析低压电流互感器的原理,介绍了准确级和准确级限值的概念,同时并在此基础上,结合工程实例分析。低压电流互感器在低压测量、计量、继电保护、系统监测、接地保护等方面的选用。关键词:低压配电系统 低压电流互感器 工作原理 准确级 准确级限值 选型1  引言  随着我国电力工业中城网及农网的改造,以及低压配电系统的自动化程度不断提高,电流互感器作为低压配电系统中的一种重要电气元件,已被广泛地应用于测量、计量、继电保护、系统监测、接地保护和各种电力系统分析之中,本文对此进行初步的探讨。2  低压电流互感器工作原理  低压电流互感器的工作原理如图1所示,电流互感器的一次绕组串联在被测线路中,I1为线路电流即电流互感器的一次电流,N1为电流互感器的一次匝数,I2电流互感器二次电流(通常为5A、1A),N2为电流互感器的二次匝数,Z2e为二次回路设备及连接导线阻抗。当一次电流从电流互感器P1端流进,P2端出,在二次Z2e接通的情况下,由电磁感应原理,电流互感器二次绕组有电流I2从S1流过,经Z2e至S2,形成闭合回路。由此可得电流在理想状态下I1×N1=I2×N2,所以有I1/I2=N1/N2=K,K为电流互感器的变比。3.1 测量用电流互感器3.1.1 测量用电流互感器是为指示仪表、积分仪表和其他类似电器提供电流的电流互感器  测量用电流互感器广泛用于对低压配电系统电流的测量,主要准确(对电流互感器给定的等级)级有:0.2、0.5、1、3、5等,目前应用比较广泛的测量用互感器主要为母线式电流互感器,安装方便,而且其型号、规格繁多,可根据不同规格的母排或线缆选用最经济合理的电流互感器,表(一)以AKH-0.66型电流互感器,分析测量用电流互感器的运用及特点。表(一) AKH-0.66测量用电流互感器技术参数表 电流互感器型号输入、输出主要特点AKH-0.66/I型输入:5-3000A输出:0-5A(0-1A)适用用于多(单)根电缆或单根母排穿越,适用面广AKH-0.66/II型输入:150-6300A输出:0-5A(0-1A)适用用于多根母排或多根电缆穿越,适用面广,二次接线端与母排安装水平面平行。AKH-0.66/III型输入:250-6300A输出:0-5A(0-1A)具备II型特点,精度高,容量大,适用于相间距离小的场合,二次接线端与母排安装水平面垂直。AKH-0.66/M8型输入:5-150A输出:0-5A(0-1A)适用于小电流空间场所,为接线式电流互感器。AKH-0.66/K型输入:100-6300A输出:0-5A(0-1A)用于项目改造,无须拆一次母线,安装方便,为用户节省人力、财力,提高改造效率。AKH-0.66/S型输入:5-6300A输出两组:一组0-5A(0-1A),另一组AC0-20mA双路输出,一路用于电流的测量,另一路用于远传,用于系统监测,与遥测单元配合使用,为用户节约成本。AKH-0.66/SM型输入:5-6300A输出两组:一组0-5A(0-1A),另一组DC4-20mA双路输出,一路用于电流的测量,另一路用于远传,用于系统监测,与自控仪表如PLC配合使用,为用户节约成本,辅助电源DC24V由PLC供电。3.1.2 测量用电流互感器在低压配电系统中的问题及应用实例  测量用电流互感器在低压配电系统中二次输出5A和1A的选择,是一些电气工程师经常遇到的问题。  2009年12月山东聊城某化工厂,各生产车间环境多为爆炸性环境,各车间电气控制室不安装在车间内,而是安装在离各车间较远的公共电气控制室,来实现对系统电流信息的集中采集,现场电流互感器与控制室之间距离大约200米,有的甚至300米,二次传输导线为2.5平方毫米,使用的电流互感器有AKH-0.66/30I 200/5A 0.5级 5VA 穿心1匝 等许多规格,使用的电流表为CL72-AI,该项目比较大,该项目在将完工,部分工程试运行时,发现所有电流表显示与现场电流完全不准确。  经分析,电流互感器额定容量就是电流互感器额定二次电流I2e,通过二次回路额定负载Z2e时所消耗的视在功率S2e,即,S2e=I2e²Z2e; 因数显表消耗的视在功率只有0.05VA,很小,所以我们可以不考虑 ,Z2e=ρ.2L/S=0.0176Ω. mm²/m×2×200 m /2.5=2.82Ω,S2e= I2e²Z2e=5A²×2.82Ω=70.5VA,远远大于电流互感器的额定容量5VA,所以此时应该选择200/1A的电流互感器,2010年2月份该项目更换了所有的比5A电流互感器,同时由于电流表为数显表,变比可以重新设定为200/1,使整个系统恢复正常。  从本实例可以得出电流互感器接数显电流表时,传输距离对比如表(二)表(二) 传输距离对比二次导线截面积(mm²)额定二次电流(A)互感器容量(VA)单程传输距离(m)1.552.54.211062.55514.21[td=

  • 【求助】四元低压梯度系统的使用

    我们实验室的液相是四元梯压梯度系统,一般A通道是甲醇通道,B是水通道,C是乙腈通道,D是盐溶液通道。我要用CD两个通道测氨基酸含量,需要进行梯度洗脱,但是在工作站中梯度设置有个高压梯度和低压梯度设置,高压梯度设置里只有AB两个通道的设置(包括流速设置),低压梯度设置里有四个通道的设置,但没有流速的设置,我该如何进行设置,还有就是高压和低压梯度的区别是什么?请问哪位前辈有经验,能不能指导一下,感激不尽!

  • 疑问,究竟是高压混合好还是低压混合好?

    有个疑问,一直没弄太明白,目前的四元低压梯度泵在线脱气系统是不是都在混合前?我印象里好象有几家是这样的,如果是这样的话,溶剂混合产生的气泡怎么办?例如水和甲醇混合产生的气泡就很多,甚至到了暂时浑浊的地步. 高压混合这方面的问题就好多了,因为高压把气泡挤压了.这样来分析的话,是不是高压混合就比低压混合效果好很多?也不知道我分析得对不对,还请各位多指教,帮忙把这个问题分析清楚.

  • 气质-热脱附前进样口压力不稳,仪器无法正常运行

    [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]-热脱附,连接热脱附的时候,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的前进样口压力一直不稳定,有时候出现负值,之后就会显示前进样口压力关闭。前进样口流量设置为100,实际只能达到二三十左右。并且连接的热脱附的分压表中氦气压力也不稳定,压力时有时无。关闭热脱附,连接顶空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],仪器是正常的。请问可能问题出在哪里,有什么可以尝试解决的办法

  • LC在线脱气故障

    我的一台LC-20AD低压梯度液相,采购过来刚半年,前段时间出现了真空泵一直响不停,并且ERROR灯一直亮。报修后,工程师来维修,将真空泵密封部件拆开后发现密封环上有一圈黑色物质,黑色物质能用蘸着去离子水的脱脂棉擦拭下来。擦完后效果好很多了 。现在问题来了:同一个实验室里还有一台LC-20AD高压梯度仪器,也有在线脱气,而且使用了两年多一直很正常,两台仪器所用的试剂以及试剂的处理都完全一直,测试的项目也一样,请问,为什么这台低压梯度的在线脱气会出现这个问题,还有那圈黑色物质是什么?(在线脱气上的空气过滤器是纯白的,没有被污染的迹象)。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制