当前位置: 仪器信息网 > 行业主题 > >

精密真空计

仪器信息网精密真空计专题为您提供2024年最新精密真空计价格报价、厂家品牌的相关信息, 包括精密真空计参数、型号等,不管是国产,还是进口品牌的精密真空计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密真空计相关的耗材配件、试剂标物,还有精密真空计相关的最新资讯、资料,以及精密真空计相关的解决方案。

精密真空计相关的资讯

  • 广东省计量科学研究院预算784.35万购买精密露点仪标准温度计等多台仪器
    近日,广东省计量科学研究院公开招标,购买精密露点仪标准温度计、空气离子测量仪等多台仪器,预算784.35万元。  项目编号:CLF0121GZ02ZC99  项目名称:2021年度国产计量检测仪器设备采购项目(第一批)  采购方式:公开招标  预算金额:7,843,500.00元  采购需求:  合同包1(比对类检测设备):  合同包预算金额:678,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1试验仪器及装置精密露点仪标准温度计1(套)详见采购文件--1-2试验仪器及装置高精度直流标准表1(套)详见采购文件--1-3试验仪器及装置一般压力表15(个)详见采购文件--1-4试验仪器及装置高精密数字测温仪4(台)详见采购文件--1-5试验仪器及装置温湿度巡检仪1(套)详见采购文件--  本合同包不接受联合体投标  合同履行期限:自签订之日起至所有设备质保期满后 。  合同包2(财政专项类检测设备):  合同包预算金额:4,421,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1试验仪器及装置气体活塞式压力真空计1(套)详见采购文件--2-2试验仪器及装置三相电能表检定装置1(套)详见采购文件--2-3试验仪器及装置直流电能表综合检测装置1(套)详见采购文件--2-4试验仪器及装置三相电能表耐久性试验装置1(台)详见采购文件--2-5试验仪器及装置磁场标准装置1(套)详见采购文件--2-6试验仪器及装置高精度直流测试系统(标准表)1(套)详见采购文件--2-7试验仪器及装置全自动活塞式压力计1(套)详见采购文件--2-8试验仪器及装置温湿度标准箱1(套)详见采购文件--2-9试验仪器及装置直流电压传感器校准装置1(台)详见采购文件--2-10试验仪器及装置高低温湿热试验箱3(套)详见采购文件--2-11试验仪器及装置双通道高精度直流多用表1(套)详见采购文件--2-12试验仪器及装置交流电压传感器校准装置1(台)详见采购文件--2-13试验仪器及装置单相电能表耐久性试验装置1(台)详见采购文件--2-14试验仪器及装置三相电能表检定装置1(套)详见采购文件--  本合同包不接受联合体投标  合同履行期限:自签订之日起至所有设备质保期满后  合同包3(监督抽查类检测设备):  合同包预算金额:1,585,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1试验仪器及装置膜式燃气表温度适应性装置1(套)详见采购文件--3-2试验仪器及装置直流高压浪涌耦合/去耦合网络1(台)详见采购文件--3-3试验仪器及装置紫外线耐气候试验箱1(套)详见采购文件--3-4试验仪器及装置电子式交流电能表射频电磁场感应的传导骚扰抗扰度试验装置1(套)详见采购文件--3-5试验仪器及装置电能表继电器负载测试台1(套)详见采购文件--3-6试验仪器及装置三相耐久性程控源5(台)详见采购文件--3-7试验仪器及装置三相电能表检定装置1(套)详见采购文件  本合同包不接受联合体投标  合同履行期限:自签订之日起至所有设备质保期满后  合同包4(化学省站建设项目检测设备):  合同包预算金额:1,159,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1试验仪器及装置30m3环境测试舱(玻璃舱体)2(套)详见采购文件--4-2试验仪器及装置高纯气体脱氧、脱水系统1(套)详见采购文件--4-3试验仪器及装置气体标准物质自动配气装置1(套)详见采购文件--4-4试验仪器及装置3m3环境测试舱(玻璃舱体)1(套)详见采购文件--4-5试验仪器及装置1m3环境测试舱(玻璃舱体)2(套)详见采购文件--4-6试验仪器及装置空气消毒机消毒效率检测系统1(套)详见采购文件--4-7试验仪器及装置空气离子测量仪1(台)详见采购文件--  本合同包不接受联合体投标  合同履行期限:自签订之日起至所有设备质保期满后  开标时间:2021年05月20日 09时30分00秒(北京时间)委托协议.pdf2021年度国产计量检测仪器设备采购项目(第一批)招标文件(2021042903).pdf
  • VACUUBRAND革命性真空技术正式发布
    【他】终于来了VACUUPURE跨过山和大海,带着大家的期待,从德国走进了中国市场,走进了实验室,走进了用户的心中。在此之前,小编已经透露过VACUUPURE的一些亮点,终于,VACUUPURE正式亮相!2020年11月16日,VACUUPURE正式亮相于上海慕尼黑分析生化展,吸引了大批观众,让我们再次重温下发布会现场,感受VACUUPURE的魅力吧。VACUUBRAND产品经理张婉思工匠精神:“VACUUBRAND科研团队再次发扬工匠精神,创新性的设计了这款革命性的产品——螺杆泵。一句“PURE VACUU, NOTHING ELSE” 意味深长,这款VACUUPURE螺杆泵特点鲜明,操作简单,环境友好,应用范围广,可以引领实验室建设朝着洁净、高效、可靠和环保的方向前进,切实满足客户的多种应用需求。”普兰德中国区总经理全智勇他在现场讲到:“源自德国严谨的工业制造与扎实的技术让VACUUBRAND的产品拥有完备的性能与可靠的质量。而高质量的产品以及对产品的不断改进和创新也让VACUUBRAND在中国市场树立了良好的口碑。市场上真空泵品牌众多,同质化竞争严重,VACUUPURE在技术上的创新使其获得了超过同类产品的核心竞争力,使实验室的抽真空操作更简单方便。技术上的先进性让VACUUBRAND的市场认可度越来越高,市场份额也在稳步扩大。”1鲜明的技术特点VACUUPURE针对不同的应用场景分为耐化学腐蚀和不耐化学腐蚀两个版本,设计理念在于帮助用户实现了对洁净空间的追求,目前现有的中真空技术产品如涡旋泵、罗茨泵和油泵,面临的严重问题是由于泵运行过程中由于磨损会产生消耗或是产生油污,而随着时间的推移,必然降低了真空泵的性能。更糟的是,返流到应用中的颗粒会造成产品的污染。而VACUUPURE,由于其精密先进的设计,两个转轴绝对无接触旋转,即使在12500转/分钟极高转速下,也没有因磨损而产生的颗粒。如此高的机械加工工艺,由于我们有温度湿度精确控制的制造车间,VACUUPURE的关键部件都在这里生产和储存,精度可达到微米级别。这种高精度制造能力使VACUUPURE能够按设计运行,从而使其成为超洁净工艺和制造超纯产品的理想真空技术。从常压到在10-3mbar范围内,只有PURE VACUU, NOTHING ELSE。2应用范围广VACUUPURE通过其优异的冷凝水兼容性,轻松处理大量蒸汽,无需气镇,因此可避免泵抽速降低及噪声增加等气镇带来的缺点。与其他类型的泵相比,在实验过程结束后,自带的再生模式可使泵腔内部迅速干燥,可显著提高样品处理量。VACUUPURE的耐腐蚀版型号,可用于处理腐蚀性气体和蒸汽。全压力范围内,一台泵,能够适用于用户多个应用场景。3操作简单4市场口碑好作为第一批试用新产品的客户,他们这样说:客户1:我们可以让他运行一整夜,也不必担心,因为已经不需要液氮冷阱了。这使得实验样品的处理量显著提高,这个真空泵在市场上会引起轰动。客户2:VACUUPURE表现出非常好的性能,即使在处理大量蒸汽的情况下,VACUUPURE的再生模式有助于快速启动下一道工序,我们相信这是一款无与伦比的真空泵。客户3:有了VACUUPURE,我们用这个泵,可处理低于或高于1mbar的实验过程。由于它的高抽速,我们甚至可以同时运行两个实验过程。目前我们的VACUUPURE已经启动了试用活动,近距离的解决客户实验室遇到的种种困难。欢迎各位联系我们申请试用VACUUPURE,让我们携手共同为洁净实验室而贡献力量。VACUUBRAND GMBH + CO KG的总部位于德国韦特海姆(Wertheim),具有丰富的设计及制造真空泵的经验。作为真空领域的领导品牌,公司致力于新技术的不断拓展,使产品具有最完备性能及最佳性价比。我们提供一系列独特的以客户为导向的实验室级真空泵、真空规/控制器,可应用于粗真空及中真空领域。产品线包括旋叶泵、隔膜泵、化学防腐泵组、化学防腐隔膜泵、真空计、真空控制器、真空阀及配件和VACUULAN 真空系统。
  • 普发真空新型高性能HiLobe® 罗茨泵正式亮相中国市场
    p 2019年8月13日,中国上海——德国普发真空宣布,从9月1日起全新HiLobe® 系列罗茨泵将在中国市场正式上市。相比传统罗茨泵,该产品可节省20%的抽真空时间,并将维护和能耗成本降低 50%以上,从而为真空镀膜、电子束焊接、真空炉和冷冻干燥等众多工业真空领域的用户带来更可靠、更高性价比的创新型应用。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/201908/uepic/deccd72e-79b0-445c-8661-2a50f39f9b5e.jpg" title="图片 1.png" alt="图片 1.png" width="600" height="399" border="0" vspace="0"//pp style="text-align: center "普发真空的 HiLobe® 系列罗茨泵设定了新的标准。图片提供:普发真空/pp 此款紧凑型罗茨泵采用了全新的驱动设计与变频器,额定抽速范围可达 520 - 2,100 m³ /h。一方面,其独特的转速控制器功能使这款泵能够满足不同客户的具体要求。另一方面,强大的驱动设计也让HiLobe® 罗茨泵比传统罗茨泵节省大约 20%的抽真空时间。更短的泵抽时间不仅降低了成本,还能有效提高生产设备的效率。/pp 与传统罗茨泵相比,HiLobe® 罗茨泵能将维护和能耗成本降低 50%以上。这要得益于能效等级为 IE4 的驱动器、精密的密封设计和泵的特殊转子形状。此款罗茨泵最大整体泄漏率为 1 · 10-6 Pa m³ /s,极好的密封性使其不再需要动态密封,仅需每四年维护一次,从而降低维护成本。近气口腔中的创新密封设计,使其在大多数应用中不再需要使用密封气体, 这也降低了运营成本。 由于HiLobe® 罗茨泵即使在40° C 以上的高温环境下也可以灵活使用空气冷却,所以无需进行水冷却。/pp 另外,控制和通信是提高设备可用性的关键因素。HiLobe® 罗茨泵的智能接口技术可以非常好地适应和监控工艺,因此可以提高工作的前瞻性和效率。通过集成“状态监控(Condition Monitoring)”,用户能够实时获得有关真空系统状态的信息,从而做到合理并有预见性地规划维护措施,有效避免设备报废随之带来的高昂成本,在提高设备可靠性和操作安全性的同时延长产品寿命。此外,HiLobe® 罗茨泵可以垂直或水平安装,做到最大限度地提高泵送速度,并且更实际、更有效地利用生产空间。/pp HiLobe® 罗茨泵是普发真空研发历程中一座重要的里程碑。早在2004年,要开发一种全新高性能罗茨泵的想法就已经在研发者的脑海中诞生。经过多年细致研发和实验,HiLobe® 开发项目于2016年获得原型批准,进行可重复的耐久性测试,并在2017年被批准试行批量生产,生产基地得以建成。2019年4月,HiLobe ® 罗茨泵作为普发真空解决方案中的最新成果亮相于德国汉诺威工业展(ComVac),并向全世界进行了展示。/pp strong 关于普发真空/strong/pp 普发真空(Pfeiffer Vacuum)作为全球领先的真空技术解决方案的供应商之一。我们不仅拥有全系列的混合轴承及全磁悬浮涡轮分子泵, 同时还拥有各种旋片泵,多级罗茨泵,罗茨泵,气体检漏仪,真空计,气体质谱仪等产品以及真空管件、腔体、泵组和高度定制化的真空系统。 从普发1958年发明涡轮分子泵至今, 我们在全球分析仪器、科研、真空镀膜、半导体和尖端工业领域,始终代表着创新的解决方案、高品质、稳定可靠的产品和一流的服务。公司自1890年创立至今百余年,现有3000余名员工,20多家分公司遍布全球,并且在德国、法国、罗马尼亚、韩国、美国等地设有生产制造基地。/p
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 真空技术创新的先锋-欧瑞康莱宝——访欧瑞康莱宝真空公司首席执行官Andreas Widl博士
    前言  真空泵是一个量大面广的产品,直接影响真空成套设备性能,其市场根据用户的需要而发生动态变化,市场增长的主要驱动力来自于工业的迅速发展以及干泵和分子泵应用领域的日益扩大。  随着中国工业的飞速发展,真空泵需求成倍的增长,90年代,多个国际知名真空设备生厂商都在中国投资建厂或建立销售网络,其中,欧瑞康莱宝真空公司(Oerlikon Leybold Vacuum)是最早进入中国的真空获得设备供应商之一。  1850年,Ernst Leybold成立莱宝公司,至今拥有159年的真空技术发明创新史:1911年发明了世界上第一台分子泵 1913年发明了世界上第一台扩散泵;1962–1963年推出使用液态氦的低温泵和溅射离子泵;1975年推出磁浮涡轮泵–大胆地不使用机械轴承,是高档涡轮泵的典范 1989年第一个使用集成温度管理系统的涡轮泵;1991年推出KEPLA转子叶片镀膜技术,在蚀刻工艺中用于防止腐蚀;拥有的真空技术专利高达一千余项。     欧瑞康莱宝真空公司首席执行官Andreas Widl博士  为了进一步了解欧瑞康莱宝真空的最新产品技术和最新市场状况,仪器信息网采访了欧瑞康莱宝真空公司首席执行官Andreas Widl博士。  欧瑞康集团 六个领域的佼佼者  Andreas Widl博士首先向我们介绍了集团的整体情况:欧瑞康公司是瑞士上市的高科技集团公司,有着100多年的历史。2008年,全球拥有19000多名员工 在35个国家拥有170个分支机构 年销售额为47亿瑞士法郞。欧瑞康公司拥有纺织、薄膜涂层、太阳能、真空、传动系统、精密技术六大独立事业部,为制造行业提供生产线和设备。  纺织事业部提供整厂化纤设备,及气流纺纱、环锭纺纱系统、刺绣系统等。欧瑞康涂层(巴尔查斯)致力于开发各种涂层和涂层工艺。欧瑞康太阳能提供薄膜太阳能电池的完整解决方案。传动系统事业部的产品主要应用于高性能汽车、农用机械等领域。欧瑞康精密技术部侧重于航天技术、光学技术和纳米技术等。  真空技术事业部(莱宝)致力于真空的获得、控制和检测产品的研发、制造、销售,产品主要用于工业、分析仪器、研发等领域。Andreas Widl博士还说道:“其他每个事业部的业务几乎都与真空技术有关,都是莱宝的用户,其领域是莱宝真空的重要市场。”  莱宝 全系列真空设备及解决方案的提供者  欧瑞康莱宝真空是世界上最大的真空获得设备供应商之一,2008年,全球拥有1583名员工,在32个国家拥有分支机构。  欧瑞康莱宝真空的产品阵容:涡轮分子泵、干式泵和油封泵、前级真空泵、罗茨泵、真空系统、低温泵、低温冷头、扩散泵、真空计、检漏仪、阀门及连接件等。专注的市场主要有:半导体和太阳能、镀膜技术、分析与医疗技术、研究开发、工业应用。  1、全球生产基地布局  目前,欧瑞康莱宝真空在四个国家设有工厂,分别是:  ——德国的科隆,公司总部所在地,几乎生产所有系列的产品  ——德国的德累斯顿,专门生产应用于半导体行业的干泵、低温冷凝泵等  ——法国的瓦郎斯,专门生产SOGEVAC、新研发的TRIVAC NT  ——中国的天津,生产RUVAC、TRIVAC C、SOGEVAC,并提供真空解决方案  “欧瑞康莱宝真空于1997年在天津设立了全资工厂。刚进入中国的时候,只有TRIVAC一个产品线,然而,我们不久就发现单一的产品线无法满足中国庞大的市场需求,于是我们增加了RUVAC罗茨泵与SOGEVAC系列单级油封旋片泵两条真空设备生产线。”  2、稳步增长的发展战略  “欧瑞康莱宝真空公司的大量业务来自于传统工业市场,如汽车制造、空调系统和制冷系统、各种光源和电子管、电工、材料表面处理等。”  “2008年,欧瑞康莱宝真空全球收入2.93亿欧元,息税前利润率达10%,可以说取得了不错的业绩。这些成绩得益于公司在核心市场如工业应用等传统市场仍保持了高的竞争力 在新兴的、快速增长的太阳能领域取得了好业绩 持续研发高投入,保证了欧瑞康莱宝真空的技术领先。”  “欧瑞康莱宝真空的目标是继续保持好的盈利增长速度,为制造行业提供一流的产品和服务。针对此目标所指定的发展策略是:更着重、更集中于太阳能市场发展业务,研发重点也会集中在太阳能领域 为客户提供创造性旳解决办法,包括不断推出新产品和新技术 在全球推出度身定制真空解决方案和卓越服务的概念。”  度身定制真空解决方案融入了莱宝几十年来的丰富真空技术、经验以及对真空技术的了解,包括:真空技术资讯、泵等设备的选型、附件的搭配、控制系统的集成、安装调试等。  3、逐渐壮大的莱宝中国  “中国是纺织大国,也是汽车生产大国;对于欧瑞康的所有事业部来说,中国都是最重要的市场,也是莱宝真空的主要市场。”  自进入中国市场以来,公司一直处于盈利状态,探其原因,Andreas Widl博士总结道:“贴近市场,了解客户需求,快速交付产品,及时提供服务,集团公司的充分授权等,是欧瑞康莱宝真空的中国业务保持持续增长的原因。”  “亚洲尤其中国市场需求的增长速度很快,欧瑞康莱宝真空将集中更多资源,满足这个市场的需求。而所有真空技术和产品都来自于我们的科隆研发中心,未来的趋势是将有更多的技术与产品快速地从科隆转移到中国工厂。”  “虽然2009年天津工厂的扩张速度会有所放缓,但会一直持续下去。而且欧瑞康莱宝公司在中国的市场战略与其全球战略是一致的,即除了继续关注传统工业以外,还将在太阳能、航空航天等多个与真空相关的领域进一步发展我们的业务。”  “完善的售后服务是欧瑞康莱宝真空一直在努力的目标,目前在上海、北京和广州都设有销售和服务中心。我们还通过欧瑞康莱宝真空学院对客户进行培训,让他们掌握足够多的技术和具备更高的操作水平。”  4、创新产品  就像前言所列出的,多个不同类型的世界第一台真空泵出自欧瑞康莱宝真空,至今,莱宝所拥有的真空技术专利高达一千余项。近年来,不断地推出新产品,这也是欧瑞康莱宝真空保持其良好赢利能力的关键。   SOGEVAC BI   原使用双级泵作为分子前级泵的用户,现在可以选择SOGEVAC BI,其获得真空能力在单级、双级泵之间,完全可以满足客户需求 并且成本低于双级泵,可为客户节省投资 在真空稳定性能、安全监控等方面也有很好效果。低噪音运行和紧凑的设计,SOGEVAC BI为分析仪器应用特别是质谱分析量身设计。  TURBOLAB 80     TURBOLAB 80集成了一个干式无油前级泵和一个80l/s的分子泵,分子泵中又包括一个高真空测量计。该TURBOLAB 80即插即用,集成度高,安装和操作简便。是专为大专院校、科研院所设计的超高真空获得设备。 TRIVAC NT  TRIVAC NT的温度均匀性好,运行温度更低,使油蒸汽的返流率大大降低,之前设计的油蒸汽的返流率0.360 mg/h,改进后的降至0.044 mg/h,可以当做“无油泵”使用 延长泵油使用寿命,维护间隔长。提高莱宝盈利能力 应对经济危机  “任何一个公司能够持续发展,必须有相当的盈利能力,才能有足够的资金投入到新产品研发、提高售后服务质量等。”  Andreas Widl博士指出,欧瑞康莱宝真空将从三个方面提高公司的盈利能力:  首先,加强识别、满足客户需求的能力,具体有:加大产品研发投入,保持技术领先 提高真空度、抽速、可靠性等产品功效 提高交货及时性。  其次,也是欧瑞康莱宝真空保持竞争力的核心与根源,即以最低成本,满足客户需求。降低产品成本从产品设计开始,既要达到性能要求,同时又能达到制造成本、客户使用的成本、售后服务成本等更低 之后如何组织生产、选择加工的设备和技术使制造成本更低 最后是销售和服务,提供正确的解决方案,让客户以最低的成本获得适当的产品和服务。总的来说,优化价值链上各个环节的资源配置、技术选择、销售和服务结构的完善,使欧瑞康莱宝真空能够以最低的成本给客户提供最大的价值。  最后,如何更好地、有效地利用公司资源,其核心是优化库存结构、降低库存水平、加快库存周转,管理好客户信贷、公司相关财务,从根本上改善改善现金流状况。  Andreas Widl博士说:“通过做好这几方面的工作,即使经济环境很困难,相信欧瑞康莱宝真空也完全有能力渡过,并且未来会更强盛。”  后记  真空技术被称为21世纪的朝阳产业,从日常生活必需品如手机、计算机及电视到科研领域的观察原子的显微镜、探索太空的卫星等都离不开真空。莱宝公司是世界上最早生产真空设备的厂家之一,并且一直走在世界真空技术发展的前列,与其对了解客户需求、加强产品研发等的重视是分不开的。  Andreas Widl博士在中国已经生活了3年多的时间,对中国文字、文化有浓厚的兴趣和很深的了解,采访的最后,他说:“我非常认同中国人对‘危机’的解释,既是挑战也是机遇。在市场陷入困难的时候,欧瑞康莱宝真空更需要的是反思产品、服务的结构,做相应的调整,顺利渡过难关,同时做好准备,迎接下一轮的机遇。”  采访编辑:刘丰秋  附录1:欧瑞康莱宝真空  http://vacuumdetails.oerlikon.com/  附录2:Andreas Widl博士简介  Dr. Andreas Widl,魏安德(42岁),Oerlikon Leybold Vacuum CEO, 1998年毕业于慕尼黑科技大学,持有物理学博士学位。他的工作生涯始于1992年在Mannesmann Pilotentwicklung –Mannesmann的技术智库公司。  之后在通用电气公司工作5年,担任各种管理职位,负责推动通用电气公司工业和金融市场的合成增长。  2004年年底他加入瑞士的欧瑞康(原为优利讯)公司担任显示技术部门的执行副总裁,负责该部门的结构重组和太阳能事业部的建设。  2005年12月,他被任命为欧瑞康公司的亚洲执行官,负责公司从日本、韩国、中国、台湾,东南亚到印度等国家和地区的业务,提升集团的竞争力。  2007年5月,他被任命为亚洲区总裁。同年8月,他同时兼任全球研发部执行副总裁,负责全球的研发活动。  2008年10月,他被任命为欧瑞康莱宝真空事业部的首席执行官。魏安德先生已婚,有两个孩子,现居住在上海。
  • 2024科学仪器开发者大会“真空技术论坛暨中科科仪地区用户会”融合创新举办
    5月24日-26日,备受行业关注的2024科学仪器开发者大会在山东青岛召开。本次大会由侯洵、金国藩、张玉奎等15位院士联合发起,中国仪器仪表学会、中国科技评估与成果管理研究会主办,作为此次大会唯一受邀承办分场活动的企业单位,中科科仪融合创新举办“真空技术论坛暨地区用户会”活动,邀请众多专家学者、行业用户围绕“真空技术赋能科学仪器行业发展”的主题深入交流和探讨。26日上午,“真空技术论坛暨中科科仪地区用户会”正式召开,中科科仪党委副书记、总经理王高峰出席会议并致辞,王高峰代表会议承办方向与会专家学者及行业用户的到来表示感谢,阐述了科学仪器行业的重要性,并回顾了中科科仪在科学仪器领域的发展历程以及取得的成果,他表示,真空技术与部件在科学仪器运转、科学研究实验中扮演着重要角色,对于推动科学研究及科学仪器发展至关重要,当前,国产化替代大势所趋,中科科仪将始终面向国家重大战略需求,加大产品研发投入,推动规模产业化发展,并将一如既往地坚持用户至上的原则,为各位专家学者、合作伙伴提供更加优质的产品和服务。中科科仪副总经理余才林、副总经理李赏分别主持科学仪器整机与真空部件会议报告,本次会议邀请到了中国科学院微电子研究所研究员焦斌斌、中国科学院苏州纳米所纳米真空互联实验站副研究员翁雪霏、中国科学院空天信息创新研究院副研究员胡小华、中国科学院苏州医工所副研究员张远清分别进行了主题为《基于MEMS的宽量程高精度智能真空计》、《纳米真空互联实验站建设进展》、《高 性 能 离 子 泵 研 制 及 应 用》、《国产三重四极杆质谱仪核心部件研发进展》的特邀报告,中科科美高级工程师徐峰、科仪光电博士尹贻恒、中科科仪博士时剑文、成都唯实高级工程师蒙志林在现场分别进行了主题为《PVD沉积系统在大科学装置中的应用》、《扫描电镜及其真空技术》、《真空技术在质谱分析仪器中的应用》、《系列高性能薄膜制备仪器研发》的专题报告。各报告嘉宾围绕科学仪器开发和真空技术及应用需求、市场发展态势等方面介绍了科学仪器的最新进展和未来发展趋势。 2024科学仪器开发者大会期间,中科科仪联合控股公司科仪光电在科学仪器技术及产品展区展出了系列高性能仪器分子泵、E-13系列氦质谱检漏仪、小型离子溅射仪等产品及扫描电子显微镜解决方案,与现场科学仪器上游及中游企业深入探讨交流科学仪器行业最新产品及技术进展。中科科仪展台吸引了众多专家学者、合作伙伴莅临参观指导及交流洽谈。 聚力真空技术,赋能行业发展。中科科仪将以此次活动作为新的起点,深耕真空技术领域,不断推出更加优质的产品及服务,赋能质谱仪、电子显微镜、x射线光电子能谱仪、分子束外延设备等科学仪器行业的应用,同时继续加强与各位领导专家、合作伙伴的沟通了解、交流互动、协作共赢,共同促进科学仪器装备和真空技术领域的高质量发展,助力打好科技仪器国产化攻坚战!
  • 电镜核心部件专题|从瓦里安到安捷伦 面向电镜的真空技术
    前记:近五年来,在政策支持下,中国电镜产业化发展之路上多点开花,电镜、电镜功能附件装置与设备、电镜制样等方面不断有新的产业化技术涌现。其中不仅包含扫描透射电镜、场发射扫描电镜、聚焦离子束显微镜、透射电镜原位研究系统等重要技术的商品化,也不乏场发射枪、高压电源、光阑等电镜关键部件的攻克。在中国电镜技术产业化呈现百花齐放、国家对电镜设备产业化问题高度重视背景下,仪器信息网也别策划电镜技术系列征稿活动,共同探讨中国电镜产业技术、市场的机遇与挑战。相关投稿将整理至对应专题展示,并在仪器信息网相关渠道推广,欢迎大家投稿,电镜技术、市场相关均可(投稿邮箱:yanglz@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:15311451191,同微信)。本期主题为“电镜核心部件技术”,对应专题如下(点击图片进入专题),相关约稿将陆续上线,欢迎关注。以下为安捷伦科技(中国)有限公司真空事业部供稿,安捷伦科技(中国)有限公司真空部门的前身——创建于1948年的瓦里安(Varian)在1957年发明了第一台溅射离子泵(SIP),大大拓展了当时的技术所能达到的真空度,使超高真空成为可能,因此安捷伦对于真空技术有着丰富的经验和深刻的理解。安捷伦为了满足电子显微镜系统高真空、低电磁噪声和低振动的要求,基于Varian Vacuum 产品的基础,开发了一系列的真空系统。以下,安捷伦分享了对真空技术的看法及面向电子显微镜领域的真空系统整体解决方案。--------------------电子显微镜的真空系统介绍供稿:安捷伦科技(中国)有限公司真空事业部1.引言在上个世纪二三十年代,为了看到有机细胞(细胞核、线粒体等)内部的细微结构(100nm),人们开发出了透射电子显微镜(Transmission Electron Microscopy),它在普通显微镜的基础上用聚焦电子束代替可见光来“透视”标本,大大提高了分辨率。二十世纪六十年代,扫描电子显微镜(Scanning Electron Microscope)问世,它采用高能电子束扫描样品来成像。电子与组成样品的原子相互作用,可以产生包含样品表面形貌、成分和其他信息的信号。2.电子显微镜是如何工作的无论是透射电子显微镜还是扫描电子显微镜,都是靠电子束照射样品来获取图像,其主要部分包含电子源(电子枪)、电子透镜、扫描线圈、检测器等,这些部件通常自上而下地装在一个高真空的腔室(镜筒)内。图1 电子显微镜的系统结构电子枪(也被称为电子源):一般位于镜筒的顶部,它能发射电子并形成速度均匀的电子束。电子束向下通过电子透镜来聚焦。电子透镜:电子显微镜镜筒中最重要的部件之一,它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线偏转以形成聚焦,其作用与玻璃凸透镜使光束聚焦的作用相似,所以称为电子透镜。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。扫描线圈:控制和微调光束位置的电磁线圈。检测器:聚焦的电子束照射样品台上的样品并产生信号,这些信号被检测器检测到,然后被转换成图像。3.真空对于电子显微镜的重要性真空对电子显微镜有非常重要的作用。电子显微镜工作时,整个电子束路径与待分析的样品一起都会置于高真空的环境,如果真空度不够高,电子枪的栅极与阳极间可能会产生极间放电进而烧断灯丝,电子束与残留空气粒子发生碰撞还会导致散射,这种散射会导致电子束中的电子无法到达样品,或者分析失真。4.电子显微镜对真空的要求为了使电子束中的电子尽量不受阻碍地移动,电子显微镜的真空度通常需要达到1E-7mbar量级的高真空,甚至1E-10mbar量级的超高真空;除了真空度,真空泵工作时的振动水平也非常关键。由于电子束的截面小,在样品上的定位精度很高,只有处于振动水平极低的环境中,才能保持这种精度;另外,为了避免油蒸汽污染样品或显微镜内部元件,最好采用无油干式的真空泵。5.典型的真空系统配置下图是一个扫描电子显微镜系统的示例。左侧从上往下分别是装有电子枪和电子透镜的镜筒和放置样品的样品腔,样品腔的右边是一个进出样室(LoadLock)。待分析的样品被放置于进出样室内,进出样室被抽到一定的真空度后再把样品转移到样品腔中进行分析。有进出样室的电子显微镜可以将样品腔一直维持在高真空,从而缩短每次检测的准备时间,提高样品吞吐量,降低单次检测成本。图2 典型的真空系统配置该扫描电子显微镜的镜筒上配置有两台离子泵(IonPump),在样品腔和进出样室还配置了两套分子泵(TurboPump)机组和多个阀门(Valve),并配置了多个真空计以检测不同位置的真空度。6.安捷伦真空:提供适合电子显微镜的全套真空产品安捷伦真空部门的前身、创建于1948年的瓦里安(Varian)在1957年发明了第一台溅射离子泵(SIP)。离子泵的发明大大拓展了当时的技术所能达到的真空度,使超高真空成为可能。安捷伦真空对聚束系统真空应用有着非常丰富的经验,为了满足电子显微镜系统高真空、低电磁噪声和低振动的要求,开发了一系列的产品。离子泵:作为离子泵的发明者,安捷伦真空可以生产多种类型的离子泵。采用专利设计的安捷伦扫描电子显微镜专用离子泵,具有更加稳定和精准的压力读数,以及更少的粒子产生,特别适合安装于电子枪处(电子枪处对温度、磁场的要求都比较高,一般的冷阴极或热阴极真空计对其正常工作会有影响,而普通的离子泵测量的压力偏差又比较大)。安捷伦真空独有的StarCell离子泵在保留较高活性气体抽速的同时,还具有相当高的惰性气体抽速,一般将其安装于镜筒的下部,与电子枪上的SEM离子泵相结合,为电子显微镜提供一个强大的高真空抽气组合。图3 安捷伦SEM专用离子泵分子泵:安捷伦TwisTorr涡轮分子泵采用独有的AFS悬浮轴承技术,工作时振动非常低,被广泛地应用在世界各地的众多电子显微镜上。一个位于日本的业界领袖,从2015年起,在其生产的电子显微镜上使用了1000多台安捷伦分子泵,泵的可靠性非常接近100%,实测的振动水平低于0.01米/秒2,噪声等级更是只有40dB(A)。图4 安捷伦TwisTorr涡轮分子泵阻尼减振器:为了进一步减小分子泵振动对电子显微镜等高灵敏度分析仪器的影响,安捷伦真空专门开发了一款阻尼减震器,该减震器可以将涡轮分子泵在满转速时的振动减小到原来的1/40左右(CF法兰)。图5 阻尼减振器除此之外,安捷伦真空可以提供各种抽速的涡旋干泵、各种类型的真空计、电磁噪声几乎为零的各种真空泵控制器等,另外,基于其在聚束系统广泛的知识和灵活的制造能力,还可以为特定系统定制特殊的离子泵,还可以为敏感的显微镜应用提供最先进的振动模拟和测试。
  • 我国真空测试计量领域首项ISO国际标准发布
    记者14日从中国航天科技集团有限公司五院510所(以下简称510所)了解到,由李得天院士挂帅,510所牵头负责,东北大学、兰州文理学院、沈阳真空技术研究所、北京卫星环境工程研究所、中国计量科学研究院等共同参与制定的我国真空测试计量领域首项国际标准《磁悬浮转子真空计的规范、校准和测量不确定度》于8月5日正式发布实施,实现了我国在该领域国际标准方面“从0到1”的突破。  据了解,国际标准制定过程大致分为6个阶段,即提案阶段、准备工作草案阶段、技术委员会草案阶段、征询意见草案阶段、批准阶段和印刷发行出版阶段。一项国际标准从提出文稿到批准为标准大致需要36个月以上。  2019年6月,国际标准化组织真空技术委员会(ISO/TC112)在日本京都召开了工作年会。基于510所和李得天院士在真空测试领域的国际影响力,此次会议上中国争取到ISO 24477国际标准的主导制定任务。经过历时3年的精心组织实施,先后于2019年10月提交了工作草案(WD)并正式立项,2020年12月通过技术委员会草案阶段(CD)投票,2021年8月进入征询意见草案阶段(DIS),2022年3月进入批准阶段(FDIS),2022年8月进入最终印刷发行出版阶段(ISO)。  此项标准在制定过程中,共有来自中国、德国、日本、美国、瑞士等计量技术机构科研单位的几十位专家学者参与了交流讨论。团队针对各国专家提出的意见建议逐一进行了答复并得到专家一致认可。  510所拥有60年的真空技术研究和工程应用底蕴,依托真空计量及应用技术国际联合研究中心、真空技术与物理国防科技重点实验室、国防科技工业真空一级计量站等国家级平台。主导制定我国真空测试计量领域首项国际标准,是510所在该领域技术水平达到国际一流的标志,是该领域国际话语权的象征,也将是建设国际一流真空企业的重要基础。
  • 大型质谱仪真空系统全新组合,革新质谱仪的节能之道——普发真空 SmartVane产品推介会顺利召开
    仪器信息网讯 2024年4月18日,“大型质谱仪真空系统全新组合,革新质谱仪的节能之道”普发真空SmartVane产品推介会成功举办。该活动线上线下同步举行,整场活动精彩纷呈,高潮迭起,吸引了众多行业内外人士的目光,反响热烈。普发真空作为全球领先的真空技术解决方案的供应商之一,从1958年发明涡轮分子泵至今,在全球分析仪器、科研探索、真空镀膜、半导体制造以及尖端工业等领域。真空系统是质谱仪的主要组成部分,在质谱测定过程中,凡是有样品分子和离子通过以及存在的地方都必须抽成高真空。在本次推介会上,普发真空中国技术支持马良详细介绍了实验室中理想的无漏油真空解决方案以及SplitFlow + SmartVane 真空系统组合产品在大型质谱领域的应用。SmartVane作为一款密封的旋片泵,摒弃了传统轴封设计,避免漏油问题,特别适用于质谱分析。其出色的低噪音特性,为实验室提供了一个更为安静的工作环境,特别是在低于10 hPA的压力环境下,其静音效果更为显著。紧凑而精巧的设计,不仅简化了安装流程,更使得与其他设备的连接变得轻而易举。更值得一提的是,SmartVane还搭载了集成的节能IPM电机,有效降低了运行成本,同时大幅减少了维护成本,延长维护周期,极大地提升了使用效率。此外,它还配备了智能通信选项,为用户提供了更加便捷、智能的操作体验。而与SmartVane搭配使用的SplitFlow 350,则是一款炮筒式多口分子泵,其多抽口设计使得在差分系统中,仅凭一台泵即可实现多台泵的效果。SplitFlow 350不仅功耗低(功耗降低10-30%)、抽气速度快、气体压缩比高,还配备了优化的操控系统、集成的分子泵控制器,防护等级高达IP 44/NEMA 12,并通过了UL/CSA认证。此外,采用集成的转子温度测量功能,确保了分子泵的稳定性和安全性,为用户提供了更加安心、高效的使用体验。在直播过程中,普发真空中国分析仪器行业经理黄杰以及普发真空德国分析仪器行业经理Eduard Weber均亲临现场,为观众答疑解惑,分享产品使用的经验与心得。同时,众多行业专家、以及新老客户也都积极参与。普发真空中国技术支持马良(左二)、普发真空德国分析仪器行业经理Eduard Weber(右二)和普发真空中国分析仪器行业经理黄杰(右一)现场答疑现场演示为了感谢广大网友的积极参与,直播活动还特别设置了现场抽奖环节。此次普发真空SmartVane产品推介会的成功举办,不仅为广大用户提供了优质的解决方案分享,还生动的展示了普发真空在分析技术领域的创新实力。关于普发真空普发真空- (Stock Exchange Symbol PFV, ISIN DE0006916604)-作为全球领先的真空技术解决方案的供应商之一。我们不仅拥有全系列的复合轴承及全磁悬浮涡轮分子泵, 同时还拥有各种前级真空泵,检漏仪,真空计, 质谱仪以及真空管件腔体和系统解决方案。 从普发真空发明涡轮分子泵至今, 我们在全球分析仪器、工业、科研、镀膜和半导体领域,始终代表着创新的解决方案和高品质的产品。公司自1890年创立至今百余年始终走在世界前沿, 在全球拥有 4,000 多名员工和20 多家分公司。普发真空是Busch Group的一员,Busch Group 是全球最大的真空泵、真空系统、鼓风机、压缩机和废气净化系统制造商之一。Busch Group 旗下拥有普旭真空解决方案(Busch Vacuum Solutions)、普发真空(Pfeiffer Vacuum)及商先创环保科技(centrotherm clean solutions)三大知名品牌。
  • 北斗仪器最新款CA600型超高温真空接触角测量仪
    超高温接触角测量仪原理介绍:接触角(Contact angle)是指在气、液、固三相交点处的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ,是润湿程度的量度,是现今表面性能检测的主要方法。由主体支架、专用光源、远焦镜头、工业成像CCD、高温高真空炉体、水循环冷却系统、真空泵、专用分析软件等组成。超高温接触角测量仪的应用: 在高温真空条件下,通过视频光学原理,测试各种材料的润湿铺展性能;目前已经广泛应用于陶瓷材料研究、金属材料研究、钎焊研究、航空航天材料研究、钢铁冶炼研究、复合材料研究等众多高校院所及企业。研究材料在高温状态下熔体与其相应的基底材料间的接触角变化规律。对于高熔点材料能实现高真空或惰性气体保护气氛下的表界面性能测试,而对于低熔点材料能现实升降温过程中的收缩、变形、融化、润湿、铺展及凝固行为进行图像化、定量化表征。设备性价比高、加热稳定、真空度高、功能全面、可满足各种金属材料科研的需要。1、测量液态金属在高温真空状态下对基材的润湿性能,评估不同材质在高温真空状态下润湿过程及附着性能 2、研究金属与陶瓷复合材料间的润湿性能,测量金属材料在高温真空状态下熔融时,在陶瓷材料上的接触角 3、研究钎焊过程,钎料在基材上的润湿铺展过程,动态分析钎料在高温下的接触角、润湿过程 4、测量金属在不同的高温状态下,以及不同的气体保护环境下,对于不同基材的接触角变化及区别:5、分析涂层与基材的接触角,分析涂层与基材的润湿过程及铺展机理,并研究不同温度及不同气氛下,润湿性能的区别:6、研究液体与固体间的接触角,评估液体与固体的附着粘附性能,分析固体的表面自由能 7、分析焊料与焊接体的接触角值,从而有效地提升焊接强度 8、基于分析接触角及表面张力的基础,控制合理润湿范围,查找有效的去除冶炼过程中炉垢的办法。应用案例超高温接触角测量仪核心参数:型号CA600 腔内环境大气环境/真空/惰性/有氧气氛高温系统温度范围室温~1200℃/室温~1700℃长期使用温度室温~1100℃/室温~1600℃真空下温度1000/1500测温电偶1200°:N型电偶 1700°:B型国际铂铑热电偶测温精度±1℃温度控制30段程序温度设定实现复杂热处理工艺的分析升温速率常温-1000℃≤10℃/min1000℃-1600℃≤5℃/min加热体1200°HRE合金电阻丝/1700度U型硅钼棒恒温区尺寸长200mm加热管尺寸内直径50mm*长度700mm测温系统温度监控,测温材质美国钨铼合金,测量精度±0.1℃,可实时测量加热管内温度。进样方式具有快速样品制备专用工具,以及样品装载专用工具,确保样品快速定位视窗法兰专用同轴双视窗法兰,备双通道惰性保护装置,可同时或单独使用某种工艺气体对内部金属进行保护,带真空系统及保护气体管路、双水冷装置。采用进口石英材质并可快拆更换。炉膛材质1200°C内采用石英,1700°C以上采用高纯刚玉保温材料湿法真空抽滤成型制备的多晶无极氧化铝陶瓷纤维材料样品尺寸5*5*5mm真空系统真空度范围1*10-1Pa采用机械真空泵+数字流量计+真空法兰1*10-3Pa采用分子泵+复合全量程高精度真空计+真空法兰材质两级组合,在高温下达到高真空要求;泵体采用高纯度不锈钢;配置复合真空计;真空系统也可以通保护气体水冷系统温控范围温度范围:5-35℃外形尺寸约460mm(长)*380mm(宽)*590mm(高)水泵流量15L/min冷却系统容量≥11L实测制冷量1520W成像系统镜头Subpixel0.7-4.5倍超高温高清远焦距工业级连续变倍式显微镜、工作距离500mm相机日本SONY原装进口高速工业级芯片(Onsemi行曝光)传感器类型1/2.9 英寸逐行扫描CMOS分辨率1280× 1024镜头控制仰视角度:±10度,精度:1度,前后180mm(微调50mm)*左右200mm(微调50mm)帧率全局曝光高速400帧/s(最快2.5ms采集/次)视频录像功能可录制整个高温润湿过程连续测量测量间隔时间可调、实时记录、连续测量光源系统组合方式采用石英扩散膜与均光板使得亮度更均匀,液滴轮廓更清晰光源进口CCS工业级冷光源(有效避免因光源散发热量蒸发液滴),寿命可达5万小时 亮度调节PWM数字调节功率10W测量软件CA V2.0静/动态接触角测量软件+表面能测量软件操作系统要求windows 10(64位)测量方式自动与手动计算方法自动拟合法(ms级别一键全自动拟合,不存在人工误差)、三点拟合、五点拟合、自动测量(包括圆拟合法/斜圆拟合法(Circle method/ Oblique Circle)、椭圆拟合法/斜椭圆拟合法(Ellipse method /Oblique Ellipse))、凹凸面测量等基线拟合自动与手动角度范围0°<θ<180°精度0.1°分辨率0.001°分析自动计算多组数据中接触角的最大接触角、最小接触角、平均接触角,左右接触角分别计算与比较功能表面能测量方法Fowks法,OWRK法,Zisman法,EOS法,Acid-Base Theory法,Wu harmonic mean法,Extended Fowkes法,得到固体表面能。表面能单位mN/m输入电源220V 50-60Hz仪器尺寸约1500mm(长)*405mm(宽)* 725mm(高)润湿性分析粘附功一键自动分析铺展系数一键自动分析粘附张力一键自动分析精度0.001 mN/m单位mN/m选配件1.机械真空泵,真空度:1*10-1Pa 2. FJ-110分子泵组一套,最大抽气速率110L/s (对空气),真空度:1*10-3Pa 3.惰性气体气氛保护(Ar,N2,He或混合气体)4.冷浴装置:5℃-35°超高温接触角测量仪测试方法
  • Science Bulletin:超高真空机械剥离和堆垛技术取得进展
    近年来,二维材料及其异质结构由于在电子、光电及自旋器件领域展现出巨大的应用潜力而得到了人们的广泛关注。然而,制备表面高度洁净的二维材料以及界面原子级平整干净的二维异质结仍然十分困难,尤其对于表面敏感的二维材料而言更是如此。制备二维材料的方法主要分为两大类:以分子束外延(MBE)和化学气相沉积为代表的“自下而上”法和以机械剥离为代表的“自上而下”法。其中,“自下而上”法由于受到生长动力学的制约,仅能在特定衬底上制备特定的二维材料,并且制备出的二维材料通常具有确定的取向,因此极大地限制了可获得的二维异质结的种类。相比于“自下而上”的材料合成策略,以机械剥离为代表的“自上而下”方法具有操作简单、灵活性强的特点,对于范德瓦尔斯材料而言可以很容易地制备传统生长方法难以实现的少层样品和转角结构。然而,传统的机械剥离方法是在大气或手套箱中进行,仍然存在很多问题:(1)环境的污染将引入大量的杂质或缺陷。即使对于稳定的二维材料(比如石墨烯),这种方法制备的样品,如未经退火处理,传入真空后,由于表面吸附了大量的杂质,难以利用ARPES、STM等表面敏感的技术进行测量,而高温退火可能引入更多的杂质或缺陷。(2)很多单晶表面在空气中甚至低真空环境下不能稳定存在,比如Si(111)-7×7、Cu(111)、Fe(100)等,这些材料的表面必然会被氧化并吸附大量的杂质。因此,传统的机械剥离方法无法制备二维材料与这类衬底构筑的异质界面。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心SF9组的冯宝杰特聘研究员、陈岚研究员、吴克辉研究员与SC7组周兴江研究员、北京理工大学的黄元教授合作,指导博士生孙振宇、韩旭等,自主设计并搭建了一套超高真空环境下的二维材料机械剥离-堆垛系统。他们将机械剥离技术与超高真空MBE技术结合到一起,在本底真空10-10 mbar量级的环境中,利用MBE技术制备了多种原子级平整、洁净的表面,并利用机械剥离技术在这些衬底上成功剥离了多种单层和少层二维材料。设备的工作原理图如1所示,所有操作均在超高真空中完成。首先,他们利用高温退火、离子溅射、等离子体刻蚀、MBE生长等多种表面处理技术获得原子级平整、洁净的表面。表面的质量可以通过原位的扫描隧道显微镜、低能电子衍射、角分辨光电子能谱等超高真空表面分析手段进行确认。然后,他们在超高真空中将二维材料进行解理,获得新鲜的表面,并轻压到衬底表面上。最后,他们将系统加热并分离,获得了多种单层和少层二维材料。利用该方法,他们不仅重复了大气下的金辅助剥离技术,而且成功获得了多种以前未报道过的二维异质结,包括Bi-2212/Al2O3、Bi-2212/Si(111)、MoS2/Si(111)、MoS2/Fe、MoS2/Cr以及FeSe/SrTiO3(任意角度)等。图1 超高真空中机械剥离二维材料图2 在单晶衬底上获得的超薄二维材料为进一步展示该系统的能力,他们选择了两个体系作为示例。(1)利用金辅助剥离技术,他们在超高真空中制备出了毫米级的单层黑磷样品,并利用原位的低能电子衍射、角分辨光电子能谱对样品进行了表征,观察到了清晰的衍射斑点和沿高对称方向的空穴型能带(图3)。这是国际上首次对单层黑磷进行的相关测量。(2)为了揭示不同金属衬底对二维材料物性的影响,他们研究了单层MoS2和WSe2在不同金属表面的光学性质(图4)。通过测量不同金属上单层WSe2的荧光光谱,他们意外地发现,除了Au衬底以外,剩下的Ag、Fe、Cr等表面均不淬灭WSe2的特征A激子发射,且峰位略有偏移。通过拉曼光谱,他们发现在Au和Ag表面上的MoS2,其特征拉曼峰E2g和A1g除频率移动外,展现出了奇特的劈裂行为。图3 大面积单层黑磷的真空原位LEED和ARPES表征图4 不同金属表面单层WSe2和MoS2的光学响应本工作为进一步制备高质量的二维材料及异质结样品、研究材料的本征物性以及界面演生现象提供了一种全新的方法。相关成果以“Exfoliation of 2D van der Waals crystals in ultrahigh vacuum for interface engineering”为题发表在Science Bulletin上(doi.org/10.1016/j.scib.2022.05.017)。该工作得到了国家自然科学基金委、科技部、北京市自然科学基金、中科院国际合作项目以及中科院先导B等项目的资助。
  • 助力未来半导体行业发展,普发真空打造全新硅谷创新中心
    2021年12月27日,上海——12月10日,全球领先的真空解决方案供应商普发真空全新建立了一个规模达一万平方英尺的硅谷创新中心 (SVIC),这座最先进的真空技术研发中心位于美国加州圣何塞市白令大道 2381 号,启动后可创造 20 多个高科技工作岗位。普发真空持续为半导体市场以及分析、工业、研发市场提供领先的真空解决方案,凭借其在半导体领域丰富的应用实践以及集成化的产品,该硅谷创新中心将致力于为北美客户解决有关高真空技术的所有技术问题,便于客户在早期开发阶段就能测试和评估为其应用设计的新真空解决方案。此外,创新中心的专家和研究人员将为所有普发真空产品提供直接的专业技术支持,并与全球的普发真空研发部门建立无缝连接。 “普发真空致力于为半导体行业的客户推动创新,并支持未来技术的发展,为了践行这一愿景,我们打造了硅谷创新中心。”普发真空技术股份公司(Pfeiffer Vacuum Technology AG)首席执行官Britta Giesen 博士说。在半导体工业中,真空技术被用于生产微处理器、存储介质、高清显示器等,主要涉及大量中型和大型前级泵,以及涡轮泵和测量仪器。另外,借助污染分析和泄漏检测系统,芯片制造商可以显著提高产量。 “随着微处理器生产的复杂性不断增加,与硅谷客户的直接合作对我们来说变得越来越重要,”普发真空北美销售副总裁 Ming Lee 表示,“为了与我们的客户进行更密切的合作,高效地设计出能解决他们技术挑战的真空产品和解决方案,硅谷创新中心及其专家团队将扮演至关重要的角色。”普发真空硅谷创新中心(SVIC)关于普发真空普发真空(Stock Exchange Symbol PFV, ISIN DE0006916604)作为全球领先的真空技术解决方案的供应商之一,不仅拥有全系列的混合轴承及全磁悬浮涡轮分子泵,同时还拥有各种旋片泵,干泵,罗茨泵,多级罗茨泵,氦质谱检漏仪,真空计,质谱仪等产品以及真空管件和系统解决方案。从普发真空发明涡轮分子泵至今,我们在全球分析仪器、研发、真空镀膜、太阳能和半导体领域,始终代表着创新的解决方案和高品质的产品。公司自1890年创立至今百余年始终走在世界前沿, 现有将近3300名员工,20多家分公司遍布全球,同时在全球有10家生产制造基地。
  • BRAND开拓中国移液、真空产品市场——访BRAND全球总裁Dr.Christoph Schö ler
    普兰德(BRAND)公司成立至今已有六十年的历史。通过自行研发生产与经营创新、优越的实验室设备与耗材,六十年来普兰德在卓越的质量品质、持续的创新与客户为导向的服务上建立了良好的声誉,BRAND与VACUUBRAND出色的产品品质,如移液产品、玻璃体积计量设备,耗材以及真空泵能够满足化学以及生命科学实验领域的广泛应用需求。在欧洲、北美以及一些亚洲市场,BRAND产品是质量与技术的领先者,在中国经过二十多年的发展,BRAND的产品也逐渐受到中国用户的认可。BRAND全球总裁Dr. Christoph Schö ler先生  2010年6月2日,在BRAND参加2010阿赫玛亚洲展之际,仪器信息网就BRAND的发展概况、移液产品和真空产品的概况及技术发展趋势、普兰德(上海)贸易有限公司的基本情况采访了BRAND首席执行官以及董事会主席 Dr. Christoph Schö ler、普兰德(上海)贸易有限公司总经理汪滔先生(Mr. Wang Tao)。BRAND德国总部  采访伊始,Dr. Christoph Schö ler介绍了BRAND的全球概况及在中国的发展情况。BRAND成立于1949年,总部位于德国韦特海姆,距今已有60年的历史了。公司刚创立时主要生产实验室玻璃产品,上个世纪60年代,开始生产实验室塑料产品,瓶口分液器和真空泵的生产线也是这段时间建立的,到60年代中下叶,移液器产品诞生,1985年,其真空产品线独立出来成立了VACUUBRAND公司,成为BRAND的姊妹公司并继续原本在BRAND的业务。目前,BRAND在全球都设有分公司和经销商,BRAND的客户群体主要分布在制药领域、化工石化领域、食品领域、科研院所、质检机构等。BRAND移液产品——“技术可以模仿,但经验很难模仿”  BRAND的移液产品主要有瓶口分液器、滴定器、移液器。BRAND的滴定器操作方便,能够很好的保证准确度和精密度,使用寿命长,性价比高。目前,BRAND主推的移液器是Transferpette S全支消毒移液器,它拥有符合人体工程学的独特设计,重量较轻,单手使用方便,整支灭菌也不会影响准确度和精密度。  Instrument:针对移液枪整支消毒而易导致准确度和精密度不准的问题,贵公司是怎么解决的?目前,除准确度和精密度外,市场上的移液产品还经常存在使用寿命较短的问题,对此,BRAND公司是如何做好售后服务的?  Dr. Christoph Schö ler:要保证移液枪的准确度和精密度,首先要保证移液枪和枪头弥合的很好,BRAND的枪头和枪体都是自己生产的,因此可以更好的保证准确度和精密度。对于整支消毒,其中包含了很多的复杂技术,移液枪整支消毒是在高温(121℃)高压下进行的,会对枪体材料造成疲劳,使材料变脆 还有高温高压下枪体材料的不断膨胀收缩往往会影响移液枪的准确度和精密度。BRAND根据超过四十多年的移液枪生产经验不断摸索设计了耐高温高压的特殊材料,另外独特的设计使枪体各个部件间吻合的更好,因此即使高温高压下整支反复消毒也能保证移液枪的准确度和精密度。 这是BRAND在长期的生产中不断探究总结经验才实现的,技术可以模仿,但是经验是很难模仿的。总的来说,使用最匹配的枪头与移液枪组合才能达到最优化的功能与精准度的结合。BRAND生产完整的移液枪与枪头系统,因此能够保证我们的移液器实现最佳的准确度与精确度。  对于售后服务,首先BRAND会保证移液枪本身拥有良好的性能,极低的故障率,能有较长的使用寿命。另外,BRAND移液枪的保修期是三年,如发现质量问题三年内可以随时给客户免费更换或维修。如果需要维修客户可以通过BRAND认证的经销商来处理。  Instrument:在中国,一些实验室使用的移液产品需要通过CMA国家计量认证,针对此问题,贵公司是怎么做的?  Dr. Christoph Schö ler:在德国,首先生产商在仪器出厂时须对仪器进行生产认证。其次,还有DKD德国校准服务认证,它代表了德国最高级别的认证。BRAND拥有DKD认证实验室,是德国第一家通过国家认可的,由厂商代表国家颁布DKD认证证书的企业。DKD是于1997年成立的,它联合了政府、工厂以及国家权威机构(PTB-德国物理技术研究院),对在工业、实验室以及检测机构使用的计量仪器进行检验并出具证书。另外,BRAND是全球计量组织——欧洲认可合作组织(EA)和国际实验室认可合作组织(ILAC)的成员 中国国家认证服务评估组织(CNAS)是亚太实验室认可合作组织(APLAC)的成员国,这些认证组织共同签署了多边认证协定(MRA),签署各方同意相互认可并促进接收签发方签发的校准认证以及测试报告。因此,在中国DKD证书也是可以被认可的,客户也可选择将BRAND产品送到省级市级计量局来进行计量认证工作。现在,BRAND也在考虑和国家的计量认证单位合作。BRAND移液产品BRAND评析真空泵产品技术发展趋势  二十世纪六十年代,真空技术应用十分普遍,BRAND当时便成立了真空部门。经过20年的发展,由于真空泵的研发周期、生产、销售渠道与传统产品相比有很多不同的地方,为了更好的研发产品、开拓市场、发现终端客户的需求,真空产品部门独立出来,成立了VACUUBRAND公司。目前, VACUUBRAND在真空产品制造领域具有超过45年的历史,公司有约160名员工。产品线包括旋叶泵、隔膜泵、化学防腐真空系统、化学防腐隔膜泵、真空计、真空控制器、真空阀及配件和VACUULAN真空系统。  Instrument:VACUUBRAND具有丰富的设计及制造真空泵产品的经验,请您谈谈真空泵产品的技术发展趋势?  Dr. Christoph Schö ler:目前,环保和竞争力是实验室的发展趋势,要想成为一个有效率且经济性的机构,研究人员的效率需要得到最大的发挥。做为行业内的“领头羊”,VACUUBRAND一直倡导“绿色科技”,向市场推出带溶剂回收系统的真空系统,及低能耗驱动的VARIO变频泵。由于化工和制药工业领域的客户的竞争日趋激烈,因此如何更有效地利用研发人员的时间变得更加重要。如今,没有哪个实验室研究人员应该将时间浪费在看护真空泵上(如在旋转蒸发过程中为了防止爆沸)。VACUUBRAND第一个向市场推出了全自动系统,与同类竞争产品相比,该系统能够更加无忧地获取真空并更迅速地给出结果。通过使用这种系统,实验过程重复性更高、速度更快且更加精确。这种“智能化”泵系统的未来发展趋势,将引起全球新一轮的竞争!  (1)“环境友好”技术  过去使用的水泵往往会将带有大量污染物的水排放到环境中,给人类的生存环境带来危害。VACUUBRAND是全球第一家在泵系统中引用了绿色环保技术的厂家,也是第一家停止生产水泵的厂家,VACUUBRAND的泵系统所采用的技术能实现近100%的溶剂回收,避免了对环境的污染。另外,实验室的空气中常常因为弥漫易挥发化学品而给实验室人员的身体健康造成很大的危害,所以生产能为实验室人员提供清洁空气的泵系统是VACUUBRAND今后持续努力的方向。  (2)低能耗  很多泵在使用时都是持续工作,这样会增加能源消耗、降低能源利用率。VACUUBRAND的变频泵系统能够自动监控真空度,泵可根据工艺条件自动调节马达转速,显著地减少了能源的消耗。  (3)自动监控实验状态  让仪器自动监测实验状态,从而让实验室工作人员的精力更多用于真正的研究也是科学仪器发展的一个趋势。VACUUBRAND设计的“智能型真空系统”尽力简化实验室研究人员、化学技术人员的操作时间,使用最新技术自动探测沸点和真空度,不需要实验室人员持续不断的观察实验状态,因此提高工作效率。  VACUUBRAND希望能不断的引领市场趋势,保证产品的高质高效,为客户提供更高性价比的产品。BRAND PC 3001 VARIO “智能化”化学真空系统BRAND在中国成立分公司,为客户提供更及时更便利的服务  BRAND的产品二十多年前就进入了中国市场,经过多年的发展取得了不错的成绩,为了更好、更便捷的为客户提供服务,公司2009年在上海成立了普兰德(上海)贸易有限公司,专门负责BRAND和VACUUBRAND在中国的市场开发和服务。中国是BRAND目前在东亚地区除新加坡之外唯一设有分公司的国家。  Instrument:2009年普兰德(上海)贸易有限公司在上海建立,普兰德在上海成立子公司的原因?普兰德(上海)从2009年成立至今,发展情况怎么样,都开展了哪些工作?  Dr. Christoph Schö ler:BRAND的产品进入中国已经很多年了,之前,每年BRAND都会从欧洲派人来中国为客户提供服务,但现在这样做已经远远不能满足市场和客户的需求。首先交流很不方便,语言不通、地域跨度大,如果客户有问题想要联系和解决会花费很多的时间。我们希望能够为中国的客户提供更易于理解的中文服务,也希望能离客户更近,可以为客户提供更及时更便利的服务。  再者,现在中国的经济发展状态很好,中国的市场很重要,没有一个公司可以放弃开发和服务这个市场。  因此在2009年,BRAND成立了普兰德(上海)贸易有限公司,它同时服务于BRAND与VACUUBRAND公司。在技术、应用方面为中国区的BRAND经销商提供支持,同时在市场上开发新的领域。  Instrument:请谈谈BRAND与VACUUBRAND在中国销售模式现状?贵公司是如何做好经销商管理的?用户信息是如何反馈的?  Mr. Wang Tao:BRAND在中国建立了良好的销售渠道,合作伙伴主要分布在北京、上海、广州等地,另外一级经销商又有二级经销网络,通过一级经销商和二级经销商BRAND的营销范围可以覆盖整个中国。每隔一年BRAND都会组织安排经销商去德国原厂进行培训考核,这样保证了经销商有足够的能力为BRAND的用户提供更好的服务。2009年9月份召开了第一届经销商大会,现在第二届经销商大会正在筹划之中。  至于客户信息之前都是通过经销商反馈的。现在,除了经销商外,普兰德(上海)贸易有限公司会组织一些小型培训会,或者直接拜访一些BRAND的客户如工业、制药企业,政府机构、以及高等院校等来收集用户信息。另外,BRAND会经常参加相关展会,比如正在举办的2010阿赫玛亚洲展、9月份将要举办的2010慕尼黑上海生化分析展等等,通过展览会可以和更多的客户进行面对面的交流。采访现场  采访结束时,谈到对中国科学仪器市场的看法, Dr. Christoph Schö ler表示中国的整个产品市场,从高端到低端每一个层面都有很多竞争对手,说明各个层次的供应商都已经进入中国了,每个厂家只要服务好自己的客户群体,这个市场会发展的更好。还有中国的人口很多,人口老龄化问题日益突显,而人们对生命质量越来越重视,基础方面研究越来越重要,比如细胞培养、蛋白质组学、基因组学等方面研究越来越多。这些课题的研究需要计量更准确质量更高的产品来支持,所以中国的市场会变得更大。  后记  随着中国经济的发展,中国的市场日益得到大家的关注,真空产品和移液产品的市场竞争也异常激烈。如何让自己的产品得到这个市场更多的肯定,是每一个供应商都在不断思索的问题。在欧洲市场已获得广泛美誉的BRAND产品,在中国市场上也拥有较大的市场份额和品牌认知度。此时普兰德上海的成立,是BRAND为了更好的向客户提供真正高性价比的产品、以及更及时便利的服务所迈出的重要一步。  采访编辑:秦丽娟  附录1:普兰德(上海)贸易公司  http://brand.instrument.com.cn  http://www.ebiotrade.com/custom/Brand/091228/  附录2:德国BRAND全球总裁 Dr. Christoph Schö ler先生简介  Dr. Christoph Schö ler先生 德国BRAND全球总裁  1990 至今:BRAND GMBH + CO KG公司主席,CEO, 控股股东  1988-1989:日内瓦大学(瑞士),国际管理学院,工商管理硕士(MBA)  1986-1988:紧急医疗援助,意外事故外科医生  1982-1986:慕尼黑技术大学,医学院,获得医学博士学位  1979-1982:柏林自由大学,医学院
  • 日本研制出超精密尺子 可应用于超精密仪器
    日本关西学院大学一个研究团队20日宣布,他们研发出一种超精密尺子,可用于测量纳米级别的尺寸。  这个团队来自关西学院大学理工学系。他们研制的这种尺子以硬度仅次于钻石的碳化硅为主要材料。碳化硅质地坚硬,很难加工,研究人员为此专门开发出一种新的加工技术。他们把碳化硅放入超真空环境中加热到约2000摄氏度,再对其表面进行切削。  采用这一加工技术,研究人员成功使碳化硅材料表面形成了阶梯状构造,阶梯的每级“台阶”为0.5纳米,相当于尺子的一格刻度。据介绍,研究人员还能把“台阶”的高度做成0.76纳米和1纳米。  研究人员表示,这种超精密尺子可广泛应用于超精密仪器、计算机中央处理器、大规模集成电路等诸多涉及纳米技术的领域。新型尺子的耐腐蚀性也比传统的硅制精密尺子更胜一筹。
  • 首届真空质谱检漏与校准测试培训班在安捷伦科技大厦顺利举办
    首届真空质谱检漏与校准测试培训班在安捷伦科技大厦顺利举办 2011年12月19-22日,首届真空质谱检漏与校准测试培训班在安捷伦科技大厦顺利举办。此次培训班由中国真空学会,中国真空网共同主办,吸引了国内真空行业50多名技术人员共同参与。通过为期四天的学习和测评,学员可以获得由中国真空学会认证的证书,更重要的是了解到更多真空检漏知识和提高技术操作水平。 安捷伦科技作为此次培训班的独家赞助商,充分展示了其真空产品,特别是检漏系统和真空测量设备。真空事业部大中华区及韩国地区经理梁爽先生为学员进行了精彩的讲演,真空事业部工程师张德胜还做了仪器现场操作演示并为学员进行讲解。动手环节使学员的真空检漏知识和技能进一步提高。学员纷纷表示对安捷伦科技及其真空产品的有了更进一步的了解。培训中展示并实际操作的VS系列检漏仪,PHD-4便携式检漏仪,各种主动式真空计等产品更增添学员的学习热情。真空事业部大中华区及韩国地区经理梁爽先生产品展示 培训特别邀请到业内知名教授和专家组成讲师团分别给学员做了半天到一天的培训课程。此次培训班内容充实,产品实物展出令人印象深刻。&ldquo 我以前就知道安捷伦科技,现在更知道了原瓦里安真空已成为安捷伦科技的一部分&rdquo ,国家计量院费渭南教授说。&ldquo 非常高兴安捷伦科技成为真空领域的一分子。现在的安捷伦科技在中国业务取得成功,可以预见将来其真空业务在中国的蓬勃发展&rdquo ,清华大学教授,原中国真空学会主席查良镇教授说。培训现场及学员提问 培训班合影 关于安捷伦科技 安捷伦科技(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、电子和通讯领域的技术领导者。公司的 18700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为66亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 与您携手10年共同成长,普发真空中国10周年庆!
    普发真空专注真空解决方案真空技术在中国的发展日新月异深耕十年,与您共创未来2017年是普发真空中国分公司成立10周年。回首过去,我们在中国的先进制造业和科研领域内都取得了长足的进步。对于先进技术工艺和尖端科学研究的探索精神与激情,是我们今天成功的基石。而客户对于我们的信任和支持,是我们始终向前的动力。 自Arthur Pfeiffer先生于1890年在Wetzlar创建公司,建立了在煤气灯点火器制造领域稳固的龙头地位。随着电灯在世界范围内的推广,公司生产迅速调整至这一新的照明技术以及与此相关的真空技术解决方案。随着时间的推移,公司创始人认识到真空技术在各个工业和科研领域的重要性,于是将公司的业务重点转移至此。 在随后的几十年间,普发真空对真空技术领域产生了至为关键的影响。最具里程碑意义的是1958年涡轮分子泵——第一台完全无油真空泵的发明,是当时诸多应用领域的基础,它带来了一场行业革命。 随着现代技术和研发知识的进步,真空应用更加广泛,要求更加严苛。普发真空积极应对挑战,于2010年收购了adixen真空和Trinos真空系统,成为一站式真空解决方案的供应商。我们现在的产品手册囊括了各类真空泵和检漏仪,真空计和分析设备,除此之外还包括全面的服务和咨询。适逢我们在中国的10周年纪念,一路走来,我们的解决方案已经遍布各行各业。例如在化工领域,我们的罗茨泵组用于生产聚碳酸酯替代原有的工艺帮助我们的用户节约能源。在食品及包装领域,我们的磁耦合双级旋片泵用于冷冻干燥工艺,真正杜绝了油泵漏油的问题。在航空航天和汽车制造等领域,我们的检漏仪为提高产品品质和检测提供了强有力的保障。在研发和分析仪器行业,我们全面的产品组合以及在高真空、超高真空领域全球顶尖的经验,在市场上得到了客户的认可和赞誉。而在半导体和真空镀膜领域,普发真空一站式的解决方案让我们在这一领域始终拥有较高的市场占有率。 在中国的10年里,我们看到了各行各业的发展和进步,同时普发真空也在和我们的客户一同成长。在持续提供优质的行业解决方案,助力中国制造业产业升级的同时,我们也在进一步提高我们的服务质量。快速周到的服务是我们的一贯宗旨和客户的期望。携手成长是我们对过去10年的总结,同时也是新的开端。图片说明:普发真空中国图片说明:普发真空中国维修中心
  • 真空设备助力中国PandaX暗物质探测项目
    人类的进步和生活方式的改变,与科学的发展和变革息息相关。从古代人对天文地理编制的美丽神话“盘古开天”,到21世纪好莱坞科幻大片中的“星际穿越”,人类对于广袤宇宙的向往和探索从未停止过。纵观近现代 “群星闪耀”的基础物理发展史,从牛顿,麦克斯韦到爱因斯坦,从万有引力,相对论到量子力学,超弦理论,这些重大发现和著名物理学家不断涌现,推动了现代科学的快速发展。然而,近50年的时间里,基础物理学稍显停滞,并没有出现能够与相对论、量子力学等重大理论突破相提并论的新发展。正因为此,很多拥有伟大物理梦想的科学家和研究人员在着力推动基本粒子和暗物质粒子探测研究,期待可以直达真理,不断探索宇宙的终极秘密。在“标准宇宙学模型”中,宇宙由68%的暗能量(Dark energy)、27%的暗物质(Dark matter)和5%的普通物质(matter)组成,但迄今还没有暗物质观测的直接数据。当前探测暗物质粒子主要包括三类实验方案:一是对撞机探测,通过对撞机实验来产生暗物质粒子,进而探测出来;二是间接探测,包括卫星试验和空间站实验,例如2008年美国发射的名为Fermi的γ射线探测卫星,2015年我国发射的“悟空”暗物质粒子探测卫星;三是直接探测,通过暗物质粒子与原子核作用对暗物质粒子进行探测,但由于作用信号非常微弱,很容易湮没在大量本底环境中,因此需要把探测器放在地底深处的实验室以屏蔽宇宙射线干扰。中国PandaX暗物质探测项目持续推进‍在暗物质粒子的直接探测实验领域,全球有三大最先进的研究项目实验组;中国的PandaX,美国的LUX-ZEPLIN,意大利的XENON。PandaX(熊猫计划)是“粒子和天体物理氙探测器”(Particle and Astrophysical Xenon Experiments)的英文简写,是我国开展的首个百公斤级大型暗物质实验。这些实验都是利用液氙(Xe)作为探测媒介来寻找暗物质。PandaX项目组依托于上海交通大学粒子与核物理研究所和李政道研究所,并与中国科学技术大学,北京大学,山东大学和南开大学等相关实验室直接合作。在2016年PandaX二期实验(500公斤级液氙)已经取得了世界领先的暗物质探测灵敏度。据上海交通大学低温制冷与液化研究室负责人巨永林教授表示,目前正在进行四吨级液氙探测实验PandaX-4T,将暗物质探测灵敏度向前推进了1-2个数量级。暗物质直接探测需要稳定的低温真空环境 尽管直接探测实验在全世界已经开展了约30年的时间,实验灵敏度有了巨大的提高,但是到目前为止,还没有发现令人信服的暗物质散射的信号。因此,PandaX-4T探测项目通过使用4吨液氙全面增大了灵敏度,但同时在整体实验设计上也会有很多新挑战并需要各种性能优化。考虑到探测机制原理,要探测未知的暗物质跟已知的氙原子可能产生的微弱的闪动光信号,并将其转换成电信号放大来测量,关键就是把其他已知粒子带来的信号全部排斥在外。在PandaX-4T实验项目中,包括了八个子系统:时间投影室探测系统、光电探测系统、前端电子学系统、触发和数据获取系统、气体存储和处理(又称气体纯化)系统、低温系统、精馏系统、低本底控制系统等。其中,低温制冷系统和气体纯化系统都使用了真空泵组作为必要的设备部件,来实现两个基本保障:首先是稳定的低温真空工作环境(零下95度左右),减少外界环境的漏热,将探测介质氙的温度波动控制在大概±0.1k;同时,需要先将材料表面、阀门管道和管线等烘烤加快杂质气体释放,然后抽真空处理,这样氙和极少量的残余气体流经纯化系统,此过程中会吸附气体杂质(避免杂质对后期微弱信号捕捉的干扰),保障氙的纯度。普发真空泵为客户提供高性能真空解决方案PandaX从最开始的250公斤氙的用量,到现在的PandaX-4T,即4吨有效探测量的氙,计划未来将进行30吨级暗物质探测实验,全面覆盖暗物质的参数空间。所以,系统越大就越复杂,探测设备的尺寸越大,绝缘结构和隔热结构的层数就越多,管线数量大大增加。因而对真空泵的数量或者抽速就带来很高的要求,比如理想的夹层真空度一般需要达到10-4帕。因此,实验项目组选择真空泵的主要性能参数(技术指标)就包含了极限真空度,真空泵抽速,密封性,尺寸规格等。据上海交通大学制冷与液化研究室负责人巨永林教授表示,目前PandaX实验组已经购买了10台普发真空泵(其中6台用于低温系统和液氙存储系统,4台用于精馏系统),主要有以下几个方面的原因:首先,普发真空产品的主要技术指标能够满足严苛的实验条件;其次,产品性能足够优异的基础上,价格合理;再次,普发真空的辅助测量系统使用便捷而稳定,能对持续大半年的不间断探测运行提供可靠的支持;最后,普发真空的售后服务也很完善,能够提供各种技术支持和泄露检测解决方案等等,从而有力地支持了整个PandaX项目运行。从现在到未来,普发真空不断助推暗物质探测目前,普发的真空泵Hicube300Pro和Hipace300已经在PandaX-4T实验项目中得到了成功实践。一方面,真空泵作为必要备件被部署于上海研发实验室的暗物质探测器的子系统中,配合优化和升级的需要;另一方面,普发真空泵被部署于位于世界岩石覆盖最深的四川锦屏地下实验室暗物质探测系统中,实现稳定运行。从实际探测过程看,普发真空泵基本保障了整个探测系统的低温真空环境,为确保探测的灵敏度和精度保驾护航。值得一提的,由于系统运行的特殊地理环境等因素,可靠实时地保障系统各层级的极限真空度,系统部件必须确保极低的漏率,因此PandaX-4T项目还使用了ASM 340D系列检漏仪。通过采用该设备,可以有效地监测出来细微到10-13 Pa• m3/s 的泄漏。 “在目前PandaX-4T项目的基础上,实验室还在研发30吨液氙的探测项目,希望把精度推向下一个数量级。在我们的计划中,从2025年到2035年,这一项目预计总投资将达到数十亿人民币,需要购买47吨液氙来进行暗物质探测。”对于未来的研究计划,巨永林教授满怀信心,也满怀期待,“毫无疑问,液氙的量级越高,对于低温真空环境的稳定性要求也会越高,未来对高性能真空泵的需求也是非常大的。我们希望,以普发真空为代表的企业,能为我们的基础物理研究不断提供更好的工具支持。” 关于普发真空普发真空- (Stock Exchange Symbol PFV, ISIN DE0006916604)-作为全球领先的真空技术解决方案的供应商之一。我们不仅拥有全系列的复合轴承及全磁悬浮涡轮分子泵, 同时还拥有各种旋片泵,干泵,罗茨泵,多级罗茨泵,检漏仪,真空计, 质谱仪等产品以及真空管件和系统解决方案。 从普发真空发明涡轮分子泵至今, 我们在全球分析仪器、工业、科研、半导体和前端技术领域,始终代表着创新的解决方案和高品质的产品。公司自1890年创立至今百余年始终走在世界前沿, 在全球拥有 3,400 多名员工,20 多个办事处和 10 个制造工厂。
  • 上海光机所在SEL-100PW激光装置前端精密光同步方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在SEL-100PW激光前端精密光同步方面取得进展。科研团队基于自主建设的时间同步系统实现了超快强激光飞秒级同步。相关研究成果以Timing fluctuation correction for the front end of a 100-PW laser为题,发表在《高功率激光科学与工程》(High Power Laser Science and Engineering)上。高精度时间同步是促进超快强激光装置与加速器光源等大科学装置协同工作和融合发展的关键技术之一。“硬X射线自由电子激光装置”是我国在建的科技基础设施项目。该项目将建设一台100PW超强激光和一台硬X射线自由电子激光,通过泵浦-探测实验研究极端条件下真空量子电动力学、高能量密度物理等基础科学问题。由于超强激光和X射线激光的脉冲宽度均在20fs量级,两者之间的飞秒级同步是泵浦-探测实验成功开展的基础。科研团队发展了激光同步技术,对激光装置前端作了高精度时间抖动测量和实时反馈,实现了复杂强激光系统的飞秒级同步。激光装置前端结构如图1所示。该研究利用平衡光学互相关测量、时间延迟反馈等技术,分别对种子源系统、预放大系统作了时间抖动的测量和校正(结果如图2所示)。基于自主搭建的时间同步系统,种子源系统的同步精度达到1.82fs,预防大系统的同步精度达到4.48fs,实现了百太瓦级激光系统的飞秒级同步。该研究为超强激光及同类大科学装置的同步系统建设奠定了技术基础,并为基于超强激光和自由电子激光的联合实验研究提供了条件。研究工作得到硬X射线自由电子激光装置项目、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。图1. 100PW激光装置前端同步系统示意图。图2. 时间同步结果。(a)(d)分别为预防大和种子源系统时间同步结果;(b)(e)分别为开环状态下两系统时间漂移情况;(c)(f)为对应环境温度波动。
  • 以旧换新,你开始了吗?生物化学实验室真空系统的升级改造方案来了!
    真空,是很多化学实验和生物实验重要的条件之一,对于日常实验操作必不可少。但是各个实验室的真空供应方式各不相同,有些供应方式在真空性能、操作便利性、安全性、日常维护等方面可能已经不能满足实验室研发操作人员以及管理者的需求了,急需升级改造。整栋实验楼集中供应的真空不好用?改造安排→→VACUULAN局域真空网络采用集中式供应真空的化学或生物实验楼有很多,真空管路往往是在实验楼建造或装修初期就铺设进去的,这个过程中存在的一个很大问题是:建筑及装修设计者与后期实验操作人员之间的沟通缺失!最终,导致的结果是:虽然实验室内有真空供应,但是不符合或者根本达不到实验人员对真空的各种具体需求。传统的集中真空供应有哪些不利不便之处呢:VACUULAN局域真空网络不但可有效解决上述问题,而且可灵活地定制个性化方案,对现有实验室进行改造升级后,可极大改善实验人员的工作环境和实验感受!实验楼泵房的机械真空泵组不给力?改造安排→→VAC 24 seven化学隔膜泵站采用集中式真空供应的实验楼泵房里,一般配置大型的机械真空泵组,运行过程中会带来很大的震动和噪音。如果泵房靠近实验室,不停歇的震动和噪音会对实验操作过程以及研发人员的感受等带来沉重的负面影响;除此外,这种泵组在运行过中,往往还需要一些辅助设备:如备用泵、冷却及换热设备、辅助维护检修设备等,再加上自身的大功率消耗,因此运行成本相对较高且不环保。对于这种泵组,可核算抽速需求后,升级为环保且静音节能的VAC 24seven大抽速化学隔膜泵站:实验室太多水泵,味道太大?改造安排→→VACUULAN局域真空网络在化学教学实验楼或化学检测实验楼,几乎每个实验室都有几台甚至十几台真空泵,其中好多还是水泵,日常抽取的有机化学溶剂溶解在水泵的水箱中,如果不及时换水,实验室气味就会特别大,对于环境安全、实验的人员健康等方面,都极不友好。有些实验室为了减少由此带来的气味,将水泵的水箱直接放置于水池旁,一直不停地进自来水,一直不停地排水,造成了很大的水资源浪费和污染。对于多工位需求真空的实验室,改造VACUULAN局域真空网络,可以很好地解决以上问题。一台紧凑型泵可支持多个真空端口节省空间,实验室整洁干净降低成本和运营费用模块化设计,易于扩展、搬迁、改动实验室太多油泵,换油/漏油/返油问题?改造安排→→无油耐腐蚀螺杆泵在化学实验室,尤其是有机合成或者高分子相关实验室,当实验人员需要更低的压力,即对真空性能有更高要求时,往往会选用油泵来实现。但是油泵在使用过程中常见问题很多,如油箱被冷凝其中的化学溶剂腐蚀生锈、漏油、返油、真空度下降……对这些问题,只能通过频繁更换新鲜的泵油来解决,可是频繁换油大大降低了实验效率,也给实验操作人员带来了不必要的麻烦。升级替换为VACUUBRAND创新产品——无油耐腐蚀螺杆泵,各种因为“油”带来的问题将不复存在。以上几种改造方案,哪种更打动你呢?由于实验室仪器涉及领域众多,种类和型号也非常多,今天,小编有以下建议供大家参考,普兰德提供最新的实验室解决方案,拥有最广泛的的移液操作产品线,同时也致力于最新的真空技术,丰富的产品供您选择。VACUUBRAND GMBH + CO KG的总部位于德国韦特海姆(Wertheim),具有丰富的设计及制造真空泵的经验。作为真空领域的领导品牌,公司致力于新技术的不断拓展,使产品具有最完备性能及最佳性价比。我们提供一系列独特的以客户为导向的实验室级真空泵、真空规/控制器,可应用于粗真空及中真空领域。产品线包括旋叶泵、隔膜泵、化学防腐泵组、化学防腐隔膜泵、真空计、真空控制器、真空阀及配件和VACUULAN 真空系统。
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2 双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1 ~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 应用|真空离心浓缩仪天然杜仲胶乳制备中的应用
    真空离心浓缩仪是一种用于样品浓缩的实验室仪器,通过高速旋转,使样品中的溶剂快速分离,从而将高浓度的样品提取出来。它在环境科学、医学、生物工程、高分子材料等领域具有广泛的应用。作为三大高分子材料之一,橡胶材料是人们生活中的重要材料,在交通、建筑、航天、军事、化工、农业、机械等领域得到了广泛应用。按照形态不同,橡胶材料可以分为固体生胶、胶乳、液体橡胶和粉末橡胶,其中胶乳是较为常用的橡胶材料,广泛应用于手套、气球、海绵、胶管等制品中。按照来源不同,橡胶可以分为天然橡胶和合成橡胶,其中天然橡胶是重要的战略物资和工业原料。由于地理位置的限制,我国长期面临着天然橡胶自给率低下的问题,因此寻求一种可以替代天橡胶的橡胶材料具有重要的现实意义。1、杜仲胶制备介绍杜仲胶( Eucommia ulmoides gum) 来源于杜仲树,其主要结构为反式聚异戊二烯,与三叶橡胶树产生的天然橡胶互为同分异构体。由于反式结构更加规整,分子链微观有序,易堆集结晶,因此杜仲胶是一种性能优异的新型材料(如形状记忆材料等),同时它具有的橡塑二重性,可以用于改性沥青、增韧塑料,并且在橡胶并用方面也有很好的应用前景。作为一种天然高分子材料,杜仲胶可以部分替代天然橡胶,在一定程度上缓解我国天然橡胶自给率不足的问题。但是由于提取工艺的限制,目前杜仲胶只有固体生胶而没有胶乳制品,制约了杜仲胶产业的进一步发展。采用溶液乳化法制备杜仲胶乳。将杜仲胶溶解在环己烷中,其中杜仲胶的质量分数为6% 。将杜仲胶的环己烷溶液与乳化剂的水溶液混合,在高速剪切搅拌的作用下使其乳化均匀,得到粗胶乳。将粗胶乳中的环己烷脱除后得到稀胶乳,经浓缩后得到杜仲胶乳。2、乳化剂的选择在胶的制备过程中,乳化剂的选择至关重要。根据亲水亲油平衡值(HLB)的大小,乳化剂可以分为油包水型(HLB8)和水包油型(8 HLB18)。本文制备的杜仲胶乳属于水包油型乳液,因此选择HLB值在8 ~ 18范围内的乳化剂。01、单一乳化剂分别采用 Span-20、 SDBS、OP鄄10、 Tween-20、油酸钠、歧化松香酸钾、PVA-1788、Brij-52作为乳化剂,按照油相和水相的体积比(油水体积比)1:3,将油相胶液加入含有乳化剂的水相中,以 8000r/ min搅拌10min,制得含有不同乳化剂的杜仲粗胶乳,观察单一乳化剂的种类和用量对乳化效果的影响,结果如表1所示。由表1可知,选用单一乳化剂制备杜仲胶乳时,乳胶不能乳化,静置时很快发生相分离,且析胶和起沫严重,达不到理想的乳化效果。这是因为杜仲胶为反式聚异戊二烯结构,分子间排列较为紧密,同时杜仲胶的分子量大且分布较宽,单一乳化剂不能将其包覆,导致乳液体系不稳定,容易发生相分离。因此,采用复配乳化剂对杜仲胶进行乳化,从表1中选出乳化效果相对较好的Tween20和Brij52进行复配。02、复配乳化剂采用Tween-20 与 Brij-52 复 配 的 方 式 进 行 乳化,考察两种乳化剂的用量及油水体积比对乳化效果的影响。使用正交试验法设计了 3 因素3水平的试验方案,如表2所示。采用相同的乳化工艺,以8000r/ min搅拌10min 进行乳化,通过旋转蒸发除去溶剂,离心浓缩后,制得含有复合乳化剂的杜仲胶乳,考察各试验因素对乳化效果的影响,结果如表 3所示。由于破乳率可以直观地表现出乳化效果,因此本文以破乳率为主要评价指标对正交试验结果进行极差分析。通过比较极差值 R,可以得出各因素对乳化效果影响的大小顺序为: Tween-20用量B Brij-52用量 A 油水体积比C。根据K值大小,得到正交试验的条件为 A1 B1 C1 ,即Brij-52 用量为1% ,Tween-20 用量为5% ,油水体积比为 1:1.5。在优化的条件下通过重复试验进行验证,制得的杜仲稀胶乳的破乳率几乎为0,经离心浓缩后固含量可达50% 以上, 粒 径 约 为 411 nm, Zeta 电位可达-30mV,浓缩胶乳放置一周无任何变化。3、除溶剂和浓缩方式杜仲胶乳的制备过程中需要除去有机溶剂环己烷。本文比较了常压蒸馏(蒸馏温度80°C)和旋转蒸发(压力 - 0.09 MPa,温度40°C )两种除溶剂方式对杜仲胶乳化效果的影响,结果如表6所示。当采用旋转蒸发方式除溶剂时,得到的乳液体系较稳定,几乎不破乳,乳液粒径约为 321nm,Zeta 电位的绝对值约为58mV 而采用常压蒸馏时,乳液体系的稳定性较差,破乳严重,乳液粒径较大。脱去有机溶剂后,乳液体系中仍有大量的水,胶乳固含量很低,无法满足运输及使用要求,因此需要对其进行浓缩以除去部分水。本文比较了常压蒸发(100°C )、旋转蒸发( - 0.09 MPa,50°C)、离心浓缩(10 000 r/ min,10 min)这 3 种浓缩方式对杜仲胶乳化效果的影响,结果如表 7 和图 2 所示。当采用常压蒸发浓缩时,乳液体系的稳定性几乎被破坏,胶乳粒径约为1045nm,且粒径分布较宽,这主要是因为在高温下乳液粒子运动加剧,粒子间更容 易碰撞、聚集、絮凝,从而破坏了乳液体系的稳定性 当采用旋转蒸发浓缩时,体系较为稳定,乳液粒径约为509nm,但是破乳严重 当采用离心浓缩时,体系的稳定性最好,Zeta电位的绝对值为57mV,胶乳固含量可达54% ,胶乳粒径约为333nm,且粒径分布较窄。4、富睿捷真空离心浓缩推荐富睿捷真空离心浓缩设备可同时处理多个样品,无需担心交叉污染。系统内程序可设定至多60个,主机配备样品在线成像系统,可在运行过程中观察样品浓缩状态,并根据不同的样品对整机的真空度进行调节。设备采用皮拉尼真空计可实时显示腔体内的真空度,并保证真空度的真实性。根据不同的样品可对整机转速进行调节,配备实验室智能互联及远程操控系统及智能云端故障排查系统,手机app可直接操控机器对主机远程进行腔体预热,温度和真空度以及转速可实时在app显示。产品参数冷冻型控温范围:-6°C-100°C常温型控温范围:室温-100°C控温精度:±0.1°C转速范围:400RPM-2500RPM
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 超冷原子云制冷有望带来新的精密检测设备
    瑞士巴塞尔大学物理学家开发出一种新的制冷技术,用超冷原子气体作制冷剂,把一种膜振动冷却到绝对零度以上1摄氏度之内。这一技术可用于给量子机械系统制冷,有望让量子物理实验系统变得更大,并带来新的精密检测设备。相关论文发表在最近的《自然· 纳米技术》杂志上。  超冷原子气体是目前最冷的物质之一,是用激光束把原子陷落到一个真空室内,使它们运动得越来越慢,由此温度达到绝对零度以上不足百万分之一摄氏度。在这种温度下,原子服从量子物理法则:它们就像一个个小波包那样来回运动,能同时处在多个位置并互相叠加。目前已有许多技术利用了这些特征,如原子钟及其他精密检测仪器。  在新研究中,巴塞尔大学物理系教授菲利普· 图特莱恩领导的研究小组就是用这种超冷气体作为制冷剂,把一块1毫米见方的振动膜冷却到绝对零度以上不足1摄氏度。据物理学家组织网近日报道,该膜是一块50纳米厚的氮化硅膜,上下振动就像一面小鼓的鼓皮。这种机械振动是永远不会完全静止的,它表现了一种热振动,取决于膜的温度。  由于原子极微小,迄今造出的最大原子云也只有几十亿个超冷原子组成,比一粒沙子包含的粒子数还少,所以原子云制冷的力量极为有限。  &ldquo 这里的诀窍是,希望膜以何种模式振动,就把原子的全部制冷力量都集中到这种振动模式上。&rdquo 研究小组成员安德里亚· 乔克尔说,原子和膜之间的相互作用由激光束引起,&ldquo 激光对膜和原子产生了压力,膜的振动改变了光对原子的压力,反之亦然。&rdquo 激光能跨越几米远的距离传递制冷效应,所以原子云无需直接与膜接触。这种连接作用还可以通过两面镜子组成的光学共振器放大,膜在两面镜子之间,就像三明治。在本实验中,虽然薄膜包含的原子数是原子云的10亿倍,研究人员还是观察到了很强的制冷效应。  以往科学家只是理论上提出,可以用光来连接超冷原子和机械振荡。本研究是世界上首次在实验中实现了这一系统,并用它来给振荡物体制冷。研究人员指出,如果进一步改进该技术,还可能把膜振动制冷到量子力学基态。  对研究人员来说,用原子冷却膜只是第一步。图特莱恩说:&ldquo 与光致作用相结合,能很好地控制原子的量子性质,这为量子膜控开辟了新的可能。&rdquo 人们有可能用相对宏观的机械系统来做量子物理实验,以前所未有的精确度检测膜振动,反过来开发出针对微小力和质量的新型传感。
  • 联公精密测量与东南大学联手实现科技仪器自主平台
    (从左到右分别为,联公精密测量联合创始人陈方,首席科学家马蒂亚斯,东南大学仪器科学与工程学宋爱国教授。)3月14日,为深入贯彻落实加强基础研究,实现高水平科技自立自强,建设世界科技强国的方针。《溅射技术在高精度力学传感器上的应用》技术研讨会在东南大学召开。此次技术研讨会校企合作,协同创新,实现科技仪器设备的自主可控搭建平台。由东南大学机器人传感与控制技术研究所、中国仪器仪表学会力触觉感知与交互专业委员会与IEEE机器人与自动化学会南京分会主办,联公精密测量技术(合肥)有限公司协办。在研讨会上,联公精密测量有限公司的首席科学家,马蒂亚斯与联公精密测量联合创始人陈方先生首先介绍了当前德国同行在力学传感器制造领域相对成熟的技术,东南大学首席教授宋爱国随后介绍了团队在力反馈应用技术当中所作出的进展。中国航天科技44所与江苏省计量院的专家们同时参与了会议。2022年国金证券的一份调研报告指出,中国科学仪器市场的国产化率只有5%。而现在更加火热的半导体设备的国产化率是18%。科学仪器属于国产替代难度系数最高的领域之一,业内普遍认为需要5-10年的攻克时间,而科学仪器的高端市场更是完全被外资品牌垄断,形势非常严峻,而其“卡脖子“的难点在于仪器核心的传感器以及配合高端传感器的经验算法。东南大学与联公精密测量有限公司未来会携手将一种新型的溅射技术引用到力学传感器的制造工艺当中,此项尝试可以非常有效地降低传感器使用的环境要求,对高低温,真空高压,高辐射,潮湿腐蚀等恶劣环境,针对当前的航天领域,半导体制造领域有着至关重要的作用,可以有效的避免核心零部件频繁替换所带来的不利影响。同时,联公还即将突破高精度实验室称重仪器的完全国产化。据不完全统计,从2020年开始,在中国工业市场,国产替代的旺盛已逐渐体现,而企业与高校同心协力,发挥各自的优势,可早日实现用我国自主的研究平台、仪器设备来解决重大基础研究问题的需求。
  • 亟待攻克的核心技术之真空蒸镀机的匮缺
    p  未来可卷曲、如纸一样轻薄的各类终端屏幕主要选材是OLED(有机发光二极管),OLED生产过程最重要的一环就是“蒸”,工艺难度极高。/pp  真空蒸镀机就如同OLED面板制程的“心脏”,被日本Canon Tokki独占高端市场,说其掌握着OLED产业的咽喉也不过分,业界对它的年产量预测通常在几台到十几台之间。有钱也买不到,说的就是它。/pp  可惜,目前我国还没有生产蒸镀机的企业,在这个领域我们没什么发言权。/pp  strong这台设备就如同生产OLED面板的“入场券”/strong/pp  买到Canon Tokki的设备就如同得到了一张生产OLED面板的“入场券”,Canon Tokki在业内的名声很像顶级光刻机企业ASML,神一样的存在。/pp  仅有300多名员工,却基本垄断了全球真空蒸镀机的供应,每台报价过亿美元,仍然一机难求,排队等货因此成为常态。/pp  据说京东方6代柔性OLED生产线能够提前量产的重要前提就是,拿到了Canon Tokki的真空蒸镀机。三星之所以能垄断中小尺寸OLED的生产和供货,也是因为有了Canon Tokki的助攻。/pp  蒸镀设备厂商不止一家,Canon Tokki为什么一机难求?因为它量产稳定与技术成熟的优势无人可比。/pp  买到Canon Tokki的设备就能有良品率吗?不然。/pp  中粤金桥投资合伙人罗浩元对科技日报记者说:“蒸镀设备虽然是OLED生产中的关键环节,但一条生产线要实现批量化、高品质的生产,要对整个生产链进行科学管理及整合,确保每一道工序可控、可靠。但是,没有真空蒸镀设备,以上无从谈起。”/pp  strongCanon Tokki能把蒸镀误差控制在5微米以内/strong/pp  蒸镀是OLED制造工艺的关键,直接影响着OLED屏幕显示,蒸镀机的工作就是把OLED有机发光材料精准、均匀、可控地蒸镀到基板上。/pp  OLED显示面板中大量应用的有机材料极易受到氧气和水的影响,有机材料间也很容易造成污染,因此,面板的蒸镀一般都是在真空环境下且相互独立进行。/pp  通过电流加热,电子束轰击加热和激光加热等方法,使被蒸材料蒸发成原子或分子,它们即以较大的自由程作直线运动,碰撞基片表面而凝结,形成薄膜,这个过程就是真空蒸镀。/pp  “通俗地说,OLED屏幕每个像素都是蒸上去的,除了发光材料,金属电极等也是这样蒸上去的,实际操作非常复杂。/pp  Canon Tokki能把有机发光材料蒸镀到基板上的误差控制在5微米内,这是什么概念?1微米相当于头发直径的1%。”罗浩元说,“没有其他公司的蒸镀机能达到这个精准度。”/pp  潜心于一个领域20余年,让Canon Tokki拥有不少专利,比如,它很早就将机器视觉应用在设备上。生产环节中,对准玻璃基板和用作像素模板的细金属网难度很大,利用摄像头追踪,Canon Tokki可将误差范围缩小到人体红细胞大小。/pp  strong这是一场多维度、立体化的综合性突破/strong/pp  就如中国科学院院士、中国科学院物理研究所欧阳钟灿教授所说,中国平板显示全球第一,但大而不强。我国OLED企业主要聚集在产业链中下游的面板和手机等显示终端产品应用领域,上游核心生产设备完全依靠进口。/pp  当年三星从全球40多家蒸镀机业者选到今天最牛的Canon Tokki,在OLED产业蛰伏期,Tokki遭逢破产危机时,依然全力扶持,这种患难情谊让三星一度独家拿下Canon Tokki的全部产量。/pp  电子创新网创始人、半导体技术专家张国斌对科技日报记者说:“虽然离了Canon Tokki三星也可能玩不转,但三星对产业趋势和技术的判断、把握值得我们反省。”/pp  罗浩元比较认同张国斌的观点:“具体到真空蒸镀机这种卡住产业咽喉的核心装备,能不能追,怎么追,从上到下都很迷茫。我国目前的OLED产业布局和推进方式可以让我们短期内形成产业规模,却无法实现高端设备的自主研发、装备能力。这个问题不解决,别说真空蒸镀机,其他OLED装备的突破也将是空谈。”/pp   中国电子材料行业协会常务副秘书长袁桐认为,材料或设备并不是单一的产品,它牵涉到面板系统性的工艺和技术,如果只凭配套企业一己之力,可能只能实现某一种材料或设备的国产化替代。罗浩元说:“这是一场多维度、立体化的综合性突破。”/pp  OLED的生产难度在精密制造,精密制造的技术壁垒在精密设备。国内OLED大型生产线装备虽仍一片空白,但OLED科研型蒸镀设备已达国际水平,中试型生产装备已成功研发。“虽然距离摆脱‘真空’有点远,但好歹上路了。”罗浩元说。/pp  “真空蒸镀机等核心设备的缺失,反映出我国基础研究、精密加工、自动化控制等多领域的短板。”罗浩元说,“虽然很难,但一代人有一代人的任务,希望我们这一代能生产出真空蒸镀机。”/p
  • 谭久彬院士:高端精密装备精度测量基础理论与方法
    高端精密装备精度测量基础理论与方法谭久彬1 蒋庄德2 雒建斌3 叶 鑫4** 邾继贵5 刘小康6 刘 巍7 李宏伟4 谈宜东8 胡鹏程1 胡春光5 杨凌5 赖一楠4 苗鸿雁4 王岐东41. 哈尔滨工业大学 仪器科学与工程学院,哈尔滨 2. 西安交通大学 机械工程学院,西安3. 清华大学 机械工程系,北京4. 国家自然科学基金委员会 工程与材料科学部,北京 5. 天津大学 精密仪器与光电子工程学院,天津 6. 重庆理工大学 机械工程学院,重庆 7. 大连理工大学 机械工程学院,大连8. 清华大学 精密仪器系,北京 摘要完整而精确的测量信息获取是装备设计优化、制造过程调控和服役状态保持的基础,是实现重大装备“上水平”“高性能”的内在要素。本文分析了我国高端精密装备精度测量基础理论发展所面临的重大需求挑战,总结了当前高端精密装备制造精度测量理论、方法与技术领域的主要进展,凝炼了该领域未来5~10年的重大关键科学问题,探讨了前沿研究方向和科学基金资助战略。关键词:精密测量;高端精密装备;可溯源;极限测量;多场耦合测量;半导体测量;大尺寸测量在以超精密光刻机、高端飞机舰船为代表的复杂战略性装备制造领域,多源、多维、多尺度的测量信息及其融合实现装备性能优化设计、部件精度检验匹配、制造过程精细调控、服役状态长期保持的核心技术,是实现重大装备“上水平”“高性能”的内在要素支撑。 高端装备性能指标逼近理论极限,结构极其复杂,尺寸更加极端,材料物化特性更加特殊,多物理场耦合效应更加显著,传统基于产品几何精度逐级分解单向传递的制造精度测量理论体系难以保证超高性能指标要求。一方面,几何制造精度对最终性能的影响非线性效应显著,在零件—部件—组件—整机高度相关的序列制造过程中,单个环节的精度失调失配都会耦合发散传递;为避免装备整体性能失控,必须具备大量程、高精度、高动态、全流程实时监控的测量能力,在整体系统层面进行精度协调优化,保障最终制造质量与性能;另一方面,为保证超高性能的稳定实现,必须最大限度消除内在应力,全面分析材料物性、几何结构、环境工况等要素变化及其相互影响,急需突破现有技术条件,通过多源、多维、多尺度测量信息获取,对制造过程进行全面控制,使整机装备运行于设计最优状态,从而保证最高性能表现[1-5]。在当前全球制造面临智能化升级,我国以超高精度光刻机、先进飞机船舶为代表的诸多核心装备普遍存在“卡脖子”现象的背景下,召集相关领域同行专家,为我国高端精密装备制造精度测量技术发展把脉选向、凝聚共识,研讨面向高端精密装备制造的高精度测量发展路线,尤为迫切重要。1 高端精密装备精度测量研究现状与挑战 当前高端装备制造已从传统机械、电子、光学等单一制造领域主导,发展为创新聚集、信息集成、智慧赋能的多领域综合复杂产业体系,涵盖从芯片等核心元件到高端飞机船舶等重大装备各个方面。高端装备最终能够实现的性能源于对每个环节精度的精细调控,源于对整体状态信息的充分获取,源于测量理论方法及技术设备的不断完善。探索建立面向复杂装备制造的测量理论、方法与技术,支撑多环节、多层次、高精度的精度匹配调控已经成为精密复杂装备制造中的重要基础问题,并聚焦于:极端条件下可直接溯源几何量超精密测量;多物理场耦合多约束精度调控;多源、多维、多尺度测量信息高性能传感;智能制造大场景精密测量方法等四个重要方面(图1)。图1 高端精密装备精度测量研究聚焦领域1.1 极端条件下可直接溯源几何量超精密测量 在高端精密装备制造领域,极端条件下的可直接溯源几何量超精密测量,贯穿了装备核心零部件制造、整机集成、在役工作、制品质量表征和工艺提升整个过程,是装备自身精度和装备线工艺质量调控不可或缺的核心技术基础。可溯源能力将超精密测量结果直接参考到国际计量基准,可为极限测量精度的稳定实现提供根本保证,最大限度提升装备性能和运行品质,是超精密测量技术的公认发展方向。 传统计量溯源体系建立在严格控制、环境稳定的实验室条件下,而高端精密装备制造及运行过程伴随高速运行、严苛环境等极端条件,对实现可直接溯源的几何量超精密测量提出严峻挑战。如在光刻机制造领域,基于干涉原理的超精密多轴测量可将测量结果溯源至光波长基准[6,7],对提高装备精度性能意义重大。下一代EUV光刻机线宽将达到1 nm,其核心部件——双工件台的运动速度超过1 m/s。为在高速运行条件下保证优于1 nm的超高定位精度,需要对工件台和曝光镜头进行高达22轴的冗余测量(图2a)。能满足ASML光刻机测量要求的高端超精密双频激光干涉仪只有美国Keysight、ZYGO等公司生产,“卡脖子”问题严重。尤其在下一代光刻机开发中,针对更高速、更多轴数的纳米精度测量问题,国内相关技术与装备尚需从光源系统、信号处理系统、光学元件和集成式干涉系统等方面展开全面深入研究[3, 9],追赶国际先进水平。 在航空航天特种装备领域,其高温、高压、高速、高真空等特殊使用环境也对超精密测量技术提出极高要求。如航空超高音速飞行器的新型复材的工作温度超过1600 ℃,准确测量复材热膨胀系数可为飞行器气动外形设计和全周期寿命评估提供重要依据(图2b)[10];对地观测用相机的地面装调和在轨工作环境条件完全不同,迫切需要适应真空、超低温且失重环境的在线原位超精密测量技术支持等[11,12]。我国在极端条件下精密测量方面的研究总体处于起步阶段,相关测量理论、技术装备和实验条件仍不完备,面对国内相关需求的急迫性和普遍性,开展可溯源的极限测量技术攻关,将具有重要战略意义和社会效益。图2 可溯源的极限测量典型应用场景1.2 多物理场耦合多约束精度调控 高端装备制造与服役环境更加恶劣,性能要求更加苛刻,智能化要求更加迫切。复杂恶劣环境下多物理场高精度感知技术、智能在线动态监测技术、测量可靠性与可溯源性已成为实现高端重大装备智能制造与高可靠服役的核心驱动技术和本领域前沿热点、难点问题。 国内外学者在多物理场智能感知方面的研究,聚焦于智能制造过程中的多物理场在位测量与重构方法[13]、多物理场动态监测与预测方法[14, 15]、典型构件制造工艺参数调控方法[16]等方向。在工业应用层面,波音、空客等航空公司已应用数字孪生技术初步实现了零构件制造中全局力位状态监测,但当前仍处于系统工程技术探索与优化阶段。我国在装备构件制造及服役过程中的多物理场感知领域亦开展了较深入研究,如在飞机机翼、发动机压缩盘等薄壁件制造中位移/应变/温度场动态监测与重构[17-19]、复材构件加工中多物理场多参量监测[20]、装备服役过程温度场、磁场全场感知与动态重构等方面[21],已形成了系列静/动态多物理场全场在线感知与重构方法,但尚未形成完备的理论与技术体系。面向高端装备制造及服役工况高温、强磁场、狭小空间等极端复杂化的发展新趋势,多参量测量及精度溯源、多物理量强耦合动态演变机制、多物理场全场状态与边界约束映射关系、工艺参数实时调控,以及航空高端装备制造及服役维护性能的高性能动态测量等方面的研究需求将更加迫切,未来需要重点关注复杂物理场耦合原位高精测试、智能制造中的多物理量测量与解耦等相关原理与技术(图3)。图3 复杂制造工况下多物理场智能感知测量需求1.3 多源、多维、多尺度测量信息高性能传感 半导体芯片产业是国民经济的关键基础,芯片制造已经上升为国家最紧急和最重要的战略任务之一。半导体芯片的制造是一项极其复杂的系统性工程,其制造质量高度依赖于高精度检测技术及设备的支持,检测技术呈现出多源、多维、多尺度、高性能感测等突出特点,研发难度大、综合要求高,相关高端仪器装备已成为我国重点“卡脖子”问题[22]。 在半导体芯片制造领域,台积电和三星已实现了5 nm制程大规模量产并正在开展3 nm制程试产,而国内目前14 nm以下制程尚未量产。同时,半导体芯片制程已经从二维向三维发展[23, 24],现有技术难以对具有高深宽比纳米结构的三维芯片进行准确测量,新型测量方法和相关设备的技术革新迫在眉睫[25-29]。从半导体芯片的发展趋势看,未来在工艺制程中,测量精度必然要求达到亚纳米量级。由于界面效应和尺度效应的影响,在加工过程中材料除了发生几何尺寸变化,还时常伴随着理化属性变化,使得在高功率、高频以及高速运行状态下,芯片热态参数的获取成为技术挑战[30,31]。半导体芯片测量技术及装备除了要求具备传统几何量测量能力,还需要具备热、磁、电等多物理场表征能力,亟需开展微观尺度下超越散粒噪声极限的多维/多物理场芯片原位测试技术及仪器研究,形成具有自主知识产权的半导体芯片核心测量方法和技术,解决三维半导体芯片中纳米结构多维多尺度测量难题(图4),推动新一代半导体芯片制造技术的发展,为我国在芯片领域实现“并跑”甚至“领跑”提供支持。图4 半导体芯片制造过程多源、多维、多尺度测量信息高性能传感需求1.4 智能制造大场景精密测量方法 航空航天大型复杂装备的超高性能必须依靠精确外形控制来实现,外形尺寸信息是控制制造过程、保证制造质量、提升产品性能的关键条件。目前,以激光跟踪仪为代表的球坐标单站测量仪器仍是该领域主流测量设备。以大飞机机身制造为例,通过一台或多台跟踪仪对大部件关键控制点坐标进行精准测量,为姿态分析、工装协同定位提供基础数据和决策依据,已成为机身数字化对接、总装等核心环节的标准工艺要求[32,33]。 作为数字化制造的发展进阶,智能制造将进一步由针对少量工艺控制点的坐标测量定位拓展为对人员、设备、物料、环境等多元实体外形、位姿及相互关系的全面、全程测量感知,测量需求表现出全局、并发、多源、动态、可重构、共融等全新特点[34,35]。大规模、多层次、实时持续的物理空间数据获取,特别是高精度空间几何量获取是实现复杂装备智能制造的前提和国内外相关研究的关注重点。虽然新型跟踪仪、激光雷达等通过绝对测距技术创新部分克服了传统跟踪仪遮挡导致断光的问题,提升了测量效率,但单站球坐标测量模式原理上只能实现单点空间坐标顺序测量,视角受限、功能单一,无法满足智能制造现场多目标、多自由度、快节拍的自动化测量需求[36,37]。以室内GPS、激光跟踪干涉仪为代表的多站整体测量设备采用空间角度、长度交会约束原理实现大尺度空间坐标测量,具有时间和空间基准统一的突出优势,但系统组成较为复杂,误差因素多,精度控制难度大,简化结构、控制成本、提升动态测量性能是其未来面临的技术挑战[38-42]。目前,上述高端仪器大部分处于欧、美、日少数厂商垄断生产状态,针对“工业4.0”等智能制造场景的预研布局也已启动。国内高校及研究机构虽已开展相关仪器研制,还需紧密把握全球智能制造升级机遇,面向下一代智能制造大场景新需求新特点,持续探索精密测量新体制、新方法、新技术,实现原理、技术、器件、装备系统性突破(图5),为我国制造业升级转型提供强有力的测量感知技术支撑。图5 智能制造大场景精密测量需求2 高端精密装备精度测量未来发展趋势预测2.1 极端条件下可直接溯源几何量超精密测量发展趋势 (1) 几何量超精密测量精度极限即将进入皮米尺度。当前主流光刻机中平面反射镜面型测量精度优于1 nm,下一代面型检测重复精度将达到10 pm,光刻机集成和长期在役工作中超精密运动部件的测量精度正从1 nm量级突破至0.1 nm量级;硅片光刻过程特征线宽测量精度也已进入原子尺度;空间引力波探测装备中镜片面型检测精度达到0.1 nm,相对位移测量精度达10 pm。面向高端装备核心零部件制造的皮米级超精密测量已成为下一阶段发展必然要求和重点攻关方向。 (2) 从静态/准静态测量向高速高效动态测量发展。超精密机床、光刻机等加工装备中,超精密运动目标的速度从0.1 m/s量级逐步提升到3 m/s以上;引力波探测中超精密位移测量对象,也将从地面的静止目标转变为4 m/s的准静态目标。随着上述动态测量技术和仪器的发展,相应的仪器计量校准装置也需从目前的完全静态计量测试升级到高速率动态计量测试。 (3) 从一维单参量离线测量转向多维复杂参量在线、在役测量。光刻机、超精密数控机床等先进装备多参量耦合、多轴运动加工的工作特性对传统机床基于单维多步测量的定期校准方式提出巨大挑战,迫切需要嵌入可直接溯源的7~22轴精密仪器进行在线在役测量。航空发动机叶片测量中,传统离线条件下测量低速转动叶片形状精度已无法满足研制需求,实际高速转动工作状态下对叶片形状进行在线在役的超精密测量成为亟待解决的问题。 (4) 从传统物理量/场精密测试到基于量子传感的超精密测试。先进制造技术与装备在制造过程中需要开展位置、姿态、压力等多维力学量的超精密感知,磁、温、电等多物理场的精确测量,即高性能高质量信息传感能力。未来亟需突破超高精度、超高分辨传感与溯源等关键技术,不仅需要通过技术和工艺创新,实现传统传感技术的微型化、精密化和智能化,更要开展基于量子信息调控的多场解耦方法与信息解算关键技术研究,研制核心传感器件与测试仪器,实现传感技术的跨越式发展。2.2 多物理场耦合测量与精度调控发展趋势 (1) 面向重大装备的复杂物理场耦合原位高精度测试。重大装备制造、服役过程伴随高温、高压、高转速、高冲击等复杂物理场强耦合作用,常规方法“测不了”“测不准”“难存活”。聚焦极端环境下感知机理与信号传输、多场环境因子耦合作用机制与抑制、多场耦合环境标定与量值溯源等科学问题,重点研究复杂物理场强耦合环境下传感测试新方法、环境因子作用模型及抑制/衰减方法、封装防护、可溯源测试与标校方法等,发展面向精密复杂测量体系的人工智能技术,通过智慧赋能解决复杂物理场耦合环境下超/跨量程、大动态范围、高精度测试难题,为原位高精测试开辟新思路。 (2) 面向高端装备制造的多物理量测量与解耦。高端装备关键部件制造过程待测参量呈多元、高动态、强耦合、表里兼顾等发展新趋势,传统测量方法难以满足。聚焦多物理场敏感机制与一体化传感解耦、多物理场全场状态与边界约束间映射、复杂多因素强耦合测量精度调控等科学问题,强调多源数据的有效集成,重点研究高端装备多参数测量多敏感功能柔性传感器、复杂环境下多物理场全场状态信息智能感知与估算、多参量关联演变下的工艺参数调控等,为保障高端装备制造性能提供理论支撑与技术基础。 (3) 微纳尺度形态性能多参数测量。微纳制造过程中材料形态、性能参数变化过程相互关联耦合,多参数同时观测是准确揭示制造过程内在规律机理的前提条件。聚焦高空间分辨力激光共焦显微成像、近场光学显微成像和原子力显微成像等原理,重点研究上述显微成像技术与散射光谱、LIBS光谱和质谱的高效、高分辨率联合测量方法,研究新型光谱/质谱信息高灵敏度探测机理与方法,实现微纳米制造中微纳尺度下力学、热学、光学等性能的多参数高分辨、高灵敏、高准确探测。2.3 多源、多维、多尺度测量信息高性能传感发展趋势 (1) 纳米/亚纳米量级高分辨率检测。随着半导体工艺结点的不断缩小,高分辨率检测技术面临空前挑战。比如:EUV掩模版检测分辨率需要达到原子级,等效检测分辨率达到10 nm以下。目前仅有德国Zeiss和日本LaserTech有商业化产品,我国在这方面尚无技术储备;前道晶圆检测方面,世界范围内10 nm以下节点的CD和缺陷在线检测技术仍未成熟。 (2) 三维复杂微纳结构精确检测。芯片制程正在从二维向三维发展。具有三维结构FinFET已经成为14 nm以下乃至5 nm工艺节点的主要结构,存储芯片也向具有大深宽比(80∶1)三维垂直结构的3D NAND发展,工艺难度随层数呈指数上升,必须对芯片三维结构进行精确测量,才能指导工艺优化并保证芯片功能。但现有检测设备仍难以对上述结构进行无损定量检测,极限特征尺度下的大深宽比芯片结构检测已经上升为世界性难题。 (3) 满足量产速度的高性能在线检测。量产速度决定生产成本。根据英特尔发布的需求数据,更大晶圆尺寸和更小工艺结点已成发展趋势,裸晶圆的量产速度需达到2~3分钟/片,这对检测设备的速度提出了更高的要求,极大地增加了研制难度。目前满足量产速度的在线检测方法在全球范围内仍处于研究探索阶段,高性能在线检测技术与设备将在半导体产业发挥至关重要的作用。2.4 智能制造大场景精密测量的现状与发展趋势 (1) 新型智能制造综合测量系统构建理论。面向智能制造过程超高精度、高动态、多模态、多尺度、多维度测量需求的全局信息测量感知是当前研究重点和难点。需要从底层理念创新入手,探索覆盖复杂智能制造大场景需求的综合测量新理论,解决统一空间、时间基准构建,多物理场耦合约束条件下的精度调控,面向生产场景的测量系统设计重构等基础原理问题,突破具备多目标绝对测距能力的新型可溯源光学定位、制造场景多模型精度分析及优化设计、制造环境因素实时监测与修正等关键技术,最终构建可服务智能制造大场景、全流程的多维、多层次、多任务可溯源高精度综合测量体系。 (2) 广域全局空间、时间基准统一测试方法。基于“测量场”概念构建全域整体测量系统可实现大场景空间基准统一,具有多任务、高精度、可扩展等独特优势,进一步完善多体、多自由度动态测量能力是相关技术能否融入智能制造的关键和重点。需要突破现有静态测量理论框架,探索融合时间—空间信息的高精度、可溯源动态测量新原理方法,研究整体网络精确时统、多观测量高速同步获取、时间—运动—空间信息联合建模表达及精度控制、溯源与补偿等系列关键技术,有效提升测量网络动态测量能力。 (3) 物理信息融合测量新原理。通过测量完成物理状态到信息数据的高质量转换,是建立物理信息融合,实现智能生产和精准服务的基础前提。还可预见,在全新物理信息融合环境下,高性能算力大为丰富、多元要素交互更为广泛、大数据记录更加完备,将为机械测试学科发展更高性能的新型感知测量理论提供前所未有的基础条件。面向未来物理信息融合制造环境的测量新原理将改变以往从“物理”到“信息”的单向传感模式,引入有限元分析模型、人工智能、大数据挖掘等先进信息手段与AR、VR新型交互模式,和现有物理传感方法形成映射联动,实现多源时空信息处理与物理实测手段相互补充,构建面向“人—机—环”共融的测量新模式,为进一步突破现有测量方法物理分辨率,拓展机械测试学科研究领域提供新的基础手段。3 未来5~10年高端精密装备精度测量发展目标及若干建议 针对以超精密光刻机、高端飞机舰船为代表的复杂战略性装备制造的“卡脖子”测量难题以及未来发展战略,通过顶层设计、集中力量、先期布局和协同攻关,在未来5~10年时间应实现以下突破: (1) 微纳特征结构(深)亚纳米级在位/动态测量方法及微环境误差传递与微环境超精密调控基础理论,多维高速高动态超精密测量方法与动态计量校准基础理论,量子精密测量与溯源方法; (2) 面向高端制造的微区形态性能多物理场多参数耦合机理、不确定度评估与量值溯源,光子—声子/自旋量子调控及其高精度传感与测量方法,以及传感器件与测试仪器; (3) 面向半导体制造的电磁波与物质相互作用的纳米量测新机理,泛薄膜体系跨尺度光学精密测量新原理,接触—非接触复合测量新模式,以及测量装备的校准与可溯源问题; (4) 面向智能制造的新型可溯源光学定位原理方法,融合惯性、时间信息的高性能全局测量网络动态测量方法,现场环境因素实时监测与修正方法,以及物理—信息融合测量新原理与方法。 建议着重围绕以下4个领域,通过关键技术攻关、前沿探索及多学科交叉深入开展原创性研究。 (1) 面向高端精密装备的核心零部件加工、集成及服役中的精密测量基础理论与复杂物理场耦合原位高精测试理论; (2) 面向高端制造与微纳精密制造的多物理量、多参数的形性测量基础理论; (3) 面向半导体制造的测量新原理,特别是超光学衍射分辨极限、高性能非破坏、智能质量检测等方面的测量基础理论; (4) 面向智能制造的测量基础理论,特别是综合测量系统构建方法,现场广域全局空间、时间基准统一测试新方法,物理信息融合测量新原理等。4 结 语 在当前国际形势深刻复杂变化的时代背景下,发展自主可控的高端精密装备精度测量技术及仪器,满足我国以超高精度光刻机、先进飞机船舶为代表的诸多核心装备制造急需,为中国制造在智能化升级中提供强有力支持,是历史赋予的重要使命。精密测量技术研究必须坚决贯彻“四个面向”的科研思想,深入高端装备一线,持续跟踪、预判高端精密装备精度测量基础理论最新动向,抽取真科学问题,深度解决挑战性问题;必须快速推进基础研究、技术突破及成果转化,与国家重点领域发展规划无缝衔接,实现对国家重大产业亟需的快速响应。同时,建议今后对高端精密装备精度测量基础理论持续高强度支持,推动重点突破,设立重大项目、重点项目群、或重大研究计划,资助“极端条件下可直接溯源几何量超精密测量方法”、“多物理场耦合测量与精度调控”、“多源、多维、多尺度测量信息高性能传感”、“智能制造大场景精密测量方法”等前沿领域,引领机械测试研究新方向,推动全国优势研究资源的协同攻关,实现“并跑”,甚至“领跑”,为全面支撑我国高端装备制造能力跨越式发展提供精密测量理论与技术保障。参 考 文 献(略)
  • 国内首套超精密主动减振器面世:应用于高端电镜、量测/检测设备等
    7月10日,华中科技大学与光谷“明星”企业——武汉格蓝若智能技术股份有限公司签署成果转化合作协议,由后者出资8000万元,对华中科技大学陈学东院士团队超精密主动减振技术进行产业转化。据悉,陈学东院士团队20年磨一剑,创新性地研发了准零刚度、频变阻尼、协同控制等超精密主动减振核心技术,突破了降频率与保承载、减共振与抑高频、减振动与稳位姿三大技术矛盾,解决了高性能主动减振关键核心技术难题。先后荣获国家技术发明二等奖2次、国家科技进步二等奖1次。超精密主动减振器是高端制造装备、精密仪器设备的核心功能部件,是保证这些装备高精度超稳定运行的关键。产品应用于半导体高端制造设备、高精密机械加工车床、量测/检测设备、高端电子显微镜、科学仪器/设施、机载光电系统等领域。该产品不仅可以高效隔离外部振动,还通过实时采集振动信息,基于先进的控制策略生成多维振动控制信号,精准抑制各种内外部扰动导致的台体振动,实现被减振部件接近“绝对静止”的状态。与国外长期从事主动减振技术研发的企业相比,国内企业在该领域的技术积累较少,特别是超精密主动减振技术长期落后于国外企业。格蓝若和陈学东院士团队,一举突破了超精密主动减振器关键技术壁垒,打破国外垄断,实现国产自主可控。专门承载此技术成果的武汉格蓝若精密技术有限公司于6月25日正式挂牌成立,基于前期合作研发成果,公司推出超精密型、抗冲击型、适用真空型等20余款超精密主动减振器,减振支撑形式包括空气弹簧、金属弹簧、磁浮弹簧、复合弹簧等,可以满足从公斤级到数十吨级设备的高性能减振需求。在当日的活动上,格蓝若作为湖北省人形机器人整机技术攻关“链主”,还展示了人形机器人样机产品,该人形机器人主要面向劳动作业型场景,身高180cm,体重100kg,自由度31+2,移动速度>5km/h,负重能力>40kg,最大关节扭矩380Nm,具备高通用性、高机动性、高负载能力、具身智能等特点。
  • 中科科仪控股公司中科科美研制的高精密镀膜装置在先进光源技术研发与测试平台正式运行
    在庆祝中国共产党百年华诞之际,由国家发改委立项支持、中科院高能物理研究所承建的高能同步辐射光源(HEPS)首台科研设备于6月28日上午安装,为其提供技术研发与测试支撑能力的先进光源技术研发与测试平台(PAPS)启动试运行。其中,中科科仪控股公司中科科美研制的直线式劳埃透镜镀膜装置及纳米聚焦镜镀膜装置也于同一天正式投入使用。直线式劳埃透镜镀制装置及纳米聚焦镜镀制装置可实现各类高能物理装置聚焦镜、单色镜、劳埃镜、纳米聚焦镜等膜层制备。在两装置研制过程中,中科科美突破了多项先进制造技术:精密加工制造技术,实现大型真空腔室及复杂运动系统精密加工与装配、减震及超洁净等严苛设计指标;大型真空系统超高真空获得技术,实现结构复杂、内部零部件放气量大的大型真空腔室系统极限真空度达到10-6Pa;高精度直线运动控制技术,实现长距离导轨运行平行度达到微米量级、运动系统速率稳定性控制在千万之一以内;复杂镀膜工艺技术,实现高精度纳米量级万层镀膜工艺,膜厚精度控制在0.1纳米以内。经相关主管部门和院所专家委员会现场测试,高精密镀膜装置结构设计合理、制造工艺先进、主要性能指标达到国际同类产品水平,填补了该领域内多项国内技术空白。直线式劳埃透镜镀制装置HEPS是国家“十三五”重大科技基础设施项目之一,该项目于2019年6月29日开工建设,建设周期6.5年。建成时,HEPS将成为中国第一台高能量同步辐射光源之一,为基础科学和工程科学领域原创性、突破性创新研究提供重要支撑平台。中科科仪控股公司中科科美凭借在真空系统集成领域深厚的专业技术积淀、强大的整体方案解决能力和一站式服务能力参与到该项目中,为国家重大科技基础设施项目实施和技术攻关贡献了力量。
  • 上海比朗BGH-BL-PLH2O光解水制氢系统全面升级上市
    上海比朗仪器设备有限公司为适应广大科研工作者对光解水系统更好的要求,为充分实现产品的更好的可视化,光解水制氢系统设备使用的耐久性、便捷性,做出了全面升级,既保证了实验原理的简便可行,又提高了设备的可操作性和扩展性。产品详细信息、实物图片、相关测试结果请电话或邮件索取!  上海比朗光解水制氢系统货源充足,可根据客户需求随时发货安装调试。  BGH系列新系统体现的几大特点:  1、玻璃管道系统安装于洁净工作室内,操作安全。  2、全自动采样器与气相色谱连接可实现全自动采样,无需人工看守。  3、数字显示真空度。  4、原装进口光源。  5、电磁气泵及控制器。  6、反应器QO250。  7、真空系统(含真空泵,管路,真空计)。  8、取样系统(含精密取样管,控制阀体,控制面板)。  9、冷凝回流系统。  BGH系列新系统技术参数:  光降解系统BGH-BL-PLH2O系统  玻璃管路系统玻璃光解型反应器,玻璃系统是包含透射式光反应器及石英发生器,石英玻璃组件系统,采用日本改进型的六通阀门控制的氢气流通系统氢气发生石英装置,该系统用不锈钢作为玻璃连接支架,该系统含(A-G)7套管路。  反应器150ml石英玻璃分体式反应器。  真空系统上海比朗仪器有限公司生产的真空泵2xz-2, 以及与真空计连用的真空系统。可选德国进口真空泵(价格另计)。  采样系统全自动采样系统是一种可以用在气相色谱仪前端,按程序设定实现全自动进样的装置。可分步、可定时采样。  滤光片两片  A:透射式滤光片直径50mm  B:反射紫外部分,透射可见和红外部分,70mm*70mm 方片。  光源美国进口光源PE300BF,寿命长达2000小时  BL-GHX-Xe-300功率300W,外照式投射式,平行光输出。上海比朗生产  金属散热机组金属铝型材散热系统  光解水制氢系统典型用户:上海交通大学、复旦大学、华东师范大学、大连理工大学、内蒙古大学、中科院上海有机化学研究所、中科院化学研究所、中科院地球环境研究所、陶氏化学、睿智化学、联合利华、飞利浦(中国)投资有限公司等。  电话TEL:021-52965776  传真FAX:021-52965990  邮箱Email:info@bilon.cn  商城Mall:www.bilon.cc  地址Add:上海市闵行区北松公路588号7号楼5层
  • 普发真空技术(上海)有限公司诚邀您共赴ACCSI2023第十六届中国科学仪器发展年会
    2023第十六届中国科学仪器发展年会(ACCSI2023)将于2023年5月17-19日在北京雁栖湖国际会展中心盛大召开。ACCSI2023作为科学仪器行业高级别产业峰会,经过16年的发展,已被业界誉为科学仪器行业的“达沃斯”论坛。ACCSI2023以“创新发展 产业互联 — 助力北京怀柔打造科学仪器技术创新策源地”为主题,促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设。普发真空技术(上海)有限公司部分高管应邀出席此次盛会,并出席同期举办的“3i奖:仪器及检测风云榜颁奖盛典”。 普发真空技术(上海)有限公司作为ACCSI2023赞助商,特设专业展区——“A12” ,携多款当家产品亮相,诚邀您赴会参观! 公司简介::普发真空技术(上海)有限公司普发真空(Pfeiffer Vacuum)作为全球领先的真空技术解决方案的供应商之一。我们不仅拥有全系列的混合轴承及全磁悬浮涡轮分子泵, 同时还拥有各种旋片泵,多级罗茨泵,罗茨泵,气体检漏仪,真空计,气体质谱仪等产品以及真空管件、腔体、泵组和高度定制化的真空系统。 从普发1958年发明涡轮分子泵至今, 我们在全球分析仪器、科研、真空镀膜、半导体和尖端工业领域,始终代表着创新的解决方案、高品质、稳定可靠的产品和一流的服务。公司自1890年创立至今百余年,现有3000余名员工,20多家分公司遍布全球,并且在德国、法国、罗马尼亚、韩国、美国等地设有生产制造基地。随着中国综合国力的提升,产业结构升级,以及对节能减排,科研和高精尖制造工艺的强烈需求,对真空技术的需求也在不断的提升。作为德国Pfeiffer Vacuum GmbH的全资子公司,普发真空技术上海有限公司Pfeiffer Vacuum (Shanghai) Co., Ltd. 于2007年正式入驻中国上海,标志着普发真空在中国的业务已经初具规模,以及公司对中国持续增长的信心。公司现坐落于上海市浦东新区世纪公园附近,并且在江苏无锡建有8000 m2的售后服务和组装工厂。普发真空技术上海有限公司主要负责中国大陆、香港、澳门地区的销售及售后服务工作。公司现在全国各地设有常驻区域销售及现场售后服务工程师。普发真空希望凭借百余年的行业经验,高品质的德国工艺和全球领先的解决方案,帮助中国的顶尖企业、科研机构及合作伙伴共同进步,实现双赢。德国总部中国总部 - 上海中国组装维修中心 - 无锡
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制