当前位置: 仪器信息网 > 行业主题 > >

石英瓶

仪器信息网石英瓶专题为您提供2024年最新石英瓶价格报价、厂家品牌的相关信息, 包括石英瓶参数、型号等,不管是国产,还是进口品牌的石英瓶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石英瓶相关的耗材配件、试剂标物,还有石英瓶相关的最新资讯、资料,以及石英瓶相关的解决方案。

石英瓶相关的资讯

  • 打造千亿元硅产业:安徽省石英砂及制品检验中心成立
    近日,安徽省质监局以皖质函〔2011〕21号文批复,同意在凤阳县成立安徽省石英砂及制品质量监督检验中心。  千亿元硅产业培育工程,是滁州市委市政府坚持以科学发展观为指导,依托凤阳县丰富的石英砂资源,加快推进硅(玻璃)产业优化升级,奋力打造“千亿滁州”,努力实现可持续发展的一项极为重要的战略性举措。而建立省级石英砂及制品质量监督检验中心,可以及时有效地开展石英砂及产品质量监督检查和企业产品委托检验、鉴定等,将为凤阳县打造千亿元硅(玻璃)产业规划提供强有力技术支撑和保障,对促进县域经济的快速发展具有十分重要的意义。  安徽省石英砂及制品质量监督检验中心于2008年12月通过省质监局批复同意筹建,并于2010年12月3日通过省局专家组的资质认定和验收。中心共占地12.75亩,总建筑面积4800多平方米,总投资1266万元。已通过9个项目、94个检验参数的认证,项目分别是:石英砂、日用保温容器、平板玻璃、机吹玻璃杯、机压玻璃杯、人工吹制玻璃杯、啤酒瓶、太阳能热水系统、全玻璃真空太阳集热管。
  • 《石英晶体微天平-原理与应用》 一书出版
    由华南理工大学 张广照教授和中国科学技术大学刘光明教授合著的“石英晶体微天平-原理与应用”一书,近日由科学出版社出版。该书从石英晶体微天平的原理入手,深入浅出,详细介绍了使用石英晶体微天平在界面接枝高分子构象行为、高分子表面接枝动力学、聚电解质多层膜、磷脂膜、抗蛋白吸附以及纳米气泡表面清洁技术中的应用。本书在介绍石英晶体微天平基本原理的基础上,重点向读者展示了如何利用石英晶体微天平作为一项表征技术去研究界面上的一些重要科学成果。为了便于回答有关疑问,本书的应用例子均选自作者实验室的研究成果。
  • 如何免费获得DynaPro Titan 石英杯?
    试验过程中时刻保持DynaPro Titan 石英杯洁净,避免杂质干扰,并不是件容易的事情,Wyatt深知这是件非常困难的事情,也许您还在为手头上仅有的2个DynaPro Titan石英杯不够用而发愁。也许您还在为试验过程中需要一边测样,一边清洗石英杯造成不方便而烦恼。 那么,现在Wyatt 为答谢广大客户对本公司的长期支持,特推出买一赠一活动:凡在2009年9月20日至2009年12月31日期间,购买DynaPro Titan 石英杯的客户,将获得买一赠一的优惠。如需了解活动详情,欢迎来电垂询! 电话:010-82292806 Email:info@wyatt.com.cn
  • 新品上市|德国元素进口量筒式石英管
    新品上市|德国元素进口量筒式石英管
  • 晶玻---石英烧杯特价大促销!!!
    石英烧杯(只限500mL)4折大促销!促销时间5天!机不可失时不再来!!
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) John Wiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备在QCM-D表征高分子的研究过程中,需要在石英振子表面制备高分子膜,所制备高分子膜的质量对相关实验测量有重要影响. 下面以在石英振子表面制备化学接枝高分子刷和物理涂覆高分子膜为例,介绍相关高分子膜的制备:3.1 在振子表面制备化学接枝高分子刷高分子刷可以通过“grafting to”或“grafting from”方法接枝于石英振子表面. 一般情况下,前者的接枝密度较低,而后者的接枝密度相对较高. 对于金涂层的石英振子而言,巯基和金表面可以生成硫金键,在基于“grafting to”技术制备高分子刷时,可以将含有巯基末端的高分子溶液添加至自制的QCM反应器中. 在该自制的反应器中,石英振子正面接触溶液,利用橡胶圈对石英振子的背面加以密封. 在接枝反应充分完成后,取出振子,利用大量溶剂冲洗振子表面,随后使用氮气吹干振子,即可完成相关高分子刷的制备. 此外,也可以在QCM检测模块中完成利用“grafting to”策略制备高分子刷,此时可实时监测高分子接枝过程中的频率以及耗散因子变化[22 ,23 ].在利用“grafting from”策略在振子表面制备高分子刷时,可采用活性自由基聚合等方法加以实现. 以表面引发原子转移自由基聚合(SI-ATRP)制备高分子刷为例,首先利用自制的反应器将引发剂接枝于振子表面,然后将振子放置于相应的包括单体的溶液中,并通过SI-ATRP方法在振子表面引发单体聚合,制备高分子刷. 在采用SI-ATRP方法在振子表面制备高分子刷的过程中,除去溶液中溶解的氧气这一步骤非常关键,需要加以特别注意,否则可能会导致制备高分子刷失败. 在反应结束后,需要采取相应的程序进一步纯化振子表面制备的高分子刷. 类似于“grafting to”策略,利用“grafting from”策略在振子表面制备高分子刷也可以在QCM检测模块中完成[24 ~26 ].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28 ]. 在利用旋涂法制备高分子膜时,溶剂的选择、高分子溶液的浓度以及环境的湿度等都会对振子表面的成膜情况产生影响,需要加以注意.4. 石英晶体微天平在高分子研究中的应用QCM在高分子薄膜研究中得到了广泛应用,已有一些国内外学者对相关方面的研究进展进行了总结. 例如,Du等总结了QCM在聚合物水凝胶薄膜等研究中的应用[29 ];He等总结了QCM在表面引发聚合反应动力学等研究方面的进展[30 ];Sun等总结了QCM在生物医用高分子材料中的应用[31 ];Marx总结了QCM在生物高分子薄膜等研究方面的进展[32 ]. 另一方面,在高分子研究中,QCM-D的测量结果不但与其振子表面的高分子薄膜密切相关,也与QCM-D检测模块中高分子溶液的非牛顿流体行为有关,例如,Munro和Frank研究了聚丙烯酰胺分子量及溶液浓度对其在QCM-D振子表面吸附的影响[33 ];为了阐明大分子溶液非牛顿流体行为对QCM-D振子表面与大分子间相互作用的影响,Choi等研究了QCM-D特征参数S2对聚乙二醇溶液浓度的依赖性[34 ];更多相关方面的研究可参阅有关文献,在此不作详细讨论. 本文将以作者的相关高分子研究工作为例,介绍QCM-D在界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料研究中的应用,进一步展示QCM-D在高分子研究中的广阔应用前景.4.1 界面接枝高分子构象行为众所周知,界面接枝高分子的构象行为对界面性质至关重要[35 ]. 然而,对界面接枝高分子的构象行为进行实时原位表征一直面临许多挑战. 研究界面接枝高分子的构象行为,首先需要理解高分子在界面接枝过程中的构象变化. 在低接枝密度下,由于链间距离大于链本身的尺寸,链间不发生交叠,此时,根据高分子链节与界面间相互作用的强弱,高分子会形成“煎饼”状构象(pancake)或“蘑菇”状构象(mushroom)[36 ]. 具体而言,如果高分子链节与固体表面间相互作用强时,接枝高分子会形成“煎饼”状构象;若高分子链节与固体表面间无明显相互作用时,接枝高分子则形成“蘑菇”状构象[36 ]. 随着接枝密度增加,当接枝高分子链间距离小于其本身尺寸时,由于链间排斥作用,接枝高分子链会形成“刷”(brush)状构象[36 ]. 因此,随着接枝密度增加,接枝高分子将展现出pancake-to-brush或mushroom-to-brush转变. 利用QCM-D研究相关高分子接枝过程中的构象变化,对于理解高分子刷的形成机理十分重要.图2(a) 为巯基末端聚(N-异丙基丙烯酰胺) (HS-PNIPAM)在金涂层石英振子表面接枝所引起的频率变化情况[23 ]. 很明显,接枝过程经历了3个不同的动力学阶段. 在区域Ι阶段,Δf 快速下降,表明HS-PNIPAM链快速接枝到振子表面. 在区域ΙΙ阶段,Δf 缓慢下降,说明已接枝高分子链阻碍HS-PNIPAM链的进一步接枝,因而接枝速率变慢. 在区域ΙΙΙ阶段,Δf 再次出现相对快速的下降,表明已接枝的HS-PNIPAM链进行构象调整,从而使得后续的HS-PNIPAM链能够继续进行接枝反应. 对于HS-PNIPAM接枝过程中的耗散因子变化情况而言(图2(b) )[23 ],在区域Ι阶段,ΔD快速上升;在区域ΙΙ阶段,ΔD缓慢增加;在区域ΙΙΙ阶段,ΔD相对快速增加. 显然,ΔD与Δf 变化的快慢趋势相一致,反映类似的HS-PNIPAM链在振子表面的接枝过程.图 2Figure 2. (a) Frequency shift (Δf) and (b) dissipation shift (ΔD) of the gold-coated quartz resonator immersed in a HS-PNIPAM solution as a function of time (c) ΔD versus −Δf relation for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[23 ] Copyright (2005) American Chemical Society) (d) Schematic illustration of the pancake-to-brush transition for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[37 ] Copyright (2015) Science Press).然而,HS-PNIPAM链在振子表面接枝过程中Δf 与ΔD间的关系只包含2个不同的过程(图2(c) )[23 ]. 在区域Ι和ΙΙ阶段,随着−Δf 的增加,ΔD缓慢增加,−Δf与ΔD间关系相似,表明在这两个阶段中接枝HS-PNIPAM链的构象接近,即,由于HS-PNIPAM链节与金表面间有较强的吸引作用,HS-PNIPAM链在区域I阶段形成“煎饼”状构象;随着接枝密度增加,其在区域II阶段转变成“蘑菇”状构象. 在区域ΙΙΙ阶段,ΔD随着−Δf 的增加快速增加,说明接枝HS-PNIPAM链变得越来越伸展,即形成了高分子刷构象. 图2(d) 展示了从区域I到区域III阶段,接枝HS-PNIPAM链的构象转变过程[37 ]. 同样,如果高分子链节与固体表面间无明显吸引作用时,随着接枝密度的增加,接枝高分子链将展现从无规“蘑菇”状构象到有序“蘑菇”状构象,再到“刷”状构象的转变[22 ].另一方面,PNIPAM为典型的热敏型高分子,其在水中具有最低临界溶解温度(LCST,约为32 °C). 在温度低于LCST时,溶液中自由的PNIPAM链呈无规线团状(coil),但当温度高于LCST时,PNIPAM链塌缩成小球状(globule),且coil到globule转变是不连续的. 与溶液中自由的PNIPAM链相比,由于空间受限效应,界面接枝PNIPAM链将展现出不同的热敏性构象行为. Zhang和Liu利用QCM-D研究了界面接枝PNIPAM随温度的变化情况[38 ,39 ]. 如上所述,PNIPAM链可以通过“grafting to”或“grafting from”策略接枝到振子表面,前者可以形成接枝密度较低的“蘑菇”状构象,而后者则可以形成接枝密度较高的“刷”状构象.图3(a) 为利用“grafting to”策略将PNIPAM链接枝到振子表面形成“蘑菇”状构象后,频率随温度的变化情况[38 ]. 在加热过程中,−Δf 随着温度增加逐渐降低,表明接枝PNIPAM链发生了去水化. 在降温过程中,−Δf 随着温度降低逐渐增加,表明接枝PNIPAM链的水化程度再次增加. 最终,−Δf 能够回到原点,说明降低温度可以使得接枝PNIPAM链从高温时的弱水化状态回到低温时的强水化状态. 图3(b) 为振子表面接枝PNIPAM链形成“蘑菇”状构象后,耗散因子随温度的变化情况[38 ]. 在升温过程中,ΔD随着温度增加而减小,表明升温导致接枝PNIPAM塌缩成更加致密刚性的薄膜. 在降温过程中,ΔD随着温度降低而增大,表明降温使得塌缩的PNIPAM逐渐溶胀成更加蓬松柔性的薄膜. 另一方面,在图3(c) 中,Δf与ΔD成线性关系,表明随着温度变化,接枝PNIPAM链的伸展/塌缩与其水化/去水化间的协同性强[40 ].图 3Figure 3. Temperature dependence of the shifts in frequency (Δf) (a) and dissipation (ΔD) (b) of the PNIPAM mushroom. (Reprinted with permission from Ref.[38 ] Copyright (2004) American Chemical Society) (c) ΔD versus −Δf relation of the PNIPAM mushroom (Reprinted with permission from Ref.[40 ] Copyright (2009) John Wiley & Sons, Inc.) Temperature dependence of the shifts in frequency (Δf) (d) and dissipation (ΔD) (e) of the PNIPAM brush (f) ΔD versus −Δf relation of the PNIPAM brush (Reprinted with permission from Ref.[39 ] Copyright (2005) American Chemical Society).利用“grafting from”策略将PNIPAM链接枝到振子表面形成“刷”状构象后,其频率和耗散因子随温度的变化情况示于图3(d) ~ 3(f) 中[39 ]. 在图3(d) 中,−Δf 随着温度增加而降低,表明PNIPAM刷在升温过程中发生了去水化;−Δf 随着温度降低而增加,表明PNIPAM刷的水化程度在降温过程中再次增加. 在图3(e) 中,ΔD随着升温而减小,表明加热使得PNIPAM刷塌缩成更加致密刚性的结构;在降温过程中,ΔD逐渐增加,表明降温使得塌缩的PNIPAM刷溶胀为更加蓬松柔性的结构. 与图3(b) 不同的是,在图3(e) 中,降温过程中的ΔD比升温过程中同一温度下的值要大,这是降温过程中在PNIPAM刷外围形成“尾”(tail)状结构造成的[39 ]. 另外,在图3(f) 中,Δf与ΔD的关系也与图3(c) 中的不同,PNIPAM刷在升温过程中展现出3个过程,从A到B,ΔD随着−Δf 的减小而降低,表明在此过程中PNIPAM刷的塌缩和去水化协同性较强;从B到C,ΔD随着−Δf 的减小而轻微地降低,表明在此过程中立体位阻效应使得PNIPAM刷在去水化的同时只有轻微塌缩发生,即PNIPAM刷的塌缩和去水化协同性较差;从C到D,ΔD随着−Δf 的减小而再次降低,表明在此过程中PNIPAM刷克服立体位阻,在去水化的同时伴随进一步塌缩. 在降温过程中,可以观察到2个过程,从D到E,ΔD随着−Δf的增加而显著增大,表明PNIPAM刷开始溶胀时在其外围形成了蓬松的“尾”状构象;从E到F,ΔD随着−Δf的增加而逐渐增大,表明降温导致PNIPAM刷的进一步水化和溶胀. 此外,QCM-D还可应用于表征界面接枝带电高分子的响应性构象行为,如pH响应性[41 ]、盐浓度响应性[42 ]等.4.2 高分子的离子效应高分子的离子效应是理解高分子物理化学基本原理的重要基础,并在生物、环境以及能源等领域中扮演着重要角色. 然而,经典德拜-休克尔理论中所运用的一些假设,例如,仅考虑离子的静电相互作用,忽略离子-溶剂间相互作用,以及认为正负离子间的静电吸引能小于其热运动能量等,使得该理论难以全面正确理解高分子体系中除离子强度效应以外的其他离子效应. 相比于一些传统的研究高分子溶液的表征技术(如激光光散射等),利用QCM-D研究界面高分子体系中的离子效应,可以有效避免如带电高分子相分离等不利因素,从而可以更加全面清晰地解析高分子的离子效应. 此外,将QCM-D与其他界面表征技术联用,可以从不同角度表征高分子的离子效应,加深对相关离子效应作用机理的理解. 在本节中,我们将以离子特异性效应、离子氢键效应以及离子亲/疏水效应为例,介绍如何基于QCM-D/SE联用技术研究高分子的离子效应.4.2.1 高分子的离子特异性效应由于离子普遍存在于不同体系之中,自1888年捷克科学家Hofmeister首次发现离子特异性效应以来[43 ],其已引起了包括高分子在内的不同领域科学家的广泛兴趣[44 ~50 ]. 为了阐明离子特异性效应的相关机理,Collins基于离子水化程度不同,提出了经验性的离子水化匹配模型,即阴阳离子水化程度相近时可以形成紧密离子对,反之,则难以形成紧密离子对[51 ]. 相对于离子水化匹配模型主要用于理解水溶液中带电体系的离子特异性效应,Ninham等提出的离子色散力理论则可以用于理解几乎所有体系的离子特异性效应,即离子尺寸不同,极化能力各异,导致特异性的离子色散相互作用[52 ].对于高分子体系而言,阐明离子特异性作用机理,是理解高分子体系离子特异性效应的关键所在. Kou等以阳离子型聚(甲基丙烯酰氧乙基三甲基氯化铵)(PMETAC)刷为模型体系,利用QCM-D/SE联用技术研究了强聚电解质刷的离子特异性效应(图4 )[53 ]. 在图4(a) 中,对于同一盐浓度而言,Δf 的变化呈现“V”型的阴离子序列SO42−HPO42−CH3COO−Cl−Br−NO3−I−SCN−,这与经典的Hofmeister离子序列不一致. 在“V”型序列的右边主要为“结构破坏型”阴离子,从CH3COO−变化至SCN−,Δf 依次增加,说明PMETAC刷的水化程度依次降低. 一方面,阳离子型季铵基团为弱水化基团[54 ~56 ];另一方面,从CH3COO−变化至SCN−,阴离子的水化程度依次降低[54 ~56 ]. 依据水化匹配模型[51 ],季铵基团与阴离子间的“离子对”相互作用强度从CH3COO−到SCN−依次增强,导致PMETAC刷的水化程度依次降低. 同样,基于离子色散力理论[52 ],也可以得到类似的结论. 因此,上述研究结果表明,对于“结构破坏型”阴离子而言,PMETAC刷的离子特异性效应由直接的“离子对”相互作用主导. 在“V”型序列的左边为“结构构造型”阴离子,从CH3COO−变化至SO42−,Δf 依次增加,同样说明PMETAC刷的水化程度依次降低. 然而,阴离子的水化程度从CH3COO−到SO42−依次增强. 显然,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应无法基于水化匹配模型加以理解. 实际上,Δf 随离子种类的变化情况表明,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应由阴离子对强聚电解质刷水化层中水分子的争夺作用主导. 类似地,ΔD (图4(b) )和湿态厚度(图4(c) )随离子种类的变化情况再次从不同角度说明了“结构破坏型”和“结构构造型”阴离子分别以不同方式与PMETAC刷进行特异性相互作用. PMETAC刷的离子特异性效应作用机理展示在图4(d) 中. 基于同样原理,QCM-D/SE联用技术还可应用于研究弱聚电解质刷[57 ]以及聚两性离子刷体系的离子特异性效应[58 ].图 4Figure 4. (a) Salt concentration dependence of (a) the frequency shift (Δf), (b) the dissipation shift (ΔD), (c) the wet thickness of the PMETAC brush in the presence of different types of anions with Na+ as the common cation. In parts (a), (b), and (c), salt concentration: 0.001 mol/L (open symbol), 0.01 mol/L (half up-filled symbol), 0.1 mol/L (half right-filled symbol), and 0.5 mol/L (filled symbol) (d) Schematic illustration of the specific interactions between the PMETAC brush and the different types of anions (Reprinted with permission from Ref.[53 ] Copyright (2015) American Chemical Society).4.2.2 高分子的离子氢键效应在带电高分子体系,当抗衡离子具有氢键供体或受体时,其既可以与高分子链上的电荷基团产生静电吸引作用,也可以与高分子链上的氢键受体或供体发生氢键相互作用,从而对带电高分子的性质产生重要影响,此种由带电高分子体系抗衡离子产生的氢键效应被定义为高分子的离子氢键效应[59 ]. 以强聚电解质刷为例,由于强聚电解质的电离度与pH无关,因此,传统观念上认为强聚电解刷无pH响应性. 但如果从离子氢键效应的角度出发,氢氧根离子(OH−)和水合氢离子(H3O+)不但可以通过“抗衡离子凝聚”吸附到接枝强聚电解质链上[60 ],同时也可以和接枝强聚电解质链发生氢键作用. 当溶液pH发生改变时,在保持溶液离子总浓度不变的情况下,OH−和H3O+的浓度会发生变化,导致抗衡离子与强聚电解质刷的氢键相互作用发生改变,从而使得强聚电解质刷产生pH响应性[61 ,62 ].如图5(a) 所示,PMETAC刷的Δf 随着pH的增大而增加,反之亦然. 同时,PMETAC刷的ΔD随着pH的增大而减小,反之亦然. 因此,PMETAC刷的水化程度和刚性对pH有明显的依赖性. 但是,图5(b) 表明PMETAC刷的表面电荷密度(σ)以及湿态厚度(dwet)与pH无关,因此,pH引起的PMETAC刷的水化程度和刚性变化并非由强聚电解质刷的电离度变化或塌缩/溶胀引起的. 事实上,PMETAC刷的pH响应性是由OH−产生的抗衡离子氢键效应导致的(图5(c) ). 具体而言,随着pH增大,更多的OH−离子通过“抗衡离子凝聚”方式吸附在接枝PMETAC链上,并与接枝链上的羰基产生氢键作用,从而削弱了PMETAC刷与其周围水分子间的作用,降低其水化程度,导致Δf 增加. 同时,随着pH增大,接枝链间的氢键作用使得PMETAC刷产生物理交联,即其结构变得更加刚性,导致ΔD减小. 与阳离子型PMETAC刷类似,H3O+产生的抗衡离子氢键效应使得阴离子型聚(3-(甲基丙烯酰氧基)丙磺酸钾)刷具有pH响应性[61 ].图 5Figure 5. (a) Shifts in frequency (Δf) and dissipation (ΔD) of the PMETAC brush as a function of pH (b) Changes in surface charge density (σ) and wet thickness (dwet) of the PMETAC brush as a function of pH (c) Schematic illustration of the pH response of the PMETAC brush induced by the hydrogen bond effect generated by the hydroxide counterions (Reprinted with permission from Ref.[61 ] Copyright (2016) American Association for the Advancement of Science).为了验证带电高分子体系中抗衡离子氢键效应具有普适性,Zhang等将研究体系拓展至弱聚电解质刷以及OH−和H3O+以外的其他种类离子[63 ]. 从图6(a) 可知,CH3SO3−无法和PMETAC发生氢键作用,但是HOCH2SO3−上的羟基却可以和PMETAC链上的羰基形成氢键. 类似地,在图6(b) 中,Na+无法与聚甲基丙烯酸钠(PMANa)发生氢键作用,但是胍离子(Gdm+)上的胺基却可以和PMANa链上的羰基形成氢键. 在图6(c) 中,随着CH3SO3−-HOCH2SO3−混合抗衡离子中HOCH2SO3−摩尔分数(x)的增加,Δf 逐渐增大而ΔD逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷发生去水化,且PMETAC刷的结构变得更加刚性. 在图6(d) 中,随着x的增加,PMETAC刷的dwet逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷逐渐塌缩.图 6Figure 6. (a) The HOCH2SO3− counter anions with the hydroxide group can form hydrogen bonds with PMETAC, whereas no hydrogen bonds can be formed between the CH3SO3− counter anions and PMETAC (b) The guanidinium+ counter cations with the amino groups can form hydrogen bonds with PMANa, whereas no hydrogen bonds can be formed between the Na+ counter cations and PMANa (c) Shifts in Δf (filled symbol) and ΔD (open symbol), and (d) shift in dwet of the PMETAC brush as a function of x of the counterion mixtures of CH3SO3− and HOCH2SO3− at a concentration of 0.05 mol/L with Na+ as the common cation (e) Shifts in Δf (filled symbol) and ΔD (open symbol), and (f) shift in dwet of the PMANa brush as a function of pH in the presence of 0.05 mol/L Na+ or guanidinium+ with Cl− as the common anion (Adapted with permission from Ref.[63 ] Copyright (2020) The Royal Society of Chemistry).与强聚电解质刷类似,抗衡离子氢键效应同样存在于弱聚电解质刷体系中. 图6(e) 和6(f) 中,在0.05 mol/L NaCl存在下,PMANa刷的Δf、ΔD以及dwet随pH的变化情况与传统弱聚电解质刷的pH响应性完全一致,即此时PMANa刷的pH响应性由接枝链的电离度随pH变化决定的. 然而,在0.05 mol/L GdmCl存在下,PMANa刷所表现出的pH响应性与0.05 mol/L NaCl存在下的情况截然不同. 当pH从2.0增加到4.5,PMANa刷的Δf 和ΔD分别增加和减小,同时,PMANa刷的dwet逐渐减小,表明PMANa刷的水化程度逐渐降低,其结构变得更加刚性,并伴随着塌缩发生. 显然,这与0.05 mol/L NaCl存在下在该pH区间中PMANa刷的变化情况完全相反. 然而,这可以基于离子氢键效应加以理解. 当pH从2.0增加至4.5时,接枝PMANa链的电离度增加,导致更多的Gdm+离子通过“抗衡离子凝聚”吸附于带负电荷的羧酸根基团上,从而在PMANa刷中形成更多的抗衡离子氢键,削弱了PMANa刷与周围水分子间的相互作用,使PMANa刷变得更加刚性,并导致其塌缩. 在pH 4.5至10.0区间中,0.05 mol/L GdmCl存在下PMANa刷的pH响应性与0.05 mol/L NaCl存在下的情况类似.4.2.3 高分子的离子亲/疏水效应当电荷基团与具有不同亲/疏水性质的有机基团相连接时,形成的有机离子具有不同的亲/疏水性质. 将这些离子引入聚电解质体系作为抗衡离子,可实现利用抗衡离子控制聚电解质的亲/疏水性质,从而调控其温敏性[64 ]. 然而,与聚电解质稀溶液相比,聚电解质刷内部环境较为拥挤. 因此,聚电解质刷的温敏性不但依赖于其抗衡离子的亲/疏水性,而且与抗衡离子的尺寸大小有关. 为了澄清抗衡离子的亲/疏水性质和尺寸大小与聚电解质刷温敏性间的关系,Cai等以聚苯乙烯磺酸钠(PSSNa)为基础,基于离子交换策略制备了具有不同抗衡离子的聚电解质刷(图7(a) ),并利用QCM-D/SE联用技术研究了不同聚电解质刷的温度响应性(图7(b) ~7(g) )[65 ].图 7Figure 7. (a) Schematic illustration of the preparation of PSSP444m brushes from the PSSNa brush through a counterion exchange strategy, where P444m+ represents the hydrophobic tetraalkylphosphonium counterion (b) Shift in frequency (Δf ), (c) shift in dissipation (ΔD) and (d) change in wet thickness (Δdwet) for both the PSSNa and the PSSP444m brushes as a function of temperature (e) Temperature dependence of ∆f of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (f) Temperature dependence of ∆D of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (g) Change in wet thickness (∆dwet) of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (Adapted with permission from Ref.[65 ] Copyright (2019) American Chemical Society).在图7(b) 和7(c) 中,随着温度增加,PSSNa刷的Δf和ΔD基本保持不变,表明PSSNa刷无明显温度响应性,这是PSSNa的强亲水性导致的. 当Na+被P4442+取代后,P4442+的疏水性仍不足以使PSSP4442刷表现出明显的温敏性. 当使用更加疏水的P4444+取代Na+时,PSSP4444刷仅表现出较弱的温敏性. 进一步增加抗衡离子的疏水性制备得到的PSSP4446刷表现出明显的温敏性,即随着温度增加,Δf 和ΔD分别明显地增加和减小,说明升温可以导致PSSP4446刷去水化以及变得更加刚性. 此外,PSSP4446刷的温敏性具有较好的可逆性. 然而,继续增加抗衡离子的疏水性,制备得到的PSSP4448刷再次失去温敏性,这是P4448+过度疏水造成的. 另一方面,在图7(d) 中,包括PSSP4446刷在内的所有聚电解质刷的Δdwet都没有明显的温度依赖性. 对于PSSP4446刷而言,其水化和刚性表现出明显的温度依赖性,但由于其抗衡离子尺寸较大,在聚电解质刷内部产生的位阻效应较大,阻碍了PSSP4446刷随温度升高而塌缩. 这不利于温敏型聚电解质刷的应用,如“纳米阀门”[66 ]. 考虑到大尺寸的P4448+抗衡离子可以将强疏水性引入强聚电解质刷,而小尺寸的Na+抗衡离子可以使强聚电解质刷内部产生一定的自由空间,Cai等利用Na+和P4448+混合抗衡离子制备PSSNa/P4448刷,并在P4448+摩尔分数(x)为 ~72%时,实现了强聚电解质刷水化、刚性以及湿态厚度明显的温度响应性(图7(e) ~7(g) )[65 ].4.3 高分子海洋防污材料海洋微生物、动植物在海洋设施表面的黏附、生长形成海洋生物污损,给海洋工业和海洋开发带来严重影响. 由于海洋环境的复杂性和污损生物的多样性,海洋防污是一个全球性的难题. 如何快速、高通量筛选防污材料对解决这一问题十分关键. QCM-D技术可被用于快速筛选和评价防污材料的降解、抗蛋白吸附、自更新性能以及服役与失效行为. Ma等制备了具有优异力学性能的含聚乙二醇(PEG)和两性离子聚合物侧链的聚氨酯材料,利用QCM-D检测其抗蛋白吸附能力,从而在较短的时间尺度内(数小时)快速评价污损生物在涂层表面的吸附和相互作用[67 ]. QCM-D检测表明,该材料虽然具有优异的室内抗污性能,但在实海中浸泡12周后失去防污能力. 原因是涂层表面吸附海泥等物质导致其表面性能发生根本性变化,从原来的抗污变为亲污.基于上述认识,Ma等提出了“动态表面防污”的概念,设计了在海洋环境下能够降解的聚甲基丙烯酸甲酯-聚碳酸乙烯酯(PMMA-PEOC)材料(图8(a) )[68 ]. QCM-D测试表明,随着时间增加,Δf 增大而ΔD不断减小,说明涂层的质量或厚度减小,即涂层在海水作用下不断降解(图8(b) ). 对于4种涂层,其降解均为线性,即涂层厚度随时间均匀下降. 另外,随着PEOC含量增加,Δf 和ΔD变化加快,即降解速率变大. 实海挂板实验表明(图8(c) ),该材料(未加任何防污剂)涂覆的挂板3个月内未有任何海洋生物黏附,即材料具有优异的防污性能. 显然,随着降解速率增加,防污性能提高. 这证明了动态表面防污概念的可行性,即涂料通过表面的不断更新,使海洋微生物无法着陆、黏附,从而达到防污的目的. 因此,QCM技术和海洋实验的评估周期虽然不同,但结论基本一致.图 8Figure 8. Structural formula of PMMA-co-PEOCA (a), time dependence of the shifts in frequency (Δf) and dissipation (ΔD) for the hydrolytic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with P(MMA-co-PEOCA63) in marine field test (c) (Reprinted with permission from Ref.[68 ] Copyright (2012) Springer Nature).Ma等制备了软段为乙交酯(GA)和己内酯(CL)共聚物的聚氨酯(图9(a) )[69 ],其力学性能优异. 利用QCM-D对其短时间降解行为的研究表明,随着时间增加,涂层的Δf 变大,说明涂层在酶的作用下发生降解(图9(b) ). 该材料的短期(几个小时内)降解是非线性的,且随着可降解链段的含量增大,降解速率变大,即涂层的表面更新速率变大. 另一方面,质量损失法也表明,该材料的降解在初期呈非线性,在更大时间尺度上(10天以上)降解是线性的. 2种方法都表明,适度引入GA可提高降解速率. 实际上2种评价方法所得的结果是一致的,只是观察其服役与失效的时间尺度不同. 实海挂板实验表明(图9(c) ),随着降解速率的提高,海洋微生物的黏附越来越少. 即随着降解速率的增加,防污性能提高. 当材料中加入适量有机防污剂(PCL-PU/DCOIT)后,效果达到最佳. 总之,实海实验结果与QCM-D的结果吻合.图 9Figure 9. Structural formula of P(CL-GA) polyurethane (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane in marine field test (c) (Reprinted with permission from Ref.[69 ] Copyright (2013) The Royal Society of Chemistry).Xu等研制了主链降解-侧基水解型聚氨酯,即其主链含聚己内酯(PCL)而侧基中含有可水解的丙烯酸三异丙基硅烷酯(TIPSA)(图10(a) )[27 ]. QCM-D的研究结果表明,在短时间内(依照样品不同,从1 h到2天不等),涂层在海水中的降解近似线性,且随TIPSA含量增加降解速率增加(图10(b) ). 实海挂板实验表明(图10(c) ),以该材料涂覆的挂板,随着降解速率增加(由PU-S0至PU-S40),海洋生物黏附越来越少,即防污性能越来越好. 可见,QCM-D结果与实海实验结果一致. 以上几个研究表明,对于多数材料而言,通过QCM-D对防污材料在实验室进行初步筛选的结果,与较长时间(3个月)的质量损失测试和更长时间(1年以上)的海洋挂板实验结果基本一致,这为利用QCM-D快速筛选高分子海洋防污材料提供了依据.图 10Figure 10. Structural formula of polyurethane with degradable main chain and hydrolyzable side chains (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane after 3 months of immersion in seawater (c) (Reprinted with permission from Ref.[27 ] Copyright (2014) American Chemical Society).5. 结语本文介绍了QCM的发展简史、基本原理、实验样品制备以及其在高分子研究中的应用. QCM技术经历了六十余年的发展,从最初仅应用于真空或空气中薄膜微观质量的测量,逐步发展到应用于溶液中的测量. 上世纪末,QCM-D被成功研制,进一步促进了QCM技术在相关领域中的应用. 进入新世纪后,QCM-D技术与其他表征技术的联用得到了较快的发展,这些联用表征技术极大地拓展了QCM-D的研究领域,丰富了表征信息,加深了对相关科学问题的认知. 对于高分子研究而言,毋庸置疑,QCM-D是一个非常有力的表征工具. 当然,QCM-D在高分子研究中的应用不仅仅局限于本文讨论的几个方面,作者希望本文能起到抛砖引玉的作用,使得这一表征技术能够为解决高分子领域中的问题发挥更大作用.参考文献[1]Curie J, Curie P. Bull Soc Min Fr, 1880, 3(4): 90−93[2]Cady W G. Proc IRE, 1922, 10(2): 83−114 doi: 10.1109/JRPROC.1922.219800 [3]Lack F R, Willard G W, Fair I E. Bell Syst Technol J, 1934, 13(3): 453−463 doi: 10.1002/j.1538-7305.1934.tb00674.x [4]Sauerbrey G Z. Z Phys, 1959, 155: 206−222 doi: 10.1007/BF01337937 [5]Lu C, Czanderna A W. Applications of Piezoelectric Quartz Crystal Microbalances. New York: Elsevier. 2012[6]Nomura T, Okuhara M. Anal Chim Acta, 1982, 142: 281−284 doi: 10.1016/S0003-2670(01)95290-0 [7]Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B. Rev Sci Instrum, 1995, 66(7): 3924−3930 doi: 10.1063/1.1145396 [8]Ramos J J I, Moya S E. Macromol Rapid Commun, 2011, 32(24): 1972−1978 doi: 10.1002/marc.201100455 [9]Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat Mater, 2019, 18(1): 69−75 doi: 10.1038/s41563-018-0215-1 [10]Jiang C, Cao T Y, Wu W J, Song J L, Jin Y C. ACS Sustain Chem Eng, 2017, 5(5): 3837−3844 doi: 10.1021/acssuschemeng.6b02884 [11]Akanbi M O, Hernandez L M, Mobarok M H, Veinot J G C, Tufenkji N. Environ Sci: Nano, 2018, 5(9): 2172−2183 doi: 10.1039/C8EN00508G [12]Tarnapolsky A, Freger V. Anal Chem, 2018, 90(23): 13960−13968 doi: 10.1021/acs.analchem.8b03411 [13]Dai G X, Xie Q Y, Ai X Q, Ma C F, Zhang G Z. ACS Appl Mater Interfaces, 2019, 11(44): 41750−41757 doi: 10.1021/acsami.9b16775 [14]Swiatek S, Komorek P, Jachimska B. Food Hydrocolloids, 2019, 91: 48−56 doi: 10.1016/j.foodhyd.2019.01.007 [15]Bottom V E. Introduction to Quartz Crystal Unit Design. New York: Van Nostrand Reinhold. 1982[16]Janshoff A, Galla H J, Steinem C. Angew Chem Int Ed, 2000, 39(22): 4004−4032 doi: 10.1002/1521-3773(20001117)39:224004::aid-anie40043.0.CO 2-2 [17]Liu G M, Zhang G Z. QCM-D Studies on Polymer Behavior at Interfaces. New York: Springer, 2013. 1−8[18]Kanazawa K K, Gordon J G. Anal Chem, 1985, 57(8): 1770−1771 doi: 10.1021/ac00285a062 [19]Rodahl M, Kasemo B. Sens Actuators A, 1996, 54(1-3): 448−456[20]Voinova M V, Rodahl M, Jonson M, Kasemo B. Phys Scr, 1999, 59(5): 391−396 doi: 10.1238/Physica.Regular.059a00391 [21]Steinem C, Janshoff A. Piezoelectric Sensors. Berlin: Springer, 2007. 425−447[22]Liu G M, Yan L F, Chen X, Zhang G Z. Polymer, 2006, 47(9): 3157−3163 doi: 10.1016/j.polymer.2006.02.091 [23]Liu G M, Cheng H, Yan L F, Zhang G Z. J Phys Chem B, 2005, 109(47): 22603−22607 doi: 10.1021/jp0538417 [24]He J N, Wu Y Z, Wu J, Mao X, Fu L, Qian T C, Fang J, Xiong C Y, Xie J L, Ma H W. Macromolecules, 2007, 40(9): 3090−3096 doi: 10.1021/ma062613n [25]Fu L, Chen X A, He J N, Xiong C Y, Ma H W. Langmuir, 2008, 24(12): 6100−6106 doi: 10.1021/la703661z [26]Mandal J, Simic R, Spencer N D. Polym Chem, 2019, 10(29): 3933−3942 doi: 10.1039/C9PY00587K [27]Xu W T, Ma C F, Ma J L, Gan T S, Zhang G Z. ACS Appl Mater Interfaces, 2014, 6(6): 4017−4024 doi: 10.1021/am4054578 [28]Zhu J, Pan J S, Ma C F, Zhang G Z, Liu G M. Langmuir, 2019, 35(34): 11157−11166 doi: 10.1021/acs.langmuir.9b01740 [29]Du Binyang(杜滨阳), Fan Xiao(范潇), Cao Zheng(曹峥), Guo Xiaolei(郭小磊). Chinese Journal of Analytical Chemistry(分析化学), 2010, 38(5): 752−759[30]He J A, Fu L, Huang M, Lu Y D, Lv B E, Zhu Z Q, Fang J J, Ma H W. Sci Sin Chim, 2011, 41(11): 1679−1698 doi: 10.1360/032011-381 [31]Sun Bin(孙彬), Lv Jianhua(吕建华), Jin Jing(金晶), Zhao Guiyan(赵桂艳). Chinese Journal of Applied Chemistry(应用化学), 2020, 37(10): 1127−1136 doi: 10.11944/j.issn.1000-0518.2020.10.200078 [32]Marx K A. Biomacromolecules, 2003, 4(5): 1099−1120 doi: 10.1021/bm020116i [33]Munro J C, Frank C W. Macromolecules, 2004, 37(3): 925−938 doi: 10.1021/ma030297w [34]Choi J H, Kanazawa K K, Cho N J. J Sens, 2014, 2014: 373528[35]Bhat R R, Tomlinson M R, Wu T, Genzer J. Adv Polym Sci, 2006, 198: 51−124[36]Fleer G J, Stuart M A C, Scheutjens J M H M, Cosgrove T, Vincent B. Polymers at Interfaces. London: Chapman & Hall 1993. 372−395[37]Zhang Guangzhao(张广照), Liu Guangming(刘光明). Quartz Crystal Microbalance: Principles and Applications(石英晶体微天平: 原理与应用). Beijing(北京): Science Press(科学出版社), 2015. 63−77[38]Zhang G Z. Macromolecules, 2004, 37(17): 6553−6557 doi: 10.1021/ma035937+ [39]Liu G M, Zhang G Z. J Phys Chem B, 2005, 109(2): 743−747 doi: 10.1021/jp046903m [40]Zhang G Z, Wu C. Macromol Rapid Commun, 2009, 30(4−5): 328−335[41]Liu G M, Zhang G Z. J Phys Chem B, 2008, 112(33): 10137−10141 doi: 10.1021/jp801533r [42]Hou Y, Liu G M, Wu Y, Zhang G Z. Phys Chem Chem Phys, 2011, 13(7): 2880−2886 doi: 10.1039/C0CP01994A [43]Hofmeister F. Arch Exp Pathol Pharmakol, 1888, 24(4): 247−260[44]Tobias D J, Hemminger J C. Science, 2008, 319(5867): 1197−1198 doi: 10.1126/science.1152799 [45]Tielrooij K J, Garcia-Araez N, Bonn M, Bakker H J. Science, 2010, 328(5981): 1006−1009 doi: 10.1126/science.1183512 [46]Pegram L M, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky D J, Record M T. Proc Natl Acad Sci, 2010, 107(17): 7716−7721 doi: 10.1073/pnas.0913376107 [47]Paschek D, Ludwig R. Angew Chem Int Ed, 2011, 50(2): 352−353 doi: 10.1002/anie.201004501 [48]Rembert K B, Paterová J, Heyda J, Hilty C, Jungwirth P, Cremer P S. J Am Chem Soc, 2012, 134(24): 10039−10046 doi: 10.1021/ja301297g [49]Dickson V K, Pedi L, Long S B. Nature, 2014, 516(7530): 213−218 doi: 10.1038/nature13913 [50]Nihonyanagi S, Yamaguchi S, Tahara T. J Am Chem Soc, 2014, 136(17): 6155−6158 doi: 10.1021/ja412952y [51]Collins K D. Methods, 2004, 34(3): 300−311 doi: 10.1016/j.ymeth.2004.03.021 [52]Salis A, Ninham B W. Chem Soc Rev, 2014, 43(21): 7358−7377 doi: 10.1039/C4CS00144C [53]Kou R, Zhang J, Wang T, Liu G M. Langmuir, 2015, 31(38): 10461−10468 doi: 10.1021/acs.langmuir.5b02698 [54]Kunz W. Curr Opin Colloid Interface Sci, 2010, 15(1-2): 34−39 doi: 10.1016/j.cocis.2009.11.008 [55]Parsons D F, Boström M, Nostro P L, Ninham B W. Phys Chem Chem Phys, 2011, 13(27): 12352−12367 doi: 10.1039/c1cp20538b [56]Liu L D, Kou R, Liu G M. Soft Matter, 2017, 13(1): 68−80 doi: 10.1039/C6SM01773H [57]Zhang J, Cai H T, Tang L, Liu G M. Langmuir, 2018, 34(41): 12419−12427 doi: 10.1021/acs.langmuir.8b02776 [58]Wang T, Wang X W, Long Y C, Liu G M, Zhang G Z. Langmuir, 2013, 29(22): 6588−6596 doi: 10.1021/la401069y [59]Yuan H Y, Liu G M. Soft Matter, 2020, 16(17): 4087−4104 doi: 10.1039/D0SM00199F [60]Manning G S. Acc Chem Res, 1979, 12(12): 443−449 doi: 10.1021/ar50144a004 [61]Wu B, Wang X W, Yang J, Hua Z, Tian K Z, Kou R, Zhang J, Ye S J, Luo Y, Craig V S J, Liu G M. Sci Adv, 2016, 2(8): e1600579 doi: 10.1126/sciadv.1600579 [62]Zhang J, Kou R, Liu G M. Langmuir, 2017, 33(27): 6838−6845 doi: 10.1021/acs.langmuir.7b01395 [63]Zhang J, Xu S Y, Jin H G, Liu G M. Chem Commun, 2020, 56(74): 10930−10933 doi: 10.1039/D0CC03763J [64]Kohno Y, Saita S, Men Y J, Yuan J Y, Ohno H. Polym Chem, 2015, 6(12): 2163−2178 doi: 10.1039/C4PY01665C [65]Cai H, Kou R, Liu G. Langmuir, 2019, 35(51): 16862−16868 doi: 10.1021/acs.langmuir.9b02982 [66]Adiga S P, Brenner D W. J Funct Biomater, 2012, 3(2): 239−256 doi: 10.3390/jfb3020239 [67]Ma C F, Hou Y, Liu S, Zhang G Z. Langmuir, 2009, 25(16): 9467−9472 doi: 10.1021/la900669p [68]Ma C F, Yang H J, Zhang G Z. Chinese J Polym Sci, 2012, 30(3): 337−342 doi: 10.1007/s10118-012-1158-7 [69]Ma C F, Xu L G, Xu W T, Zhang G Z. J Mater Chem B, 2013, 1(24): 3099−3106 doi: 10.1039/c3tb20454e
  • 39个地方入选深化气候适应型城市建设试点名单!
    2023年8月,为贯彻落实《国家适应气候变化战略2035》,持续实施《城市适应气候变化行动方案》,积极探索气候适应型城市建设路径和模式,有效提升城市适应气候变化能力,生态环境部、财政部、自然资源部、住房和城乡建设部、交通运输部、水利部、中国气象局、国家疾病预防控制局八大部门联合发布《关于深化气候适应型城市建设试点的通知》。《通知》提到,2017年,我国在全国范围内遴选了28个城市,启动开展气候适应型城市建设试点,为进一步深化气候适应型城市建设试点奠定了基础。基于此,统筹考虑气候风险类型、自然地理特征、城市功能与规模等因素,在全国范围内开展深化气候适应型城市建设试点,积极探索和总结气候适应型城市建设路径和模式,提高城市适应气候变化水平。到2025年,优先遴选一批工作基础好、组织保障有力、预期示范带动作用强的试点城市先行先试,气候适应型城市建设纳入试点城市重点工作任务和经济社会发展规划,适应气候变化工作机制基本完善,重点领域适应行动有效开展,气候适应型城市建设经验得到有益探索。到2030年,试点城市扩展到100个左右,气候适应型城市建设试点经验得到有效推广并进一步巩固深化,城市适应气候变化理念广泛普及,城市气候变化风险评估和适应气候变化能力明显提升。到2035年,气候适应型城市建设试点经验得到全面推广,地级及以上城市全面开展气候适应型城市建设。 近日,按照《关于深化气候适应型城市建设试点的通知》(环办气候〔2023〕13号)安排,在城市申报、各省(区、市)推荐基础上,经综合研究,确定北京市门头沟区等39个市(区)为深化气候适应型城市建设试点,现予公布。附:关于深化气候适应型城市建设试点的通知各省、自治区、直辖市及新疆生产建设兵团生态环境厅(局)、财政厅(局)、自然资源主管部门、住房城乡建设厅(委、局)、交通运输厅(局、委)、水利(水务)厅(局)、气象局、疾控主管部门:为贯彻落实《国家适应气候变化战略2035》,持续实施《城市适应气候变化行动方案》,积极探索气候适应型城市建设路径和模式,有效提升城市适应气候变化能力,决定在前期工作基础上进一步深化气候适应型城市建设试点工作。现将有关事项通知如下。一、目的意义气候变化是当今世界以及今后相当长时期内人类共同面临的巨大挑战。气候变化导致的极端天气气候事件和各类缓发不利影响不断加剧,已对世界各国特别是发展中国家经济社会发展和人民生产生活安全造成严重威胁。《巴黎协定》确立了提高适应能力、增强韧性、降低脆弱性的全球适应目标,主动适应气候变化、不断提高气候风险防范和抵御能力已经成为全球共识和必然选择。城市是人类生产生活的主要聚集地,也是各类要素资源和经济社会活动最集中的地方,区域气候变化趋势与城市气候效应叠加,使城市遭受的不利影响和风险更为严重。我国正处于工业化和城镇化快速发展的历史阶段,以防范气候风险为目标建设气候适应型城市,可以最大限度降低气候变化不利影响和风险,提高城市适应气候变化能力,对保障城市安全运行、提高城市竞争力和可持续发展潜力具有重要意义。2017年,我国在全国范围内遴选了28个城市,启动开展气候适应型城市建设试点。各试点城市因地制宜、积极探索,在普及适应理念、创新工作机制、强化重点领域适应行动等方面都取得积极成效并积累了有益经验,为进一步深化气候适应型城市建设试点奠定了基础。但总体来看,气候适应型城市建设仍任重道远,当前仍存在对气候风险认识不足、工作机制尚不完善、资源投入和行动力度亟待加强、适应能力亟待提升等问题,迫切需要进一步深化气候适应型城市建设试点,以进一步探索和总结气候适应型城市建设路径和模式,提高城市适应气候变化水平,并为积极推进全球适应气候变化进程贡献中国智慧和中国方案。二、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大会议精神,深入贯彻习近平生态文明思想,坚持以人民为中心,完整、准确、全面贯彻新发展理念,落实《国家适应气候变化战略2035》,实施《城市适应气候变化行动方案》,以有效防范和降低气候变化不利影响和风险为目标,以完善城市适应气候变化治理体系、加强气候变化影响和风险评估、强化城市重点领域适应气候变化行动、推进城市适应政策创新和能力建设为重点,选择典型城市先行先试,积极推进和深化气候适应型城市建设,为推进城市韧性可持续发展、助力生态文明建设和美丽中国建设做出积极贡献。(二)工作原则坚持风险导向,因地制宜。强化气候风险意识,立足全球和区域气候背景,以积极防范和化解城市面临的主要气候风险为导向,充分发挥试点城市主动性、积极性,结合城市实际,体现城市特色,突出“一城一策”,稳步推进气候适应型城市建设。坚持统筹协调,重点突出。建立健全气候适应型城市建设试点领导协调机制,统筹发力、协同推进,在深入分析评估气候变化不利影响和风险的基础上,明确城市适应气候变化目标任务,突出重点任务、重点举措、重点工程,推动试点城市气候韧性大幅提升。坚持分类指导,探索创新。根据不同地区、规模、城市功能定位、气候风险类型等,对气候适应型城市建设试点进行分类指导,鼓励试点城市先行先试、锐意创新,大胆探索气候适应型城市建设机制和模式,形成可复制、可推广的经验,树立标杆、打造样本。坚持广泛参与,全民共建。全面提升对气候适应型城市建设的认识和重视程度,广泛调动政府部门、企事业单位、社会组织和广大公众参与共建的积极性,引导和整合优势资源,强化适应气候变化支撑保障和能力建设,营造气候适应型城市建设良好氛围。(三)试点目标统筹考虑气候风险类型、自然地理特征、城市功能与规模等因素,在全国范围内开展深化气候适应型城市建设试点,积极探索和总结气候适应型城市建设路径和模式,提高城市适应气候变化水平。到2025年,优先遴选一批工作基础好、组织保障有力、预期示范带动作用强的试点城市先行先试,气候适应型城市建设纳入试点城市重点工作任务和经济社会发展规划,适应气候变化工作机制基本完善,重点领域适应行动有效开展,气候适应型城市建设经验得到有益探索。到2030年,试点城市扩展到100个左右,气候适应型城市建设试点经验得到有效推广并进一步巩固深化,城市适应气候变化理念广泛普及,城市气候变化风险评估和适应气候变化能力明显提升。到2035年,气候适应型城市建设试点经验得到全面推广,地级及以上城市全面开展气候适应型城市建设。三、重点任务(一)完善城市适应气候变化治理体系(生态环境部牵头,其他部门参与,指导试点城市开展以下工作)加强气候适应型城市建设协调指导,建立健全由生态环境部门牵头、相关部门积极参与的气候适应型城市建设试点工作领导协调机制。制定气候适应型城市建设试点实施方案,将气候适应型城市建设纳入城市各级各类相关规划和美丽城市建设重点任务。建立健全气候系统观测、影响风险评估、综合适应行动、效果评估反馈的工作体系。建立城市适应气候变化信息共享机制和平台,提升信息化、智能化管理水平。完善适应气候变化相关财政、金融、科技等支撑保障机制和配套政策。建立评估考核机制,开展年度工作成效评估,并纳入生态环境美丽城市评估体系。(二)强化城市气候变化影响和风险评估(生态环境部、中国气象局、自然资源部牵头,其他部门参与,指导试点城市开展以下工作)建设高精度城市气候变化监测、预测和预估基础数据集,开展城市细致气候特征以及热岛、雨岛、干岛、浑浊岛效应的综合分析。探索开展气候变化影响和风险的精细化定量监测与评估、预估及归因分析。建立跨部门气候风险联合会商评估工作机制,强化重点领域、重点工程、重要开发项目气候变化影响和风险评估。加强气候变化影响显著区域的地质灾害综合防控,开展海平面上升耦合极端灾害过程的滨海城市安全综合风险评估。加强气候变化对沿海城市富营养化、海洋酸化和缺氧的影响分析和风险评估。有效衔接常态化气象灾害隐患排查与周期性综合风险普查,开展动态风险评估,绘制城市气候风险地图。(三)加强城市适应气候变化能力建设(生态环境部牵头,其他部门参与,指导试点城市开展以下工作)加强队伍建设,广泛开展适应气候变化知识和业务培训,提高干部队伍业务能力。开展适应气候变化主题宣传活动,利用多种方式推动适应气候变化进机关、进校园、进社区、进企业、进农村,提高公众气候风险防范与适应气候变化理念意识。在国家生态环境科普基地建设中增加气候适应方面相关内容。加强适应气候变化先进技术推广应用,探索提升城市适应能力综合解决方案。充分调动金融机构、企业、社区、社会组织及公众等多元主体适应气候变化积极性,发展壮大志愿者队伍,形成全社会广泛参与的良好氛围。加强适应气候变化国际合作,开展气候适应型城市建设政策、技术、实践经验国际交流,推动建立气候适应型城市友城伙伴关系,提升气候适应型城市建设国际影响力。(四)加强极端天气气候事件风险监测预警和应急管理(中国气象局牵头,其他部门参与,指导试点城市开展以下工作)建设地面自动气象站为主的立体精密、智能协同的城市综合气象观测系统。建立气象灾害及其次生灾害监测与预警预报体系,完善定量化监测指标体系,开展精细化网格预报预测。因地制宜建设早期预警平台和分灾种监测预报预警系统,建立多源资料融合的极端天气气候事件灾情数据库。建立跨部门、跨区域联防联控的常态化管理体系,制定完善极端天气气候事件应急预案,完善应急处置和救灾响应机制。强化专业应急救援装备力量部署,优化完善应急抢险救灾物资储备库布局,加强应急救援联合演练。(五)优化城市适应气候变化空间布局(自然资源部牵头,其他部门参与,指导试点城市开展以下工作)在国土空间规划实施评估中加强气候风险及适应性评估。结合国土空间规划编制实施,在“三区三线”、蓝线绿线等基础上,进一步探索城市适应气候变化的空间策略,优化城市空间布局。融合规划和土地政策,加大城市存量空间盘活力度,统筹城市地上地下空间综合利用。划定海洋灾害防治区,强化沿海城镇海平面上升应对措施。划定洪涝风险控制线,增强城市和区域调蓄空间管控。确定重要基础设施用地控制范围并预留发展空间,完善城镇安全韧性空间和基础设施。以社区为基本单元构筑城市安全防御体系,优化公共卫生等应急空间网络。(六)提升城市基础设施气候韧性(住房城乡建设部牵头,其他部门参与,指导试点城市开展以下工作)建立健全基础设施建档制度,以城市人民政府为实施主体,加快开展城市市政基础设施现状普查,摸清底数、排查风险、找准短板,提出有针对性的基础设施韧性提升措施,纳入市政基础设施建设规划及实施计划。鼓励探索开展城市基础设施压力测试。对城市基础设施安全风险进行源头管控、过程监测、预报预警、应急处置和综合治理。全面提升极端天气气候事件下城市各类基础设施的防灾、减灾、抗灾、应急救灾能力和城市重要基础设施快速恢复能力、关键部位综合防护能力。(七)提升城市水安全保障水平(水利部、住房城乡建设部、生态环境部牵头,其他部门参与,指导试点城市开展以下工作)统筹流域防洪与城市防洪排涝,统筹城市防洪和内涝治理,加快实施城市防洪提升工程,建设和完善源头减排、蓄排结合、排涝除险、超标应急的排水防涝体系,有效应对城市内涝防治标准内的降雨,加强易涝积水点整治,落实海绵城市建设理念。对沿河沿海城市级别、人口规模等保护对象重要性提升或新增防洪防潮任务的城市河段,合理提高防洪安全保障标准和防洪工程标准,以应对极端洪涝、风暴潮灾害。加强城市水源地保护,因地制宜构建城市多水源供水格局,加强供水应急备用水源建设,提高城市供水保证率,有效应对干旱缺水、水污染等供水风险。(八)保障城市交通安全运行(交通运输部、住房城乡建设部牵头,其他部门参与,指导试点城市开展以下工作)强化极端天气气候事件预警与城市综合交通系统应急联动机制,提高停运复运、运营调度和应急管理信息化、智能化水平。完善城市应急通道网络,健全城市道路照明、标识、警示等指示系统,提高穿越城市的高速公路应急抢通和快速修复能力,提升极端天气气候事件下防灾救灾能力。加强风险隐患排查管理,积极防范极端天气气候事件引发次生地质灾害,切实落实港口码头、航道及航道设施防汛防台风措施。提高城市道路耐受气候变化影响的变幅阈值,制定或修订相关建设、管理和养护标准。(九)提升城市生态系统服务功能(自然资源部、住房城乡建设部、生态环境部、水利部牵头,其他部门参与,指导试点城市开展以下工作)实施基于自然的解决方案,构建蓝绿交织、清新明亮的复合生态网络和连续完整、功能健全的城市生态安全屏障,打造与适应气候变化协同融合的城市空间和景观格局。实施城市生态修复工程,加强城市水土保持,严格保护城市山体自然风貌,修复江河、湖泊、湿地等重要生态系统。充分发挥生态系统防潮御浪、固堤护岸等减灾功能,促进生态减灾协同增效。将生物多样性保护要求融入城市规划、建设、治理相关标准和规范,推动生态廊道、通风廊道、城市绿道、景观廊道及基础设施一体布局。鼓励利用街头、社区小微空间,修复、营建基于本土自然的生态环境,畅通城市微生态循环。加强山水林田湖草沙一体化保护修复,完善城市生态系统,提升城市生态碳汇能力,促进城市化地区绿色发展。(十)推进城市气候变化健康适应行动(国家疾控局牵头,其他部门参与,指导试点城市开展以下工作)开展城市气候变化健康风险监测评估,明确本市重点气候敏感传染病、慢性非传染病,实施城市气候变化健康适应行动。建立气候敏感疾病、高温热浪等健康风险预警与干预机制,及时发布预警信号和健康提示。重点关注脆弱人群健康适应能力,厘清脆弱人群特征和时空分布,针对性发布健康保健和防护指南。四、组织实施(一)申报条件试点申报城市一般应为地级及以上城市,同时鼓励国家级新区申报。试点申报城市应高度重视气候适应型城市建设,适应气候变化工作有一定基础,城市面临的气候风险典型突出,试点目标清晰、任务明确、措施合理,组织保障和政策保障有力,能够为气候适应型城市建设试点创造良好条件,优先遴选一批工作基础好、组织保障有力、预期示范带动作用强的城市。(二)试点申报申报城市应按照试点工作要求,结合实际填写《气候适应型城市建设试点申报表》,并编制《气候适应型城市建设试点实施方案》,由试点申报城市人民政府提交省级生态环境部门。鼓励2017年公布的28个气候适应型城市建设试点继续申报深化试点,拟继续申报的应填写申报表,更新试点实施方案,并总结提交已开展的试点工作成效和典型经验。试点申报城市应根据实际情况,结合十项重点任务,合理选择确定本地试点建设重点任务及目标。其中,完善城市适应气候变化治理体系、强化城市气候变化影响和风险评估、加强城市适应气候变化能力建设、加强极端天气气候事件风险监测预警和应急管理、优化城市适应气候变化空间布局为必选任务,其他有关领域重点任务可根据城市实际情况选择一项或几项,要突出城市特点和试点效果,避免贪多求全。试点申报城市也可视情增加其他自定任务。(三)试点审核省级生态环境部门要高度重视并牵头做好试点组织申报工作,会同有关部门对申报材料进行初审,形成审核意见,确定推荐意向顺序,于2023年10月9日前报送生态环境部办公厅并抄送财政部、自然资源部、住房城乡建设部、交通运输部、水利部办公厅、中国气象局办公室、国家疾控局综合司,同时通过生态环境公文系统报送电子版材料。生态环境部会同有关部门组织专家对试点申报材料进行评审,视情对试点申报城市开展实地调研,综合考评后确定试点城市名单并向全社会公布。(四)试点建设生态环境部会同相关部门建立气候适应型城市建设试点工作协调机制及专家帮扶机制,统筹考虑试点城市的地域特点及气候风险情况等因素,编制出台相关技术标准、建设指南、评估办法等,探索建立完善促进试点建设的政策体系和激励机制。鼓励并支持试点城市通过美丽城市建设试点、气候投融资试点、生态环境导向的开发模式、适应气候变化国际伙伴关系等推动试点建设。鼓励试点城市协同推进低碳城市、生态文明建设示范区、国家环境保护模范城市、海绵城市建设等各类试点示范工作,充分发挥协同效应。省级生态环境部门要会同相关部门做好试点城市组织协调工作,及时掌握试点情况,推动经验总结交流。试点城市要印发实施气候适应型城市建设方案,认真抓好责任分工和任务落实,确保完成目标任务、取得试点实效。(五)评估验收试点城市应每年年底开展试点建设工作自评估,并于次年1月底前报送自评估报告。生态环境部会同有关部门研究制定气候适应型城市建设试点评估验收办法,定期对试点城市的工作进展和成效开展跟踪评估,并形成《气候适应型城市建设试点案例集》。对气候适应型城市建设试点成效显著、引领作用突出、验收评估结果优秀的通报表扬,推介其先进经验做法;对工作推进不力、实施进度滞后、验收评估结果不合格的取消其试点资格。五、工作要求(一)提高思想认识各地要切实提高对气候适应型城市建设试点工作的认识,积极做好试点申报和组织推荐工作,以城市适应气候变化为突破口,提高气候风险防范和应对能力。试点申报城市要确保试点实施方案切实可行,符合本地实际。省级生态环境主管部门会同有关部门做好审核把关和协调指导工作,确保试点城市申报材料真实准确、科学合理。(二)强化组织实施试点城市要建立健全相关工作机制,加强组织领导,强化支撑保障,加大工作力度,确保试点各项任务有序推进。试点城市可在依法依规的前提下统筹运用相关资金和气候投融资工具,加大对适应气候变化工作的投入力度。鼓励试点城市先行先试、积极探索各类政策创新。(三)加强宣传推广试点城市要利用各种媒体渠道,广泛宣传气候适应型城市建设理念内涵及工作进展,提高公众认知度、扩大社会影响面,为试点工作顺利推进营造良好舆论氛围。要及时梳理总结报送各类好经验、好做法、好案例,生态环境部将搭建试点工作宣传平台,并利用联合国气候变化大会、全国低碳日等各种契机节点推动经验交流和务实合作,讲好中国适应气候变化故事。生态环境部办公厅 财政部办公厅   自然资源部办公厅 住房城乡建设部办公厅  交通运输部办公厅 水利部办公厅   中国气象局办公室 国家疾控局综合司   2023年8月18日
  • 讲座预告 | 石英晶体微天平(QCM-D)技术在分离分析化学中的应用
    报告亮点阐述: 高纯度生物样品的获取是生物学功能研究的前提和基础,同时生物分离过程是生物技术产业化的必经之路。特别是“精准医疗”计划的提出为靶向富集和分离材料的开发,提出了更高的要求,迫切需要开发新一代对开发目标生物分子具有高亲和力,特异性识别的富集和分离材料。然而这类材料的开发非常具有挑战性,这是因为生物样品种类繁多,结构各异,高度复杂,同时有价值的生物样品在血液或组织液中的含量极低。蛋白等物质在细胞中分布还具有动态不均一性,在不同人种,年龄,性别,病理阶段具有非常显著的差异性。通过学习和模仿生物分子间特异性相互作用,结合智能聚合物构象转变,开发出的生物分子响应性聚合物很好地切合了这一需求,能够实现对目标生物分子的精准捕获,将在生物分离和分析领域,获得广泛的应用。这一方向融合了智能聚合物、主客体化学、微纳米器件构筑、精准测量和生物医学,是目前新兴涌现的一个学科方向,具有鲜明的开创性和广阔的应用前景。研究生物分子在材料表面的吸附动力学行为,对于揭示材料对目标分子的选择性吸附能力,以及材料吸附生物分子后,表面所发生的显著变化,是一项非常有趣的工作。报告将讲解石英晶体微天平(QCM-D)技术在分离分析化学中的应用,帮助研究人员更好地去理解生物界面行为,揭示吸附背后的精彩故事。 报告人简介:卿光焱,博士,中国科学院大连化学物理研究所研究员、博士生导师。长期从事生物分离材料与器件方面的基础研究,已在包括Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Chem. Sci.等化学和材料领域权威刊发表SCI论文100余篇,相关技术获得中国发明专利授权20项。主持国家自然科学基金优秀青年科学基金,面上项目4项等。目前担任《色谱》青年编委,Chin. Chem. Lett.编委,Chemical Synthesis青年编委等。 报告时间:2022年7月7日(周四) 上午10点报告地点:腾讯会议(会议号报名后另行通知)报名方式:复制下方报名链接至微信搜索框,点击“访问网页”在线填写https://doc.weixin.qq.com/forms/AHUAGgcQAAkACwA1AbmAHUKesSVrfzTHfQSense技术简介: 具有耗散因子检测功能的石英晶体微天平(QSense)是瑞典百欧林科技有限公司的专利技术,可提供多个频率和耗散因子数据,用于测定非常薄层的吸附层的质量,并同步提供粘弹性等结构信息。 该技术可对多种不同类型表面的分子相互作用和分子、纳米颗粒及细胞吸附进行研究,同时可以检测分子的结构变化以及吸附与解析的动态过程。 该仪器应用范围包括生物技术和医疗器械、蛋白质、核酸、多糖等生物分子和细胞/细菌、生物传感器、食品、高分子聚合物、环境膜处理、纳米颗粒、石墨烯、自组装材料、锂电池/超级电容器等,从纳米到微米尺度的物质与界面之间的相互作用及物质的环境响应。 既往相关讲座:Ÿ 马春风教授 华南理工大学报告题目:石英晶体微天平(QCM-D)技术如何解决海洋防污中面临的难题Ÿ 宋君龙教授 南京林业大学报告题目:石英晶体微天平(QCM-D)技术及其在木质纤维素利用中的应用Ÿ 郑靖研究员 西南交通大学报告题目:石英晶体微天平(QCM-D)技术在唾液润滑研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:QSense 耗散型石英晶体微天平技术(QCM-D)原理及应用Ÿ 申涛工程师 瑞典百欧林报告题目:QSense耗散型石英晶体微天平(QCM-D)在生物和食品领域的应用Ÿ 张洪斌教授 上海交通大学报告题目:石英晶体微天平(QCM-D)技术在乳状液界面膜粘弹性与物理稳定性研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:耗散型石英晶体微天平(QCM-D)在锂离子电池研究领域的新应用Ÿ 姜威教授 山东大学报告题目:石英晶体微天平技术探究颗粒污染物的环境界面过程Ÿ 杨晓泉教授 华南理工大学报告题目:Langmuir膜分析仪及石英晶体微天平(QCM-D)在食品科学研究的应用Ÿ 杨哲博士 香港大学报告题目:石英晶体微天平(QCM-D)技术及其在环境膜材料领域中的应用Ÿ 苗瑞副教授 西安建筑科技大学报告题目:QSense耗散型石英晶体微天平技术在超滤膜污染机理领域的应用研究Ÿ Netanel Shpigel博士 以色列巴伊兰大学/美国德雷塞尔大学报告题目:QSense耗散型电化学石英晶体微天平在电池及超级电容实时研究中的应用Ÿ 罗日方副研究员 四川大学报告题目:石英晶体微天平(QCM-D)技术在血液接触材料表面改性领域的应用 如需相关讲座视频请联系百欧林索要,联系电话: 400 860 5169 分机号1902
  • QSense发布QSense High Pressure 高压石英晶体微天平新品
    QSense High Pressure高压石英晶体微天平专业研究高压条件下油岩界面的相互作用,可以实时了解真实高压条件下,石油组分、驱油添加剂和其他相关化学物质之间的界面相互作用,为您的研究提供了一整套的解决方案。即使是微小的改变,也能对您的工作产生极大的影响,而将您的决定建立在分析科学的基础上,则会增加成功的机会。借助QSense High Pressure高压模块,我们希望能充分激发您的想象力,通过实验测试、分析讨论和方法优化以得到更好的结果。QSense High Pressure高压石英晶体微天平是一款可模拟现实高压反应条件的石英晶体微天平分析设备。压力设置高至200Bar,温度设置高至150℃。您也可以对仪器参数进行个性化定制,以满足特定的实验需求。高压石英晶体微天平由高温样品台、高压流动池、高压泵、液体处理单元和电子单元组成 QSense High Pressure高压石英晶体微天平——专家之选您比我们更了解您的研究领域。然而,无论是努力提高石油产量,防止管道的污染,还是为发动机寻找适合的润滑添加剂,充分地了解反应过程都极具价值。通过提高对油岩界面相互作用的理解,您或许能在未来做出更明智的决定。QSense High Pressure高压石英晶体微天平——强有力的研究工具QCM-D是耗散型石英晶体微天平的简称。该技术可记录石英晶体芯片的振荡频率和耗散的变化,为在纳米尺度上研究分子与表面的相互作用提供了新的视角。使用QSense 耗散型石英晶体微天平分析仪,您可以实时跟踪表面上发生的质量、厚度和结构物理特性等变化。QSense 检测得到的质量吸附/脱附量以及反应速率 模拟现实高压反应条件不同的反应条件下进行的测试可能得到完全不同的结果,而这就是我们开发QSense 高压石英晶体微天平的驱动力。我们可提供芯片表面定制,以满足您的不同实验需求。基于QCM-D的检测结果,您可实时根据界面反应得出结论,并对反应流程进行优化。1. 在高压和高温的条件下进行QCM-D实验2. 根据您的特定需求选择芯片的材质和涂层3. 使用不同的有机溶剂和样品,筛选实验方案选择QSense High Pressure高压石英晶体微天平的三个理由:1. 基于对结果至关重要的表面相互作用过程信息做出更明智的决定2. 从表面材料、化学反应、压力和温度等方面模拟真实的反应条件3. 为您的实验室装备一套高灵敏度的科学分析工具QSense High Pressure高压石英晶体微天平的典型应用领域:石油开采从地下油藏或沥青砂中提取石油需要仔细考虑工艺条件。通过运用科学的分析可找到优化的方法。提高原油采收率聚合物和表面活性剂的使用可以改变注入水的粘度和岩石的润湿性,从而更好地溶解矿物中的石油。测量矿物芯片表面上聚合物或表面活性剂的吸附和释放的原油,可以优化采收液组成并提高原油采收率。使用较少的表面活性剂可以提供更环保的解决方案并降低成本。沥青提取从油砂中提取沥青非常困难。可以使用涂有沥青的二氧化硅芯片模拟油砂并对沥青的释放过程进行分析。通过研究沥青的脱附情况,找出优化的pH和温度条件,进而尽可能地提高采收率。管道流动保障管道污染和堵塞是一个代价高昂的问题。通常通过添加化学物质对管道流动进行保障。防止污垢沉积检测污垢形成的过程,寻找方法或添加剂以减少污垢沉积。使用碳钢芯片模拟管道表面,研究不同条件下原油/沥青质的吸附和释放,进而找出优化的化学成分、表面材料、压力和温度。燃料和润滑油润滑油被广泛用于控制摩擦和增加运动部件的使用寿命。润滑油溶液由各种具有表面活性的化学物质组成。优化发动机润滑油了解表面活性化学物质的吸附性质是找到平衡润滑剂的关键。利用不锈钢芯片研究燃料和润滑油添加剂对发动机性能的影响。实时观察吸附情况,寻找化学物质间的微妙平衡,从而优化润滑油的性能。QSense High Pressure高压石英晶体微天平的技术参数:芯片和样品处理系统工作温度a4 – 150 °C, 由软件控制,精度为 ± 0.02 °C工作压力90 – 200 bar (与交替蠕动泵联用,也可在常压下工作)芯片数量1芯片表面超过50种标准材料,包括金属、氧化物、碳化物和聚合物例如:金、二氧化硅、不锈钢SS2343 & SS2348、氧化铁、高岭石等其他材料如钢和矿物,可根据客户要求定制测量特性时间分辨率,1个频率 100 个数据点/秒液相质量灵敏度b 1 ng/cm2 (10 pg/mm2)液相耗散灵敏度b 0.08 x 10-6电子单元参数电源和频率100 / 115-120 / 220 / 230-240 V AC, 50-60 Hz电源应正确接地软件和电脑要求数据采集软件 (QSoft)USB 2.0, Windows XP 或更高版本数据分析软件(QSense Dfind)操作系统:64位Windows 7 SP1, 8, 8.1, 10或更高版本显示器分辨率: 1366×768像素内存:4 GB数据输入/输出格式Excel, BMP, JPG, WMF, GIF, PCX, PNG, TXT尺寸和重量高 (cm)宽 (cm)长 (cm)重量 (kg)电子单元1836219样品池89112高压阀门和控制面板685050ca 30HPLC 泵14264210 a 温度的稳定性取决于环境变化对样品池升温或冷却的影响。如果附近有气流或热源使室温变化超过±1℃,则可能无法达到系统设定的温度稳定性。b 通过标准的QSense 流动模块采集数据 (单频模式下每5秒采集一个数据点,假定Sauerbrey关系是有效的)。当QSense高压系统芯片背面存在液体时,灵敏度会降低。以上技术参数仅对此配置有效。所有技术指标如有更改,恕不另行通知。创新点:1. 市面上所有其他类似产品均无法实现压力控制和高温控制。2. 高温高压测试是石油工业真是生产场景模拟的必不可少的条件,此产品第一次实现了此情景的界面实时跟踪表征。QSense High Pressure 高压石英晶体微天平
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • 安徽省石英砂及制品质检中心今年6月底可投入运行
    3月8日,滁州市人大主任、市委书记韩先聪,市委常委、副市长徐发成,副市长王图强一行在凤阳县委书记马占文,县副委书记、副县长米德成,副县长朱大纲等领导的陪同下,深入凤阳县在建的安徽省石英砂及制品质量监督检验中心调研指导。  韩先聪一行参观了该中心正在精心布置的实验室,详细询问中心规模、资金筹措、设备购置及人才引进、吸收与培养后,充分肯定了中心建设的重要性和必要性。韩先聪要求县质监局立足凤阳丰富的矿产资源,围绕打造千亿元玻璃(硅)产业规划,不断做强做大特色中心。在大力建设省级中心的基础上,积极争取国家级中心落户凤阳。要以创品牌,树权威,塑形象为要求,将中心建设成“公正科学,准确规范,高效满意”的第三方公正权威机构。  当韩先聪书记了解到中心建设过程中仍存在资金困难时,表示将尽市委市政府所能为中心提供资金支持。  该中心自2008年12月通过省局批复筹建以来,于2009年4月正式开工,2009年12月底封顶,2010年2月内装竣工,目前正在进行绿化、围墙等辅助设施建设以及资质认定、人员培训、石英砂及制品企业宣传发动等,计划今年6月底投入运行。该中心的建设得到凤阳县委县政府鼎力支持:无偿拨付10亩地 先后拨付启动资金、建设资金计550万元 县级规费全免 县级税收留存部分全部返还用于中心建设。该中心建设还得到省市质监部门110万元资金支持。中心建成后将发挥五个方面作用:一是为凤阳县委、县政府打造的千亿元玻璃硅产业规划,包括产业发展和结构调整提供技术支撑 二是为社会出具公正性数据,包括省、市质监局下达的产品质量监督检查和企业产品委托检验、鉴定等任务 三是为企业提供出厂检验服务 四是为石英砂及制品质量认证和安全评价提供技术手段 五是参与石英砂及制品课题研究。
  • 祝贺上海沛欧红外石英消化炉SKD-08S2入围国产好仪器
    国产仪器腾飞行动”将通过企业自愿免费申报,活动主办方将组织专业编辑及行业资深专家深入调研,实地走访考察用户单位和国产厂商,让广大用户对国产科学仪器进行网上讨论、评议,以“用户说好才是真的好”为宗旨,从科学仪器的可靠性、稳定性、售后服务等方面筛选出具有代表性,经过用户的使用检验,好用、够用,并可对进口仪器形成一定竞争优势的“国产好仪器”。上海沛欧消化炉SKD-08S2的入围,显示了产品实力的重要性,也体现了广大用户超群的眼光,您的选择是对上海沛欧最好的支持!! 红外石英程序升温8孔消化炉特点1、加热体(模块)采用红外石英管,耐强酸强碱、防爆裂,寿命长,2、炉孔温度连续可调,升温速度快3、消化管受热面积大、温差小,样品消化一致性好,有利于样品的消煮4、仪器具有过流保护和漏电保护5、采用双开关,电源和加热单独控制,便于安全参数设置6、仪器有不锈钢排污罩,使消化管内逸出的SO2等有害气体,通过排污管经抽吸泵从水中排入下水道,有效地抑制有害气 体的外逸*杜绝挂壁*一、概述: 红外石英程序升温8孔消化炉SKD-08S2可用于农业、林业、环保、地质、化工、食品等部门以及高等院校、科研部门对植株、种子、饲料、食品、土壤、矿石等消化二、技术指标: 红外石英程序升温8孔消化炉型号 SKD-08S2控制方式 数控 (定时+64阶程序升温) 加热方式 红外石英辐射加热 炉孔数量 8孔 控温范围 室温-680℃ 升温速度 0分钟(室温到400℃) 温度波动 1%(超调后2度) 电 压 AC220V 功率 1600W 消化炉在蛋白质检测中起到了很重要的作用,选择一台合适的消化炉是准确检测的前提。消化炉指标要注意几点:1 温度要恒定,波动要小,每个样品可以有一致的消化时间,2 每一个样品孔温度要一致,以免样品消化时间相差太大。3 能有效的控制温度变化的过程,以免消化时的样品挂壁。4 效地保温措施,以提高炉腔内温度的恒定性所以消化炉的考察需要注意 :* 有效地温度控制,使得消化能按需要控制温度,如果有程序升温控制就能有效达到所需。* 很好的保温措施,如果保温材料势单力薄,必造成温度不稳定。仪器较厚的保温层是温度稳定的需要。故保温材料的厚度和材质是一个重要的指标、* 加热体和热载体的选择,可以根据用户的需要选择不同的热载体。下面我们来讨论加热体和热载体的选择。现在加热主要有三种方式比较好的。# 红外加热,靠热辐射来加热样品,特点是:升温快,热惯性小,温控准确。一般应用于有高要求样品的消化。例如:有较快的升温和降温速度。程序升温可以使用户更具自己样品的特点来选择升温曲线,或选择分段式的升温,更有利益样品的消化,从而杜绝样品的挂壁现象、进而使得样品消化效率的大大提高# 铝锭加热,靠铝锭传导热给样品,特点:升温较慢,热惯性较大,温度较稳定,还由于铝锭的良好的热传导性,每个样品孔间的温度一致性好。广泛应用于消化炉的热载体,但也要注意:一片薄薄的铝锭也不能保持温度的恒定,所以选择铝锭消化炉,铝锭厚度也是一个考察指标。# 石墨加热,靠石墨传导给样品热量,特点:热惯性大升温较慢,由于石墨热传导性较差(相比较铝锭),使得样品孔间温度不均匀,容易造成样品间消化时间拉大。但是由于石墨成本较低,石墨消化炉成本便宜,对部分低端用户有一定的吸引力。(并不可取) 其余要注意消化炉的保护功能:温度稳定均一保护,过流和短路保护。
  • AWSensors发布AWS耗散型石英晶体微天平新品
    AWS X1石英晶体微天平基于声波传感原理,可通过石英传感器频率和耗散变化来检测芯片表面质量和结构变化。适用于刚性和粘弹性薄膜,具有倍频操作模式,可给出薄膜的粘度,弹性模量,粘性模量,厚度等信息。测试频率高达160MHz,灵敏度可达8pg/cm2。应用领域腐蚀研究 锂离子电池评价电镀研究,沉积层厚度测试气体检测、成分分析,环境监测表面涂层研究纳米粒子吸脱附离子和溶剂的传输表面活性剂去污能力评价创新点:1.AWS样品池采用专利的Q-Lock设计2.通过AWS Suite® 一个软件可控制两台仪器,同步采集电化学和QCM信号,完美实现电化学与QCM的联用。3.AWS X1系统可兼容标准QCM芯片、高频QCM芯片和叉指传感器芯片。4.适用于刚性和粘弹性薄膜,具有倍频操作模式5.模块化设计,可升级温度模块/液体控制单元AWS耗散型石英晶体微天平
  • 宁波材料所在盐适应海洋传感凝胶方面取得进展
    传感技术是现代信息产业的支柱之一。由软材料构建的柔性传感器件可作为传统硬质传感器件的重要补充,在可穿戴传感、智慧医疗、软机器人、人机交互等领域具有重要的应用价值。得益于离子导电凝胶材料良好的生物相容性、力学匹配性和类生物导电机制,离子导电凝胶被认为是最有发展潜力的柔性传感材料之一,在运动感知、健康监测、通讯交流等领域得到广泛研究。然而,由于凝胶网络本征的亲水特点,传统离子导电凝胶传感材料在水环境中缺乏稳定性,无法应用于包括海洋在内的各类水环境中。而海洋与陆地一样,是人类的重要活动空间,尤其是随着海洋开发战略的推进,发展海洋传感材料成为迫切的需求。因此,解决离子导电凝胶材料的海洋稳定性问题,发展适用于海洋环境的高性能凝胶传感器件对于海洋活动具有重要意义。近年来,中国科学院宁波材料技术与工程研究所智能高分子材料团队研究员陈涛和博士魏俊杰,致力于离子导电凝胶基智能传感材料的研究,并利用疏水界面对水分子和导电离子的扩散屏障功能实现了导电凝胶材料的水下多功能传感应用。然而,含盐海水的高导电性会对离子凝胶传感器的传感性能产生明显的抑制作用,导致离子导电凝胶的海洋传感性能存在不足。对此,该团队近期在疏水界面结构的基础上,进一步利用质子导电机制和盐诱导解离效应设计了在海水环境中具有盐适应能力的离子液体凝胶材料,实现了海洋传感应用。如图所示,该工作合成了一种同时含有亲水链段(接枝有磺酸基团-SO3-和季铵根基团-N(CH3)3+)和疏水链段的聚合物Proton Conductive Material(简称PCM),并将其引入到由疏水单体(MMA)和疏水离子液体([BMIm]PF6)构建的耐水性离子导电凝胶中。聚合物PCM中的疏水链段可以使其在疏水凝胶中具有良好的相容性,而亲水链段中的两性离子基团可促进离子液体发生解离,提高凝胶中的自由离子含量。此外,-SO3-与[BMIm]+的静电作用为质子提供了迁移通道,在离子导电凝胶中形成了特殊的质子导电机制,进一步提高了凝胶的导电性,为改善其在高导电性海水中的传感性能奠定了基础。[BMIm]+-Cl-的作用强度高于Na+-Cl-和[BMIm]+-PF6-的作用强度,因此海水中的盐能够对凝胶中的离子液体产生诱导解离作用,使凝胶的导电性随着盐含量的增大而提高,即导电能力的盐适应性增强。这种盐适应导电增强能力使得凝胶传感器的传感灵敏度不会因为高盐含量海水的高导电性而受到削弱,反而展现出远超空气环境和纯水环境的传感性能。基于这种特性,该盐适应离子导电凝胶被应用于潜水人员的呼吸监测、运动感知、海下信息通讯以及海洋机器人的动作识别等海洋传感领域,展现出良好的传感性能。这一盐适应凝胶传感材料初步满足了海洋应变传感需求,为未来进一步构建高灵敏、多模式海洋传感材料提供了设计思路。相关研究成果以Salt-Adaptively Conductive Ionogel Sensor for Marine Sensing为题,发表在Small(DOI:10.1002/smll.202305848)上。研究工作得到国家自然科学基金、中国博士后科学基金、宁波市重点研发计划和宁波市自然科学基金等的支持。导电凝胶的盐适应结构与海洋传感应用
  • CEM新品:SMART Q石英卤素水分测定仪及一次性玻璃衬管
    p  strong仪器信息网讯/strong 创新测试解决方案的领先供应商美国CEM公司日前宣布推石英卤素水分测定仪出SMART Q,该仪器采用专利技术和专有技术,是当前市场上速度最快的红外水分分析仪。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/974f5361-28d0-48db-b16a-efec91cab859.jpg" title="SMART Q _01.jpg" alt="SMART Q _01.jpg"//pp style="text-align: center "SMART Q 石英卤素水分测定仪/pp  SMART Q是基于与SMART 6微波红外水分测定仪相同的技术,为喜欢仅使用红外干燥法的用户提供卓越的价值。SMART Q可以轻松升级到SMART 6,以获得更快的结果。SMART Q已在一些应用领域上例如制药、塑料、乳制品、加工食品等被证明优于竞争对手的红外水分分析仪。/pp  此外,CEM公司还宣布推出用于微波消解仪的一次性玻璃衬管,可以说是痕量金属分析样品制备的最新突破。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/b20e38bd-854b-4dc5-9632-57675e52483a.jpg" title="Disposable Glass Vessel Liner _03.jpg" alt="Disposable Glass Vessel Liner _03.jpg"//pp style="text-align: center "一次性玻璃衬管/pp  一次性玻璃衬管是一种易于使用的玻璃插件,可与配备iWave温度测量传感器的MARS 6微波消解系统中的CEM MARSXpress Plus 容器一起使用。iWave Light Emitting Technology能够透过容器和衬管材料来测量样品溶液的实际温度,从而使用户能够更好地控制每个反应。一次性玻璃衬里是一种新的颠覆性技术,其全球专利正在申请中。这些衬垫消除了容器清洗耗时和交叉污染的风险。样品可以直接称重到衬管中,减少Teflon® 容器常见的静电干扰,消化后的样品可以放入衬管中,然后放入自动进样器进行分析。/pp  “一次性玻璃衬管将为高通量实验室带来重大节约,”CEM公司总裁兼首席执行官Michael J. Collins评论道。 “在运行之间消除清洗容器的需要将节省技术人员的时间,并加快整体消化过程,允许更少的样品在更短的时间内运行。它是消化样品的完美配件,应用领域包括:环境,食品,饲料/肥料等。”/p
  • 港理工/港大/港城大《Nature Communications》:亚微米精度单光子3D打印熔融石英
    透明熔融石英玻璃作为一种不可或缺的重要材料,在现代社会中具备广泛应用价值。其卓越性能使得它在日常生活、科学和工业领域均发挥着重要作用。尽管熔融石英玻璃具备卓越的光学性能、热稳定性和化学耐久性等优异特点,但其高硬度和高脆性使得其可加工能性备受诟病。目前,传统熔融石英玻璃微结构制备工艺面临着流程复杂、成本高昂以及材料易碎等诸多挑战,并且在实现复杂三维(3D)结构方面仍然存在巨大困难。这给新型玻璃微纳米器件的开发、高效制造和在先进功能领域的应用带来了巨大的挑战。近年来,以3D打印/增材制造为代表的先进制造技术为玻璃加工行业带来了全新变革和重大突破。相较于传统的减材及等材成型工艺,这些新兴技术以数字设计和逐层累积为手段,成为赋予玻璃构件极高设计自由度和精确成型能力的强大工具,使得制造任意熔融石英玻璃三维结构成为可能。德国Karlsruhe理工学院科学家利用立体光刻(SLA)技术制备玻璃已取得重要突破(Nature, 2017, 544),成功实现了玻璃制品在质量、复杂度和精确度诸多方面的显著提升。这一里程碑式的进展也预示着通过3D打印技术制造具有出色光学性能的玻璃结构离普及更近了一步。随着时间的推移,全球范围内的研究者一直在不断努力提升玻璃打印技术的精确性。通过采用双光子飞秒激光直写(TPP-DIW)技术,实现了微纳米尺寸3D分辨率的玻璃结构的有效成形(Adv. Mater., 2021, 33)。然而,尽管立体光刻和双光子飞秒激光直写已分别实现了约50 μm和约100 nm的成型分辨率,并在宏观及纳观尺度上显著扩展了玻璃三维构件的应用领域,但由于3D打印技术在精度和效率方面存在固有矛盾,迄今为止,已有文献中报道的方法无法有效地制造出既具有毫米/厘米级尺寸又带有亚微米级特征的复杂玻璃三维结构。这一限制严重影响了该技术在微光学、微流控、微机械及微表面等先进领域上的应用。有鉴于此,香港理工大学3D打印中心温燮文教授联合香港大学机械工程系陆洋教授,在此前工作(Nat. Mater., 2021, 20, 1506)基础上更进一步,提出了一种通过摩方精密面投影微立体光刻(PμSL)3D打印技术制备同时具有亚微米特征及毫米/厘米级尺寸的熔融石英玻璃三维构件的方法。研究者选择了聚乙二醇功能化的二氧化硅纳米颗粒(平均直径~11.5 nm)胶体和两种丙烯酸酯作为聚合物前驱体,保证二氧化硅纳米颗粒良好的相容性和分散性。结合面投影微立体光刻3D打印灵活地创建具有复杂的三维亚微米结构的高性能透明熔融石英玻璃,其分辨率、构建速度及成型幅面均超越了目前大多数其他3D打印玻璃技术几个数量级。 图1:通过面投影微立体光刻3D打印所得透明熔融石英玻璃。(a)面投影微立体光刻3D打印示意图,呈现了打印所得熔融石英玻璃制成微缩维多利亚港的光学和电子显微镜图像。(b)复合纳米前驱体的各化学组分。(c)面投影微立体光刻3D打印透明熔融石英玻璃微透镜阵列在高温环境下展示了出色的稳定性。(d)4 × 6阵列的透明熔融石英玻璃蜂窝结构的光学和电子显微镜图像,其中央的细长悬线具有亚微米级别尺寸。(e)该方案所制备的熔融石英玻璃在分辨率及成型速度上的关系图,及与已报道的其他同类技术的比较。 图2:面投影微立体光刻3D打印所得具有多尺度临界特征的透明熔融石英玻璃多层级点阵。(a)多层级点阵结构;(b)多层级点阵网络;(c & d)单个多层级点阵胞元;(e)多层级架构;(f)基础点阵;(g & h)基础杆件及其具备的亚微米特征。尺寸跨度由mm逐步减少到nm,接近5个数量级。利用面投影微立体光刻3D打印透明熔融石英玻璃微透镜阵列,其具有亚纳米级别的表面粗糙度(Ra≈0.633 nm)。同时,研究者展示了通过3D打印制造的熔融石英玻璃微透镜阵列在成像方面的出色能力,具备优良的均匀性、清晰度、对比度和锐度。 图3:面投影微立体光刻3D打印的具有亚纳米级别表面粗糙度的熔融石英玻璃微透镜阵列。单个透镜的高精度光学显微镜图像,方框区域显示了白光干涉共聚焦显微镜测试结果,沿XY方向均能实现亚纳米级别表面粗糙度,以此制备高均匀性、高清晰度、高对比度和高锐度的微透镜阵列。面投影微立体光刻3D打印技术赋予了熔融石英玻璃微流体器件高精度、简化工艺、高直视性、大结构尺寸及复杂三维设计自由度,进一步展现出该器件出色的液滴/流体操控能力。 图4:面投影微立体光刻3D打印具备超疏水性能的仿生三维熔融石英玻璃微表面结构,以及具有Y型流道的免键合三维熔融石英玻璃微流控芯片。超疏水仿生三维熔融石英玻璃微表面展现了极佳的液滴黏附能力(即“花瓣效应”),即使在翻转180°后仍能牢固锁住液滴;在免键合Y型流道三维熔融石英玻璃微流控芯片,由于表面张力占主导,两种流体呈现了不互溶的“层流”现象。该工作进行于香港城市大学深圳研究院纳米制造实验室,相关成果以“One-photon Three-dimensional Printed Fused Silica Glass with Sub-micron Features”为题发表于国际期刊《自然通讯》(Nature Communications)上,课题组2020级博士研究生黎子永为该论文第一作者。在该研究中,熔融石英玻璃三维微纳样品由摩方精密2 μm精度的nanoArch P130超高精密3D打印系统制备。相关技术已申请专利,后续将与摩方精密合作进行商业化应用。
  • 实验室瓶瓶罐罐的那些事儿,不是谁都门清
    实验室的玻璃器皿是化学分析工作的必备工具,是实验室常用常损且不为人所重视的一种易耗品。在正常工作中,它的支出费用仅次于药品。合理的管理和利用玻璃器皿,不仅能有效地保证正常工作,而且可以降低损耗,节约资金。玻璃器皿的特性及种类一般情况下,化学实验室大多都会采用玻璃器皿,只有少量实验为了减少对实验的干扰才会采用塑料器皿。化学实验中用的玻璃器皿由于它的成分而使其具有热膨胀系数小,耐骤冷骤热的特点,同时也具有相当高的热稳定性和化学稳定性。与塑料器皿相比,化学玻璃器皿的融化温度更高。日常工作中常用的实验室玻璃器皿有刻度管、移液管、量筒、滴定管、容量瓶、温度计、试管、烧瓶、烧杯、锥形瓶、漏斗、滴管、玻璃棒、胶头滴管等。玻璃料性(非石英类)第一类:硬质料按照其耐热急变温差的大小又可分为特硬质和硬质两种。特硬质高硼硅酸盐玻璃,其耐温急变温差超过270℃。硬质玻璃是一种硼硅酸盐玻璃,它有大炉吹制硬质料和灯工硬质料之分,灯工硬质料中增加了氧化钾的成分含量,能延长玻璃料的冷却时间,便于较复杂仪器的加工生产。第二类:中性料玻璃其为低硼钠钙玻璃,具有优良的化学稳定性和高度透明度的特性。第三类:普通玻璃一种钠钙玻璃,适于制作量器等低档玻璃仪器。玻璃仪器的洗涤、干燥和存放玻璃仪器的一般洗涤步骤实验中要使用各种玻璃仪器,这些玻璃仪器是否清洁,会直接影响实验结果的准确性,因此,在实验前必须将玻璃仪器清洗干净。一般的玻璃仪器,如,烧杯、烧瓶、锥形瓶、试管和量筒等,可以用毛刷从外到里用水刷洗,这样可刷洗掉水可溶性物质、部分不溶性物质和灰尘;若有油污等有机物,可用去污粉、肥皂粉或洗涤剂进行洗涤。用蘸有去污粉或洗涤剂的毛刷擦洗,然后用自来水冲洗干净,最后用蒸馏水或去离子水润洗内壁2~3次。洗净的玻璃仪器其内壁应能被水均匀地润湿而无水的条纹,且不挂水珠。在有机实验中,常使用磨口的玻璃仪器,洗刷时应注意保护磨口,不宜使用去污剂,而改用洗涤剂。对不易用毛刷刷洗的或用毛刷刷洗不干净的玻璃仪器,如,滴定管、容量瓶、移液管等,通常将洗涤剂倒入或吸人容器内浸泡一段时间后,把容器内的洗涤剂倒入贮存瓶中备用,再用自来水冲洗和去离子水润洗。砂芯玻璃滤器在使用后须立即清洗,针对滤器砂芯中残留的不同沉淀物,采用适当的洗涤剂先溶解砂芯表面沉淀的固体,然后用减压抽洗法反复用洗涤剂把砂芯中残存的沉淀物全部抽洗掉,再用蒸馏水冲洗干净,于110℃烘干,保存在防尘的柜子中。难洗污物的洗涤方法结晶和沉淀物的洗涤如,氢氧化钠或氢氧化钾因吸收空气中的二氧化碳而形成碳酸盐以及存在氢氧化铜或氢氧化铁沉淀时,可用水浸泡数日,然后用稀酸洗涤,使之生成能溶于水的物质,再用水冲洗。如存有有机物沉淀,则可用煮沸的有机溶剂或氢氧化钠溶液进行洗涤。残留汞齐的洗涤汞与一些金属形成金属合金(汞齐),附着在玻璃壁上形成深色斑痕,可用体积分数为10%的硝酸溶液将汞齐溶解,再用水洗净。干性油、油脂、油漆的洗涤可用氨水或氯仿进行洗涤,未变硬的油脂可用有机溶剂洗涤;煤油可用热肥皂水洗涤;黏性油可用热氢氧化钠溶液浸泡洗涤。污斑的洗涤玻璃上的白色污斑,是长期贮碱而被碱腐蚀形成的;玻璃上吸附着的黄褐色的铁锈斑点,可用盐酸溶液洗涤;电解乙酸铅时生成的混浊物,可用乙酸洗涤;褐色的二氧化锰斑点可用硫酸亚铁、盐酸或草酸溶液洗涤;玻璃上的墨水污斑可用苏打或氢氧化钠溶液洗涤。银盐污迹的洗涤氯化银、溴化银污迹可用硫代硫酸钠溶液,银镜可用热的稀硝酸溶液使之生成易溶于水的硝酸银加以洗除。常用洗涤剂针对玻璃上的不同粘污物,采用相应的洗涤剂洗涤,并通过化学或物理的方法能有效地将玻璃仪器清洗干净。目前几种常用的洗涤剂见表2。要注意在使用各种不同性质的洗涤剂时,必须要把前一种洗涤剂清除后再用另一种洗涤剂,以免它们之间相互作用,生成更难清除的产物。洗涤剂及其配方使用方法铬酸洗液20g重铬酸钾溶于40mL水中,冷却后,慢慢加入360mL工业浓硫酸(切不可将水倒入浓硫酸中)清除器壁上残留的油污,用少量洗液刷洗或浸泡一夜,洗液可重复使用,洗液废液经处理方可排放。工业盐酸[浓或(1+1)]洗液清除碱性物质及大多数无机物残液;纯酸洗液(1+1)、(1+2)或(1+9)的盐酸或硝酸(清除Hg、Pb等重金属杂质)清除微量的离子;碱性洗液质量分数为10%氢氧化钠水溶液,加热后使用,去油效果较好,加热时间太长会腐蚀玻璃;氢氧化钠-乙醇(或异丙醇)洗液120g氢氧化钠溶于150mL水中,用质量分数为95%乙醇稀释至1L清除油污及某些有机物碱性高锰酸钾洗液4g高锰酸钾溶于少量水中,再加入100mL质量分数为10%氢氧化钠溶液,贮于带胶塞玻璃瓶中清洗油污或其它有机物质,洗后器壁沾污处有褐色二氧化锰析出,再用浓盐酸或草酸洗液、硫酸亚铁、亚硫酸钠等还原剂去除。酸性草酸或酸性羟胺洗液10g草酸或lg盐酸羟胺,溶于100mL(1+4)盐酸溶液中清除氧化性物质,如,高锰酸钾洗液洗涤后析出的二氧化锰,必要时加热使用。硝酸-氢氟酸洗液50mL氢氟酸、100mL硝酸、350mL水混合,贮于塑料瓶中盖紧,利用氢氟酸对玻璃的腐蚀作用有效地去除玻璃、石英器皿表面的金属离子。不可用于洗涤量器、玻璃砂芯滤器、吸收器及光学玻璃零件。使用时应特别注意安全,必须戴防护手套。碘-碘化钾洗液1g碘和2g碘化钾溶于水中,并稀释至100mL去除黑褐色硝酸银粘污物。有机溶剂汽油、二甲苯、乙醚、丙酮、二氯乙烷等,清除油污或可溶于该溶剂的有机物质,使用时要注意其毒性及可燃性。乙醇、浓硝酸洗液不可事先混合,用一般方法很难洗净的少量残留有机物可用此液:于容器内加入不多于2mL的乙醇,加入4mL浓硝酸,静置片刻,立即发生激烈反应,放出大量热和二氧化氮,反应停止后再用水冲洗,操作应在通风柜中进行,作好防护。玻璃仪器的干燥做实验经常用到的玻璃仪器应在实验完毕后清洗干净备用,根据不同的实验,对玻璃仪器的干燥有不同的要求,通常实验中用的烧杯、锥形瓶等洗净后即可使用,而用于有机化学实验或有机分析的玻璃仪器,则要求在洗净后必须进行干燥。晾干不急等用的玻璃仪器,可在纯水刷洗后倒置在无尘处,然后自然干燥。一般把玻璃仪器倒放在玻璃柜中。烘干洗净的玻璃仪器尽量倒净其中的纯水,放在带鼓风机的电烘箱中烘干。烘箱温度在105~120℃保温约1h。称量瓶等烘干后要放在干燥器中冷却保存。组合玻璃仪器需要分开后烘干,以免因膨胀系数不同而烘裂。砂芯玻璃虑器及厚壁玻璃仪器烘干时须慢慢升温且温度不可过高,以免烘裂。玻璃量器的烘干温度也不宜过高,以免引起体积变化。吹干体积小又急需干燥的玻璃仪器,可用电吹风机吹干。先用少量乙醇、丙酮(or乙醚)倒入仪器中将其润湿,倒出并流净溶剂后,再用电吹风机吹,开始用冷风,然后用热风把玻璃仪器吹干。玻璃仪器的存放1.玻璃仪器的存放要分门别类,便于取用。2.移液管洗净后应置于防尘的盒中。3.滴定管用毕洗去内存的溶液,用纯水刷洗后注满纯水,上盖玻璃短试管或塑料套管,夹于滴定管夹上。4.比色皿用后洗净,在小瓷盘或塑料盘中垫上滤纸,倒置其上晾干后收放于比色皿盒或洁净的器皿中。5.带磨口塞的玻璃仪器,如,容量瓶、比色管等最好在清洗前就用线绳或塑料细丝把塞和瓶口拴好,以免打破塞子或弄混。需长期保存的磨口仪器要在塞子和磨口间垫一纸片,以免日久粘住。长期不用的滴定管应去除凡士林后,垫上纸并用皮筋拴好活塞保存。磨口塞间有砂粒不要用力转动,也不要用去污粉擦洗磨口,以免降低其精度。6.成套仪器,如,索氏萃取器、气体分析器等用毕要立即洗净,放在专用的盒子里保存。
  • 解决方案 | ICP-OES法分析玻璃粉及高纯石英粉末中多种元素
    玻璃粉主要组成为PbO 、 SiO2 、 TiO2及其他杂质元素,是一种重要的半导体材料,主要应用于制造电子浆料和其它电子元器件行业。其中组成的变化会影响元器件的性能,因此对玻璃粉中各组分含量的分析具有重要的意义。高纯石英主要矿物成分是SiO2,因具有耐高温、耐腐蚀、低热膨胀性、高度绝缘性和透光性等优异物理化学特性,广泛应用于LED照明、光伏和半导体等高新技术产业。《矿产资源工业要求手册》中,根据石英中SiO2、Fe2O3及污染元素(Al、Ti、Na、K、Li、Ca、Fe、P、B)的含量,划分为不同纯度等级。因此对石英粉末中各组分含量的分析对实现不同纯度石英砂的级别划分具有重要的意义。技术难点玻璃粉及高纯石英中多元素分析存在以下技术难点:种类多待测元素种类多,需实现多元素同时检测,常规分析方法(如容量法、比色法)不能满足其检测需求。差异大待测元素含量差异大,需满足高低浓度元素同时检测的需求,对仪器检测准确度、线性范围提出了更大挑战。含量低高纯石英粉末中杂质元素含量低,要求仪器具有高灵敏度和低检出限。谱育优势谱育科技 EXPEC 6000 R型 电感耦合等离子体发射光谱仪(ICP-OES)具备高灵敏度、低检出限、宽线性范围、多元素同时测定的特点,可解决上述困难,实现玻璃粉、高纯石英中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的分析。EXPEC 6000 R型电感耦合等离子体发射光谱仪EXPEC 790s超级微波化学工作站多元素同时分析全谱直读数据采集,实现多元素同时性分析。宽线性范围测定谱线的线性动态范围:≥105,实现高低浓度同时检测。高灵敏度百万像素科研级防溢出面阵CCD检测器,实现低含量元素的高灵敏响应。应用案例仪器与试剂仪器:EXPEC 6000 R型、EXPEC 790s主要试剂:氢氟酸 ;盐酸;去离子水测定参数分析结果玻璃粉使用 EXPEC 790s 对样品进行微波消解,应用 EXPEC 6000 R型 测定玻璃粉末标准品中Al2O3、CaO、Fe2O3、K2O、MgO、Na2O 6种金属氧化物含量,结果表明:该方法测定方法精密度均小于3%,其测量结果与该样品的的标准值比对其偏差在6%以内,说明了 EXPEC 6000 R型 测定结果的准确性。玻璃粉标准品中样品测试结果高纯石英使用 EXPEC 790s 对样品进行微波消解,应用 EXPEC 6000 R型 测定4种高纯石英粉末中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的含量,目标元素均有良好的线性,空白低,样品中常量及微量元素均能满足低浓度的检出。使用 ICP-OES 法测定石英样品中的微量元素的测试方法基体效应小,精密度高,检出限较低,较传统方法效率较高,结果可信度高,可满足石英样品中多元素快速、精确检测的要求。高纯石英粉末中样品测试结果EXPEC 6000 R型 电感耦合等离子体发射光谱仪(ICP-OES),统一了高可靠性的射频电源、稳固的恒温二维分光系统、制冷的防溢出高速CCD传感器、易用的炬室与进样系统,结合独创的FSC光谱校正技术,配合 EXPEC 790s 使用,大大提高了样品处理效率。目前,EXPEC 6000 R型 已成功应用于环境检测、材料、冶金、食品安全和化工等领域,有效满足多种元素检测需求,致力于为用户带来良好的性能和使用体验。
  • 自适应光学波前传感的理想选择—sCMOS 相机
    自适应光学波前传感的理想选择—sCMOS 相机牛津仪器 Andor sCMOS 相机作为自适应光学波前传感的优选设备,拥有高度并行的像素读出产生的高帧频,结合短曝光条件下的低噪声和高量子效率能够获得最佳信噪比图像。在本次技术说明中,我们比较了Andor sCMOS 系列中三款特别适合波前传感的相机: Marana 4.2B-6(具有CoaXpress接口) Zyla 4.2 PLUS(具有CameraLink接口) Balor 17F(具有CoaXpress接口)下表总结了每款相机的关键性能参数。表1 用于波前传感的三款 Andor sCMOS 相机的关键成像参数在第1部分中,我们将详细分析潜在的帧频性能,尤其是 ROI 模式下帧频的提升。在第2部分中,我们将比较三款相机相对“延迟”特性,这是自适应光学应用的一个重要考虑因素,因为它决定了图像在软件中的准备时间,以便作为闭环可变形镜像系统的一部分进行处理。Part 1 | sCMOS 帧频高速帧频性能对于波前传感至关重要,使用(ROI)子阵列能够实现每秒数百帧的图像采集。作为波前传感备选的成像探测器,表2显示了上述三款 sCMOS 相机在不同 ROI 阵列尺寸上的帧频。表 2 的关键成像参数(可用选项): 卷帘快门曝光模式 重叠(100%占空比)模式 16位(全动态范围)模式 中心 ROI 成像 CoaXpress(CXP)接口(Marana 和 Balor) CameraLink(CL)接口(Zyla)表2 三款 Andor sCMOS 相机在不同 ROI 阵列尺寸上的帧频 请注意,在比较 Marana 和 Zyla(均为2048 x 2048阵列)时,尽管 Zyla 能够实现更快的帧频,但 Zyla 是使用前照式芯片,通过在每个像素上使用微透镜来实现高量子效率。Marana 使用背照式芯片,在没有微透镜的情况下可实现高达95%的量子效率。此外,如果 Zyla 的 ROI 没有在垂直方向上居中,帧频将会降低(降低到原来的2倍),而对于Marana 和 Balor,ROI 可在任何区域,帧频的降低可以忽略不计。Part 2 | “延迟”比较科学成像相机用作波前传感器的一个关键考虑因素是“延迟”。由于波前传感成像是 AO 配置闭环系统的一部分,因此软件必须快速采集图像以进行实时处理,以便它能够持续地通知变形镜系统如何在到达科学探测器的过程中对入射波前进行重塑和展平。比较波前传感器相机,我们需要清楚地了解曝光、传感器读出和任何图像传输耗时相关的相对时间。在成像的时序流程中,对于“延迟”的定义可能存在一些主观的变化。为了在当前的比较研究中实现标准化,我们将考虑从曝光开始到软件处理该曝光时间内的完整图像/ROI 的整个端到端时间。我们还将通过假设曝光时间为 10 毫秒(帧频达到100 fps)进行标准化。但是请注意,我们比较的三款相机,这 10 毫秒的曝光对应于不同的 ROI 阵列大小和相应的视野。图 1 和图 2 为 Zyla 4.2 PLUS 与 Marana 4.2B-6 进行比较的时序示意图。sCMOS 相机之间的“延迟”区别如下:Zyla 必须先将整个 ROI 阵列(10 毫秒)读出到组装图像的相机 FPGA,然后再通过 CameraLink 接口传输图像,这里又需要10 ms。由于这些过程是按序发生而不是同时进行的,因此整个端到端处理接近曝光(10 ms)+ 读出(10 ms)+ 通过 CameraLink 的数据传输(10 ms)= 30 ms。注意,Zyla图像必须首先在 FPGA上组装的原因是其复杂的传感器读出,这涉及到同时读出阵列的两半,从中间行开始,向外分别移动到顶部和底部行。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。 Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机 PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Balor 未在所示的图中具体表示,但具有与 Marana 相似的单向传感器读出架构,区别在于 Balor 通过同时读取每组 4 行的数据来提高速度。因此,如果 Balor 定义了 ROI 阵列,其结果是曝光时间为 10 ms(相应的读数为10 ms),那么 Balor 的整个端到端过程也将近似于曝光时间(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。因此,相对于 Zyla 固有的“延迟”, Marana 和 Balor 的“延迟”减少了。然而,如第 1 节所示,Zyla 4.2 PLUS 相对于Marana 4.2B-6 可能具有更高的帧速。在为您的装置选择最合适的波前传感成像相机时,应在确切的实验要求范围内考虑这两个因素。图 1 和图 2 的关键成像参数(可用选项): 曝光时间/读出时间 — 10毫秒(需要选择ROI) 卷帘快门曝光模式图1 Zyla4.2 PLUS:表示曝光、读出和图像传输(通过 CameraLink接口)的计时示意图图2 Marana 4.2B-6:表示曝光、同时读出/图像传输(通过Coaxress 接口)的计时示意图。Balor 的实验数据接近Marana 4.2B-6
  • 全自动饮料瓶防盗瓶盖扭矩测试仪相较于手动扭矩仪的优势在哪里
    在快速发展的饮品行业中,瓶盖扭矩的精准控制对于保障产品质量和消费者体验至关重要。传统的手动扭矩测试方法不仅效率低下,而且难以保证测试结果的准确性和一致性。因此,全自动饮料瓶防盗瓶盖扭矩测试仪的出现,无疑为行业带来了一场跨越性的升级。相较于传统的手动扭矩测试方法,全自动饮料瓶防盗瓶盖扭矩测试仪具有以下显著优势:提高效率:自动化测试仪可以连续不断地进行测试,无需等待手动操作的间隔时间,显著提高了测试效率。准确性:全自动测试仪通过精密的传感器和控制系统来施加和测量扭矩,减少了人为操作的误差,确保了测试结果的准确性和可重复性。数据记录与分析:全自动测试仪通常配备有数据记录功能,能够自动记录每次测试的结果,便于后续的数据分析和质量控制。减少人力成本:自动化设备减少了对操作人员的依赖,降低了人力成本,特别是在大规模生产和测试中,这一优势尤为明显。标准化测试:全自动测试仪按照预设的程序和标准进行测试,保证了测试过程的一致性,避免了手动测试中可能出现的主观判断和操作差异。提高安全性:自动化设备减少了操作人员与测试样品的直接接触,降低了工伤的风险。易于操作:全自动测试仪通常配备有用户友好的操作界面,简化了操作流程,使得即使是非专业人员也能轻松进行测试。扩展功能:一些全自动测试仪还具备扩展功能,如与计算机连接进行更复杂的数据分析,或者与其他生产线自动化设备集成,实现更高效的生产流程。环境适应性:自动化设备通常设计得更加坚固耐用,能够适应不同的生产环境和条件。维护简便:虽然全自动测试仪的初始投资可能较高,但长期来看,由于减少了人为操作和提高了测试效率,维护成本相对较低。综上所述,全自动饮料瓶防盗瓶盖扭矩测试仪通过其自动化、高精度、易于操作和数据分析等优势,为饮料瓶盖扭矩测试提供了一种高效、可靠的解决方案,有助于提高产品质量和生产效率。
  • LI-2100 | 大兴安岭南部白桦的水分利用规律及其对干旱环境的适应性
    大兴安岭地处中国东北,这里的气候寒冷干燥,冬季漫长而严寒,夏季则短暂而凉爽,适宜白桦的生长。亭亭白桦,悠悠碧空,微微南来风。春天,是大兴安岭的白桦树复苏的季节。雪融水润,大地回春,在这神秘而美丽的土地上,白桦树以其独特的水分利用能力,展现出了大自然魅力。大兴安岭南部白桦的水分利用规律及其对干旱环境的适应性本研究旨在考察大兴安岭南部天然次生林中主要植物白桦(Betula platyphylla)的水分利用模式。该调查利用氧稳定同位素技术,时间跨度涵盖2019年7月至2020年9月。东北地区研究区的位置及其森林分布(绿色)。“其他”是指林地(灰色)以外的土地利用类型。在两年的时间里,在纯白桦林内建立的 30 m × 30 m 的样地内进行了季节性田间试验。作者选择了五棵健康的白桦木,其高度和胸径接近研究区域的平均值。样地土壤剖面较浅(厚度约为 40-70 厘米)土壤采样在每月中旬无雨的日子或降雨后的几天进行。每月系统采集10 cm、20 cm、30 cm、40 cm、60 cm深度的树木木质部水和土壤水样本,进行稳定同位素分析。成熟植物体内水的同位素组成可以反映植物水分来源的同位素组成。2019年和2020年(5月至10月)在样树上取样,每棵样树取样3个重复。使用手动螺旋钻获取土壤水样,并用封口膜密封在玻璃容器中,用于随后的同位素分析。为了减轻蒸发对同位素含量的影响,所有土壤和植物样品均被立即冷冻并储存。在 2019 年和 2020 年的整个生长季节,总共收集了 100 个降水样品,并用封口膜牢固地密封在干净的聚乙烯瓶中。然后将这些沉淀样品储存在设定为-2°C的冰箱中,直到准备好进行同位素分析。样本树的特征来自内蒙古农业大学的研究团队在北京师范大学地表过程与资源生态学国家重点实验室地理科学学院和水利部草原水利科学研究所实验中心采用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)对植物和土壤样品进行水分提取。雨水和提取的植物和土壤水经过过滤,使用0.22μm有机相针式过滤器去除杂质和有机污染物。根据土壤剖面,土壤水源分为浅层(0~20 cm)、中层(20~40 cm)和深层(40~60 cm)。值得注意的是,由于样地地势多为山地,地下水的可用性可能受限,因此将地下水排除作为树木的潜在水源。在生长季节,通过线性回归分析探讨土壤水、木质部水和降雨中δD和δ18O之间的关系2019年和2020年各月VWC垂直土壤剖面和土壤水δ18O值不同深度木质部水和土壤水中δ18O的分布特征通过 MixSIAR 分析确定白桦不同土层吸水比例的季节性波动基于稳定同位素(δ18O)的 MixSIAR 模型用于研究天然林中优势物种(特别是大兴安岭南部白桦)用水策略的季节变化。研究结果表明,适应性的水分利用策略和对降水的快速响应能够促进植物充分利用来自土壤各个深度的水分,从而使它们能够更好地适应干旱环境。当降雨量较低时(2019年生长季为390.4毫米),白桦迅速吸收浅层土壤水(0~20 cm,整个根系深度的利用率为40.4%),但当降雨量增加时 (2020年生长季为501.5毫米),白桦逐渐过渡到从较深土层(40~60厘米)提取土壤水分并加深其根系系统(利用率为39.4%),表明其对半干旱环境的适应性。因此,白桦在同一生境中灵活的用水策略可能使其在低降水时期具有竞争优势。该研究结果对于大兴安岭南部天然林保护和水资源管理具有重要意义。
  • BCEIA 2023圆满结束,喜瓶者洗瓶机展示最新技术
    第二十届北京分析测试学术报告会暨展览会(BCEIA 2023)于2023年4月14-16日在北京中国国际展览中心(顺义馆)盛大启幕。作为分析测试领域备受瞩目的盛会,BCEIA吸引了来自全球的优秀分析测试专家、学者的积极参与。喜瓶者作为参展商之一,携喜瓶者全自动器皿清洗机Aurora-F3与GMP大型清洗设备Rising-F2亮相此次盛会。 Aurora-F3全自动器皿清洗机是喜瓶者最新推出的产品,Aurora-F3能够实现从样品准备到清洗、烘干一站式服务,大大提升了实验室的工作效率和清洁度。模组模块化篮架设计,可以适应各种不同类型的器皿的清洗,无论是玻璃、塑料还是其他材质,都能轻松应对。另一款重磅产品——GMP大型清洗设备Rising-F2,该设备能够符合GMP(Good Manufacturing Practice,良好生产规范)标准,能够实现制药生产过程中的标准化清洗。Rising-F2的大容量、标准化的清洁效果,使其在生物制药行业备受好评。 在为期三天的展会展览期间,喜瓶者洗瓶机吸引了许多老师和用户的关注。在我们的展位上,许多观众在了解产品的同时,也与我们进行了深入的技术交流与讨论。许多老师对于洗瓶机的标准化清洗和节能环保特性表示赞赏。他们表示,洗瓶机能够在保证实验效果的同时,减轻他们的工作负担,提高实验室的工作效率。 短短的三天时间转眼就过去,喜瓶者下一站将于2023年11月13日-15日在厦门国际博览中心参展第63届(2023年秋季)药机博览会,喜瓶者期待与您一起扬帆厦门!
  • 应用案例 | Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP
    近日,来自山西大学激光光谱研究所、光学协同创新中心,-巴里大学和巴里理工大学跨校物理系波利森斯实验室的联合研究团队发表了《Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP》论文。二甲基甲基膦酸酯(DMMP)被广泛认为是最具代表性的模拟物,已开发并广泛用于DMMP检测的各种气体分析技术。气相色谱(GC)和质谱(MS)分析可以高敏感地鉴定不同的有机磷化合物,但它们在原位监测方面具有几个缺点,包括昂贵和耗时。此外,色谱分析必须由熟练的人员在专门的实验室中进行,不适合小型化。相比,光声光谱(PAS)是DMMP气体水平监测最有前景的技术之一,因为它具有高灵敏度、选择性和快速响应的优势。作为PAS的一种变体,石英增强光声光谱(QEPAS)技术自2002年首次报道以来迅速发展,其中超窄带石英调谐叉(QTF)与两个作为锐利共振声学换能器的声学微共振器(AmRs)在声学上耦合,用于检测声音信号,而不是传统的宽带麦克风。与体积超过10 cm3的传统光声池相比,小体积的QTF更有利于DMMP检测设备的小型化和快速响应。此外,QEPAS技术的显著特点是激发波长的独立性,这意味着可以使用相同的光谱声学器测量具有不同特征吸收光谱的痕量气体。DMMP在9–11.5 µ m的中红外区域显示出强烈的光吸收特征,因此使用高性能中红外量子级联激光器(QCLs)可以在理论上实现高灵敏度的检测。然而,中红外QCL输出光束通常具有较大的发散角,这使得将中红外激光束耦合到具有300微米叉间距的QTF中成为巨大的挑战,因为任何误散射光束击中QTF都会产生大的背景信号。在本研究中,我们展示了种基于定制T型QTF和中红外量子级联激光器(QCL)的小型化集成QEPAS DMMP传感器。T型QTF的叉间距为0.8毫米,具有约15,000的高品质因数,避免了由误散射光引起的背景信号,从而在ppb水平上获得最佳检测限。通过使用掺入DMMP的真实室外空气对传感器进行测试,以验证其有效性。实验部分:检测波长和光学激发源的选择强有力的靶向吸收带对于DMMP检测至关重要,因为实际应用需要具有亚百万分之一灵敏度的传感装置。由于其高输出功率、紧凑性和窄的光谱线宽,QCLs在中红外光谱区域已成为最多功能的半导体激发源。考虑到激发波长和激光源的大小,宁波海尔欣光电科技有限公司为该实验提供了一个发射波长为9.5 µ m,线宽为2 MHz的QCL激光器(QC-Qube 200831-AC712)作为DMMP-QEPAS传感器的激发源,其输出功率稳定性2%,一个具有极低电流噪声和温漂的QCL激光器驱动电路(QC750-Touch&trade ),在室温下操作,以稳定发射波长。通过激光驱动电路将QCL的温度设定为25.5℃。如图2所示,所使用的QCL激光器的输出波长是驱动电流的函数,并且其波长调谐范围落在所选吸收带中(图1中的绿色框区域)。图2中绘制了QCL激光器的平均功率与驱动电流之间的线性关系,表现出良好的线性关系。此外,该激光源的小尺寸是一个显著特点,外部尺寸约为300 cm3(65 × 65 × 70 mm3),使激光源能够实现紧凑的气体传感器。Fig. 1. Absorption spectra of 1-ppm DMMP/N2 gas mixture (red) obtained by the FTIR spectrometer and absorption spectra of 300-ppm H2O (blue) and 5- ppm CO2 (orange) based on HITRAN database. Inset: DMMP absorption band in the range of 1040–1065 cm&minus 1 and wavelength tuning range of the used QCL laser.Fig. 2. QCL emission wavelength and output optical power as a function of driving current in amplitude modulation operating mode with a duty cycle of 50 %. QCL laser: HealthyPhoton, QC-Qube QCL laser driving circuit:: Healthy Photon, QC750-Touch&trade 结论基于QEPAS的传感器由于其波长独立性具有很高的多功能性,这使得通过替换激光源可以检测各种神经毒剂。在本研究中,首次开发了一种紧凑尺寸和可靠性能的ppb级QEPAS DMMP传感器。选择了9.56 µ m的激发波长,这是最强的DMMP吸收带,不受H2O和CO2的干扰。优化了主要系统参数,包括激光激发功率、气体压力和调制频率。最终,在0至1.5 ppm范围内验证了传感器的线性,并在300毫秒的积分时间下实现了6 ppb的最低检测限。我们使用真实室外空气作为载气检测了500 ppb的DMMP,并获得了与以零气作为载气时相同的信号幅度,从而验证了传感器的高选择性。参考Ppb-level mid-IR quartz-enhanced photoacoustic sensor for sarin simulant detection using a T-shaped tuning fork, Sensors & Actuators: B. Chemical 390 (2023) 133937, https://doi.org/10.1016/j.snb.2023.133937
  • 文献分享丨最新研究发现土壤有机碳分解热适应的调控机制
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展,相关文章发表已达18篇。 今天与大家分享的文章是东北林业大学林学院周旭辉教授团队首次从底物消耗与微生物适应角度,揭示了土壤有机碳分解热适应的调控机制的研究论文。在该研究中,采用了PRI-8800作为关键设备之一,我们来具体了解一下吧~ 长期以来,学界普遍认为气候变暖加速土壤有机碳分解,进而使得地球平均温度上升,形成正反馈效应。而近期的一些长期增温实验发现土壤有机碳分解速率可能会随着增温时间呈逐渐下降趋势,表现出热适应现象。当前,针对土壤有机碳分解的热适应调控机制,国内外生态学家仍存在较大争议,其根本难点在于无法有效区分底物消耗与微生物适应在土壤碳分解中的相对贡献。为了解决这一难题,何杨辉等研究人员依托长期野外增温实验平台,巧妙地使用土壤微生物灭菌-接种方法区分底物与微生物的调控作用,研究结果表明土壤底物可利用性是调控土壤有机碳分解热适应的主要因素。这一重要发现将增进人们对土壤有机碳分解热适应性的理解,为准确预测陆地土壤碳-气候反馈提供重要的科学依据。 土壤有机碳分解热适应潜在调控机制 值得注意的是,在实验过程中,研究团队通过PRI-8800连续变温培养和高频土壤呼吸在线测量的优势,克服了恒温培养模式土壤微生物对特定培养温度的适应性和底物消化不均的难题,加速研究进程并获得可靠的研究结果。 研究成果“Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability”为题,在线发表于国际顶级生态学期刊Global Change Biology(IF=13.211),何杨辉教授为论文的第一作者,周旭辉教授为论文通讯作者。相关论文信息:He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022.全文链接:https://doi.org/10.1111/gcb.16523 UPGRADED! 土壤有机质是陆地生态系统最大的碳库,在全球变暖背景下,土壤有机质分解对温度变化的响应很大程度影响着陆地生态系统对全球气候变化反馈效应。气候变暖如何影响土壤有机质分解,以及陆地生态系统碳排放如何响应气候变暖已成为目前科学家主要关注的内容之一。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。 01 主要特点可进行恒温或变温培养设定;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶适配25位样品盘;具有CO2预降低的双回路设计;一体化设计,内置CO2 H2O模块;可以外接浓度和同位素分析仪等。02 PRI-8800 实验设计1)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800全自动变温培养土壤CO2 H2O在线测量系统主要包含自动进样器、水槽、压缩机、CO2 H2O 分析仪、内部计算机、25位样品盘等,25个样品瓶。PRI-8800除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。2)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800可以通过手动调整土壤含水量的做法,并在PRI-8800快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。3)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。4)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。03 PRI-8800相关文献信息1.Li, C., Xiao, C.W., Guenet, B., Li, M.X., Xu, L., He, N.P. 2022. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biology and Biochemistry 167, 108589. https://doi.org/10.1016/j.soilbio.2022.108589.2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.16.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.18.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022. 如果您对我们的产品或本期内容有任何问题,欢迎致电垂询:地址:北京市海淀区瀚河园路自在香山98-1号楼电话:010-51651246 88121891邮箱:support@pri-eco.com
  • 自适应光学仪器可以带来“超视力”吗?
    人类的视力有极限吗?最近,科学家在实验中运用新技术,通过光学仪器矫正人的视力,有的被试者的视力甚至达到了2.0。  新技术为“超视力”提供可能  中国科学技术大学周逸峰小组与中科院成都光电所张雨东小组合作,创造性地将视知觉训练与人眼自适应光学技术结合起来。在实验中,他们对20岁左右的正常被试者测量视力等视功能后,让他们每天参加一小时的视觉训练。这种训练,即在自适应光学系统上,呈现一种高空间频率光波的黑白条纹图像,让被试者根据要求完成图像的检测任务。训练程序根据完成任务情况,自动调控图像参数,使之维持在一定的难度水平上。如此反复多次,坚持10—12天,每天1小时左右。  周逸峰指出,“这项实验反映了在一定的条件下,经过学习,成年神经系统对图像识别的能力可大大提高。即便是发育成熟后,正常成年视觉神经系统仍具有相当程度的可塑性。不过,这些可塑性的发挥,受限于人眼的光学系统质量。”  据专家介绍,人眼的光学系统,除了存在近视、远视等“低阶像差”外,还存在难以用普通手段测量和矫正的“高阶像差”。研究小组对被试者进行高阶像差的矫正,使之拥有较理想的人眼光学系统,在此基础上配合视知觉训练,让被试者的视力有了明显的提高,有的甚至达到了2.0及以上的视力。据介绍,他们的“超视力”在5个月后复测时仍可保持。该研究成果可用于探索新的治疗方法,来提高视力低下患者的视功能,也为达到“超视力”提供了可能。  目前还处于临床阶段  关于这项技术的最新应用情况,周逸峰在接受采访时介绍:“目前,我们与合作单位中科院光电技术研究所一起正在进行面向临床应用的产品开发和推广,已经研制出自适应光学视力治疗仪,7月份进入医院进行临床试验,在国家药监局审批注册后即可上市用于临床。”同时,周逸峰还指出:“这项技术还处于临床试验阶段,从之前测试的结果来看,效果比较显著,但由于临床试验受到各种因素的制约,不能保证每次试验都达到预期效果。”  对此,焦永红指出,“自适应光学技术属于高科技,作为一种辅助的装置,它主要从两个层面推动眼科技术的发展。其一,让使用设备的医务人员可以更清楚地分析数据;其二,可以让病人接受的手术更加精准。目前,它仍属于前瞻性的研究。”  关于视知觉训练,焦永红则认为:“视知觉训练主要通过锻炼肌肉的灵敏度,通过反复刺激的方法来训练人的能力。这项训练比较主观,而且需要坚持。因此,被试者的视力恢复水平可能因人而异。”  不过,任何一项新技术的发展都是不断尝试、不断推新的过程。屈光手术自90年代初期试用以来,已经发展成熟,这一技术通过改变人眼的光学系统,使得人眼视力水平得到很大改善。焦永红认为:目前,自适应光学技术还处在临床适应阶段,从原理上说,这项技术可以辅助临床试验,让手术更加精准。  是否具有“超视力”不重要  那么视力的优劣该如何测定呢?2.0的视力是怎样的“超视力”呢?  目前国内有两种视力表记录法:小数记录法、五分记录法。一般情况下,正常裸视力能达到1.0,也就是5.0。小数记录法的1.5,2.0分别相当于五分记录法的5.2,5.3。  对于视力有限性的问题,北京同仁医院眼科中心眼肌科主任焦永红指出:“人的视力受限于最小视角,它是指视网膜视觉细胞能分辨的最近距离的两点对眼的最小夹角。”视力表是根据视角的原理制定的。正常人眼能看清最小物体的视角为1分视角,又称最小视角。  焦永红认为,“人的视力是有极限的,单纯通过视力表的指标来衡量人的视力的优劣并不是目的。1.5的视力已经是正常视力,不同衡量体系得出的结论也不同。衡量视力水平,不能光看指数,还要看眼睛各个方面是否协调一致。关键在于眼睛的健康,无各种眼科疾病,这才是我们追求的目标。至于是否是2.0这样的"超视力"并不重要。”  焦永红说:“视力检查是一种知觉检查,具有较强的主观性,一些其他的因素,也会影响到检查结果。”常见的影响视力检查准确性的因素有:光线,比如灯箱老旧、光源亮度不达标、面板刮花、检测地点周围光线昏暗等;环境,如周边环境吵闹、噪音大等;此外,如果在感冒、发烧或服药期间,视力也可能下降。  中国人民解放军第二炮兵总医院眼科主任医师蔡春梅介绍说:“目前所测的视力主要为远视力,被试者离视力表5米。视力达到2.0,说明远视力很好,不排除有其他眼睛问题的可能,没有一个评论视力优劣的绝对指数,普通人达到1.0的视力就是正常视力。”  通常情况下,人们认为成人的视力不具备可塑性。就此,蔡春梅认为:“如果一个成年人存在屈光不正的问题,如近视、远视、散光等问题,通过镜片、手术矫正的方法,才可以矫正视力。”自适应光学技术也正基于此,通过仪器调整人眼的光学系统,才能够有效的矫正视力。
  • 实验室瓶皿清洗方式革新设备更新
    实验室是科学研究的重要场所,承担着推动科学进步和社会发展的重要责任。实验室全自动清洗机已经是欧美等发达国家的标配设备,很多海外归来的科研人员刚回到国内时对于国内实验室没有清洗机的情况一时都难免有些不适应。习惯了机洗很难适应手洗,就像人们用惯了洗衣机后很难再退回到所有衣服都要手洗的时代一样。科技在发展,时代在进步。相信国内实验室瓶皿清洗也终将告别手洗时代迎来机洗普及的新时代。值此国家鼓励各行各业大力淘汰落后设备落后产能之际,也为实验室瓶皿的自动化清洗带来了新的发展契机。机洗相比于手洗,有着其他自动化设备一样的天然优势。优势1. 清洗量大且不知疲累试想下,如果当天的实验多且瓶皿用量大,负责清洗瓶皿的人员内心是不是早已崩溃?做了一天的实验心神基本已被耗尽,兢兢业业终于完成了,本该迎来好好休息的时刻,面前却是堆积如小山的瓶宝子们,不洗到腰酸背痛眼冒金星怎能结束呢?崩个小溃是不是很正常。机器的最大特点之一就是不像人类一样容易感知到疲累。人类能够承受的极限,在机器这里也只是轻松拿捏。回到上述情境,实验室里有一台全自动清洗机,在实验结束时,只需把瓶瓶罐罐们好好安放进去,然后关上门启动清洗程序,就可以高枕无忧了。该休息休息,该放松放松。在不久的将来,实验室里还可以有一台智能化的清洗机。实验结束后,只需给一道指令,就会有机器人帮忙摆放瓶皿,帮忙启动清洗,洗好了再帮忙取出......最大化地保护科研人员的体力与精力,是不是很值得期待?优势2. 不仅能洗还能洗的很好像人一样,想要把事情做好,只有力气是远远不够的,还要有一颗聪明的大脑。实验室清洗机二者兼备,既有稳定的清洗力输出,也有非常好的清洗效果可以呈现。主控板相当于清洗机的大脑,各种各样的电路就像人的神经网络一样,操控着清洗机可以根据不同类型的瓶皿和不同种类的污染物输出对应的清洗流程。和人类清洗不同的是,每次输出的清洗结果都可以保质保量,不会受到今天心情不好、状态欠佳、漏掉了一步等等不确定因素的人为干扰。更不会出现前面的瓶子洗的挺干净,后面累了就随便洗洗的状况,让SOP形同虚设。怎么才能洗的更好呢?这就要从洁净度上做些文章了。清洗标准达到ppb级,同样是人工清洗难以企及的高度。优势3. 无后顾之忧长期的人工清洗会造成一些不大受欢迎的“并发症”出现。例1:瓶皿上出现划痕,在制药等对于精度要求高的实验中,微量药液吸入划痕中,都可能导致含量测量的极大误差,不仅影响实验结果,还造成贵重瓶皿的低级浪费。例2:瓶皿破损,导致人员受到不同程度的伤害,还伴有感染风险的发生,如果情况严重,会超出实验室能够承担的责任范畴。上述情况在应用实验室清洗机后都可以避免。清洗过程中将无瓶皿受损风险,无人员伤害风险出现,消除瓶皿清洗的后顾之忧。白小白实验室清洗机兼具以上优点,是实验室清洗的新选择。在此次设备更新产能升级的政策激励下,希望每一个实验室都能拥有一台全自动清洗机,希望拥有清洗机的实验室,可以拥有一台更加优质的清洗机。上海汉尧自去年开始成为白小白上海、浙江、江苏地区制药行业总代理商。汉尧一直专注于为中国的生物制药/食品/化工实验室行业用户提供高品质的产品和技术服务,秉持一贯的服务宗旨,践行“诚信、利他、感恩”的价值观,以客户满意度为前提,提供周到的服务,与我们的客户和合作伙伴共同成长的同时,努力为社会创造更多价值。
  • 百灵威-wilmad杜瓦插瓶,变温顺磁的重要部件
    电子顺磁仪器变温杜瓦插瓶低温采谱是电子顺磁共振实验中经常采用的方法。较低的样品温度给顺磁研究带来了很多好处,如增加样品的弛豫时间,为动力学研究提高更好的分辨率,更高的信噪比等。高温顺磁也广泛应用于线宽扩展机理,样品相变研究和动力学等方面。产品列表: 150 ML 液氮杜瓦瓶1品名:150 mL Suprasil Offset Nitrogen Dewar Flask for Bruker布鲁克150毫升Suprasil胶印氮杜瓦瓶货号:WG-853-B-Q2品名:150 mL Suprasil Large Volume Dewar Flask for Bruker150毫升Suprasil大容量布鲁克杜瓦瓶货号:WG-850-B-Q50 ML 液氮杜瓦瓶1品名:50 mL Suprasil Nitrogen Dewar Flask50 mL Suprasil 氮气杜瓦瓶货号:WG-816-Q2品名:50 mL Suprasil Offset Nitrogen Dewar Flask for Bruker50毫升透明偏氮杜瓦瓶的布鲁克货号:WG-819-B-Q3品名:用于Bruker 8mm OD的50mL Suprasil对称氮杜瓦瓶50 mL Suprasil 对称氮气杜瓦瓶,用于布鲁克 8mm OD货号:WG-816-D-Q4品名:50 mL Suprasil Symmetric Nitrogen Dewar Flask for Bruker 10mm OD50ml透明石英杜瓦瓶货号:WG-816-B-Q高温杜瓦瓶1品名:Suprasil VT Dewar Insert for JEOL Hollow ST 12/5 Ball Joint用于 JEOL 的 Suprasil VT 杜瓦瓶插件货号:WG-848-A-Q2品名:Suprasil VT Dewar Insert for BrukerSuprasil VT杜瓦瓶货号:WG-821-FL-Q3品名:Suprasil VT Dewar Insert for Bruker布鲁克变温杜瓦插瓶货号:WG-821-F-Q4品名:Suprasil VT Dewar Insert for Bruker, 147mm OAL杜瓦插瓶,147mm OAL货号:WG-821-STW-AH-Q5品名:Bruker X Band HT Dewar Sample Tube布鲁克X波段HT杜瓦样品管货号:750-PQ-7.16品名:HT Suprasil Dewar for Bruker ER 4131VTHT Suprasil杜瓦瓶货号:DWGSK3352
  • 满足4003标准 药典玻璃瓶内应力测定仪
    满足4003标准 药典玻璃瓶内应力测定仪2024年2月,国家药典委发布了《4003 玻璃容器内应力测定法-第二次公示稿》,此标准预计将体现在2025版中国药典的药包材部分。该标准基于2015版YBB药包材标准YBB00162003-2015内应力测定法修订而来,是国内较为完善的药包材玻璃容器内应力测定方法。内应力的重要性内应力是指物件因外因(如受力、湿度、温度变化等)变形时,内部各部分之间产生的相互作用力。当外部载荷消除后,这些应力仍可能残存于物体内部。内应力的存在会降低玻璃的机械强度,增加药品包装在生产、使用及储存过程中的破裂风险。因此,内应力的测定对于药用玻璃容器退火质量的控制至关重要。测定原理玻璃容器内应力的测定通常基于偏振光干涉原理。当玻璃存在内应力时,它会表现出各向异性,产生光的双折射现象。通过偏光应力仪测量双折射光程差,可以定量地表示产品内应力的大小。仪器配备的灵敏色片和1/4波片补偿方法,使得仪器能够根据偏振场中的干涉色序,定性和半定量地测量玻璃的光程差。而玻璃瓶内应力测定仪也符合的标准技术要求,例如在使用偏振光元件和保护件进行观察时,光场边沿的亮度不小于120 cd/m2,所采用的偏振光元件应保证亮场时任何一点偏振度都不小于99%;偏振场不小于85 mm;在起偏镜和检偏镜之间能分别置入565 nm的全波片(灵敏色片)及四分之一波片,波片的慢轴与起偏镜的偏振平面成90°;检偏镜应安装成能相对于起偏镜和全波片或四分之一波片旋转,并且有旋转角度的测量装置。其中4003标准中需要注意的是,基于目前市面上,有些应力仪能直接读出双折射光程差,无需先记录角度再换算,因此在无色供试品的定量测定中将“记录此时的检偏镜旋转角度”修改为“记录此时的检偏镜旋转角度或双折射光程差”。其实在普通玻璃容器标准上还是看角度,玻璃瓶内应力测定仪可以同时显示应力旋转角度和光程差,满足各种标准要求。玻璃瓶内应力测定仪作为药品包装玻璃容器检测仪器的专业生产商,紧跟国家标准要求,参与了部分国家药包材标准的制定工作。目前推出的玻璃瓶内应力测定仪,不仅满足《4003 玻璃容器内应力测定法》标准,而且适用于各种玻璃器皿、玻璃计量量具、玻璃容器、药用和食品包装用玻璃瓶等玻璃制品内应力值的测定。产品特点高精度测量:能够精确测量内应力值。直观显示:配备液晶屏,可直接读取测试结果,操作简便快捷。设计新颖:仪器设计小巧,便于使用,适用于多种工作环境。广泛应用:广泛应用于制药企业、玻璃制品厂、质检等单位,满足不同行业的需求。适用范围本仪器适用于玻璃量具、药用玻璃瓶、口服液瓶、安瓿瓶、塑料瓶胚、石英、宝石制品以及其他玻璃容器内应力值的测定,以准确定量地测量出玻璃内应力数值,为玻璃制品的质量控制提供有力支持。通过上述整合,我们提供了关于内应力测定法的背景信息,还详细介绍了玻璃瓶内应力测定仪的产品特点和应用范围,使其更加符合用户的需求。
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。  美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。  在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 全自动洗瓶机:为实验室的清洁工作带来便利
    随着科技的不断发展,实验室的设备和工具也在不断地更新换代。其中,全自动洗瓶机的出现,为实验室的清洁工作带来了便利。作为一名实验室工作人员,我深刻体验到了全自动洗瓶机带来的日常便利。在过去,实验室的瓶子清洗是一项繁琐而耗时的任务。我们需要手动清洗每一个瓶子,不仅效率低下,而且容易因为操作不当而导致瓶子破损或清洗不彻底。然而,自从我们实验室引进了全自动洗瓶机后,这一切都发生了改变。全自动洗瓶机的出现,改变了我们实验室的清洁工作。它能够自动完成瓶子的清洗、冲洗和烘干等一系列过程,提高了工作效率。现在,我们只需要将需要清洗的瓶子放入机器中,按下启动按钮,就可以轻松完成清洗工作。这不仅节省了我们大量的时间和精力,而且避免了因为手动清洗而产生的瓶子破损和清洗不干净的问题。除了提高工作效率外,全自动洗瓶机还带来了更好的清洗效果。它采用了高压喷淋技术,能够将清洗剂和水混合后以高压水流的形式喷向瓶子内部和外部,从而清洗掉污渍和残留物。与此同时,全自动洗瓶机还具有多种清洗模式和清洗剂选择,可以适应不同类型的瓶子和清洗需求。这使得我们的瓶子清洗工作更加标准。在日常使用中,全自动洗瓶机的操作也非常简便。它采用了智能化的控制系统,具有简单易懂的操作界面和操作流程。即使是没有使用过洗瓶机的工作人员也可以很快上手,并独立完成清洗工作。此外,全自动洗瓶机还具有自动检测和报警系统,当设备出现故障或异常情况时,会自动报警并显示故障信息,以便我们及时进行维修和处理。总的来说,全自动洗瓶机的出现为实验室的清洁工作带来了便利。它不仅提高了我们的工作效率和清洗效果,而且使得我们的工作环境更加整洁和舒适。转载自:www.hzxpz.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制