当前位置: 仪器信息网 > 行业主题 > >

分馏管

仪器信息网分馏管专题为您提供2024年最新分馏管价格报价、厂家品牌的相关信息, 包括分馏管参数、型号等,不管是国产,还是进口品牌的分馏管您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分馏管相关的耗材配件、试剂标物,还有分馏管相关的最新资讯、资料,以及分馏管相关的解决方案。

分馏管相关的方案

  • 气相色谱/质谱联用系统使用砂芯衬管与玻璃毛衬管分析半挥发性有机化合物的性能比较
    气质联用系统 (GC/MS) 常用于分析环境基质中的半挥发性有机化合物。选择合适的衬管进行分析(如含有非挥发性化合物的环境基质)可实现更长的使用寿命,缩短维护 GC/MS 系统导致的停机时间。填充有玻璃毛的衬管和烧结砂芯衬管常用于环境分析。本研究表明,安捷伦超高惰性不分流底部砂芯衬管比不分流玻璃毛衬管更适合分析复杂基质,因为烧结砂芯能够更有效地阻挡基质。
  • Agilent 5977B使用超高惰性通用烧结砂芯衬管对滥用药物进行分析
    Agilent7890 气相色谱仪与带有 9 mm 提取透镜的 Agilent5977B 惰性 Plus GC/MSD 相连。使用高效色谱柱和分流进样,这些衬管使胺类、阿片类药物和苯二氮卓类药物类别以及使用法医毒理学校验混标考察的几种其他化合物类别获得了优异的色谱结果、峰形和分离度。衬管之间的性能表明,所测试的衬管具有高重现性,所有28 种分析物 RF 值的平均 RSD 为 8.9%。胺化合物类具有优异的峰形,甚至柱上进样浓度低至 0.25 ?g/mL 时也是如此。进样重现性和模拟基质重现性测试也展示了衬管的稳定性,在基质测试中,在100?次模拟基质进样后,28 种分析物的平均 %RSD 为 14.2%。
  • 使用Agilent 超高惰性色谱柱和超高惰性衬管分析枸杞中的极性有机磷农药
    仪器: THERMO TSQ QUANTUM GC进样器: AS3000 自动进样器进样,1.0uL 脉冲不分流进样,250 ℃ ,脉冲压力173KPa 1.5min 后转为恒流衬管: 安捷伦CrossLab 超高惰性衬管 ( 部件号: 8002-0154)样品: 供试枸杞为宁杞1 号,相关标准品为农业部环保所提供载气: 氦气 1.2mL/min,恒流模式色谱柱: Agilent J&W DB-5ms Ultra Inert 30m× 0.25mm× 0.25μ m( 部件号: 122-5532UI)柱温: 60 ℃,保持1 分钟,后以 25 ℃ /min 升至160 ℃, 然后以10℃ /min 升至1280℃,保持7 分钟检测器: MSD, EI 源、扫描方式SRM(EZ method)、离子源温度230℃、灯丝电流30μ A、进样5min 后打开灯丝、扫描时间5-24min、碰撞气压力1.5mTorr
  • 希言仪器:使用Agilent 超高惰性色谱柱和超高惰性衬管分析枸杞中的甲胺磷
    仪器: THERMO TSQ QUANTUM GC进样器: AS3000 自动进样器进样,1.0uL 脉冲不分流进样,250 ℃ ,脉冲压力173KPa 1.5min 后转为恒流衬管: 安捷伦CrossLab 超高惰性衬管 ( 部件号: 8002-0154)样品: 供试枸杞为宁杞1 号,相关标准品为农业部环保所提供载气: 氦气 1.2mL/min,恒流模式色谱柱: Agilent J&W DB-5ms Ultra Inert 30m× 0.25mm× 0.25μ m( 部件号: 122-5532UI)柱温: 60 ℃,保持1 分钟,后以 25 ℃ /min 升至160 ℃, 然后以10℃ /min 升至1280℃,保持7 分钟检测器: MSD, EI 源、扫描方式SRM(EZ method)、离子源温度230℃、灯丝电流30μ A、进样5min 后打开灯丝、扫描时间5-24min、碰撞气压力1.5mTorr
  • 希言仪器:使用Agilent 超高惰性色谱柱和超高惰性衬管分析枸杞中的乐果
    仪器: THERMO TSQ QUANTUM GC进样器: AS3000 自动进样器进样,1.0uL 脉冲不分流进样,250 ℃ ,脉冲压力173KPa 1.5min 后转为恒流衬管: 安捷伦CrossLab 超高惰性衬管 ( 部件号: 8002-0154)样品: 供试枸杞为宁杞1 号,相关标准品为农业部环保所提供载气: 氦气 1.2mL/min,恒流模式色谱柱: Agilent J&W DB-5ms Ultra Inert 30m× 0.25mm× 0.25μ m( 部件号: 122-5532UI)柱温: 60 ℃,保持1 分钟,后以 25 ℃ /min 升至160 ℃, 然后以10℃ /min 升至1280℃,保持7 分钟检测器: MSD, EI 源、扫描方式SRM(EZ method)、离子源温度230℃、灯丝电流30μ A、进样5min 后打开灯丝、扫描时间5-24min、碰撞气压力1.5mTorr
  • 使用吸附管与 TD-GC/MS 分析相结合依照中国 EPA 方法 HJ 644-2013 监测环境空气中的挥发性有机物
    本应用简报展示了 Markes International 无需制冷剂的自动化热脱附 (TD) 系统用于分析环境空气中挥发性有机物 (VOC) 的优异性能,分析采用吸附管进行采样。所用的系统符合中国 EPA 方法 HJ 644-2013 的要求,并能够对分流进行自动化定量再回收,从而实现重复分析、方法开发和结果验证。
  • 赛默飞GC-FPD 结合大体积不分流进样技术测定烟草中的有机磷农残
    本文采用GC-FPD 结合大体积不分流进样技术,建立高效、灵敏测定烟草中有机磷农残的检测方法。对烟草样品,采用改进的QuEChERS 方法,以去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取,经Carbon-NH2 复合柱净化,不经浓缩直接进样分析。通过实验发现:1)使用大体积不分流进样技术,进样体积为30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近25 倍;2)采用经Carbon-NH2 复合柱净化后的空白烟草提取液配制的有机磷农残系列标样能显著改善各有机磷的峰形以及灵敏度。总体来看,采用GC-FPD 结合大体积不分流进样技术对烟草中有机磷农残检测是一种非常灵敏、高效的检测方法,能够大大减少前处理过程中对样品浓缩的时间耗费,并同时具有较高的检测灵敏度。
  • 自动化液质联用工作流程:采用 AssayMAP 技术进行溶液内蛋白酶解、肽段纯化以及肽段的强阳离子交换分馏
    液质联用鉴定肽段的样品制备,通常由多步骤工作流程组成,包括溶液内蛋白酶解、肽段纯化,以及肽段分馏。该过程通常需要根据样品特性及分析目的( 即定量或表征)定制为具体的应用方法。样品制备工作流程的自动化可提高样品处理能力、降低差异性,并且无需熟练操作人员执行重复工作。然而,自动化平台通常并不用于最初的分析开发,这是因为分析开发者很少具有开发复杂自动化方案的经验。相反,分析通常是采用湿式工作台相关技术进行开发,然后在自动化专家的帮助下移植到自动化平台。采用 AssayMAP 肽段样品制备解决方案,无需掌握专门的技术也能实现自动化操作。开发者可通过一个简单的软件用户界面和灵活的实验方案对关键实验变量进行完全控制,从而能够专注于科学分析研究。如今,分析开发者、科学家或技术员无需具备自动化专业知识也能实现可扩展、精确的自动化操作。采用 AssayMAP 平台,整个工作流程可直接在相同的硬件上进行开发,如需实现高通量样品前处理,也易于对硬件进行扩展,从而可减少或避免已有实验方案实现自动化所需的额外时间和资源。本文将介绍发现(鸟枪法)蛋白组学研究的一种常规液质联用工作流程,包括溶液内酶解、反相肽段纯化,以及肽段的强阳离子交换分馏 (SCX),所有这些操作均由 AssayMap Bravo 液体处理器完成。采用 SCX 小柱通过增加 pH 或离子强度对大肠杆菌蛋白裂解液进行逐步洗脱,在六个 SCX 馏分中鉴定出 15000 多条特定肽段序列,其中 64-67% 的肽段可专属性地在其中一个馏分中得到鉴定。
  • 使用火焰离子化检测器的气相色谱法测定生物柴油中甘油和甘油酯以比较程序——升温的分流/不分流进样口与冷柱头进样口的性能
    欧盟标准 EN 14105:2011-07 是利用气相色谱定量分析生物柴油中的游离甘油、残留甘油单酯、甘油二酯及甘油三酯杂质的标准方法1。该方法规定使用“柱头进样器或同类装置”作为样品引入装置。冷柱头 (COC) 进样口似乎是一个理想选择,尤其是在甘油三酯分析中,该装置具有较高的定量准确度和精度,而且质量歧视效应极低。然而,对于这类应用,COC 存在一些缺陷。由于制备好的样品中生物柴油浓度相当高,它妨碍了甘油等早洗脱化合物的溶剂聚焦,由此导致谱带展宽以及相对于外部校准标样的保留时间位移。更棘手的问题在于使用金属保留间隙柱时,方法的耐用性较差。向保留间隙柱反复进样会导致方法控制指标在数次进样之后就不再满足要求。作为一种替代方法,本研究考察了程序升温分流/不分流 (TPSS) 进样口与 COC的性能等效性。结果表明,TPSS 在浓度测定中的性能与 COC 进样口几乎没有差别。此外,TPSS 不会出现性能控制失败的情况,而且能为早洗脱峰提供溶剂聚焦,因此耐用性远优于 COC 进样口。
  • 使用滤毒管和吸附剂管监测空气中的有毒物
    为了满足日益增长的检测城市和室内空气中ppb 级有机空气毒物的要求,现在已经开发了无需冷冻剂的热脱附技术,该技术为吸附管和滤毒管提供了符合法规要求的自动分析平台。可采用的GC/MS 方法包括使用吸附管的美国环保署方法TO-17 和使用滤毒管的美国环保署方法TO-15。为了实现空气取样的最大灵活性——滤毒管、气囊和吸附剂管——安捷伦科技提供与方法TO-15 和TO-17 完全兼容的TD 和GC/MS 产品。这些系统提供多达8 个滤毒管或气囊的自动序列分析,以及手动或自动管脱附分析。系统配置采用安捷伦世界领先的GC/MS 系统,该系统由安捷伦7890A GC 系统和安捷伦5975C 系列GC/MSD 组成。电冷聚焦(无需液体冷冻剂)、通用水管理和独特的高效捕集脱附,所有这些都最大限度地降低了分析成本,优化了正常工作时间,保证了无与伦比的分析性能、灵敏度和重现性。包含自动管脱附的的系统实现了整个周末的无人看管操作、自动重新收集重新分析、以及板上电子气囊读出/写入,以强化样品和管的可追溯性。
  • 使用Agilent J&W DB-5ms UI 超高惰性毛细管气相色谱柱和超高惰性衬管分析邻苯二甲酸酯类增塑剂
    仪器: Agilent 7890A GC /5975C MSD进样器: Agilent 7683B 自动进样器自动进样,1.0uL 不分流进样,290 ℃ , 吹扫流量 50 mL/min at 1.0 min衬管: 安捷伦超高惰性衬管 ( 部件号: 5190-2293)样品: DBP(邻苯二甲酸二丁酯)、BBP(邻苯二甲酸丁酯苯甲酯)、DEHP( 邻苯二甲酸二(2- 乙基己) 酯)、DNOP(邻苯二甲酸二正辛酯)、DINP(邻苯二甲酸二异壬酯)、DIDP(邻苯二甲酸二异葵酯),六种邻苯二甲酸酯浓度分别为0.2、0.5、1.0、2.0μ g/mL,溶剂为正己烷,内标为BB(苯甲酸苄酯)载气: 氦气 1mL/min,恒流模式色谱柱: Agilent J&W DB-5ms Ultra Inert 30 m × 0.25mm× 0.25 μ m ( 部件号: 122-5532UI)柱温: 初温:50 ℃,保持1 分钟,后以 30 ℃ /min 升至280 ℃, 然后以15 ℃ /min 升至310℃,保持4 分钟。
  • 异狄氏剂/DDT 在砂芯衬管和玻璃毛衬管中的稳定性
    本应用展示了与玻璃毛填充衬管相比,安捷伦超高惰性砂芯衬管在复杂的非挥发性基质环境应用中的寿命。使用异狄氏剂和 4,4′ -DDT 分解率来确定去活化一致性和暴露于实际样品(例如土壤提取物)时衬管的使用寿命。超高惰性去活化技术和全新的砂芯衬管设计,使衬管能够在复杂基质的多次进样中保持化学惰性,并具有更长的使用寿命。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的马拉硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的甲基内吸磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的速灭磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的对硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的乐果残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的溴硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的甲基内吸磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的乙拌磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的马拉硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的甲基对硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的对硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的有机磷农残
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的有机磷农残
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于CORESTA指导性残留限量要求。同时对烟草样品进行了0.5mg/Kg和1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于120%,其它均在75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • 赛默飞色谱与质谱:GC-FPD 结合大体积不分流进样技术测定烟草中的甲基对硫磷
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于CORESTA指导性残留限量要求。同时对烟草样品进行了0.5mg/Kg和1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于120%,其它均在75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • 赛默飞色谱与质谱:GC-FPD 结合大体积不分流进样技术测定烟草中的速灭磷
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于CORESTA指导性残留限量要求。同时对烟草样品进行了0.5mg/Kg和1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于120%,其它均在75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • 波纹管检漏,焊接波纹管检漏
    波纹管通常通过激光焊接连接至法兰或外壳.激光焊接会产生光性均匀焊缝,通过肉眼无法判断是否存在泄漏,焊接波纹管对气密性的要求很高,传统的泄漏测试, 如染料渗透测试,制冷剂嗅探或气泡测试不能达到客户工业生产的要求,因此需要引入氦质谱检漏仪进行泄漏检测.
  • 石英反应管的使用与维护
    石英玻璃以其耐高温和化学性质稳定的特性被广泛用作分析仪器的反应器,元素仪常规样品测定使用的氧化管、还原管、热解管、灰分管等,基本上都是石英玻璃制品。石英反应管的使用寿命,主要在于其材料品质,其次正确的使用与维护也很重要,本文就石英反应器的使用和维护提出一些意见和建议。
  • QUV灯管的选择
    了解您的 QUV选用合适的灯管.您的材料的最终使用条件决定了您应该使用哪种类型的UV灯管,所有的QUV灯管主要发出紫外光,而不是可见光或红外光。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制