当前位置: 仪器信息网 > 行业主题 > >

导气管

仪器信息网导气管专题为您提供2024年最新导气管价格报价、厂家品牌的相关信息, 包括导气管参数、型号等,不管是国产,还是进口品牌的导气管您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导气管相关的耗材配件、试剂标物,还有导气管相关的最新资讯、资料,以及导气管相关的解决方案。

导气管相关的资讯

  • 中俄天然气管道通气,岛津系统气相显身手
    长逾8000公里世界最长!4000亿美元的“元首项目”,2019年12月2日下午,来自俄罗斯的天然气通过中俄东线天然气管道正式进入中国,揭开了我国天然气供应新的篇章,实现天然气进口多元化,进一步改善能源结构,对于保障我国能源安全具有重要意义。管道绵延几千公里起点黑龙江黑河、途径吉林、内蒙古、辽宁、河北、天津、山东、江苏、上海9个省区市,管道的运行将有助于沿线城市环境改善及天然气相关产业的发展。 天然气主要存在于油田、气田、煤层和生物生成气中,主要成分为CH4,还有少量的C2-C6烃类、H2、O2、N2、CO、CO2和H2S等无机气体。其中天然气组分及热量的计算、H2S的测定关系交易价格及运输应用安全,为天然气检测的核心指标,岛津专用天然气分析仪器和硫化物分析仪携手黑河首站,高效进行关键检测项目的分析,筑牢国门质量安全防线。 国门第一站 — 黑河首站黑河首站是中俄东线天然气跨境管道的国门第一站,肩负着增压和计量两大重要任务。负责接收上游来自俄罗斯的天然气,并输送至下游分输压气站,确保正常流量。 中俄东线天然气管道全线投产后,我国每年计划从俄罗斯引进天然气将达到380亿立方米。如此体量的天然气,计量成为黑河首站另一个核心问题,黑河首站不但需要对国家强制的检测指标检测,还要对中俄计量协议规定的检测项目进行取样检测,判断天然气组分是否符合要求,进一步完成与俄罗斯站场和黑河首站在线检测分析数据的比对,筑牢国门质量安全防线。 ? 关键检测指标目前我国天然气质量必须符合GB/T17820-2012《天然气》国家标准,标准中对天然气高位发热量、总硫、硫化物、二氧化碳和水露点等指标都有严格规定。尤其发热量、硫化氢的分析关系产品交易价格及安全性,属于天然气计量的核心指标。 ? 岛津系统气相成为黑河首站检测主力军岛津公司积极配合中俄天然气管道项目,与黑河首站积极展开合作,并结合多年石化方面的分析经验,助力黑河海关完成天然气质量的把控。本次黑河首站主要配备了岛津成熟的天然气分析仪和硫化物分析仪,分别完成天然气组分和硫化物的测定,并能准确完成热值计算。? 标准天然气分析标准化的天然气分析仪可完全满足GB/T13610和GB/T 11062基本要求,完成对天然气详细组分分析的同时完成对高位发热量的计算。采用岛津三阀六柱系统,双热导检测器(TCD)完成天然气分析。流路图如下所示。• 典型天然气色谱图? 硫化物分析岛津公司目前可以提供多种硫化物检测方案,配有专用的火焰光度检测器(FPD)、脉冲火焰光度检测器(PFPD)和硫发光检测器(SCD)供用户选择,可满足不同样品中硫化物检测灵敏度的需求。其中本次黑河海关配备的是岛津全新的SCD检测器和FPD检测器,通过两种选择性检测器的搭配使用,实现天然气中高、低含量硫化物的测定。 • 岛津SCD检测器集智能化操作、高稳定性、超高灵敏度、易于维护等特点与一身,轻松实现ppb级别硫化物的测定; • 典型色谱图• 配备全新结构喷嘴和先进双聚焦系统的FPD检测器,不但维护便利,也可实现高精度高灵敏度分析; • 典型色谱图天然气分析是石化、能量交易中很重要的色谱分析项目,针对不同蕴藏状态的天然气,根据分析要求,岛津可提供的不同的解决方案,除上述常规天然气分析方案外(25min),还可提供快速天然气分析(10min)、超快速天然气分析(5min,使用岛津特有BID检测器)以及扩展天然气分析方案,客户可根据不同需求咨询岛津分析中心系统气相组。 撰稿人:彭树红
  • 清华大学梁琼麟团队: 类器官/器官芯片-肠道病理生理学模型前沿进展
    研究简介类器官/器官芯片为肠道病理生理学研究提供了新的前沿模型。类器官基于干细胞的自组织过程,能一定程度重现体内的功能特性;器官芯片利用微流控技术,引入生物材料,模拟肠道关键特征,构建仿生模型。而将二者结合,肠道类器官芯片比肠类器官具有更长的培养寿命,能更好重现肠道的结构和功能。近年来,随着基因编辑、3D 打印和类器官生物库等的迅速发展和交叉结合,类器官/器官芯片能更好地模拟肠道的稳态和疾病。在这里,我们总结了当前这些模型面临的挑战以及未来的发展趋势。该成果以 “Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models” (《类器官/器官芯片:肠道病理生理学模型的前沿进展》) 发表于 Lab on a Chip 上,并被选为合作封面文章。论文信息Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological modelsL. Wu, Y. Ai, R. Xie, J. Xiong, Y. Wang* and Q. Liang*Lab Chip, 2023, 23,1192-1212https://doi.org/10.1039/D2LC00804A作者简介吴磊 博士生清华大学化学系本文第一作者,本科毕业于武汉大学,目前于清华大学化学系梁琼麟教授课题组攻读博士学位。他的研究方向为:肠道类器官/器官芯片模型的开发及在溃疡性结肠炎中的应用研究。王玉 助理研究员清华大学本文通讯作者,清华大学化学系助理研究员,从事器官芯片/类器官芯片的研究。目前,主持国家自然科学基金青年科学基金项目,作为骨干参与国家重点研发计划、国家自然科学基金面上项目等。主要研究方向为基于微流控芯片平台的器官仿生模型的构建与机制研究,并应用于药物分析、新药开发等领域,以器官结构和微环境的模拟、形态建成和生物功能的体外重现为目标,进行体外仿生技术的开发。梁琼麟 教授清华大学本文通讯作者,清华大学化学系长聘教授,教育部长江学者特聘教授,研究方向以微流控芯片及其与质谱、光谱联用分析技术为基础,发展生命分析与药物分析新方法,开发生物医用新材料新器件,发明器官类器官芯片新模型,致力于服务国家药品质量与安全、新药创制以及中药现代化研究与开发。近年来重点聚焦于器官类器官芯片、单细胞亚细胞分析及基于质谱的多组学分析等。曾主持完成国家重大科技专项第一个微流控芯片药物研发关键技术项目,在器官芯片核心关键技术及血管、肝、肾、肠等器官芯片模型研究方面取得重要进展。以通讯作者在 Nat. Protoc., Adv. Mater., Anal. Chem., Lab Chip 等重要学术期刊上发表 SCI 论文 200 多篇,发明专利 30 余项。部分研究成果已在制药企业、临床医院得到广泛应用,曾合作获得国家科技进步二等奖 3 项。相关期刊
  • 大连化物所利用类器官芯片建立人体肝脏-胰岛互作
    近日,中科院大连化学物理研究所研究员秦建华团队首次利用类器官芯片,建立了人诱导多能干细胞(hiPSC)来源的肝—胰岛类器官互作体系,在体外模拟人体肝脏—胰岛轴及其在生理和病理条件下的糖刺激响应,突破了现有传统研究模型的局限,为糖尿病等复杂代谢性疾病研究和新药发现等提供了新策略和新技术。相关研究发表于《先进科学》。  尽管目前已有细胞和动物模型用于糖尿病研究,但仍缺少能够反映人体复杂器官间关联作用的研究体系。研究中,秦建华团队将类器官与器官芯片前沿技术相结合,特色性构建了一种由人多能干细胞衍生的肝—胰岛类器官互作体系。在分区设计的微阵列芯片上实现了肝、胰岛类器官的动态培养和相互作用研究,类器官功能维持长达一个月。  研究发现,这种共培养体系有利于维持肝和胰岛类器官的活性,并促进肝和胰岛类器官的分泌功能增强,提高器官特异性的功能基因和蛋白表达。转录组分析显示,该体系中肝类器官P450酶代谢通路和胰岛类器官中的糖酵解/糖异生通路表达升高,提示这种体系有助于提升肝和胰岛类器官的糖调控功能。  后续,糖耐量试验结果显示,在进餐后血糖浓度条件作用下,肝脏类器官对糖的利用率升高,胰岛类器官的糖刺激后胰岛素分泌功能增强。当进一步施加高糖浓度条件后,肝和胰岛类器官出现明显的线粒体损伤和葡萄糖转运功能下降等异常改变。结果提示,这种肝—胰岛类器官互作体系可反映类似人体生理和病理情况下的血糖调控特点,并模拟2型糖尿病的主要病理特征。团队进一步在该体系中加入常用降糖药二甲双胍,显示该药物可明显改善由高糖条件引起的肝和胰岛病理损伤,提示这种新型类器官互作芯片体系在疾病模拟和药物评价等方面的可行性和应用前景。  相关论文信息:https://doi.org/10.1002/advs.202103495
  • 克隆器官?类器官的应用
    类器官是一种三维多细胞结构,作为一种体外模型,类器官可以代替动物模型模拟器官中发生的情况,目前类器官已成为基础和应用研究中越来越重要的模型。这种体外模型可以模拟原始器官在体内环境、结构、分化等方面的功能,因此可以广泛应用于干细胞、药理学、疾病病理、再生医学等研究。例如,作者为筛选得到肠道类器官模型最适合的透明化方法,分别用多种不同的透明化方法,对DAPI、蔗糖酶、鬼笔环肽标记的肠道类器官模型进行标记观察[1],从而筛选出最适合该模型的透明化及成像方法,以对肠道吸收、疾病等相关的研究提供帮助。探索单个细胞的行为对于复杂过程的研究(如早期的细胞传播、癌症转移等)至关重要。作者通过将乳腺类器官的原位移植与uDISCO的方法相结合[2],清晰观察到正常乳腺上皮扩散到周围基质中,这将有益于乳腺发育和肿瘤进展等相关研究。不仅如此,目前已有多种类器官模型广泛应用于健康、肿瘤等组织研究中。对类器官进行 3D 成像不仅可以对培养环境中细胞形态、类型、组成和细胞内过程提供真实的可视化结果,也可代替动物模型模拟原始器官在组织层面为药理学、疾病病理、再生医学等多种学科提供研究模型。 参考文献:[1] Lallemant L, Lebreton C, Garfa-Traoré M. Comparison of different clearing and acquisition methods for 3D imaging of murine intestinal organoids. J Biol Methods. 2020 Dec 28 7(4):e141. doi: 10.14440/jbm.2020.334. PMID: 33564693 PMCID: PMC7865078.[2] Lagoutte E, Villeneuve C, Fraisier V, Krndija D, Deugnier MA, Chavrier P, Rossé C. A new pipeline for pathophysiological analysis of the mammary gland based on organoid transplantation and organ clearing. J Cell Sci. 2020 Jun 23 133(12):jcs242495. doi: 10.1242/jcs.242495. PMID: 32467329 PMCID: PMC7328142.点击以下链接,查看往期回顾透明DISCO:透明化方法的缩写里究竟藏着多少秘密之第一期Cubic组织透明化使3D成像变得更简单3D全器官染色如何实现?主动式染色!SmartLabel!组织透明化染色、大组织3D荧光成像科研服务想要了解更多信息请联系021-37827858或13818273779
  • 国内油气管道检测产业投入不足
    &ldquo 11· 22&rdquo 中石化输油管道泄漏爆燃事故后,涉猎国内油气管道检测的多位行业人士告诉《第一财经日报》,尽管这类管道已在我国有10万公里左右的布局,但检测产业的投入显得不足。  辽宁沈阳一家清管器公司销售人员杨先生就对记者说,管道内油气泄漏的检测有不少方法,但基本可归纳为人工巡线、内部检测、外部检测等三类。所谓&ldquo 人工巡线&rdquo ,顾名思义是通过人力的方式,对油气管道进行定期检查和巡视,目前国内的石油公司基本都会采用这种方式,而巡线人员既有专职队伍,也有服务外包。当然,有的国外公司开发出了航空测量与分析系统(把装置装在直升机上,并通过飞行巡线来检测),但这种装置目前在国内极少。  而从内部检测来看,清管器的使用也较普遍。上述杨先生表示,普通的清管器,中国有十多家核心生产企业,而且该类技术较简单。当在一条油气管道建完后,相关人员通过运用清管器,则可以将管道内的积水、轻质油等腐蚀性物质清除出来。当然,部分管道运营了一段时间后,再使用清管器来做清理的做法也存在。  另一方面,虽然清管器可能有十多亿元的市场容量,但我国最先进的还只是&ldquo 漏磁式&rdquo 清管器(即通过永久磁铁来磁化管壁,而管壁内外的损伤、泄漏等部位再通过传感器进行统计),这类技术的缺点是,漏磁信号或传感器本身会受管道的压力、所在环境等影响,缺乏灵敏度。而在海外,更好的检测技术则是在管道内放置一个机器人,并行走于整条管道,拍摄及记录相应的漏点,再进行数据的储存与处理,让维护人员更加清晰地了解原油泄漏状况,便于及时处理。  就外部检测,则有流量法、压力法及光纤法等等。流量法和压力法在国内很常见。有媒体报道称,11月22日的中石化青岛爆燃事故当天凌晨2点40分,中石化管道储运公司潍坊输油处的监测漏油设备就显示,东黄复线黄岛出站压力迅速下降。在无跳泵的情况下,这就是漏油信号。而这就是所谓的&ldquo 压力法&rdquo 检测。  一家做外部检测的解决方案企业负责人林先生则对本报记者说,上述两种检测,有的需要对管道钻孔,有的则不钻孔。如钻孔,则对管道有一定的破坏。还有一个问题是,一般油气管道公司会在管道运行的前几年采购传感器或采集仪,用上述方式监测、检查管道,但运营后期的检测投入就减少,这会带来一定的隐患。  而目前,市场上还有一种光纤检测手段,尽管国外有不少管道公司在使用,但在中国有一定的推广难度。光纤检测,就是在油气管道上铺一段光纤,只要有泄漏点,就会马上被发现,其精度相比前两种方式则更高一些。&ldquo 而且,这类技术其实主要掌握在华人手里,如日籍华人做得就不错,加拿大等也有华人在做。&rdquo   但林先生说,目前光纤法的最大掣肘则是在服务报价上。假设以30公里的油气管道来计算,施工费用可能在60万元左右,而光纤设施的价格约为每米2元钱(30公里约6万元),因而总服务价格在66万元上下。但如果是流量法的话,30公里投入十多万元,要比光纤法便宜。而且,光纤安装通常要在管道设计的时候进行,这要比油气管道建完后再布置光纤会更节省成本,也减少麻烦,不过这需要设计院和石油公司配合,目前很难实现。
  • 镁伽生物类器官试剂盒助力高效培养类器官
    类器官是指利用成体干细胞或多能干细胞进行体外培养而形成的具有一定空间结构的组织类似物,其能够真实模拟人体组织结构及功能并长期稳定传代培养。近年来类器官在精准医疗、再生医学、药物开发等领域展现出独特优势,成为各大期刊谈论的热点话题。2022年2月,美国哈佛大学和麻省理工大学的研究人员曾发表关于“人脑类器官对自闭症的研究”论文[1],研究人员通过使用人脑类器官进行实验,发现了不同风险基因对脑细胞的影响,表明不同的自闭症风险基因影响了不同类型的神经元发育或形成,且风险基因都影响了抑制性的γ-氨基丁酸神经元和深层兴奋性神经元。该实验为自闭症的临床研究和治疗策略提供了新思路,也展现了类器官在科研领域的探索和应用。 风险基因在培养的皮质类器官中的表达[1]镁伽生物类器官整体解决方案镁伽生物布局干细胞治疗和基于类器官的药物筛选领域,可提供肿瘤/组织、iPSC定向分化成类器官的整体化解决方案,覆盖多种正常类器官(心脏、脑、血管、小肠)以及超过10种肿瘤类型。实验数据表明,使用镁伽生物类器官试剂盒培养的类器官能够重现真实器官的部分生理功能,可应用于干细胞与发育、再生医学、疾病研究及精准医疗等多个领域,为疾病建模和药物筛选提供强大的平台支持。 镁伽AI图像识别技术测定心脏类器官电生理信号镁伽生物试剂盒助力高效培养类器官镁伽生物心脏类器官试剂盒镁伽生物心脏类器官试剂盒支持构建人多能干细胞高效分化成心脏类器官,支持在超低吸附的界面上使iPSC形成胚样体,使用简单的方案就可以构建正在发育的心脏的仿生模型,有助于研究心脏发育过程中的分子过程,以及开发和测试针对心脏疾病的新药。培养实验流程本试剂盒可支持培养24个心脏类器官,实验中先将iPSC细胞悬液在低吸附板上培养形成胚样体,然后将胚样体按照试剂盒使用要求定期更换培养基,分化开始的第9-13天内可得到能自主波动的、具有腔室结构的心脏类器官,可有效缩短类器官培养时间,培养成功率高达90%以上。 镁伽生物试剂盒培养的自主搏动的心脏类器官钙离子流变化钙离子流调控心肌收缩和舒张,维持心脏的正常功能。当心脏出现病理性变化时,钙离子流的异常也会导致心肌功能的异常,研究心脏钙离子流的变化对于心脏疾病的诊断和治疗具有重要意义。实验表明,镁伽生物培养的心脏类器官的钙离子流变化结果与正常心脏跳动时钙离子变化相似,可用于研究钙离子对心肌功能的作用机制。 镁伽生物培养的心脏类器官的钙离子流变化免疫3D荧光染色为了评估类器官的细胞特异性,可进行多谱系细胞荧光染色。通过荧光免疫染色,能够发现心脏类器官中腔体发育和心肌细胞特异性标记物TNNT2的表达,再进一步用CD31免疫染色,确认血管类似结构的形成。结果表明,镁伽生物试剂盒培养的心脏类器官具有接近其体内对应物的功能特性。 镁伽生物培养的心脏类器官的免疫3D荧光染色镁伽生物人脑类器官试剂盒镁伽生物人脑类器官试剂盒,通过hPSC诱导分化形成脑类器官,采用无血清细胞培养基系统,可体外构建出具备三维结构、能模拟人类大脑发育过程中的细胞间相互作用的脑类器官。培养实验流程本试剂盒通过四阶段分化方案使人多能干细胞(hPSC)最终分化为脑类器官:① hPSC 分化成胚状体;② 原始神经上皮的诱导形成;③ 脑类器官初步扩增;④ 脑类器官成熟化。经过一段时间的培养成熟后,使用该试剂盒生成的人脑类器官具有脑皮质样区域,如脑室区、室下外区、中间区、皮质板等,这些形成的区域与在体内观察到的分层方向相似。 镁伽生物试剂盒培养的人脑类器官镁伽生物人肠类器官试剂盒人体肠道类器官可作为研究肠道发育和细胞生物学、肠道炎症、肠再生、微生物相互作用、疾病建模、药筛的模型系统。本试剂盒适用于以多能干细胞(包括ES、iPSC等)为来源的肠道类器官的分化,经实验培养的肠类器官可以冷冻保存,也可以定期更换特定培养基进行长期维持培养。培养实验流程肠类器官试剂盒是一种无血清细胞培养基系统,通过三个阶段进行细胞分化,即内胚层、中/后肠和小肠分化为人小肠类器官。通过试剂盒可以将人多能干细胞(hPSC)培养诱导成内胚层、中/后肠球体和可以用来进行长期培养或冻存的小肠类器官。 镁伽生物试剂盒培养的人肠类器官 研读小结人类器官的研究是生物学研究的重要分支之一,其不仅可以模拟器官组织的发生过程及生理病理状态,也可以帮助我们更好的理解生命的各个维度,因而在基础研究以及临床诊疗方面具有广阔的应用前景。扫码领取镁伽类器官产品详细资料参考文献:[1]Paulsen B, Velasco S, Kedaigle AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022 602(7896):268-273. doi:10.1038/s41586-021-04358-6.
  • 中外类器官在环境毒理的应用(中脑类器官为例)
    (一)产业化方面44岁的贝克罗莱那大学教授Wilson描述了体外生物再生的第一次尝试,他证明了分离的海绵细胞可以自我组织以再生整个生物体,从1907年至今,类器官的发展历程不断获得突破。类器官技术的产业化方面国外起步较早,多家知名的类器官技术公司相继诞生,如美国的HesperosInc. 英国的Kirkstall Ltd. 美国并陆续将人体器官芯片送往外太空进行实验,以观察地球重力对脑细胞及其认知功能的影响。其中有企业也成功将类器官技术应用于新药研发、疾病诊断等领域,并取得了显著成果。相较于国外,中国在类器官技术的产业化方面起步较晚。直到2019年前后,中国才相继出现以研发类器官试剂,类器官构建等工业企业。(二)科研方面-环境毒理中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室关于《环境毒理学中疾病特异性体外模型重要性》的文章,发表于2023年12月。文章摘要与核心观点体外模型:环境毒理学是研究环境化学物质对人类健康的影响,考虑已有疾病的人群对环境污染物的敏感性可能更高,传统的疾病特异性动物模型存在种间差异,可能无法准确模拟人类疾病。体外模型对于模拟疾病和评估毒理学至关重要,可以更接近地复制整个生物体的环境条件和复杂性。疾病特异性2D iPSC模型:iPSCs(诱导多能干细胞)能够分化为人体中的多种细胞类型。通过重编程成人细胞,避免使用人类胚胎的伦理问题。可用于疾病建模、潜在治疗开发和药物测试。疾病特异性类器官模型(Organoids):类器官是实验室中培养的3D器官或组织的微型版本。包含多种细胞类型,能够自我组织形成类似原始器官的结构。可用于研究癌症、神经退行性疾病和遗传疾病。疾病特异性器官芯片模型(Organ-on-a-Chip):微流控细胞培养装置,复制人类器官和组织的结构和功能。与传统的单层细胞培养不同,器官芯片创建3D组织结构,更接近体内环境。可用于高通量药物筛选、毒理学研究和疾病建模。结论:尽管人类基础和动物模型的互补使用是理想的,但体外生物工程疾病模型有望加速药物开发、降低成本,并提高研究的临床转化。美国印第安纳大学,辛辛那提儿童医院医学中心使用《人类中脑类器官微生理系统来模拟产前全氟辛烷磺酸(PFOS)暴露影响》的研究文章,发表于2024年7月。文章摘要与核心观点PFOS是一种在多种环境中检测到的合成化学物质,与人类中枢神经系统(CNS)的功能障碍有关。但是,由于缺乏相关的人类模型,PFOS暴露的神经毒理学在很大程度上尚未得到充分研究。本研究报道了生物工程化的人类中脑类器官微生理系统(hMO-MPSs),以模拟胎儿大脑对多种同时发生的PFOS暴露条件的反应。研究了PFOS暴露对神经活动、神经发育、神经炎症的影响,并使用神经功能、解剖和分子测试来评估PFOS的神经毒性。主要发现:PFOS暴露对hMOs的神经活动有初始的增加和随后的减少效应。PFOS暴露损害了神经发育,减少了神经前体细胞和多巴胺能神经元的数量。PFOS诱导了神经炎症,增加了活性氧(ROS)的产生和星形胶质细胞的激活。PFOS暴露导致神经元凋亡和神经突密度降低。结论:研究提供了PFOS对人类大脑功能和发育影响的宝贵见解,并展示了hMO-MPSs在模拟污染物对功能性神经障碍影响和进行环境毒素发育毒性研究方面的潜力。(三)前景与展望近年来,中国政府也加大了对类器官技术的支持力度。通过出台相关政策、设立专项基金等方式,鼓励企业和科研机构开展类器官技术的研发和应用。南方财经7月31日电,上海市人民政府发布加强本市临床研究体系和能力建设支持生物医药产业发展的实施意见,意见指出推动人工智能、组学技术、类器官等前沿技术在临床研究中的应用。中国类器官技术市场同样具有广阔的发展前景。随着技术的不断成熟和政策的持续支持,预计未来几年中国类器官技术市场将迎来爆发式增长。同时,中国丰富的临床样本资源和庞大的市场需求也将为类器官技术的发展提供有力支撑。附:常用的三大毒理学数据查询网站参考文献:1.Francesco Faiola,Nuoya Yin, and Renjun Yang. Environmental Toxicology: The Importance of Disease-Specific In Vitro Models. Environment & Health2.C.Tian, H. Cai, Z. Ao, et al., Engineering human midbrain organoid microphysiological systems to model prenatal PFOS exposure, Science of the Total EnvironmentKirkstall Quasi Vivo类器官芯片微生理系统:又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。
  • 【应用】从3D到类器官技术的研究了解一下-Molecular Devices
    从3D到类器官技术的研究了解一下 目前随着微流控技术在生物学的应用,利用微流控技术和3D培养技术,能构建出细胞培养的微环境及活组织培养所需的机械结构和微环境,并能实现药物的梯度浓度变化。利用这些技术能够实现类似于正常器官组成的微型器官结构,这种方法或结构称为“芯片上的器官”(organs-on-chips)或“类器官”。 类器官模型是一种3D(三维)细胞培养系统,其与体内的来源组织或器官高度相似。这些3D系统可复制出已分化组织的复杂空间形态,并能够表现出细胞与细胞以及细胞与基质之间的相互作用。理想状态下,类器官与体内分化的组织具有相似的生理反应。这不同于传统的2D(二维)细胞培养模型,后者在物理、分子和生理学等特性上通常与来源组织的相似性很低。 MD的ImageXpress Micro高内涵成像系统具有高性能的3D分析工具。可以实现软件自动在三维层面识别细胞,并自动进行三维结构重构,并在重构的三维结构中进行细胞的识别和分析。只需要根据对照或某一个实验结果进行设置并重构,该设置能够自动应用到所有的孔和所有的板数据,无需手动反复设置。其具有的空间细胞的分割算法,能够在空间上精确识别每一个细胞和亚细胞结构的空间定位、分布,以及与本细胞、临近细胞的关系等,从而准确获得各种三维信息。扫描下方二维码了解更多
  • 器官芯片革新产品Omi,小到可放培养箱,薄到可放显微镜
    点击此处或上方图片,可观看Omi视频从没见过这么“多才多艺”的器官芯片平台。点击此处或图片进入产品详情页一个培养箱可放6个OMIOMI,可用于多种器官芯片模型(肝脏、肠道、皮肤等),其卡槽设计,兼容几乎所有类型的器官芯片,灌注和循环等培养操作均可以自动完成,个头只有手掌大,可同时将6个OMI串联(或并联)放入培养箱(40cm * 40cm),每个OMI带有4个4ml的储液池,自带电池续航达到了2小时,支持网页和平板远程无线控制,其数据可以存放至云端,让您告别数据丢失。(通用型微流控芯片卡槽)(培养箱里的Omi)OMI可以单独使用,也支持多个OMI串并联使用,例如使用两个OMI对一块器官芯片进行灌注,可以用于模拟液/液界面或血脑屏障再生。(两个Omi联合培养使用)OMI支持流程自动化,所有操作均可设定程序自动完成,可以完成诸如灌注、循环、采样等多种流体控制实验。(试剂循环控制的程序界面)OMI应用领域将多个OMI串并联使用,可以完成一些复杂器官的建模,同时也是药物发现(如ADME-Tox)的理想平台,联系我们,我们免费提供相关white paper和应用文档。应用方向:血管再生、癌症药物发现、液体/液体界面、血脑屏障BBB、肠道芯片、肺芯片、心脏芯片。OMI规格参数手掌大小的OMI,重量不到800g,40cm * 40cm的培养箱便可以放下6个OMI,可轻松从培养箱转移至显微镜下做细胞成像或细胞分析,其两个小时的续航支持完成大多数器官培养。更多参数需见datasheet,欢迎联系我们!
  • 大鼠气管狭窄对能量代谢和呼吸的影响
    -大鼠气管狭窄对能量代谢和呼吸的影响-关键词:塔望科技,动物能量代谢监测系统,全身体积描记系统,阻塞性睡眠呼吸暂停,气道阻塞,导致内分泌类疾病,肥胖症,糖尿病,代谢类疾病,大小鼠能量代谢监测系统...论文摘要阻塞性睡眠呼吸暂停(OSA)病人,经过治疗后,代谢生理健康还是不能恢复。在成功移除大鼠气管阻塞物(OR)后,维持呼吸稳态的同时,伴随有体温调节和能量代谢的异常。本研究比较了气道阻塞(AO)和轻度气道阻塞(mAO)移除后的呼吸稳态与能量代谢。结果显示,移除气管堵塞物后大鼠进食量永久性增加。同时,血清胃饥饿素、下丘脑促生长素受体1a(GHSR1a))和磷酸化Akt比率升高。 其中PI3K/Akt 通路与正常代谢密切相关,该通路异常会导致过度肥胖、胰岛素耐受和II型糖尿病。研究表明,为达到代谢健康状态,阻塞性睡眠呼吸暂停(OSA)患者需要终生注重饮食和内分泌健康。实验计划实验结果图A和B气管直径,对照组C:1.81±0.1mm,气道阻塞组AO:1.04±0.1mm,轻度气道阻塞组mAO:1.19±0.12mm,阻塞物移除组OR:1.87±0.11mm图C气道阻力,AO和mAO组气道阻力分别增加71%和35%。图D呼吸频率。图E潮气量。图F分钟通气量,在室内空气呼吸,AO和mAO组分钟通气量分别增加294%和64%,而OR组与对照组没有明显差别。图G二氧化碳敏感性,AO和mAO组二氧化碳敏感性分别增加59%和25.5%,而OR组与对照组没有明显差别。图A,相对对照组,AO、mAO和OR组的进食量分别增加50.9%、20%和10.7%图B,AO和mAO组白天和黑夜进食量均增加,OR只是在黑夜进食量增加。图C图D图E图F,只有AO组每次进食量增加,进食次数差异均不明显。进食量增加主要是由于每次进食时间延长,再加上夜间“微进餐”(micro meals)图G和图H,AO、mAO和OR组的血清胃饥饿素和GHSR-1a明显增加图I:AO、mAO和OR组的p-AKT/AKT比率分别上升25%、16%和15%图A和D,AO组和mAO组的能量消耗分别增加26.5%和10.2%。图B和C,能量消耗增加与氧气消耗量和二氧化碳产生量增加有关。图E图F和图G,AO组的活动量和体温明显降低。参考文献Yael Segev , Haiat Nujedat1, EdenArazi , Mohammad H.Assadi & ArielTarasiuk.”Changes in energy metabolism and respiration in diferent tracheal narrowing in rats” [J].Scientifc Reports. (2021) 11:19166塔望科技提供的相关仪器方案 大鼠全身体积描记系统可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。动物能量代谢监测系统主要用于实时监测和记录小动物代谢运动相关指标,定性定量测量分析动物行为活动及其与呼吸代谢的相互关系,广泛应用于营养、肥胖、糖尿病、心血管等代谢相关性疾病研究。可选择参数包括能量消耗,食物和水分摄取,取食和饮水模式,空间位置,总的活动量和转轮次数,体重,心率,体温及自动化的行为分析等,所有数据都可同步化储存到计算机内小动物麻醉机吸入式动物气体麻醉机,将挥发性麻醉剂或具有麻醉性的气体,途经动物的呼吸道进入体内产生麻醉效果。其麻醉起效快并且复苏快、深度易控制、动物的发病和死亡率低、已被全球科研工作者和宠物临床医师广泛认可和应用。END
  • 类器官技术:赋能新冠病毒研究,类器官准确分装涉及哪些步骤?
    经过十余年的发展,多种器官的类器官得以在体外构建成功,类器官也为很多疾病提供了优良的体外模型。恰逢 COVID-19 流行,类器官也被用于研究 SARS-CoV-2 的致病机理研究及药物筛选。对此,Yuling Han 等人对人类类器官模型在 SARS-CoV-2 感染领域的应用进行了综述。2009 年,荷兰 Hubrecht 研究所的 Hans Clevers 团队首次在体外将肠道干细胞培养成具有类肠的隐窝状和绒毛状上皮区域的三维结构,即小肠类器官,由此开启了类器官的研究[1]。自那以后,类器官研究步入了高速发展期,经过十余年的发展,已有多种类器官在体外构建成功,包括:肠、胃、视网膜、脑、肝、肾、肺、胰腺、心脏、呼吸道、血管以及胎盘类器官等(图1)。作为一种前沿的科研方法,类器官技术已被应用于疾病模型构建、药物发现、个性化药物筛选、药敏检测、发育生物学、病理学、细胞生物学、再生医学及精准医学等领域。相较于 2D 培养的细胞,类器官能更好的模拟体内生理特征,更适合用于研究细胞间通讯及形态发生。另外,相较于动物模型,类器官更适合用于高通量筛选,并且具有更高的可操作性。类器官的构成来源主要包括两种:一种是人类多能干细胞(human pluripotent stem cells, hPSCs),包括胚胎干细胞(embryonic stem cells, ESCs)、诱导多能干细胞(induced pluripotent stem cells, iPSCs)等;另一种是成体组织。两者在可获得性、可编辑性、成熟度和多样性方面各有利弊。理论上,hPSCs 具有无限的增殖能力和在所有三个胚层中产生类器官的发育潜力,并且 hPSCs 能轻松地扩大培养,用于大规模研究,比如药物筛选及代谢分析。相比之下,成体类器官自我更新能力有限,这就限制了它在大规模研究中的应用。另外,hPSCs 来源的类器官在基因编辑方面更易达成,便于研究单个变异在病毒感染中的生物学功能。成体类器官的优势在于其良好的成熟度,这是 hPSCs 来源的类器官所不具备的,大多数 hPSCs 衍生的类器官仍然具有胎儿或新生儿的特征,仍需要做更多的工作来进一步改善其成熟状态。图1 不同来源的类器官发展时间线[2]2019 年底暴发的新冠疫情迅速席卷了全球,严重威胁了全球人类的生命安全。SARS-CoV-2 不仅引起严重的呼吸道疾病,还会损坏大脑、心脏、肝、肾、肠道及胰腺等器官,引起诸如精神、认知及身体障碍、静脉血栓、心肌炎、心力衰竭、急性肾损伤、肝损伤及急性脑血管疾病等并发症(图2)。因此,科研人员迫切需要合适的体内及体外模型来研究 SARS-CoV-2 感染、病理生理学及药物和疫苗的筛选。由于类器官具备上文所提及的各种优势,并且多种器官的类器官被成功构建,所以类器官被广泛的应用于 SARS-CoV-2 的研究。图2 COVID-19 患者不同器官并发症[2]呼吸系统类器官SARS-CoV-2 主要靶向呼吸系统的上皮细胞,引起患者的严重咳嗽、过度粘液分泌及呼吸短促等。为了研究病毒感染后机体的病理改变,筛选潜在的治疗策略,科研人员构建了肺泡、呼吸道及支气管类器官。Shuibing Chen 团队利用 hPSCs 来源的肺泡类器官,从 FDA 批准的药物中筛选到了 3 种 SARS-CoV-2 进入抑制剂:伊马替尼(imatinib),麦考酚酸(mycophenolic acid)以及盐酸米帕林(quinacrine dihydrochloride)[3]。另外,肺泡类器官感染实验表明 SARS-CoV-2 受体 ACE2 主要表达在二型肺泡上皮细胞(Type 2 alveolar epithelial cell,AT2 cell)上,并且,AT2 细胞被感染后表现出与 COVID-19 患者肺部相同的特征,包括 Type I/III 干扰素反应,干扰素介导的炎症反应,表面活性蛋白的缺失以及凋亡。成体呼吸道类器官(adult airway organoids, adult AWOs)还可以被用来研究 SARS-CoV-2 突变体的复制动力学特征。通过比较 SARS-CoV-2 感染的支气管类器官(bronchial organoids, BCOs)与其他细胞类型的高通量表达矩阵数据,集落刺激因子 3 (CSF3) 被确定为潜在的药物靶点。综上所述,呼吸系统类器官复现了体内 SARS-CoV-2 感染的特征,可用于 SARS-CoV-2 病理学研究及药物筛选等。肠道类器官COVID-19 患者常常表现出腹泻、呕吐及腹痛等胃肠道症状。肠道类器官则被用于 SARS-CoV-2 相关的肠道病理生理学研究,其中包括 hPSCs 来源及成体小肠类器官(small intestinal organoids, SIOs)、结肠类器官(colonic organoids, COs)及回肠类器官(ileal organoids, ILOs)。hPSCs 来源的 SIOs 和 COs 均能被 SARS-CoV-2 感染,并且表现出超微结构的改变以及强烈的转录反应。事实上,hPSCs 来源的 COs 已经被用于验证 SARS-CoV-2 进入抑制剂的抗病毒效果,并且与肺类器官有相似的表现[3]。这也说明肠类器官可以作为 SARS-CoV-2 感染的疾病模型用于药物筛选。肠道类器官也能很好的复现肠道新冠病毒感染:SARS-CoV-2 和 SARS-CoV 在 SIOs 上表现出截然不同的病毒-宿主互作动力学特征,SARS-CoV 传播迅速但引起的细胞反应更小,而 SARS-CoV-2 虽然复制能力低但能引起更强烈的细胞反应。脑类器官COVID-19 患者会罹患一系列神经症状,严重程度从嗅觉、味觉丧失,记忆丧失到威胁生命的中风。hPSCs 来源的脑类器官包括全脑类器官和脑区类器官,免疫染色发现皮质、海马、下丘脑及中脑均能检测到 SARS-CoV-2 感染,而神经元和星形胶质细胞检测到的则很有限。尽管如此,星形胶质细胞却能促进脑类器官中 SARS-CoV-2 的感染。除此以外,hPSCs 来源的脉络丛类器官(choroid plexus organoids, CPOs)也被用来研究 COVID-19 患者的脑损伤。SARS-CoV-2 在 CPOs 中能引发炎症反应及细胞功能缺陷并伴随着细胞死亡,并且 SARS-CoV-2 能破坏上皮细胞之间的紧密连接,在 CPOs 中引起脑脊液渗漏。综上所述,脑类器官是研究 SARS-CoV-2 感染引起脑损伤的良好体外模型。除了以上提及的几种类器官,肾、肝、扁桃体等类器官也被用于 SARS-CoV-2 研究,在综述里都有详细的描述[2]。前景尽管类器官用作 SARS-CoV-2 疾病模型取得了重要进展,但是还有许多方面需要进一步优化,其中包括给类器官增加免疫细胞及血管系统,利用 3D 生物打印及器官芯片技术进一步模拟人体系统的生理及病理状态,利用单细胞技术深入研究病毒-宿主互作,利用基因组测序及基因编辑技术研究病毒感染时基因型和表现之间的相关性。现有的类器官大部分只含有组织或器官的细胞组分,不含有免疫细胞,而免疫细胞在 COVID-19 的病理生理学及疾病进展方面发挥的作用可能比病毒感染本身更加重要。因此,利用体外类器官和免疫细胞共培养体系能更好的了解被感染宿主细胞和免疫细胞之间的互作,及免疫细胞在组织或器官损伤中的作用。类器官的另一个缺陷是缺乏血管系统。将类器官和血管上皮细胞、周细胞共培养形成一个具备合适空间结构的含血管类器官为进一步开发类器官模型提供了希望。具备免疫细胞及血管的类器官将进一步推动新发病毒性传染病的研究(图3)。图3 血管-免疫-肺泡类器官的开发器官芯片技术是利用微液流装置创建的动态和可控的微环境来培养类器官,适合研究病毒-宿主互作,病毒治疗的耐药性的演变,新型抗病毒疗法的开发以及潜在的病毒发病机制。总结现阶段类器官确实为 COVID-19 疾病模型的构建以及药物筛选做出了贡献,但是由于其缺乏免疫细胞、血管系统及器官间互作,还不能完全替代动物模型。未来,随着类器官复杂化及器官芯片等技术的应用,类器官必将为新发病毒感染的研究做出更多的贡献。在药物研发和政策监管的双重要求下,类器官的出现为更高效、更精准的生命科学研究带来希望。从 2009 年肠道类器官的出现到现在,类器官相关文献数量逐年递增。临床上利用病人肿瘤组织来源的类器官进行体外药敏检测,也发现类器官对现有抗肿瘤药物具有 100% 敏感性以及 88% 的阳性预测值。类器官的高度仿生性使其大大推广了技术研究,以及在转化医学和药物筛选等领域的广泛使用。但目前,类器官应用的的培养和应用面临如何实现标准化和重复性,以及利用自动化来提高培养效率的瓶颈。在工业 4.0 时代,我们希望将智能化、标准化引入到类器官的行业,以降低类器官培养的门槛。为了应对这些挑战,由于化疗药物的副作用比靶向治疗大许多,很多患者担心承受了化疗的副作用,但最后却没有获得好的治疗效果,因而对化疗有种恐惧感。如果能找到一种新的药敏检测方式,可以比较准确的预测化疗药物有效性,会极大减轻患者进行化疗的心理负担。肿瘤类器官药敏试验是正在探索的一种有效且易于普及的药敏检测方式。而如何快速准确的完成类器官药敏检测则是实现这一目标的关键。如下图的药敏检测的流程中,为了达到精准检测的目的,药物的准确添加和类器官的准确分装很重要。下图流程中,由Biomek自动化移液工作站进行类器官的分装,因子添加,配合检测器进行在线检测,利用Echo进行40nL的小体积加药,来达到在线自动化的类器官培养和检测。参考文献[1] T. Sato, R.G. Vries, H.J. Snippert, M. van de Wetering, N. Barker, D.E. Stange, J.H. van Es, A. Abo, P. Kujala, P.J. Peters, and H. Clevers, Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459 (2009) 262-5.[2] Y. Han, L. Yang, L.A. Lacko, and S. Chen, Human organoid models to study SARS-CoV-2 infection. Nat Methods 19 (2022) 418-428.[3] Y. Han, X. Duan, L. Yang, B.E. Nilsson-Payant, P. Wang, F. Duan, X. Tang, T.M. Yaron, T. Zhang, S. Uhl, Y. Bram, C. Richardson, J. Zhu, Z. Zhao, D. Redmond, S. Houghton, D.T. Nguyen, D. Xu, X. Wang, J. Jessurun, A. Borczuk, Y. Huang, J.L. Johnson, Y. Liu, J. Xiang, H. Wang, L.C. Cantley, B.R. tenOever, D.D. Ho, F.C. Pan, T. Evans, H.J. Chen, R.E. Schwartz, and S. Chen, Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589 (2021) 270-275.* 版权声明:未经授权,不得对原有的文字图片等内容进行变动、重新编排或者增加新的内容,贝克曼库尔特生命科学保留在不告知前提下随时更新版本的权利。
  • 兰伯艾克斯|什么是类器官?该如何培养类器官?
    类器官这项1980年代出现的概念沉寂了三十余载,直到近十年才迎来飞速发展。其应用前景远比我们想象的广阔,从精准医疗、疾病建模、药物筛选到再生医学,都是这个“迷你器官”所能发挥价值的领域。 现阶段,类器官技术用于肿瘤伴随诊断已取得不错成果,在肩负患者精准诊疗重任的道路上有望越走越远。同时,随着动物保护主义呼声不断、实验动物价格水涨船高,类器官及器官芯片替代动物试验势在必行,引发众多跨国制药巨头及投资机构的关注。美国在2022年发布FDA Modernization Act 2.0,取消新药临床前进行动物实验的强制要求,并推荐了以类器官技术为代表的非动物的检测手段。✦ 什么是类器官?✦ 类器官(Organoids)一词最早出现于上世纪80年代的学术论文中,这项技术直到2009年才迎来快速发展。类器官是指利用成体干细胞(ASC)或多能干细胞(PSC)进行体外3D培养,形成类似体内器官结构和功能的“微器官模型”,是对早期2D培养细胞的技术革新。2D细胞培养由于无法实现细胞间交流或细胞与细胞外基质的相互作用,存在应用的局限性。类器官培养突破这一难题,高度模拟原始器官的结构,甚至一定程度还原其过滤、排泄、神经链接、收缩功能等。 2009年是类器官技术元年,荷兰科学家Hans Clevers成功从LGR5+的小肠干细胞中培养出了小肠类器官。随后研究不断深入,多种类器官被成功培养,并广泛覆盖各个实体瘤癌种。Hans Clevers成立的Hubrecht Organoid Technology (HUB)是类器官最早的研发中心,HUB技术授权促进了Epistem、Cellesce、Crown Biosciences、STEMCELL Technologies在内的一批类器官公司的涌现。 类器官技术近十年快速发展 类器官技术经过十余年的发展,目前广泛用于癌症患者的个体化用药指导、基础科研、药物开发等。 类器官培养的应用领域非常广泛。首先,它可以用于精准医疗,即通过培养患者自身的细胞或组织来实现个体化的诊断和治疗。例如,在肿瘤研究中,可以通过类器官培养技术对患者的肿瘤细胞进行体外药物敏感性测试,从而为临床治疗方案的选择提供依据。类器官技术应用场景✦ 类器官的发展前景✦ 2021年起我国出台一系列政策推动类器官产业发展。国家科技部把“基于类器官的恶性肿瘤疾病模型”列为“十四五”国家重点研发计划中首批启动重点专项任务,提出类器官技术在未来将有非常大的应用价值和发展前景。我国高度重视类器官行业发展 当前类器官建模成本较高。培养类器官需要基质胶等支持介质、成体干细胞等组织来源、以及细胞因子等生长耗材。✦ 如何培养类器官?✦ 类器官的培养是指在体外培养一组细胞,使其能够自组织形成类似于原始器官的结构和功能。这种培养方式可以用来研究器官发育、疾病模型以及药物筛选等方面。类器官培养的成功与否,不仅取决于培养技术和条件的优化,还取决于培养箱的质量和性能。 兰伯艾克斯生物的LAB-MI二氧化碳培养箱是类器官培养中的一项重要设备。该培养箱能够提供稳定的培养环境,包括恒定的温度、湿度和二氧化碳浓度等,有利于类器官的生长和发育。与传统的培养箱相比,LAB-MI二氧化碳培养箱具有更高的稳定性和可靠性,可以提高类器官的培养成功率。LAB-MI二氧化碳培养箱 在运用类器官培养知识的基础上,结合LAB-MI二氧化碳培养箱的优势,可以进一步提高类器官的生长和分离培养成功率。通过合理调控培养条件,例如细胞密度、培养基成分和培养时间等,可以促进类器官的生长和分化。同时,LAB-MI二氧化碳培养箱的稳定环境可以提供良好的细胞培养环境,保证细胞的健康和活力,从而增加类器官培养的成功率。 类器官培养技术在精准医疗、疾病建模、药物筛选和再生医学等领域具有广阔的应用前景。兰伯艾克斯生物的LAB-MI二氧化碳培养箱作为培养设备,通过提供稳定的培养环境,可以提高类器官的生长和分离培养成功率。进一步结合类器官培养知识,可以更好地应用该技术,推动类器官培养领域的发展和应用。
  • 安徽省安监局下发全省输油气管道安全检查的通知
    为深刻吸取青岛“1122”特别重大事故教训,省安全监管局29号下发紧急通知,要求各地、各有关部门立即对辖区内输油气管道开展拉网式检查,严格落实输油气管道企业安全生产责任制。  通知要求,各级安全监管部门要督促输油气管道企业认真贯彻执行有关安全生产的法律法规和标准,依法严格执行输油气管道建设工程项目安全设施“三同时”制度,加强天然气管道标志、警示标识的设置,对投产时间长、占压情况严重的管线要加强检测,防止因泄漏引发事故。  通知还要求,输油气管道企业要加强与各级安全监管部门和有关部门沟通协调,建立情况通报和信息共享机制,避免在规划和项目审批时出现新的占压,形成新的安全隐患。同时,各级安全监管部门要立即组织对本辖区内输油气管道进行安全检查,全面排查安全隐患,特别是违章占压输油气管道,做到全面排查,不留死角、盲区。对于查出的隐患,要及时下达整改指令,跟踪督查,督促管道单位限期整改。(
  • 预测你的“器官年龄”—— 衡量人体器官老化的血检方法问世
    《自然》杂志12月6日发表的一篇生物科学论文首次提出了一种新方法分析人体器官的老化,其可更好地预测疾病风险和老龄化影响。这项对逾5000人的调查分析显示,其中近20%的人表现出某一器官明显加速老化,这表明可能存在器官特异性疾病,或增加其死亡风险。老化造成组织结构和功能衰败,使大多数慢性病风险快速上升。此前动物研究表明,老化在不同个体之间和同一个体各器官之间都有所不同,但还不清楚这在人类中是否适用以及对老化相关疾病的影响,也不清楚人体器官如何随着年龄发生分子改变。鉴于此,美国斯坦福大学研究团队此次评估了来自特定器官的人类血浆蛋白的水平,衡量活着的人不同器官的老化差异。利用机器学习模型,团队分析了5676名成年人在生命周期中11个主要器官(心脏、脂肪、肺、免疫系统、肾脏、肝脏、肌肉、胰腺、大脑、脉管系统和肠道)的老化情况。在评估器官年龄后,他们发现有20%的人表现出一个器官加速衰老,1.7%的人显示出多器官的衰老。研究团队发现,器官加速老化使死亡风险增加20%—50%,而且特定器官疾病与器官更快老化有关。心脏加速老化的个体发生心力衰竭的风险增加250%。此外,大脑和血管的加速衰老可预测阿尔茨海默病的进展,与磷酸化tau蛋白(该疾病的主要诊断标志物)的预测性一样强。
  • 类器官新用途
    为什么在药物研发中选择类器官?缺乏能够准确代表特定组织和疾病状态的合适体外模型是基础研究和转化研究的重大障碍。这导致了3D类器官的发展,它提供了比2D模型更大的复杂性,并建立了稳定的、与生理相关的模型,可以长时间培养。类器官已经被用来模拟多种组织类型,包括胰腺、肝脏、肾脏、视网膜、大脑和肿瘤,并且已经证明了这些系统在促进我们对复杂系统生物学的理解方面的广泛潜力。类器官在药物筛选、毒性试验、疾病建模和研究胚胎发育方面具有潜力。什么是类器官?类器官是干细胞衍生的自组装3D结构,可以复制 器官的某些特征。类器官由成体干细胞或诱导多能干细胞(iPSCs)产生,诱导分化依赖于细胞粘附分子的不同表达谱和空间限制的谱系承诺。在组织中限制细胞空间或使用生物支架促进干细胞的进一步分化,在类器官的生成中至关重要。来自Engelbreth-Holm-Swarm (EHS)小鼠肉瘤细胞的生物支架,如基底膜提取物,最常用于实验室,并提供环境线索,包括生长因子,鼓励细胞附着并形成类器官结构。小分子在培养基中也被广泛用于指导类器官的生长和分化。利用类器官筛选新化合物类器官可能是药物发现的一个特别有用的领域。从患者来源的iPSCs中产生的类器官已被发现可重现疾病特征,并在新疗法的临床前筛查中有用,以在细胞水平上建立疗效。然而,Pellegrini等人最近的一篇论文对类器官如何用于药物筛选提供了不同的视角。脉络膜丛(ChP)由围绕毛细血管和结缔组织的一层上皮细胞组成,负责产生脑脊液(CSF)。它还在血液和脑脊液之间形成一道屏障,防止循环中的有毒物质到达大脑。ChP位于大脑深处,迄今为止,这使得其结构和功能难以研究。佩莱格里尼和他的团队通过调整从人类iPSCs中生成脑类器官的方案,将BMP-4和CHIR 99021添加到成熟培养基中,建立了ChP类器官。所形成的类器官在立方上皮中富集,并形成含有无色液体的充满液体的腔室,在结构和功能上与脉络膜丛相似。对这种无色液体的分析显示,它与脑脊液非常相似。在结构上,ChP类器官有紧密连接,初级纤毛,广泛的微绒毛,多泡体,以及细胞外囊泡,这些都是ChP的特征。这些类器官有可能预测正在开发的新疗法的中枢神经系统渗透性,以确定一种化合物治疗神经疾病的潜力或其可能的毒性。在体内,脉络膜丛对左旋多巴和多巴胺的通透性不同。ChP类器官也表现出对这些化合物的不同渗透性,前者被运输到类器官中,而后者则没有,这证明了这个3D系统可以用于模拟药物的CNS渗透性的原理证明。2016年,BIA 10-2474的临床试验正在法国进行,BIA 10-2474是一种脂肪酸酰胺水解酶抑制剂,可用于各种神经系统疾病的治疗。试验中有5名参与者患上了严重的急性神经中毒,其中一人死亡。该化合物尚未在动物身上表现出神经毒性作用,但来自人类iPSCs的ChP类器官表现出BIA 10-2474的毒性积累,揭示了该系统在新疗法毒性测试中的潜在用途。类器官和癌症治疗多种不同癌症类型的肿瘤类器官,如乳腺癌、前列腺癌、结肠癌和子宫内膜癌,已经从患者的癌症活组织检查中生成。最近Maenhoudt等人报道了从高级别严重卵巢癌(HGSOC)患者中生成卵巢癌(OC)类器官的方法,该方法采用了Boretto等人(2019)的方法,以改善类器官的建立和生长。这些活检来源的肿瘤类器官表现出与原发肿瘤和复发性疾病相同的表型。它们为OC的发展研究提供了一个有用的模型,还可以用于筛选新的治疗方法,以确定它们对这种类型的癌症的有效性。然而,它们还有另一个潜在用途,那就是个性化医疗。来自不同患者的OC类器官对常规化疗药物如紫杉醇、卡铂、吉西他滨和阿霉素表现出不同的敏感性。因此,它们可以在临床实践中发挥效用,使临床医生能够为个别患者选择最有效的治疗方法。更新:类器官和COVID-19研究自发表原创论文以来,佩莱格里尼和团队使用ChP类器官来了解更多关于COVID-19的信息。这种病毒感染的特征是严重的呼吸道症状,但一些患者也会出现神经系统症状,如头痛、精神错乱和癫痫发作。佩莱格里尼的团队因此检查了SARS-CoV-2或携带SARS-CoV-2刺突蛋白的假病毒粒子对ChP类器官的影响,发现病毒主要感染脉络膜丛上皮屏障细胞,而不是神经元或胶质细胞。这导致上皮细胞损伤,并导致血- csf屏障渗漏。参考文献1.Boretto et al. (2019) Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol 21, 1041. PMID: 313718242.Maenhoudt et al. (2020) Developing organoids from ovarian cancer as experimental and preclinical models. Stem Cell Rep 14, 717. PMID: 322438413.Pellegrini et al. (2020) Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 369, eaaz5626. PMID: 325279234.Pellegrini et al. (2020) SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 27 951. PMID: 33113348这有帮助吗? 是 否 第一个投票!标签:类器官相关产品列表A274862 A 83-01,ALK4、5和7激酶抑制剂 ,≥98%SDS| 价格C125082 CHIR-99021,GSK-3抑制剂 ,≥98%SDS| 价格D126677 DAPT,γ-分泌酶抑制剂 ,≥98%SDS| 价格D133402 地诺前列酮 ,98%SDS| 价格D139352 吗啡肽 ,≥98%SDS| 价格F127328 佛司可林 ,≥98%SDS| 价格G127588 GDC-0068,Akt1 / 2/3抑制剂 ,≥98%SDS| 价格G118956 Gastrin Ⅰ, 人 ,≥97% (HPLC)SDS| 价格A105422 N-乙酰-L-半胱氨酸 ,用于细胞培养,≥99.0%SDS| 价格R106320 维生素A酸 ,98%SDS| 价格S134307 SB 202190,p38 MAPK抑制剂 ,99%SDS| 价格S125924 SB431542,ALK抑制剂 ,≥98%SDS| 价格Y125330 Y-27632 ,98%SDS| 价格
  • 用于糖尿病药物发现的悬滴器官芯片,在一滴悬着的水里养个小器官
    用于糖尿病药物发现的悬滴器官芯片,在一滴悬着的水里养个小器官我们知道,器官芯片(Organ-on-Chips, OOC)一般是多层或者多个腔室的结构,例如皮肤芯片、肺芯片。但这次要和你分享的是一种悬滴式的器官芯片,也就是把微组织放在一滴悬着的培养液里培养,这滴培养液可以晃来晃去,但又不会掉下来,也就是你看到的封面图那样,看起来就像是在一滴悬着的水里养了个小器官。左图是胰岛微组织,右图是在悬滴器官芯片里培养微组织的示意图。这可不是什么不靠谱的设计,这项研究由苏黎世联邦理工学院的帕特里克博士(Dr. Patrick Misun)和瑞士InSphero公司布尔卡克博士(Dr. Burcak Yesildag)一同完成,文献链接放在了文末。左为帕特里克博士(Dr. Patrick Misun),右为布尔卡克博士(Dr. Burcak Yesildag)。这个芯片设计简单但很独特,你看下图,它就一个入口一个出口,再加一个半球形的培养区,芯片底部那滴培养液直接正对着显微镜——这根本就不是在一个密闭腔室里面做实验,是一个十分大胆但又很有创意的设计,它看起来好像不稳定,但这种设计又打破现有芯片设计壁垒,谁说芯片一定要设计成密封好的样子?悬滴器官芯片图示,研究人员使用此芯片能让微组织持续保持在悬滴中。帕特里克说,在这种悬滴里做微组织的药物测试,已经被证实是绝对可靠的,并且是可重复的。在他们的实验里,胰腺微组织会“跑”到那滴培养液和空气的交界处,这时往芯片里灌注少量液体,为微组织提供营养的同时,也将其暴露于药物环境中,然后用处于胰腺微组织正下方的显微镜记录数据。咱再来看看实验数据。当胰腺微组织刚开始暴露在高浓度葡萄糖环境中时,胰岛素的分泌会出现一次爆发性增长,然后在之后的几分钟,分泌的胰岛素会稍降低一些,处于一个持续震荡的状态。这和咱们正常人的调节机制是一致的,而糖尿病患者的这些反应机制是受损的。胰岛微组织在不同血糖浓度下的胰岛素分泌情况,先出现一次爆发增长,随后处于震荡状态。现在利用这个悬滴器官芯片平台,可以在高时间分辨率下观察到这些反应细节,这非常有利于研究糖尿病背后的潜在生物学机制。这分辨率有多高呢?帕特里克说,到目前,他们的平台提供了前所未有的高时间分辨率(2020年)。帕特里克:悬滴已被证明为微组织药物测试提供了绝对可靠和可重复的环境。我们将单个微组织放置在单个液滴中,它们在液滴底部的水-空气界面处沉淀(见图 2)。我们直接通过这些悬滴灌注少量液体,为组织提供营养并将其暴露于药物中。与封闭室中的流动相比,悬滴内的流动液体具有独特的流动模式。我们利用这种特定的流动模式来获得高时间分辨率的分泌曲线。你可能有疑问,他们用的微组织从哪来的?是否能反应人体真实情况呢?事实上,他们使用了真正的胰腺微组织。InSphero公司的布尔卡克博士(Dr. Burcak Yesildag),专门负责从供体器官中制备胰腺微组织,分离胰岛(是分泌激素的微器官,比如胰岛素),并把它们拆分为不同大小和成分的胰岛,再重新组装成标准化3D微组织,这样就保留了胰岛微组织对各种刺激的自然反应,从而保证获得真正有生理意义和可重复的数据。帕特里克说,这些微组织样本越规则,实验结果可重复性就越高。这个研究公开后,很快就有人就关心“能否商用”的话题。布尔卡克回答,这个平台很容易和InSphero其他项目达成合作。帕特里克也表示,现在做的虽只是一个平台原型,但已经实现对单个胰岛的高灵敏测量。不管是学术交流还是工业合作,他们都十分愿意一同优化现有平台,希望这项技术进展能帮助糖尿病研究人员找到新药,并更深入地了解胰岛生物学。下一步研究,帕特里克他们暂定了两个目标:一个是提高实验吞吐量,这也是复合测试(Compound testing)的关键要求之一;另一个是降低实验复杂度,让更多人实验人员也能完成此项实验。测试平台,该平台将帮助糖尿病研究人员找到新药并更深入地了解潜在的生物学机制。带有悬滴的器官芯片平台图示模型图——该芯片使研究人员能够将样本组织保持在悬滴中。您在芯片上使用人体细胞?帕特里克:没错。我们建立了在尽可能类似于活体器官的条件下在体外测试药物的平台。我们的目标是获得生理上有意义和可重复的数据。在这种特殊情况下,我们研究了胰腺微组织随时间的胰岛素分泌。对人体胰岛组织和悬滴内的组织进行采样图 2(左)人类胰岛组织样本。(右)悬滴内的组织。营养物质和药物顺利通过悬滴。样本组织来自哪里?Patrick: 这是我在 InSphero 的同事 Burcak 的问题。对于这个项目,我们进行了出色的合作,其中苏黎世联邦理工学院负责芯片上器官测试的工程部分,InSphero 负责制备微组织。Burcak:确实,我们的互补技能会派上用场。在 InSphero,我们从供体器官制备胰腺微组织。我们获得了分离的人类供体胰岛,它们是胰腺中分泌激素(如胰岛素)的微器官,可调节我们体内的血糖水平。我们拆解不同大小和成分的胰岛,并将它们重新组装成标准化的 3D 微组织。样本组织越规则,这些组织的实验结果就越具有可重复性。这些制造的微组织仍然是天然的吗?布尔卡克:我们的胰腺微组织密切模仿原始人类胰岛的结构,并保持其对各种刺激的自然反应。当暴露于高浓度的葡萄糖时,它们会显示出胰岛素分泌的第一次瞬时爆发。几分钟后,随之而来的是强度稍低但持续良好的胰岛素振荡释放(见图 3)。在糖尿病的情况下,这些反应受损,并且有多种策略旨在恢复健康的胰岛素分泌。研究人员希望以高时间分辨率观察这些细节,以便他们能够更好地了解糖尿病的潜在机制并开发用于治疗的化合物。据我们所知,功能强大的胰岛微组织与 Patrick 的悬滴平台相结合,提供了前所未有的时间分辨率。图表显示随时间推移的胰岛素分泌和相应的葡萄糖水平图 3 微组织在暴露于升高的血糖水平时分泌胰岛素。胰岛素分泌遵循一个非常典型的模式:第一次爆发,然后是脉动的第二阶段。最后一个问题:器官芯片平台是否可以商用?Burcak:微组织很容易用于与 InSphero 的合作项目。帕特里克:目前我们有工作平台原型,我们愿意与学术和工业合作伙伴合作以优化我们的平台。我们的原型使我们能够对单个胰岛进行非常灵敏的测量。我们希望这项技术进步将帮助糖尿病研究人员找到新药并更深入地了解胰岛生物学。在下一步中,我们希望提高实验吞吐量,因为这是复合测试的关键要求之一。此外,我们正在进一步降低操作复杂性,目标是使该系统可供不同实验室的研究人员使用。文献链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201900291
  • 3i类器官动态|1000万!深圳龙岗类器官成果转化重大突破
    #类器官与器官芯片#话题专栏  “如果人体器官出了问题,可以直接换一个新的。”这或许将不再是“科幻片”中的想象,也许将在不远的将来就可实现!  近日,由深圳市龙岗区中医药创新与免疫再生重点实验室研究的《类器官工厂及培养基系统研发》及附带相关发明专利《中药小分子组合物促进胰岛类器官体外成熟的方法》正式签署了1000万元科技成果转化(技术许可)合同。深圳市龙岗区中医药创新与免疫再生重点实验室  深圳市龙岗区中医药创新与免疫再生重点实验室设立在北京中医药大学深圳医院(龙岗),项目的签署不仅是该院首个科技成果转化项目,也是龙岗区卫健系统科技成果转化重大突破,同时也是深圳市卫健系统首个破千万元的临床医学研究转化项目。  独一无二!类器官培养结合中医药元素  “类器官就是人体器官的‘种子器官’,我们结合了中医药现代化的理念,原创性地研发了类器官的地盘技术。”深圳市龙岗区中医药创新与免疫再生重点实验室主任吴芬芳介绍,在这一技术之上,可以“生产”所有人体重要器官。  类器官作为一个新兴的领域,拥有非常广阔的市场前景。2022年,国内推出首部《类器官指导肿瘤精准药物治疗的专家共识》,推动了类器官的临床应用。据了解,类器官的应用领域不仅限于疾病建模,还包括新药开发、精准医疗以及组织和器官再生医学等方面。  “在科研技术成果转化之后,近期应用中,类器官用于精准治疗。”吴芬芳说,在未来远期应用中,如果器官出现问题,那么就可以直接换一个新的,而且不会受到排斥反应的影响。  值得一提的是,吴芬芳和团队研究的《类器官工厂及培养基系统研发》科技项目中结合了中医药的小分子的运用,这样一来,中医药小分子作为类器官培养基的主要成分,为类器官的培养提供了优良完整的生长微环境。  在前期的实验中,吴芬芳和团队运用自研的技术让胰腺类器官在体外存活超过160天。“加入中医药的元素是我们此次科研项目独一无二的特点。”吴芬芳介绍,中医药的元素加入后,发挥了协同作用,也有力促进了器官的生长。  实力“出圈”!深创赛优质项目受到市场关注  说起此次科研项目“出圈”成功转化,吴芬芳坦言:“这离不开龙岗区优良的科技创新环境和区科技创新局的扶持。”  2020年,深圳市龙岗区中医药创新与免疫再生重点实验室在北京中医药大学深圳医院(龙岗)正式成立。对于一个刚刚起步的科技创新实验室来说,优质的硬件是刚需条件。按照相关扶持政策,龙岗区科技创新局给予实验室200万元的扶持资金。“但区里对我们的帮助绝不只是资金支持这么简单。”吴芬芳说。  以此次《类器官工厂及培养基系统研发》项目为例,在龙岗区科技创新局的组织推荐下,该项目在“2023深圳国际高性能医疗器械展”上一亮相便初露锋芒,并进入“深圳医疗科技成果创新与转化路演会”环节,受到了众多资本和企业的关注。  随后,该项目被龙岗区推荐进入2023年第十五届中国深圳创新创业大赛半决赛,以小组第一的成绩入围市决赛,成为龙岗区唯一进入市决赛的生物医药团队组项目。在10月18日的决赛环节,该项目在全市600余个优质项目中脱颖而出,获得前五的佳绩,医院成为市卫健系统唯一获奖单位。  “我们在参赛及路演过程中受到了多家知名医药企业及投资机构关注并主动寻求合作。”吴芬芳介绍,经过多轮洽谈,北京中医药大学深圳医院(龙岗)与广东唯泰生物科技有限公司达成了科技成果转化的共同意向和协议,以成果转化(技术许可)方式,实现了1000万元的科技成果转化。  搭建桥梁!实验室与企业深度对接  事实上,北京中医药大学深圳医院(龙岗)科研创新项目成果的成功转化在龙岗并不鲜见。  今年,深圳市龙岗中心医院与龙岗本土企业婕妤达电子有限公司研发的一款“爱心”型盒式助听器,获得社会各界广泛关注,并已与多家经销单位初步确定了合作意向,将实现从实验室到企业厂家再到走向市场的转化路径。  深圳市龙岗区耳鼻咽喉医院先后获批4项区级重点实验室。其中,龙岗区耳鼻咽喉遗传性疾病基因诊断与治疗重点实验室建立了耳鼻咽喉专业样本库与健康大数据中心,并与香港中文大学(深圳)、深圳国家基因库、华大基因、亚辉龙生物有限公司、瑞圣特电子科技有限公司等知名院校和企业签署合作协议,开展联合研究,促进成果转化。  不难看出,依托各级重点实验室,实现优质科技成果的持续转化正在成为“湾东智芯”的常态,龙岗区“基础研究+应用基础研究+技术攻关+成果转化孵化+科技金融+人才支撑”的科技创新全生态链正在加速形成。  记者从龙岗区科技创新局了解到,今年,龙岗区新认定6家区级重点实验室,截至目前各级重点实验室46家,其中国家级2家、省级4家、市级15家、区级25家。2017年以来,累计扶持各级重点实验室建设资金达4681万元。  同时,今年以来,龙岗区还举办了“湾东智芯创启未来”校企对接交流大会、生物医药产学研用专场交流活动、政产学研用共同推进医疗器械准入创新论坛等10余场活动,不断增加各级重点实验室与企业合作机会,促进构建产学研深度融合的技术创新体系。  龙岗区科技创新局相关负责人表示,接下来,将持续支持区级实验室建设发展,紧抓深圳市推进大运深港国际科教城高质量发展的机遇,加快推动全区高层级实验室建设,为龙岗“创新强区”建设提供有力支撑。
  • 8月30日09:30直播|类器官与器官芯片专场-第六届细胞分析大会
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)仪器信息网将于2023年08月30日-09月01日举办第六届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。大会首日8月30日,特设【类器官与器官芯片】专题会场,12位嘉宾在线分享类器官的构建及流式、细胞成像等表征分析技术的应用!在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023 (点击报名)分会场设置日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术iCCA 2023 交流群 8月30日|类器官与器官芯片主题日程 精彩报告 速览《细胞(类器官)力学芯片研究进展》熊春阳 北京大学工学院 教授【摘要】越来越多的研究表明,物理力学微环境是机体生长发育、结构重建以及功能维持的重要因素,也与疾病的发生发展密切相关。微流控技术既可以在体外精确构建细胞(类器官)的物理力学微环境,也可以实现对细胞(类器官)表型的高通量、精确检测,为类器官和器官芯片研究与应用提供了强有力的工具。本次报告将介绍近期我们在细胞(类器官)力学芯片方面的一些研究进展。安捷伦细胞分析技术在类器官领域的应用林鹤鸣 安捷伦科技(中国)有限公司 产品应用专家【摘要】类器官作为更接近体内真是水平的研究模型,近年来受到越来越多研究者的青睐。类器官的拍照成像,是质控类器官,了解类器官生长情况的最直接手段。 安捷伦提供了长时间,高通量自动化的成像分析方法,同时配合微孔板检测,流式细胞术以及细胞能量代谢等手段,让科研工作者更为深入全面的分析类器官模型背后的科学问题。干细胞与类器官王凯 北京大学 研究员【摘要】干细胞衍生的类器官能够复现人体组织的三维结构和特征,能够用于研究人胚胎发育的过程,构建疾病模型和作为替代性的细胞治疗疗法。Hamilton自动化解决方案在细胞高通量筛选的应用潘晓 哈美顿(上海)实验器材有限公司 应用工程师【摘要】目前有多种细胞培养类型和基于细胞的系统用于基于细胞的试验;从传统的二维(2D)单层细胞到基于支架的3D培养(例如类器官),以及最近的器官芯片Organs-On-A-Chip (OOAC)。在基于细胞的高通量筛选试验中,在培养细胞的同时需要评估大量化合物/条件。这些试验的效率及标准化通常是通过自动化得以实现。自动液体处理系统可以通过控制关键因素确保整个过程的标准化,例如吸液和分液的速度、吸头在孔内的位置、移液步骤中板的倾斜、试剂在板上的温度和工作区域的无菌性。此外,自动化液体处理工作站可以通过96和384移液头显著提高通量,并整合第三方设备进行细胞成像。 在本次网络会议中,主要讨论如何使用Hamilton自动化液体处理工作站满足基于细胞的高通量筛选要求。Application of organoid technology in prostate stem cell and cancer research蔡志伟(Chua Chee Wai) 上海交通大学医学院附属仁济医院 研究员【摘要】In the recent years, we have witnessed the emergence of androgen receptor (AR)-independent prostate cancer (AIPC) with the clinical use of second-generation androgen deprivation therapy. Upon the progression to AIPC, the remaining treatment options are mainly palliative but not curable. Therefore, understanding the cellular origins and dynamics involved in AIPC evolution is crucial for identifying timely treatment strategies for these patients. In this presentation, I will first share with you the invention of prostate organoid technology, which facilitates novel discoveries in prostate stem cell and cancer research. Subsequently, I will talk about how we integrate organoid technology and single-cell transcriptomic analysis to identify novel AR-independent prostate luminal progenitor and cancer subsets. Our findings have highlighted the capability of organoid technology in preserving progenitor potential and tumor heterogeneity. Consequently, continual investigations using organoid technology should yield novel insights into the emergence of AIPCs and identify novel therapeutic targets for AIPC patients.复杂皮肤类器官构建及其应用冷泠 中国医学科学院北京协和医院 正高级/教授【摘要】冷泠研究团队基于空间基质组学技术及其研究成果,创建了一种具有表皮及毛囊附属器、真皮及神经系统的完整细胞极性的皮肤类器官。利用该类器官进行病毒的体外感染,首次为新冠肺炎和脱发后遗症之间的关联提供了证据;进行罕见病治疗研究,实现了该疾病表皮附属器和血管的新生,推动类器官在罕见病治疗和药物筛选中的应用。实时活细胞成像分析在3D器官细胞模型中的应用陆叶舟 赛多利斯(上海)贸易有限公司 生物分析产品应用科学家【摘要】 1. 实时活细胞成像与分析技术介绍 2. 实时活细胞分析促进3D细胞模型培养及应用 应用案例解析:神经肌肉类器官、食管类器官、胰腺导管癌类器官、肾脏类器官、胶质母细胞瘤球体、直肠癌类器官等基于微流控的细胞无标记分选和打印研究陈华英 哈尔滨工业大学(深圳) 副教授【摘要】 微流控芯片在单细胞操控、培养和分析领域具有独特优势,已被广泛用于单细胞分析。本文主要介绍课题组在利用微流控芯片进行单细胞打印、克隆扩增、弹性模量测量和形貌分选方面的最新研究进展。课题组开发的一款集成两个气动微阀门的芯片,可以通过气压控制阀门的闭合程度,进而在单细胞尺度实现细胞大小的动态筛选。前后两个阀门分别控制细胞的尺寸上限和下限,符合尺寸要求的细胞可以在压力泵的驱动下被快速打印到384孔板内,实现每孔一个细胞。打印后的单细胞活性为97.2%。与对照组相比,打印过程未对细胞活性造成影响。此外,课题组还开发了一款集成颗粒分离和压力传感器以进行单细胞弹性模量精密测量的微流控芯片。该芯片可将细胞悬浮液中的杂志分离到侧通道,并使单个细胞在微流道中受挤压变形,同时由压力传感器记录导致细胞变形的压力。通过研究细胞变形量和对应的压力,并结合幂律流变模型,可以计算出细胞的弹性模量和粘度数据。利用该芯片获得了K562和人脐静脉细胞的弹性模量分别是64.2 ± 33.3 Pa 和383.4 ± 226.7 Pa。基于上述技术课题组开发了利用图像实时处理进行细胞大小、形貌和弹性分选的微流控系统,实现了混合细胞群体的无标记高通量分选打印。上述工作为微流控芯片在高通量单细胞分析领域的创新应用提供了实验基础。流式细胞术在类器官研究中的应用于化龙 贝克曼库尔特 高级应用专家【摘要】1流式用于类器官构建 2流式用于类器官质控 3流式用于类器官免疫监测 4流式用于类器官药物筛选TOPMOS类器官高通量药物筛选系统杨根 北京大学 副教授【摘要】本团队开发的肿瘤类器官精准药物芯片筛选(Tumor Organoid Precision Medicine On-chip Screening Platform, TOPMOS)平台可在短时间内高通量培养出大小可控、均一性高的肿瘤类器官,实现高仿生化模拟体内微环境和高精度模拟体内药代动力学,能与现有常规检测设备匹配,实现多药物多浓度的快速药敏测试。类器官多维度多模态显微成像应用游换阳 徕卡显微系统(上海)贸易有限公司 应用专员【摘要】针对类器官成像复杂性,Leica提供全流程需要的设备,从类器官获取,日常培养观察,高清宽场和共聚焦成像再到最后的人工智能大数据分析,徕卡提供全流程成像分析解决方案,助力类器官科研。类器官与器官芯片在细胞分析中的应用与发展陈早早 江苏艾玮得生物科技有限公司/东南大学 副总经理/副研究员【摘要】人体器官芯片并非电子产品,而是一种‘体外的活的人体器官’,简单的说,即科研人员利用人体自身的干细胞,在U盘大小的芯片上制作出微缩的人体器官,以模拟人体相应器官的功能,制造出要用显微镜才能观察到的体外迷你的‘心脏’、‘肝脏’、‘肾脏’等等。人体器官项目正逐渐从研发端走到应用端的“最后一公里”。不仅在药物发现、细胞分析、环境评估、精准医疗、航天医学方面都有器官芯片的应用。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 贵州天然气管网有限责任公司450.00万元采购磁粉探伤仪
    详细信息 湄潭至瓮安天然气输气管道项目无损检测采购公告 贵州省-黔南布依族苗族自治州-瓮安县 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 项目概况 1、建设地点:遵义市湄潭县至黔南州瓮安县。2、项目概况:湄潭至瓮安天然气管道项目是《贵州省“十四五”油气产业发展规划》中规划的省级支线(正安-瓮安-福泉-中缅45号阀室输气管道)的一部分,建设内容包括线路工程和站场工程。本项目输气管道起点为位于遵义市湄潭县黄家坝街道进军村西侧的湄潭末站,终点为位于黔南布依族苗族自治州(以下简称“黔南州”)瓮安县雍阳街道望洞村西南的瓮安末站,管道整体呈南北走向,全线位于贵州省境内,途径贵州省遵义市湄潭县、余庆县以及贵州省黔南州瓮安县。管道沿线新建4座阀室,站内扩建湄潭末站、瓮安末站2座站场。管道线路全长约109.31km,设计压力6.3MPa,管径DN400,配套改扩建湄潭、瓮安分输站,新建截断分输阀室4座,设计输量4.8×108Nm3/a。 招标项目的潜在投标人应在贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/)潜在投标人在获取招标文件时间内未下载电子招标文件(.GPZ格式),将失去投标资格。 获取招标文件。 湄潭至瓮安天然气输气管道项目无损检测项目: 于2023年10月23日9点30分(北京时间)前 递交投标 文件。 一、项目基本信息 项目名称:湄潭至瓮安天然气输气管道项目无损检测 项目编号:/ 采购方式: 公开招标 项目序列号:P52000020230009AX 采购主要内容: 1、建设地点:遵义市湄潭县至黔南州瓮安县。 2、项目概况:湄潭至瓮安天然气管道项目是《贵州省“十四五”油气产业发展规划》中规划的省级支线(正安-瓮安-福泉-中缅45号阀室输气管道)的一部分,建设内容包括线路工程和站场工程。本项目输气管道起点为位于遵义市湄潭县黄家坝街道进军村西侧的湄潭末站,终点为位于黔南布依族苗族自治州(以下简称“黔南州”)瓮安县雍阳街道望洞村西南的瓮安末站,管道整体呈南北走向,全线位于贵州省境内,途径贵州省遵义市湄潭县、余庆县以及贵州省黔南州瓮安县。管道沿线新建4座阀室,站内扩建湄潭末站、瓮安末站2座站场。管道线路全长约109.31km,设计压力6.3MPa,管径DN400,配套改扩建湄潭、瓮安分输站,新建截断分输阀室4座,设计输量4.8×108Nm3/a。 采购数量:1批 预算金额:4500000.00 元 湄潭至瓮安天然气输气管道项目无损检测项目:4500000.00元 湄潭至瓮安天然气输气管道项目无损检测项目: 最高限价:4500000.00元 本项目是否接受联合体投标: 湄潭至瓮安天然气输气管道项目无损检测项目: 否 二、申请人的资格要求: 1. 一般资格要求: 1、投标人具有独立法人资格,有效的企业法人营业执照,且处于有效期内; 2、持有国家质量监督检验检疫总局颁发的中华人民共和国特种设备检验检测核准证(无损检测机构B级或以上),获准从事常规无损检测CG(射线照相检测/RT、超声波检测/UT、磁粉检测/MT、液体渗透检测/PT)等工作; 3、持有省级及以上政府环境保护部门颁发的辐射安全许可证; 4、具有良好的商业信誉和健全的财务会计制度,提供2020年度至2022年度的财务审计报告复印件,财务审计报告应包含资产负债表、利润表、现金流量表及财务报表附注,财务审计报告应盖有会计师事务所单位章和注册会计师的执业专用章,并附会计师事务所的营业执照复印件及执业证书复印件(复印件加盖单位公章),新成立的企业,可提供开户银行出具的资信证明; 5、业绩要求:近年(指2019年1月1日至今,以合同签订时间为准)至少具有三项油气长输管道工程(管径≥DN323.9,压力≥6.3MPa,单项合同长度≥26公里)油气田地面建设项目、长输管线等钢质管道的无损检测业绩(附工程业绩证明材料,如合同协议书、完工证明材料等复印件(招标人重点关注,非资质否决项); 6、项目经理资格:具备国家质量监督检验检疫总局颁发的中华人民共和国特种设备检验检测人员证(无损检测人员),须持有特种设备检验检测人员执业注册证书(注册于投标人单位,包含所需专业及级别),中级及以上职称,同时取得射线照相检测(RT)中级(Ⅱ)及以上、超声波检测(UT)中级(Ⅱ)及以上资格证书;必须为投标人单位正式职工(提供近3个月的社保证明); 7、技术负责人资格:具备有国家质量监督检验检疫总局颁发的中华人民共和国特种设备检验检测人员证(无损检测人员),至少取得射线照相检测(RT)高级(Ⅲ)级及以上和超声波检测(UT)高级(Ⅲ)级及以上资质从业人员资格;持有特种设备检验检测人员执业注册证书(注册于投标人单位,包含所需专业及级别),中级及以上职称;必须为投标人单位正式职工(提供近3个月的社保证明); 8、专业检测人员:具备对应检测项目专业检测人员持有国家质量监督检验检疫总局颁发的中华人民共和国特种设备检验检测人员证(无损检测人员),取得对应检测项目专业中级及以上从业人员资格;持有特种设备检验检测人员执业注册证书(注册于投标人单位,包含所对应检测专业及级别)必须为投标人单位正式职工提供近3个月的社保证明; 9、本次招标不接受联合体形式投标; 10、投标人不得存在以下事件(须提供下列所有条款加盖公章的承诺书,格式自拟): 1)投标截止日投标人在国家企业信用信息公示系统列入严重违法失信企业名单(证明材料包含国家企业信用信息公示系统(www.gsxt.gov.cn)《企业信用信息公示报告》PDF完整版、基础信息页截图、股东及出资信息截图,报告时间需在招标公告发布后); 2)被“信用中国”网站列入失信被执行人名单(证明材料包含“信用中国(https://www.creditchina.gov.cn/)”出具的《信用报告》PDF完整版,报告时间需在招标公告发布之后); 3)2019年1月1日至投标截止日,投标人发生过重大质量、安全事故(依据《生产安全事故报告和调查处理条例》中规定的事故等级划分)(登录国家企业信用信息公示系统(www.gsxt.gov.cn)查询); 4)投标人被责令停产停业、暂扣或者吊销许可证、暂扣或者吊销执照;进入清算程序,或者被宣告破产,或者其他丧失履约能力的情形(登录信用中国(https://www.creditchina.gov.cn/)查询); 5)在招标人及上级单位管理范围内,投标人履行合同时出现过质量或交货问题,并造成过较严重后果;投标人在投标过程中串通投标、弄虚作假等违法行为(登录信用中国(https://www.creditchina.gov.cn/)查询); 6)投标人在中石油(https://www2.energyahead.com/index.html)、中石化(https://mall.epec.com/ecmall/)、中海油(https://buy.cnooc.com.cn)、国家管网公司(https://www2.energyahead.com/index.html)处于被通报、暂停投标处罚期内; 11、如投标人的证明文件提供虚假资料(属违法行为的),确认中标后经查出的,取消其中标资格并追究法律责任。 2. 特殊资格要求: 无 三、获取招标文件 时间:2023-09-29至 2023-10-12(提供期限自本公告发布之日起不得少于5个工作日)每天上午00:00至11:59,下午12:00至23:59(北京时间,法定节假日除外) 地点: 贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/) 潜在投标人在获取招标文件时间内未下载电子招标文件(.GPZ格式),将失去投标资格。 方式: 贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/) 潜在投标人在获取招标文件时间内未下载电子招标文件(.GPZ格式),将失去投标资格。 售价:0.00元人民币(含电子文档) 湄潭至瓮安天然气输气管道项目无损检测项目: 投标保证金额(元):90000.00元 投标保证金交纳截止时间:2023-10-23 09:30:00 投标保证金交纳方式: 银行转账 保证保险 银行保函 合法担保机构出具的担保 开户单位名称:贵州省公共资源交易中心 开户银行:贵州银行股份有限公司贵阳展览馆支行 开户账号:0109001400000182-0002 (特别提示:贵州省公共资源交易系统2020版以银行转账方式交纳的投标保证金,须由投标人在投标截止时间前自行在系统内与参与投标项目进行绑定。未与绑定的,将视为未交纳投标保证金,不能参加投标) 四、提交投标文件截止时间、开标时间和地点(温馨提示:此时间由预约开标场地会后自动带出) 截止时间:(北京时间) 湄潭至瓮安天然气输气管道项目无损检测项目:2023-10-23 09:30:00 地点:贵州省公共资源交易中心网上递交(交易中心网址:http://ggzy.guizhou.gov.cn/) 五、其他补充事宜 采购项目需要落实的政府采购政策:已落实 ppp项目 : 否 简要技术要求、服务和安全要求:详见招标文件 交货地点或服务地点:采购人指定地点 其他事项(如样品提交、现场踏勘等):无 交货时间或服务时间:接招标人通知之日起至完成本项目所约定的全部无损检测服务工作 六、对本次招标提出询问,请按以下方式联系 1. 采购人信息 名 称:贵州天然气管网有限责任公司 项目联系人:刘老师 地 址:贵阳市南明区 联系方式:0851-84776539 2. 代理机构信息(如有) 代理全称:泰禾云工程咨询有限公司 联系人 :孙光力 地 址:贵州省贵阳市观山湖区商业金融区内建勘大厦16楼1-9号 联系方式:0851-85828196-609 3. 项目联系方式 项目联系人:孙光力 电 话:0851-85828196-609 八、附件 采购公告.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:磁粉探伤仪 开标时间:null 预算金额:450.00万元 采购单位:贵州天然气管网有限责任公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:泰禾云工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 湄潭至瓮安天然气输气管道项目无损检测采购公告 贵州省-黔南布依族苗族自治州-瓮安县 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 项目概况 1、建设地点:遵义市湄潭县至黔南州瓮安县。2、项目概况:湄潭至瓮安天然气管道项目是《贵州省“十四五”油气产业发展规划》中规划的省级支线(正安-瓮安-福泉-中缅45号阀室输气管道)的一部分,建设内容包括线路工程和站场工程。本项目输气管道起点为位于遵义市湄潭县黄家坝街道进军村西侧的湄潭末站,终点为位于黔南布依族苗族自治州(以下简称“黔南州”)瓮安县雍阳街道望洞村西南的瓮安末站,管道整体呈南北走向,全线位于贵州省境内,途径贵州省遵义市湄潭县、余庆县以及贵州省黔南州瓮安县。管道沿线新建4座阀室,站内扩建湄潭末站、瓮安末站2座站场。管道线路全长约109.31km,设计压力6.3MPa,管径DN400,配套改扩建湄潭、瓮安分输站,新建截断分输阀室4座,设计输量4.8×108Nm3/a。 招标项目的潜在投标人应在贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/)潜在投标人在获取招标文件时间内未下载电子招标文件(.GPZ格式),将失去投标资格。 获取招标文件。 湄潭至瓮安天然气输气管道项目无损检测项目: 于2023年10月23日9点30分(北京时间)前 递交投标 文件。 一、项目基本信息 项目名称:湄潭至瓮安天然气输气管道项目无损检测 项目编号:/ 采购方式: 公开招标 项目序列号:P52000020230009AX 采购主要内容: 1、建设地点:遵义市湄潭县至黔南州瓮安县。 2、项目概况:湄潭至瓮安天然气管道项目是《贵州省“十四五”油气产业发展规划》中规划的省级支线(正安-瓮安-福泉-中缅45号阀室输气管道)的一部分,建设内容包括线路工程和站场工程。本项目输气管道起点为位于遵义市湄潭县黄家坝街道进军村西侧的湄潭末站,终点为位于黔南布依族苗族自治州(以下简称“黔南州”)瓮安县雍阳街道望洞村西南的瓮安末站,管道整体呈南北走向,全线位于贵州省境内,途径贵州省遵义市湄潭县、余庆县以及贵州省黔南州瓮安县。管道沿线新建4座阀室,站内扩建湄潭末站、瓮安末站2座站场。管道线路全长约109.31km,设计压力6.3MPa,管径DN400,配套改扩建湄潭、瓮安分输站,新建截断分输阀室4座,设计输量4.8×108Nm3/a。 采购数量:1批 预算金额:4500000.00 元 湄潭至瓮安天然气输气管道项目无损检测项目:4500000.00元 湄潭至瓮安天然气输气管道项目无损检测项目: 最高限价:4500000.00元 本项目是否接受联合体投标: 湄潭至瓮安天然气输气管道项目无损检测项目: 否 二、申请人的资格要求: 1. 一般资格要求: 1、投标人具有独立法人资格,有效的企业法人营业执照,且处于有效期内; 2、持有国家质量监督检验检疫总局颁发的中华人民共和国特种设备检验检测核准证(无损检测机构B级或以上),获准从事常规无损检测CG(射线照相检测/RT、超声波检测/UT、磁粉检测/MT、液体渗透检测/PT)等工作; 3、持有省级及以上政府环境保护部门颁发的辐射安全许可证; 4、具有良好的商业信誉和健全的财务会计制度,提供2020年度至2022年度的财务审计报告复印件,财务审计报告应包含资产负债表、利润表、现金流量表及财务报表附注,财务审计报告应盖有会计师事务所单位章和注册会计师的执业专用章,并附会计师事务所的营业执照复印件及执业证书复印件(复印件加盖单位公章),新成立的企业,可提供开户银行出具的资信证明; 5、业绩要求:近年(指2019年1月1日至今,以合同签订时间为准)至少具有三项油气长输管道工程(管径≥DN323.9,压力≥6.3MPa,单项合同长度≥26公里)油气田地面建设项目、长输管线等钢质管道的无损检测业绩(附工程业绩证明材料,如合同协议书、完工证明材料等复印件(招标人重点关注,非资质否决项); 6、项目经理资格:具备国家质量监督检验检疫总局颁发的中华人民共和国特种设备检验检测人员证(无损检测人员),须持有特种设备检验检测人员执业注册证书(注册于投标人单位,包含所需专业及级别),中级及以上职称,同时取得射线照相检测(RT)中级(Ⅱ)及以上、超声波检测(UT)中级(Ⅱ)及以上资格证书;必须为投标人单位正式职工(提供近3个月的社保证明); 7、技术负责人资格:具备有国家质量监督检验检疫总局颁发的中华人民共和国特种设备检验检测人员证(无损检测人员),至少取得射线照相检测(RT)高级(Ⅲ)级及以上和超声波检测(UT)高级(Ⅲ)级及以上资质从业人员资格;持有特种设备检验检测人员执业注册证书(注册于投标人单位,包含所需专业及级别),中级及以上职称;必须为投标人单位正式职工(提供近3个月的社保证明); 8、专业检测人员:具备对应检测项目专业检测人员持有国家质量监督检验检疫总局颁发的中华人民共和国特种设备检验检测人员证(无损检测人员),取得对应检测项目专业中级及以上从业人员资格;持有特种设备检验检测人员执业注册证书(注册于投标人单位,包含所对应检测专业及级别)必须为投标人单位正式职工提供近3个月的社保证明; 9、本次招标不接受联合体形式投标; 10、投标人不得存在以下事件(须提供下列所有条款加盖公章的承诺书,格式自拟): 1)投标截止日投标人在国家企业信用信息公示系统列入严重违法失信企业名单(证明材料包含国家企业信用信息公示系统(www.gsxt.gov.cn)《企业信用信息公示报告》PDF完整版、基础信息页截图、股东及出资信息截图,报告时间需在招标公告发布后); 2)被“信用中国”网站列入失信被执行人名单(证明材料包含“信用中国(https://www.creditchina.gov.cn/)”出具的《信用报告》PDF完整版,报告时间需在招标公告发布之后); 3)2019年1月1日至投标截止日,投标人发生过重大质量、安全事故(依据《生产安全事故报告和调查处理条例》中规定的事故等级划分)(登录国家企业信用信息公示系统(www.gsxt.gov.cn)查询); 4)投标人被责令停产停业、暂扣或者吊销许可证、暂扣或者吊销执照;进入清算程序,或者被宣告破产,或者其他丧失履约能力的情形(登录信用中国(https://www.creditchina.gov.cn/)查询); 5)在招标人及上级单位管理范围内,投标人履行合同时出现过质量或交货问题,并造成过较严重后果;投标人在投标过程中串通投标、弄虚作假等违法行为(登录信用中国(https://www.creditchina.gov.cn/)查询); 6)投标人在中石油(https://www2.energyahead.com/index.html)、中石化(https://mall.epec.com/ecmall/)、中海油(https://buy.cnooc.com.cn)、国家管网公司(https://www2.energyahead.com/index.html)处于被通报、暂停投标处罚期内; 11、如投标人的证明文件提供虚假资料(属违法行为的),确认中标后经查出的,取消其中标资格并追究法律责任。 2. 特殊资格要求: 无 三、获取招标文件 时间:2023-09-29至 2023-10-12(提供期限自本公告发布之日起不得少于5个工作日)每天上午00:00至11:59,下午12:00至23:59(北京时间,法定节假日除外) 地点: 贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/) 潜在投标人在获取招标文件时间内未下载电子招标文件(.GPZ格式),将失去投标资格。 方式: 贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/) 潜在投标人在获取招标文件时间内未下载电子招标文件(.GPZ格式),将失去投标资格。 售价:0.00元人民币(含电子文档) 湄潭至瓮安天然气输气管道项目无损检测项目: 投标保证金额(元):90000.00元 投标保证金交纳截止时间:2023-10-23 09:30:00 投标保证金交纳方式: 银行转账 保证保险 银行保函 合法担保机构出具的担保 开户单位名称:贵州省公共资源交易中心 开户银行:贵州银行股份有限公司贵阳展览馆支行 开户账号:0109001400000182-0002 (特别提示:贵州省公共资源交易系统2020版以银行转账方式交纳的投标保证金,须由投标人在投标截止时间前自行在系统内与参与投标项目进行绑定。未与绑定的,将视为未交纳投标保证金,不能参加投标) 四、提交投标文件截止时间、开标时间和地点(温馨提示:此时间由预约开标场地会后自动带出) 截止时间:(北京时间) 湄潭至瓮安天然气输气管道项目无损检测项目:2023-10-23 09:30:00 地点:贵州省公共资源交易中心网上递交(交易中心网址:http://ggzy.guizhou.gov.cn/) 五、其他补充事宜 采购项目需要落实的政府采购政策:已落实 ppp项目 : 否 简要技术要求、服务和安全要求:详见招标文件 交货地点或服务地点:采购人指定地点 其他事项(如样品提交、现场踏勘等):无 交货时间或服务时间:接招标人通知之日起至完成本项目所约定的全部无损检测服务工作 六、对本次招标提出询问,请按以下方式联系 1. 采购人信息 名 称:贵州天然气管网有限责任公司 项目联系人:刘老师 地 址:贵阳市南明区 联系方式:0851-84776539 2. 代理机构信息(如有) 代理全称:泰禾云工程咨询有限公司 联系人 :孙光力 地 址:贵州省贵阳市观山湖区商业金融区内建勘大厦16楼1-9号 联系方式:0851-85828196-609 3. 项目联系方式 项目联系人:孙光力 电 话:0851-85828196-609 八、附件 采购公告.pdf
  • 进击的类器官技术|瑞孚迪携手嘉士腾医药共推类器官培养全自动化技术普及
    2024年1月6日瑞孚迪(Revvity)与重庆嘉士腾医药有限公司(以下简称“嘉士腾医药”)宣布将在类器官领域进行深入合作,基于各自在生命科学自动化工作流程平台和类器官领域领先技术的优势,携手打造嘉睿腾™全智能自动化类器官工作站。双方将共同致力于开发和推动类器官培养全自动化技术普及,更好地服务中国及全球类器官临床和科研客户。图: 嘉士腾医药创始人、董事长黄璘先生(左) 瑞孚迪中国区生命科学业务总经理刘疆先生(右)类器官已成为革命性的生物技术,广泛应用于精准医疗、临床科研、药物研发、再生医学等多学科前沿生命科学领域。类器官作为一种创新型的先进生物模型,广大临床及科研用户期待获得更为成熟的类器官技术体系和更为标准的培养及应用方案。在此背景下,瑞孚迪与嘉士腾医药达成战略合作,将瑞孚迪具备国际先进水平的生命科学自动化仪器装备优势和嘉士腾医药创新的类器官技术与人工智能技术互融互通,携手开发嘉睿腾™全智能自动化类器官工作站,致力于将类器官技术发展推向标准化、智能化、自动化。图:嘉睿腾全智能自动化类器官工作站作为战略合作伙伴,瑞孚迪与嘉士腾医药将共享资源和信息,加强技术交流与合作。嘉士腾医药以其在类器官、人工智能领域的先进技术和专业经验,联合瑞孚迪仪器平台为类器官研究人员提供技术支持和培训。瑞孚迪(Revvity)中国区生命科学业务总经理刘疆先生表示:作为全面的生命科学方案提供者,瑞孚迪持续专注于类器官这一前沿研究领域。此次能与嘉士腾医药达成战略合作,也代表着瑞孚迪与业内领先的类器官企业共同深耕类器官研究领域的决心,共同助力类器官自动化培养工作站的广泛应用。嘉士腾医药创始人、董事长黄璘先生表示:嘉士腾医药已拥有深厚的类器官技术储备,专注于为类器官客户提供嘉睿腾™全智能自动化类器官工作站+嘉必利®全系列类器官试剂耗材的一体化解决方案。嘉士腾医药依靠自身特有的类器官技术与先进的AI技术,与仪器设备解决方案提供商瑞孚迪强强联合,共同推动类器官技术走向标准化、自动化、智能化,为类器官技术的普及应用贡献力量。双方期待嘉睿腾全智能自动化类器官工作站在未来类器官的研究和应用中得到广泛普及,并不断拓展合作领域,探索类器官技术的更多可能性,为类器官技术的标准化、自动化、智能化发展做出更大的贡献!关于瑞孚迪(Revvity)在瑞孚迪(Revvity),我们将“ 不可能 ” 视为灵感,将“ 做不到 ” 视为原动力。瑞孚迪提供健康科学解决方案、前沿技术和专业服务,业务涵盖科研探索、开发、诊断、治疗的端到端全流程。依托在转化多组学技术、生物标志物鉴定、成像、疾病的预测、筛查、检测与诊断、信息学等领域的多年深耕,瑞孚迪正以科技之能,突破人类潜能的边界。2022年瑞孚迪的营业额超过30亿美元,全球拥有11,000多名员工,为制药和生物技术企业、诊断实验室、科研机构和政府机构等客户提供多样化服务。公司是标准普尔500指数的成员,客户遍及全球190多个国家和地区。 关于嘉士腾医药嘉士腾医药有限公司,致力于打造行业领先的类器官平台。嘉士腾医药通过将前沿的类器官生物技术与精准医学、药学、生物工程学、人工智能等多学科技术整合,把先进的技术成果转化为有价值的产品与服务。公司拥有先进的肿瘤类器官(PDO)与iPSC/ESC来源类器官双管线类器官技术,持续向精准医疗、药物研发、再生医学等应用场景输出多元化产品。同时,公司将芯片与人工智能技术与类器官相结合,开发出多款不同设计理念的类器官芯片产品以及基于AI的全智能自动化解决方案,使类器官实现标准化、自动化、智能化,更加贴近人体的微生理系统。嘉士腾医药致力于将先进的技术转化符合应用场景需要的高品质产品,通过不断升级的类器官多元化产品与精准治疗配套药物,服务大众,给社会和产业带来价值。
  • 沈阳工业大学成功研制大孔径输气管道内检测设备
    8月1日,西气东输二线正式向深圳供气,此前不久,西气东输三线数个路段也相继宣布开始建设。按照“西气东输”工程规划,到2015年西三线全线贯穿,一个贯通中亚、纵横我国东西南北的天然气基础管网将形成。而为这个近4万公里“气化中国”能源大动脉作管道损伤安全检查的仪器,却起始于国家自然科学基金资助的数个基础研究小项目。  “猪”小本领大  2011年11月,由沈阳工业大学信息科学与工程学院教授杨理践课题组自主研制的,大孔径输气管道内检测设备在我国输气管道干线——西气东输二线了敦至烟墩段管道现场测试获得成功。  这也是该团队继自主研制输油管道内检测设备后,又一填补我国高压力输气管道内检测设备研制空白之作。  管道是传输油气资源的主要方式,目前我国已投入运行的长距离油气输送管道近3万公里,很多输油气管线已使用十多年,存在不同程度的腐蚀、磨损和意外损伤。  2004年11月,延安市宝塔区南泥湾境内的靖—咸输油管道老化爆裂,造成原油泄漏1000多吨,直接经济损失400多万元,周边数十亩农田被污染。  2004年7月23日,广州市开发区下元新村一输油管道老化爆裂,泄漏后又两次起火爆炸,外流原油8吨 仅隔一日,中国石油管道公司大连输油分公司位于石房店市土城乡的输油管道老化爆裂,事故造成上千吨原油泄漏,附近区域的地下水安全受到威胁。  2003年7月,沈阳发生石油管道泄漏事故,仅抢修费用就达200万元,泄漏还造成大量能源浪费和严重环境污染。有专家估计,由此引起的生态破坏15年内不可能恢复。  类似的例子不胜枚举,过去一个时期,国家每年因油气管道泄漏而造成的经济损失达亿元。输气管道泄漏的危害远甚于输油管道,这些隐患如不能及时排除,一旦发生事故将造成巨大经济损失并带来生产安全、环境污染和能源损失问题。  管道安全运行的首要条件是管道损伤检测,确定管道的腐蚀、缺陷程度,为管道运行、维护、安全评价提供依据。但管道检测也是一个公认的难题,国际上通行的方法是采用管道在线检测设备(因为它在管道里行走时哼哼作响,出来时全身是油,俗称“智能管道猪”)来解决。国际上这方面的研究已有40多年的历史,但检测技术被美、英、德等几家跨国公司掌握,他们对所有与检测相关的东西,包括仪器、相关技术内容都严格保密。  管道亦赛场  “目前国内还没有类似仪器,就是和国际几家大公司的仪器相比,我们的检测精度和速度也毫不逊色。”近日,杨理践对《中国科学报》记者说,“该仪器的原理是检测漏磁,只要管道有损伤,仪器就能检测出来。”  长输油气管道内检测技术是无损检测、数据处理、超低频通讯、机械、流体力学、金属材料、非金属材料、油气储运等多学科交叉融合的技术,所涉及的各个关键技术环节均被国外公司视为独门绝技所垄断,不进行专利申报和学术交流。  国际管线检测设备被美德几家公司垄断,1套设备少则数百万美元,多则上千万美元。  2001年,在国家自然科学基金项目“高精度管道漏磁在线检测系统研究”的基础上,杨理践团队研制出拥有自主知识产权的检测仪器,该仪器的造价和检测费用均是国际同类产品的1/8,大大平抑了国外公司对我国管道检测的报价。  2000年,四川输气公司仅对管线进行些实验性的检测,就耗资数十万美元。2001年,新疆油田油气储运公司准备将一段63公里长的输油管道改为输气管道,这条管道已服役10年,且输气运行压力大于输油,各项安全指标要求也高于输油,但如果重铺新管道,耗资高达6000万元。在是否新建管道问题上,该公司技术专家们分歧较大。此后,新疆三叶管道有限公司运用杨理践团队研制的管道漏磁在线检测系统对该线路进行检测,发现存在10处重度腐蚀,50处中度腐蚀。在此基础上,后期管道修复仅用了300万元,既节约了大量资金,又保障了生产安全。  “(跨国公司)即使对我国出口设备,也不出让管道检测数据的分析权,这意味着我们购买设备后,还要付每公里1万美元的费用请供货方来人检测分析。”杨理践说,“前几年有一项工程,国外公司已经采取和国内一样的标价来竞争,他们想方设法要挤垮我们,因为他们不希望我们存在。”  杨理践团队在理论分析、仿真计算、反复模拟和工程试验基础上研制的输油管道在线检测仪器打破了国际垄断。从2002年开始,该仪器先后在大庆油田、吉林油田、四川气田、新疆油田进行检测工程工作,取得了良好效益。2010年对建成30多年的鲁宁线管道全线检测中,检出1万多处管道腐蚀缺陷和损伤,间接创造20余亿元人民币的经济效益。  在2011年11月杨理践团队进行的大孔径输气管道内检测设备现场测试中,国际著名管道内检测公司美国GE-PII公司和德国ROSEN公司的代表也参与了测试,这表明在输气管道内检测设备研制技术角力中,我国又一次跑到国际前列。  安全背后的科学基金  “跨国公司对此进行严格的技术垄断,我们只能从零开始,从基础理论做起,因此在这项研究上,国家自然科学基金起到了至关重要的作用。”杨理践说。  在国家自然科学基金的支持下,杨理践的团队完全从基本原理出发,开始从仪器原理到技术、工程问题的研究。在2000年国家自然科学基金信息学部主任基金、2002年国家自然科学基金面上项目、2003年国家自然科学基金仪器专项基金的资助下,杨理践团队进行了漏磁机理研究、传感器设计、检测速度影响研究,完成了多个型号高精度管道漏磁在线检测装置研制。他们进行了高清晰度漏磁检测传感器的设计研究,海量存储器数据处理技术的研究 建立了管道漏磁检测装置的有限元模型,确定了各种因素对漏磁检测信号的影响 建立了检测器速度变化效应的信号补偿的新方法 建立了缺陷信号处理分析的方法,能对不同的缺陷信号进行识别,有力推进了我国长管道输油气管道检测技术的发展和应用。  为解决长距离、高速管道探伤中的磨损问题,该团队又进行了高速运行耐磨技术,高导磁耐磨材料,弱磁激励检测理论的研究。为解决仪器在管道检测中被卡住和数据贮存的问题,该团队进行了低限制通过能力的研究,探头小型化、数字化,缺陷描述模型,小波特征提取、神经网络识别等基础研究。  在成果鉴定会上,专家一致认为,该研究为我国管道检测技术参与国际竞争提供基础理论与技术支撑,研制的管道探测仪器主要指标方面达到了国际先进水平,使我国拥有了独立知识产权的“智能管道猪”,并成为国际上少数能进行这方面研究、制造和服务的国家之一。
  • 我国第一台机载天然气管道泄漏监测设备试飞成功
    由中科院上海技术物理研究所第二研究室研制的机载天然气管道泄漏监测红外激光雷达近日在山东搭载试飞成功,这标志着该所继机载激光测距仪之后在机载主动遥感探测领域又迈出了新的一步。  本项目由国家863计划资源环境技术领域支持,课题负责人杨一德研究员带领相关科研人员经过2年的艰苦摸索,提前并超额指标要求完成项目预期的研究目标。项目于2008年初立项,将在2010年底结题验收。  地空试验现场(地面模拟气体泄漏)  当初立项时制定的研究目标是一台地面原理样机,课题组人员在有限的研究经费支持下,自主把研制目标从地面原理样机拔高到机载工程样机,为后续争取更大的项目奠定基础。  设备在试飞过程中  该工程样机的试飞成功标志着我国第一台机载天然气管道泄漏监测设备的诞生,设备的监测性能可以和国外商业化设备的水平相比拟,具有显著的技术转化优势 目前课题组正在和中石油、中石化等用户单位积极洽谈,希望进一步推进该项目的技术产出力度并获得该设备小型化、实用化经费支持,为将来能够实际服务于我国天然气管道泄漏监测而努力。
  • “聚焦类器官 洞悉细胞世界——类器官前沿技术及最新进展”主题研讨会圆满落幕
    仪器信息网讯: 2023年10 月 12 日,“聚焦类器官 洞悉细胞世界——类器官前沿技术及最新进展”主题研讨会圆满落幕,本次活动由Molecular Devices(中文简称“美谷分子仪器”)和仪器信息网联合主办。此次会议特别设置了类器官主题圆桌对话、学术报告分享、美谷分子类器官工作站功能演示、多轮抽奖等多个环节,吸引8000+人次观看,引发热烈讨论与交流。类器官是一种能够模拟真实器官结构和功能的微型细胞结构,不仅保留了与体内器官高度相似的组织学、遗传学特点,同时形成的组织有干细胞增殖与分化潜能。2017年类器官技术被《Nature Methods》评选为生命科学领域的年度技术,但是,类器官技术想要真正走进临床实验室完成应用转化,还要回答和解决很多实际问题。例如类器官作为模型时的主要痛点或限制有哪些以及未来如何改进?国内类器官标准化——如何真正去推动类器官在各个应用场景上被各方所认可并且支持标准化?以及类器官与转化医学和个性化医疗,面临的主要问题是?目前有哪些新进展?为回答以上问题,特别邀请北京大学基础医学院王凯研究员、中国医学科学院北京协和医院冷泠教授、银丰生物旗下银丰基因于强总经理和Molecular Devices产品经理苏园园博士四位嘉宾共同就当前类器官研究热点、前沿技术、标准化进程以及在转化医学和个性化医疗方面应用新进展等话题开展深度交流与讨论。类器官主题圆桌对话(从左往右:Molecular Devices产品经理苏园园博士、北京大学基础医学院王凯研究员、中国医学科学院北京协和医院冷泠教授、银丰生物旗下银丰基因于强总经理)王凯 北京大学基础医学院研究员对于当前类器官的研究热点和未来发展趋势,北京大学基础医学院王凯研究员认为,类器官结合微流控芯片将成为未来火热研究方向之一,尤其是近年来,微流控技术已被证明可以改善营养物质的输送和交换。引入微流控芯片技术可以使类器官可视化成为可能,同时利用微电子加工方式能够实现高通量化,而且还有助于开发高度可控、靶向性的营养物质递送系统。此外,未来类器官将会是对于现有动物模型的一种很好的补充和完善,同时类器官也有望被移植到体内进行细胞治疗,不仅仅是疾病模型研究,还能够有望实现器官的替代和修复,比如胰岛类器官移植治疗糖尿病,将干细胞分化为类似于胰岛的细胞团注射到患者体内治疗糖尿病。冷泠 中国医学科学院北京协和医院教授自2009年首类器官被建立以来, 类器官领域呈现快速发展趋势,期间取得系列突破性成果也得到了科研界和产业界的广泛认可。但是作为新兴技术,类器官在实际运用和科学研究过程中或多或少会遇到一些困难和挑战,中国医学科学院北京协和医院冷泠教授表示,均一性、成率、功能性和成本是目前面临主要难点和挑战,尤其现阶段对于类器官的定义,还没有形成一个行业共识。就均一性而言,不单单病人个体差异性,甚至同一稳态组织也存在薄厚差异,而对于多能干细胞来源的类器官,其方法研究还处于起步阶段。成本方面,类器官研究非常“烧钱”,比如培养过程使用的培养基(例如Wnt、R-Spondin、Noggin等细胞因子)、基质胶以及相关耗材等价格比较昂贵,并且这些产品绝大多数需要进口,从而导致货期不定。此外,受国际环境影响,国内类器官的研究可能会面临国际遏制。于强 银丰生物旗下银丰基因总经理2022年8月,美国FDA批准了首个基于仅来自类器官模型的疗效数据而进入临床试验的药物。这一决定不但体现了药物开发对类器官研究提供的数据的信心,也表现了FDA对类器官研究可信度的认可。对于目前国内类器官标准化的进展以及如何真正去推动类器官被各方所认可并且支持标准化,银丰生物旗下银丰基因于强总经理提出了两个维度的思考。从商业化角度来讲,从取材、培养到生长分化等整个类器官培养过程均需要建立标准化,否则得不到临床认可,也就无法实现产业化。而从探索性技术角度出发,标准即为最前沿的研究,类似登月一样,首先攻克重重难关抵达到月球表面才能成为标准。目前,国内类器官标准化路程还有很遥远,不仅需要国家相关部门大力支持,同时也需要科研工作人员,比如学会协会等组织牵头完成标准制定。圆桌讨论结束后,由Molecular Devices产品经理苏园园博士带来《从培养到检测,全自动类器官工作站赋能行业发展》精彩报告分享。报告人:苏园园博士 Molecular Devices产品经理报告题目:《从培养到检测,全自动类器官工作站赋能行业发展》类器官凭借高度仿生人体组织器官的独特优势,现已成为生命科学研究及医药研发的优良模型,但是现有的类器官培养模式缺乏标准化,导致稳定性差、通量低等问题,难以满足大规模工业化的需求。为推动这一前沿技术的发展,Molecular Devices新推出类器官自动化工作站。苏园园博士在报告中介绍到,Molecular Devices以标准化、高通量、高重复性和AI数据整合为导向,实现了类器官从大规模可重复的模型构建到药物评价的一体化生产和检测,赋能类器官基础研究和应用。直播间热烈讨论与交流更多详情请进入了解:“聚焦类器官 洞悉细胞世界——类器官前沿技术及最新进展”主题研讨会(点击进入)
  • 应对室内污染,还您健康呼吸:YUNDATA智能空气管理系统新品推出
    呼吸,是生命的本能,是活着的必需。每天20000次,吐故纳新,伴随一生。在追求高品质生活的道路上,我们往往聚焦于饮食和日用品的精致,却忽视了呼吸对健康的影响。化学实验室,是守护规则与创造奇迹的空间。在这里,别处难得一见的物质琳琅满目;在这里,科学世界的追逐者用酸碱醛醚的各类反应探索着未知的秘密,将每个问号都“拉直”。淡淡的酸味和细微的刺激感,构成了实验室的熟悉气味,徒生出一缕亲切感,时间久了,这味道,仿佛理所当然。老一辈化学工作者已经习惯了与这缕亲切感共处,在只管攀登莫问高的科研生涯中,即使病痛趁虚而入,往往也不会归咎于工作环境的长期污染。而年轻一代在发现化学之美的同时,则更关注工作环境与健康的关系,他们爱科研,更要健康。海能仪器推出新款YUNDATA智能空气管理系统,应对室内空气污染挑战。无论是专业的实验室,还是对室内空气要求更高的其他环境,均能胜任!更全面、更安全、更高效、更智能!海能仪器YUNDATA智能空气管理系统海能仪器YUNDATA智能空气管理系统不同于传统空气净化器单纯的过滤吸附方式,而是同时配备有吸附和雾化系统。既能对空气中的PM2.5等颗粒物进行吸附过滤,又能利用降解液中的活性成分,有效捕捉空气中的有害气体分子,并通过一系列反应将醛类,TVOC 类等有害物质降解为二氧化碳和水等,有效降低有害气体的浓度和强度。以常见有害挥发性有机物甲醛为例:HCHO+降解液=CO?+H?O优势特点:全面性:可以有效降解醛,TVOC 及颗粒污染物,进行无害化处理。安全性:降解液无毒无害对人体安全可靠,最终的降解产物为二氧化碳,水等,不会产生二次污染。高效性:一台智能空气管理系统可以净化六十平方米的范围。智能化:传感器实时监测,并显示检测数值;带有烟雾传感器,可进行火灾预警,预警信息将推送到手机;手机远程控制,减少空气污染对身体所造成的伤害。功能:手动模式:独立开启雾化模式和过滤模式。自动模式:设置运行时间和运行时长。智能模式:传感器实时检测室内空气质量,当检测到超过设定标准值后,自动运行,直到把有害气体和颗粒物全部降解和过滤到标准值后自动停止。手机控制:通过 wifi 连接主机,远程操作机器,在手机客户端可以实现主机所有功能的设置。智能空气管理系统 APP 操作界面
  • Cell:自我组织的人类心脏类器官
    位于维也纳的奥地利科学院的生物学家Sasha Mendjan和他的团队使用人类多能干细胞培养出芝麻大小的心脏模型,称为心脏样体(cardioids,生物通注),它可以自发地自我组织,在不需要实验支架的情况下发展出一个空心的房间。这项进展,允许创造一些迄今为止最真实的心脏类器官,发表在5月20日的Cell杂志上。此前,科学家们已经通过组织工程制造出了3D心脏类器官,这种方法通常需要组装细胞和支架,就像用砖块和砂浆建造房子一样。但是,这些工程类器官对损害的生理反应不像人类心脏那样,因此往往不能作为良好的疾病模型。“组织工程在很多方面都非常有用,比如,如果你想测量收缩,”Mendjan说。但在自然界中,器官不是这样形成的。在胚胎时期,器官通过一个叫做自组织的过程自发地发育。在发育过程中,细胞组成部分相互作用,随着器官结构的出现和生长而四处移动和改变形状。“自组织是自然形成雪花晶体或鸟类群体行为的方式。这很难设计,因为似乎没有计划,但仍有一些非常有序和有力的东西出现了。”“器官的自组织更有活力,很多事情我们不了解。我们认为这种“隐藏的魔法”的发展,我们还不知道的东西,是目前疾病没有被很好地建模的原因。”Mendjan和他的团队想要通过在盘子里的自组织来模拟发展。他们以特定的顺序激活所有参与胚胎心脏发育的六个已知信号通路,诱导干细胞自我组织。随着细胞分化,它们开始形成不同的层,类似于心脏壁的结构。经过一周的发育,这些类器官自组织成一个有封闭腔的3D结构,类似人类心脏的自发生长轨迹。此外,研究小组还发现心脏样的壁状组织有节奏地收缩,挤压腔内的液体。Mendjan说:“这并不是说我们在使用与其他研究人员不同的东西,而是我们在使用所有已知的信号。”他补充说,不是所有的途径都需要引导干细胞成为心脏细胞。“所以他们想,‘好吧,它们在体外没有必要。’但事实证明,所有这些途径都是必要的。它们对细胞自我组织成器官非常重要。”该团队还测试了心脏类物质对组织损伤的反应。他们用一根冷钢棒冷冻小心脏的部分部位,并杀死该部位的许多细胞。细胞死亡通常是在诸如心脏病发作等损伤后观察到的。研究小组立即发现,心脏成纤维细胞——一种负责伤口愈合的细胞——开始向损伤部位迁移,并产生修复损伤的蛋白质。“我们希望人类的心脏模型能够更加自然地发展,从而能够预测疾病,”Mendjan说,“通过这种方式,制药公司将更愿意将更多药物引入临床试验,因为他们对试验结果更加确定。”该团队计划培育具有多个腔室的心脏类器官,就像在真正的人类心脏中看到的那样。许多先天性心脏病发生在其他心室开始形成的时候,所以多腔模型将帮助医生更好地了解缺陷是如何在胎儿中发展的。
  • 应对室内污染 海能仪器推出YUNDATA智能空气管理系统新品
    p style="line-height: 1.75em text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "化学实验室,由于放置各种化学试剂,因此室内空气往往受到污染。/spanspan style="font-family: 宋体, SimSun "从业人员长期置身于这样的环境,身心健康将受到极大的损害。/spanspan style="font-family: 宋体, SimSun "针对于此,/spanspan style="font-family: 宋体, SimSun "海能仪器推出新款YUNDATA智能空气管理系统,以应对室内空气污染挑战。该仪器无论是专业的实验室,还是对室内空气要求更高的其他环境,均能胜任!/spanbr//pp style="text-align: center "img title="72.png" style="max-width:100% max-height:100% " alt="72.png" src="https://img1.17img.cn/17img/images/202008/uepic/df9aa25b-a6d0-4b22-8acd-2baf7ac385df.jpg"//pp style="line-height: 1.75em text-indent: 2em text-align: center "span style="font-size: 14px "strongspan style="font-family: 宋体, SimSun "海能仪器YUNDATA智能空气管理系统/span/strong/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "相较于传统空气净化器单纯的过滤吸附方式,海能仪器YUNDATA智能空气管理系统同时配备有吸附和雾化系统。既能对空气中的PM2.5等颗粒物进行吸附过滤,又能利用降解液中的活性成分,有效捕捉空气中的有害气体分子,并通过一系列反应将醛类,TVOC 类等有害物质降解为二氧化碳和水等,有效降低有害气体的浓度和强度。/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "以常见有害挥发性有机物甲醛为例:HCHO+降解液=CO?+H?O/span/pp style="text-align: center "img title="73.png" style="max-width:100% max-height:100% " alt="73.png" src="https://img1.17img.cn/17img/images/202008/uepic/bf28e096-ea71-47cb-bb03-f44416611920.jpg"//pp style="line-height: 1.75em text-indent: 2em text-align: justify "strongspan style="font-family: 宋体, SimSun "优势特点:/span/strong/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "全面性:/span/strong/spanspan style="font-family: 宋体, SimSun "可以有效降解醛,TVOC 及颗粒污染物,进行无害化处理。/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "安全性:/span/strong/spanspan style="font-family: 宋体, SimSun "降解液无毒无害对人体安全可靠,最终的降解产物为二氧化碳,水等,不会产生二次污染。/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "高效性:/span/strong/spanspan style="font-family: 宋体, SimSun "一台智能空气管理系统可以净化六十平方米的范围。/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "智能化:/span/strong/spanspan style="font-family: 宋体, SimSun "传感器实时监测,并显示检测数值;带有烟雾传感器,可进行火灾预警,预警信息将推送到手机;手机远程控制,减少空气污染对身体所造成的伤害。/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "strongspan style="font-family: 宋体, SimSun "功能:/span/strong/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "手动模式:/span/strong/spanspan style="font-family: 宋体, SimSun "独立开启雾化模式和过滤模式。/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "自动模式:/span/strong/spanspan style="font-family: 宋体, SimSun "设置运行时间和运行时长。/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "智能模式:/span/strong/spanspan style="font-family: 宋体, SimSun "传感器实时检测室内空气质量,当检测到超过设定标准值后,自动运行,直到把有害气体和颗粒物全部降解和过滤到标准值后自动停止。/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "手机控制:/span/strong/spanspan style="font-family: 宋体, SimSun "通过 wifi 连接主机,远程操作机器,在手机客户端可以实现主机所有功能的设置。strong/strong/span/pp style="text-align: center "img title="74.png" style="max-width:100% max-height:100% " alt="74.png" src="https://img1.17img.cn/17img/images/202008/uepic/a7e08381-6524-4cab-98cd-78a6e4888a32.jpg"//pp style="line-height: 1.75em text-indent: 2em text-align: center "span style="font-size: 14px "strongspan style="font-family: 宋体, SimSun "智能空气管理系统 APP 操作界面/span/strong/span/ppbr//p
  • 增压气管疲劳性测试——汽车检测市场的“处女地”
    仪器信息网讯 2012年9月12日仪器信息网编辑来到武清中华自行车王国产业园对天津安维新检测技术服务有限公司进行参观采访。天津安维新检测技术服务有限公司(以下简称:安维新)总经理孟广新带领我们参观了实验室。   孟广新介绍说,安维新是2010年成立,专业从事第三方公正检测、资询服务,可对机车和汽车用各种气压管、汽车涡轮增压进气管、排气管进行模拟汽车极限运动测试,是国内唯一一家拥有汽车涡轮增压气管疲劳耐久性试验能力的检测机构。  孟广新进一步介绍说,以前国内没有这方面的检测能力,国内汽车制造商通常将汽车涡轮增压进、出气管送到欧洲做检测,每次检测都要花费10万美元以上,成本很高。安维新与国内的一家设备制造厂合作共同开发了一款以高低温、震动、压力、脉冲为一体的综合试验箱,填补了国内空白。  她详细讲解了该试验箱是模拟汽车对管路的试验情况:将待测气管连接到箱内的管路上,实验箱通过管路向气管中充气。通过调节冲气温度、湿度、压力,对气管的质量进行测试 通过间歇性充气及管道振动,模拟气管的脉冲和振动实验。通过连续试验上百个小时,最后鉴定气管的疲劳耐久性能。快温变湿热、压力、脉冲、振动综合试验箱增压空气冷却器管实验涡轮增压进出气管实验 孟广新认为国内气压管路的检测市场很有前景,前一段时间刚刚做完通用汽车的涡轮增压进、出气管的疲劳耐久性试验,客户对实验过程十分认可。目前安维新的首要任务是将此项服务,向汽车气压管生产厂家、汽车制造厂家等潜在用户进行推广。
  • 探秘类器官与器官芯片进展,锁定iCCA2024第七届细胞分析大会(扫码预约直播)
    类器官技术已进入新的发展阶段,技术发展重点主要包括器官芯片、AI高通量自动化、类器官样本库及药敏检测等,在疾病发生机理、新靶点发现、诊疗新策略探索、药敏检测、新药研发、再生医学等多方向拥有广泛的应用前景。为加强创新细胞分析技术与方法的交流,把最新的细胞分析技术与方法推介给广大生物医药领域用户,仪器信息网将于2024年07月03日举办第七届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。会议依托成熟的网络会议平台,将为广大科研工作者、相关从业者提供一个突破时间地域限制的免费交流、学习平台,让大家足不出户便能聆听到精彩报告。报名链接及日程二维码https://www.instrument.com.cn/webinar/meetings/icca2024/ 【类器官与器官芯片】分会场精彩预览:报告主题:干细胞与血管类器官报告嘉宾:王凯北京大学 研究员严重下肢缺血(Critical limb ischemia, CLI)是由于下肢动脉狭窄或闭塞、血流灌注不足,从而导致下肢疼痛、溃疡或坏疽甚至截肢。目前,CLI的治疗尚无彻底治愈的药物,主要依赖于外科治疗,旨在通过绕过或消除动脉阻塞来重建血运,亦有复发的风险。针对以上的治疗困境,干细胞治疗等新疗法将为这些患者带来新的希望。本项目利用IPS衍生出来的可注射血管类器官在体内极强的生成血管的能力,有望孵化出一种新的细胞治疗方法,用于下肢缺血的治疗。报告主题:安捷伦细胞分析助力类器官研究报告嘉宾:周鑫安捷伦细胞分析事业部 产品应用经理1. 安捷伦类器官成像分析解决方案 2. 安捷伦类器官能量代谢分析Seahorse XF技术解决方案 3. 类器官分析案例分享报告主题:复杂类器官构建及其疾病应用报告嘉宾:冷泠中国医学科学院北京协和医院 教授冷泠研究团队基于空间基质组学技术及其研究成果,创建了多种复杂类器官模型,进行微生物感染致病机理、罕见病发病机制病等多项研究,推动类器官在罕见病治疗和药物筛选中的应用。报告主题:Hamilton自动化在细胞培养和3D类器官培养中的应用报告嘉宾:万米根哈美顿(上海)实验器材有限公司 应用工程师干细胞类的细胞系的培养一直是细胞培养中的难点。不合适的培养操作方式会对细胞克隆产生多种刺激导致细胞异常分化,细胞密度、克隆状态等因素也对干细胞的状态产生影响。Hamilton自动化液体处理系统可以自动化完成细胞接种、传代、维持培养和融合度检测等操作。3D类器官培养是疾病模型、体外药物发现和细胞治疗的重要工具。类器官药物敏感性高通量检测涉及患者类器官在微孔板(通常为96、384甚至1536孔板)中的分装、大规模药物微量施加、药物敏感性判读等多个关键环节。自动化液体处理系统可以通过控制关键因素确保整个过程的标准化,这包括培养液的自动配制、自动温敏基质胶铺板、类器官传代与铺板、自动孵育、自动高内涵染色和自动检测等多个环节。Hamilton专利的MagPip移液通道可实现基质胶和类器官的快速铺板。该系统的高精度和稳定性保证了实验结果的准确性和可靠性,助力生物医学领域的研究和创新。报告主题:工程化的胰岛类器官在糖尿病治疗中的应用报告嘉宾:王茜北京大学第三医院 研究员中国正面临着糖尿病带来的巨大医疗和经济负担,随着干细胞分化的蓬勃发展,干细胞来源胰岛类器官有望提供无限的细胞来源并应用于糖尿病患者的临床治疗中,然而其中的科学难题包括免疫排斥、缺血缺氧等仍亟待解决。针对上述关键科学问题,王茜研究员构建了一系列安全性、可大规模生产的可植入免疫隔离装置、仿生支架材料和功能增强型干细胞,用于高效地递送细胞及提高细胞移植后的存活率。报告主题:类器官模型建立和检测的要点梳理报告嘉宾:鲁扬赛默飞世尔科技 现场应用专家器官研究近几年有了迅速发展。随着多种自定义类器官模型的涌现,研究者也提出了诸如质量控制,形态观察和功能检测等更多需求。本次报告拟对类器官模型建立和检测过程中的主要步骤做出汇总和梳理,为研究者提供类器官研究的整体解决方案。报告主题:脑类器官及其在脑发育、脑疾病和系统互作模拟中的应用报告嘉宾:马少华清华大学深圳国际研究生院 副教授脑类器官,由胚胎干细胞或诱导多能干细胞培育而成,能够在体外模拟人脑的发育和功能,以及在体外模拟脑疾病的发生、发展以及治疗干预。此外,脑类器官通过与多器官、组织和细胞的共培养,能够探究神经系统与其他系统如免疫系统之间的互作及其调控机制,为脑科学研究和理解器官间的相互作用和维持生理稳态提供先进的研究工具。报告主题:一种类器官的电活动检测分析方法报告嘉宾:刘晓燕上海科技大学 工程师类器官作为目前研究的前沿技术之一,在疾病建模,抗癌药物筛选,药物毒理检测,基因和细胞疗法的领域有广大的应用前景。对于可以检测动作电位的类器官如心肌类器官,类脑器官而言,电生理活性检测是判断类器官是否能够模拟在体器官的标准之一。基于此向大家分享类器官简单培养方法的基础上,为大家介绍一种无创的可以实时监测类器官电生理活性的一种检测方法。此方法通过对类器官放电进行收集和处理,可以输出脑类器官的动作电位发放频率,发放数目,也可输出心肌类器官的FPDc,收缩频率,跳动频率等相关的心电图检测指标。可以更无创准确的反应类器官的电生理活性从而判断类器官的状态。
  • 世界实验动物日:类器官与器官芯片架起科技与人文的桥梁
    在科学探索和医学进步的道路上,实验动物一直扮演着重要角色:研究人类的生理和疾病机制、研究药物功效、研究环境因素对人类的影响等。 然而,在追求科学进步的同时,人们也日益关注实验动物的福祉。为了保护实验动物权益、降低实验动物使用对其造成的负面影响和提高实验效率,1959年英国《人道主义实验技术原理》中提出了“3R”概念,1964年露丝哈里逊也在《动物机器》中提出了动物福利“五大自由”。 (图片来源:https://www.animalstudies.bayer.com/) 类器官与器官芯片技术的发展与应用为实验动物们带来福音,在动物保护与医学进步的交汇点上架起桥梁,连接起了科研深度与人文关怀。 “人体器官芯片”是近年来诞生的一项变革性生物医学技术,它能够在体外构建出人体器官微生理系统,模拟出人体不同组织器官的主要结构功能特征和复杂的器官间联系,在药物筛选、疾病模型构建、个性化医疗、特殊医学研究等领域“以身试药”,补充或替代动物实验数据,能够很好地减少对活体动物实验的需求。 Azeliragon是一种口服小分子药物,最初被开发用于治疗阿尔茨海默病,但是在三期临床试验中未能证明有效。为了明确Azeliragon新的适应症,研究人员使用肺器官芯片模拟人类肺部组织的功能结构以及呼吸运动,并重现了流感病毒对肺泡上皮、尤其是AT2细胞的感染。通过肺器官芯片模型,研究证实了azeliragon作为RAGE抑制剂可以减弱病毒感染对下游炎症因子的激活。这一结果被提交给FDA的pre-IND会议,最终azeliragon被批准用于预防COVID-19患者细胞因子风暴和肾衰的临床研究,且已进入临床三期研究。 研究人员利用肺泡芯片模型研究病毒对感染的过程。研究发现肺泡的呼吸运动可以抑制流感病毒(红色)对肺泡上皮细胞的感染。 慢性自身免疫性脱髓鞘神经病是一类罕见的神经肌肉疾病,因缺乏有效模拟疾病症状的动物模型,研究人员使用神经元和施旺细胞构建了针对两种自身免疫性脱髓鞘神经病——慢性炎症性脱髓鞘多发性神经病(CIDP)和多灶性运动神经病(MMN)的器官芯片,通过这一器官芯片模型,得出补体抑制剂对自身免疫性脱髓鞘具有治疗作用的数据结论。赛诺菲将sutimlimab已获得的安全性数据,与利用器官芯片获得的疗效数据结合,向FDA递交了治疗新适应症的IND申请。目前这项临床试验已进入二期临床试验。 模拟罕见脱髓鞘疾病的器官芯片 恒瑞医药HRS-1893片通过特殊机制抑制心肌过度收缩,拟用于治疗肥厚型心肌病以及心肌肥厚导致的心力衰竭。这项研究的体外筛选工作是基于艾玮得生物器官芯片技术,结合艾玮得自主研发的类器官/器官芯片智能分析系统对心肌球进行观察与分析,评价药物对心脏类器官芯片收缩振幅及钙瞬变峰值的影响,累计共筛选9批次上百个化合物,高效地为后期的体内药效实验找到了候选分子。目前恒瑞医药HRS-1893片已获批开展临床试验。 心脏类器官标志物共聚焦 艾玮得类器官/器官芯片智能分析系统对心肌球进行收缩模式检测 在世界范围内呼吁减少动物实验的背景下,类器官与器官芯片技术为这一理念提供了实际的解决方案。它不仅符合科学发展的趋势,更迎合了社会对于道德和伦理的要求。期待更多行走于医学探索道路上的学者,与艾玮得生物一起,共同推动类器官与器官芯片技术的发展,让这座桥梁成为保护动物福利、促进科学进步的重要支撑。 1、Bai H, Si L, Jiang A, Belgur C, Zhai Y, Plebani R, et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat Commun. 2022 Apr 8 13(1):1928. doi:10.1038/s41467-022-29562-4. PMID:353965132、Rumsey JW, Lorance C, Jackson M, Sasserath T, McAleer CW, Long CJ, et al. Classical Complement Pathway Inhibition in a “Human-On-A-Chip” Model of Autoimmune Demyelinating Neuropathies. Adv Ther (Weinh). 2022 Jun 5(6):2200030. doi: 10.1002/adtp.202200030. PMID: 36211621
  • 伯桢生物-徕卡显微类器官智能成像开发平台战略合作签约暨2023类器官技术与成像研讨会
    2009年荷兰科学家使用徕卡显微镜拍摄了成体干细胞来源的类器官的宽场和激光共聚焦图片。2011年伯桢生物创始人团队在清华大学重现了类器官技术,十年磨一剑于2021年创立伯桢生物,利用全球领先的类器官模型构建能力推动医药创新。在类器官模型技术快速增长和广大用户的迫切需求下,徕卡显微的类器官成像解决方案和伯桢生物类器官培养方案将携手建立多维成像平台,带大家进入类器官技术的新纪元。2023年6月6日,伯桢生物与徕卡显微类器官智能成像开发平台战略合作签约仪式在苏州伯桢生物讲堂举行,诚邀您出席。2023年6月6日 13:30-16:30苏州工业园区腾飞苏州创新园塔楼B811室日程安排线上直播日程长按识别二维码预约报名伯桢徕卡类器官技术培训班预告时间:2023年6月6日 15:30-6.8日 18:00培训班以理论与实操相结合,让学员在两天内自己实现类器官培养和传代与鉴定,本次培训班为伯桢和徕卡联合举办,增加基于徕卡成像系统类器官成像体验、徕卡显微成像及人工智能分析助力类器官研究、徕卡MICA的类器官光镜观察等理论和实践课,让您体验到从养好类器官到拍好类器官的丝滑。培训班日程及报名方式了解更多:徕卡显微
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制